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ABSTRACT
Protocols to ensure that messages are delivered in causal order are
a ubiquitous building block of distributed systems. For instance,

distributed data storage systems can use causally ordered message

delivery to ensure causal consistency, and CRDTs can rely on the

existence of an underlying causally-ordered messaging layer to

simplify their implementation. A causal delivery protocol ensures

that when a message is delivered to a process, any causally preced-

ing messages sent to the same process have already been delivered

to it. While causal delivery protocols are widely used, verification

of their correctness is less common, much less machine-checked

proofs about executable implementations.

We implemented a standard causal broadcast protocol in Haskell

and used the Liquid Haskell solver-aided verification system to

express and mechanically prove that messages will never be de-

livered to a process in an order that violates causality. We express

this property using refinement types and prove that it holds of our

implementation, taking advantage of Liquid Haskell’s underlying

SMT solver to automate parts of the proof and using its manual

theorem-proving features for the rest. We then put our verified

causal broadcast implementation to work as the foundation of a

distributed key-value store.
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1 INTRODUCTION
Causal message delivery [5–7, 30] is a fundamental communication

abstraction for distributed computations in which processes com-

municate by sending and receiving messages. One of the challenges

of implementing distributed systems is the asynchrony of message

delivery; messages arriving at the recipient in an unexpected order

can cause confusion and bugs. A causal delivery protocol can ensure

that, when amessage𝑚 is delivered to a process 𝑝 , anymessage sent
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Figure 1: Two executions that violate causal delivery (Def-
inition 2). On the left, Carol sees Alice’s messages in the
opposite order of how they were sent. On the right, Carol
sees Bob’s message before seeing Alice’s secondmessage. The
dashed arrows in both diagrams depict how a causal delivery
mechanism (Section 2.2) might delay received messages in a
buffer for later delivery.

“before”𝑚 (in the sense of Lamport’s “happens-before”; see Sec-

tion 2.1) will have already been delivered to 𝑝 . When a mechanism

for causal message delivery is available, it simplifies the implemen-

tation of many important distributed algorithms, such as replicated

data stores that must maintain causal consistency [2, 21], conflict-

free replicated data types [34], distributed snapshot protocols [1, 3],

and applications that “involve human interaction and consist of

large numbers of communication endpoints” [35]. A particularly

useful special case of causal delivery is causal broadcast, in which

each message is sent to all processes in the system. For example, a

causal broadcast protocol enables a straightforward implementa-

tion strategy for a causally consistent replicated data store — one

of the strongest consistency models available for applications that

must maximize availability and tolerate network partitions [22].

Conflict-free replicated data types (CRDTs) implemented in the

operation-based style [33, 34] typically also assume the existence of

an underlying causal broadcast layer [34, §2.4].

What can go wrong in the absence of causal broadcast? Suppose

Alice, Bob, and Carol are exchanging group text messages. Alice

sends the message “I lost my wallet...” to the group, then finds the

missing wallet between her couch cushions and follows up with

a “Found it!” message to the group. In this situation, depicted in

Figure 1 (left), Alice has a reasonable expectation that Bob and

Carol will see the messages in the order that she sent them, and

such first-in first-out (FIFO) delivery is an aspect of causal message
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ordering. While FIFO delivery is already enforced
1
by standard

networking protocols such as TCP [27], it is not enough to elim-

inate all violations of causality. In an execution such as that in

Figure 1 (right), FIFO delivery is observed, and yet Carol sees Bob’s

message only after having seen Alice’s initial “I lost my wallet...”

message, so from Carol’s perspective, Bob is being rude. The issue

is that Bob’s “Glad to hear it!” response causally depends on Alice’s

second message of “Found it!”, yet Carol sees “Glad to hear it!” first.

What is called for is a mechanism that will ensure that, for every

message that is applied at a process, all of the messages on which

it causally depends — comprising its causal history — are applied at

that process first, regardless of who sent them.

One way to address the problem is to buffer messages at the

receiving end until all causally preceding broadcast messages have

been applied. The dashed arrows in Figure 1 represent the behavior

of such a buffering mechanism. A typical implementation strat-

egy is to have the sender of a message augment the message with

metadata (for instance, a vector clock; see Section 2.2.1) that summa-

rizes that message’s causal history in a way that can be efficiently

checked on the receiver’s end to determine whether the message

needs to be buffered or can be applied immediately to the receiver’s

state. Although such mechanisms are well-known in the distributed

systems literature [5–7], their implementation is “generally very

delicate and error prone” [8], motivating the need for machine-

verified implementations of causal delivery mechanisms that are

usable in real, running code.

To address this need, we use the Liquid Haskell [38] platform

to implement and verify the correctness of a well-known causal

broadcast protocol [6]. Liquid Haskell is an extension to the Haskell

programming language that adds support for refinement types [29,
42], which let programmers specify logical predicates that restrict,

or refine, the set of values described by a type. Beyond giving more

precise types to individual functions, Liquid Haskell’s reflection [36,

39] facility lets programmers use refinement types to extrinsically

specify properties that can relatemultiple functions (see Section 3.2),

and then prove those properties by writing Haskell programs to

inhabit the specified types. We use this capability to prove that in

our causal broadcast implementation, processes deliver messages

in causal order, ruling out the possibility of causality-violating

executions like those in Figure 1.

We express causal delivery as a refinement type. By doing so, we

can take advantage of Liquid Haskell’s underlying SMT automation

where possible, while still availing ourselves of the full power of

Liquid Haskell’s theorem-proving capabilities via reflection where

necessary. A further advantage of Liquid Haskell as a verification

platform is that it results in immediately executable Haskell code,
with no extraction step necessary, as with proof assistants such as

Coq [4] or Isabelle [40] — making it easy to integrate our library

with existing Haskell code.

Our causal broadcast implementation is a Haskell library that

can be used in a variety of applications. While previous work has

mechanically verified the correctness of applications of causal order-

ing in distributed systems (such as causally consistent distributed

key-value stores [12, 19]), factoring the causal broadcast protocol

1
TCP’s FIFO ordering guarantee applies so long as the messages in question are sent

in the same TCP session. Across sessions, additional mechanisms are necessary.

out into its own standalone, verified component means that it can

be reused in each of these contexts. There is a need for such a

standalone component: for instance, recent work on mechanized

verification of CRDT convergence [11] assumes the existence of
a correct causal broadcast mechanism for its convergence result

to hold. Our separately-verified library could be plugged together

with such verified CRDT implementations to get an end-to-end

correctness guarantee. Therefore our library enables modular veri-
fication of higher-level properties for applications built on top of

the causal broadcast layer. While recent work [25] takes precisely

such a modular approach to verification of applications that use

causal broadcast, our work is to the best of our knowledge the first

to do so by expressing causal message delivery as a refinement type

and leveraging SMT automation.

We make the following specific contributions:

• We identify local causal delivery, a property that allows us to

reduce the problem of determining that a distributed execu-

tion observes causal delivery to one that can be verified using

information locally available at each process (Section 2.3).

• We identify design choices that make a standard causal broad-

cast protocol amenable to verification. In particular, we im-

plement the protocol in terms of a state transition system,

andwe implement message broadcast in terms of message de-

livery, leading to a simpler proof development (Section 3.3).

• We present novel encodings of local causal delivery and

causal delivery as refinement types, and we give a mecha-

nized proof that our causal broadcast library implementation

satisfies the causal delivery property (Section 4).

To evaluate the practical usability of our library, we put it to work

as the foundation of a distributed in-memory key-value store and

empirically evaluate its performance when deployed to a cluster

of geo-distributed nodes (Section 5). Section 6 contextualizes our

contributions with respect to existing research, and Section 7 sum-

marizes our work. All of our code, including our causal broadcast

library, our proof development, and our key-value store case study,

is available at https://github.com/lsd-ucsc/cbcast-lh.

2 SYSTEM MODEL AND VERIFICATION TASK
In this section, we describe our system model (Section 2.1) and

the causal broadcast protocol that we implemented and verified

(Section 2.2), and we define the property that we need to show

holds of our implementation (Section 2.3).

2.1 System Model
We model a distributed system as a finite set of 𝑁 processes (or
nodes) 𝑝𝑖 , 𝑖 : 1..𝑁 , distinguished by process identifier 𝑖 . Processes

communicate with other processes by sending and receiving mes-
sages. In our setting, all messages are broadcast messages, meaning

that they are sent to all processes in the system, including the

sender itself.
2
Our network model is asynchronous, meaning that

sent messages can take arbitrarily long to be received. Furthermore,

for our safety result we need not assume that sent messages are

eventually received, so our network is also unreliable (although

2
For simplicity, we omit the messages that processes send to themselves from examples

in Figures 1, 2, and 3. We assume that these self-sent messages are sent and delivered

in one atomic step on the sender’s process.

https://github.com/lsd-ucsc/cbcast-lh
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such an assumption would be necessary for liveness; see Section 4.4

for a discussion).

We distinguish between message receipt and message delivery:

processes can receive messages at any time and in any order, and

they may further choose to deliver a received message, causing

that message to take effect at the node receiving it and be handed

off to, for example, the user application running on that node. Im-

portantly, although nodes cannot control the order in which they

receive messages, they can control the order in which they deliver

those messages. Imagine a “mail clerk” on each node that intercepts

incoming messages and chooses whether, and when, to deliver each

one (by handing it off to the above application layer and recording

that it has been delivered). We must ensure that the mail clerk de-

livers the messages in an order consistent with causality, regardless

of the order in which messages were received — implementing the

behavior illustrated by the dashed arrows in Figure 1.

For our discussion of causal delivery, we need to consider two

kinds of events that occur on processes: broadcast events and deliver
events. We will use broadcast (𝑚) to denote an event that sends a

message𝑚 to all processes,
3
and deliver𝑝 (𝑚) to denote an event that

delivers𝑚 on process 𝑝 . We refer to the totally ordered sequence

of events that have occurred on a process 𝑝 as the process history,
denoted ℎ𝑝 . For events 𝑒 and 𝑒

′
in a process history ℎ𝑝 , 𝑒 and 𝑒

′
are

in process order, written 𝑒 →𝑝 𝑒′, if 𝑒 occurs in the subsequence of

ℎ𝑝 that precedes 𝑒′.
An execution of a distributed system consists of the set of all

events in all process histories, together with the process order rela-

tion→𝑝 over events in eachℎ𝑝 and the happens-before relation→ℎ𝑏

over all events. The happens-before relation, due to Lamport [16],

is an irreflexive partial order that captures the potential causality
of events in an execution: for any two events 𝑒 and 𝑒′, if 𝑒 →ℎ𝑏 𝑒′,
then 𝑒 may have caused 𝑒′, but we can be certain that 𝑒′ did not

cause 𝑒 .

Definition 1 (Happens-before (→ℎ𝑏 ) [16]). Given events 𝑒 and
𝑒′, 𝑒 happens before 𝑒′, written 𝑒 →ℎ𝑏 𝑒′, iff:

• 𝑒 and 𝑒′ occur in the same process history ℎ𝑝 and 𝑒 →𝑝 𝑒′; or
• 𝑒 = broadcast (𝑚) and 𝑒′ = deliver𝑝 (𝑚) for a given message
𝑚 and some process 𝑝 ; or

• 𝑒 →ℎ𝑏 𝑒′′ and 𝑒′′ →ℎ𝑏 𝑒′ for some event 𝑒′′.

Events in the same process history are totally ordered by the

happens-before relation (For example, in Figure 1, Alice’s broadcast

of “I lost my wallet...” happens before her broadcast of “Found it!”),

and the broadcast of a given message happens before any delivery

of that message. We say that 𝑚 →ℎ𝑏 𝑚′
iff broadcast (𝑚) →ℎ𝑏

broadcast (𝑚′), using the notation →ℎ𝑏 for both relations.

To avoid executions like those in Figure 1, processes must deliver

messages in an order consistent with the→ℎ𝑏 partial order. This

property is known as causal delivery; our definition is based on

standard ones [6, 28]:

Definition 2 (Causal delivery). An execution 𝑥 observes causal
delivery if, for all processes 𝑝 in 𝑥 , for all messages𝑚1 and𝑚2 such
that deliver𝑝 (𝑚1) and deliver𝑝 (𝑚2) are in ℎ𝑝 ,
3
Although a broadcast message has 𝑁 recipients, and may be implemented as 𝑁

individual unicast messages under the hood, we treat the sending of the message as a

single event on the sender’s process.

𝑚1 →ℎ𝑏 𝑚2 =⇒ deliver𝑝 (𝑚1) →𝑝 deliver𝑝 (𝑚2).

The causal delivery property says that if message𝑚1 is sent before

message 𝑚2 in an execution, then any process delivering both

𝑚1 and𝑚2 should deliver𝑚1 first. For example, in Figure 1 (left),

the “I lost my wallet...” message causally precedes the “Found it!”

message, because Alice broadcasts both messages with “I lost my

wallet...” first, and so Bob and Carol would each need to deliver “I

lost my wallet...” first for the execution to observe causal delivery.

Furthermore, under causal delivery𝑚1 and𝑚2 must be delivered

in causal order even if they were sent by different processes. For

example, in Figure 1 (right), Alice’s “Found it!” message causally

precedes Bob’s “Glad to hear it!” message, and therefore Carol, who

delivers both messages, must deliver Alice’s message first for the

execution to observe causal delivery.

2.2 Background: Causal Broadcast Protocol
The causal broadcast protocol that we implemented and verified is

due to Birman et al. [6]; in this section, we describe how it works at

a high level before discussing our Liquid Haskell implementation

in Section 3.

The protocol is based on vector clocks, a type of logical clock

well-known in the distributed systems literature [10, 23, 32]. Like

other logical clocks, vector clocks do not track physical time (which

would be problematic in distributed computations that lack a global

physical clock), but instead track the order of events. Readers al-

ready familiar with vector clocks may skip ahead to Section 2.2.2.

2.2.1 Vector Clock Protocol. A vector clock is a sequence of length

𝑁 (the number of processes in the system), which is indexed by

process identifiers 𝑖 : 1..𝑁 , and where each entry is a natural num-

ber. At the beginning of an execution every process 𝑝 initializes its

own vector clock, denoted VC (𝑝), to zeroes. The protocol proceeds

as follows:

• When a process 𝑝𝑖 broadcasts a message𝑚, 𝑝𝑖 increments

its own position in its vector clock, VC (𝑝𝑖 ) [𝑖], by 1.

• Each message broadcast by a process 𝑝 carries as metadata

the value of VC (𝑝) that was current at the time the message

was broadcast (just after incrementing), denoted VC (𝑚).
• When a process 𝑝 delivers a message 𝑚, 𝑝 updates its

own vector clock VC (𝑝) to the pointwise maximum of

VC (𝑚) and VC (𝑝) by taking the maximum of the inte-

gers at each index: for 𝑘 : 1..𝑁 , we update VC (𝑝) [𝑘] to
max(VC (𝑚) [𝑘],VC (𝑝) [𝑘]).

Figure 2 illustrates an example execution of three processes running

the vector clock protocol.

We can define a partial order on vector clocks of the same length

as follows: for two vector clocks a and b indexed by 𝑖 : 1..𝑁 ,

• a ≤𝑣𝑐 b if ∀𝑖 . a[𝑖] ≤ b[𝑖], and
• a <𝑣𝑐 b if a ≤𝑣𝑐 b and a ≠ b.

This ordering is not total: for example, in Figure 2, 𝑚1 carries a

vector clock of [1,0,0]while𝑚3 carries a vector clock of [0,0,1],
and neither is less than the other. Correspondingly,𝑚1 and𝑚3 are

causally independent (or concurrent): neither message has a causal

dependency on the other. On the other hand,𝑚2 causally depends

on 𝑚1; correspondingly, 𝑚1’s vector clock [1,0,0] is less than

[1,1,0] carried by𝑚2. In fact, vector clocks under this protocol
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p₁ p₂ p₃
[0, 0, 0]

[1, 0, 0]

[1, 1, 0]

[0, 0, 0] [0, 0, 0]

[1, 0, 0]

m₁

m₁

[1, 1, 0]

m₂m₂
[1, 1, 1]

[1, 1, 1]

[0, 0, 1]

[1, 1, 1] [1, 1, 1]

m₃
m₃

Figure 2: An example execution using the vector clock pro-
tocol. As each process broadcasts and delivers messages, it
updates its vector clock according to the protocol. For ex-
ample, when process 𝑝1 broadcasts𝑚1, it increments its own
position in its clock just before broadcasting the message,
and𝑚1 carries the incremented clock [1,0,0] as metadata.

precisely characterize the causal partial ordering [10, 23]: for all

messages𝑚,𝑚′
, it can be shown that

𝑚 →ℎ𝑏 𝑚′ ⇐⇒ VC (𝑚) <𝑣𝑐 VC (𝑚′) . (1)

This powerful two-way implication lets us boil down the problem

of reasoning about causal relationships between messages in a

distributed execution to a locally checkable property.
By itself, the vector clock protocol does not enforce causal deliv-

ery of messages. Indeed, the execution in Figure 2 violates causal

delivery: under causal delivery, process 𝑝3 would not deliver𝑚1

before𝑚2. However, the vector clock metadata attached to each

message can be used to enforce causal delivery of broadcast mes-

sages, as we will see next.

2.2.2 Deliverability. The vector clock attached to a message can be

thought of as a summary of the causal history of that message: for

example, in Figure 2,𝑚2’s vector clock of [1,1,0] expresses that
one message from 𝑝1 (represented by the 1 in the first entry of the

vector) causally precedes𝑚2. Furthermore, each process’s vector

clock tracks how many messages it has delivered from each process

in the system. We can exploit this property by having the recipient

of each broadcast message compare the message’s attached vector

clock with its own vector clock to check for deliverability, as follows:

Definition 3 (Deliverability [6]). A message𝑚 broadcast by
a process 𝑝𝑖 is deliverable at a process 𝑝 𝑗 ≠ 𝑝𝑖 if, for 𝑘 : 1..𝑁 ,

VC (𝑚) [𝑘] = VC (𝑝 𝑗 ) [𝑘] + 1 if 𝑘 = 𝑖 , and

VC (𝑚) [𝑘] ≤ VC (𝑝 𝑗 ) [𝑘] otherwise.

Our notional “mail clerk” will use Definition 3’s deliverability con-

dition to decide when to deliver received messages. How it works

is a bit subtle, but worth understanding because of the key role it

plays in the protocol:

• The first clause of Definition 3 ensures that𝑚 is the recipient

𝑝 𝑗 ’s next expected message from the sender, 𝑝𝑖 . The number

of messages from 𝑝𝑖 that 𝑝 𝑗 has already delivered will ap-

pear in VC (𝑝 𝑗 ) at index 𝑖 , so VC (𝑚)[i] should be exactly one
greater than VC (𝑝 𝑗 )[i].

Alice Bob CarolBob CarolAlice
[1, 0, 0]

[2, 0, 0]
[1, 0, 0]

m
lost

m
found

m
lost

m
found

[2, 0, 0]

[1, 0, 0]

[2, 0, 0]

mlost

m
lost

m
found

m
found

m
gladm glad

[1, 0, 0]

[2, 0, 0]

[2, 1, 0]

[1, 0, 0]

[2, 0, 0] [1, 0, 0]

[2, 1, 0]

[2, 1, 0]

[2, 0, 0]

mglad buffered 

mfound buffered 

Figure 3: The executions from Figure 1, annotatedwith vector
clocks used by the causal broadcast protocol. On the left,
Carol buffers𝑚found until she has delivered𝑚lost . On the right,
Carol buffers𝑚glad until she has delivered𝑚found .

• The second clause ensures that𝑚’s causal history does not

include any messages sent by processes other than 𝑝𝑖 that 𝑝 𝑗
has not yet delivered. If𝑚’s vector clock is greater than 𝑝 𝑗 ’s

vector clock in any position 𝑘 ≠ 𝑖 , then it means that, before

sending𝑚, process 𝑝𝑖 must have delivered some message𝑚′

from 𝑝𝑘 that has not yet been delivered at 𝑝 𝑗 .

Combining the vector clock protocol of Section 2.2.1 with the

deliverability property of Definition 3 gives us Birman et al.’s causal

broadcast protocol. Whenever a process receives a message, it

buffers the message until it is deliverable according to Definition 3.

Each process stores messages that need to be buffered in a process-

local queue, the delay queue. Whenever a process delivers a message

and updates its own vector clock, it can check its delay queue for

buffered messages and deliver any messages that have become

deliverable (which may in turn make others deliverable).

2.2.3 Example Executions of the Causal Broadcast Protocol. To illus-
trate how the protocol works, Figure 3 shows the two problematic

executions we saw previously in Figure 1, but now with the causal

broadcast protocol in place to prevent violations of causal delivery.

Each process keeps a vector clock with three entries corresponding

to Alice, Bob, and Carol respectively. Suppose that𝑚lost is Alice’s

“I lost my wallet...” message,𝑚found is Alice’s “Found it!” message,

and𝑚glad is Bob’s “Glad to hear it!” message.

In Figure 3 (left), Bob receives Alice’s messages in the order she

broadcasted them, and so he can deliver them immediately. For

example, when Bob receives𝑚lost , his own vector clock is [0,0,0],
and the vector clock on the message is [1,0,0]. The message is

deliverable at Bob’s process because it is one greater than Bob’s

own vector clock in the sender’s (Alice’s) position, and less than or

equal to Bob’s vector clock in the other positions, so Bob delivers it

immediately after receiving it. Carol, on the other hand, receives

𝑚found first. This message has a vector clock of [2,0,0], so it is not
immediately deliverable at Carol’s process because Carol’s vector

clock is [0,0,0], and so the entry of 2 at the sender’s index is too

large, indicating that the message is “from the future” and needs

to be buffered in Carol’s delay queue for later delivery, after Carol

delivers𝑚lost .
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In Figure 3 (right), Bob delivers two messages from Alice and

then broadcasts𝑚glad .𝑚glad has a vector clock of [2,1,0], indi-
cating that it has two messages sent by Alice in its causal history.

When Carol receives𝑚glad , her own vector clock is only [1,0,0],
indicating that she has only delivered one of those messages from

Alice so far, so Carol must buffer𝑚glad in her delay queue until

she receives and delivers𝑚found , the missing message from Alice,

increasing her own vector clock to [2,0,0]. Now𝑚glad is deliver-

able at Carol’s process, and Carol can deliver it, increasing her own

vector clock to [2,1,0].

2.3 Verification Task
Thanks to the relationship between the happens-before ordering

and the vector clock ordering expressed by Equation (1), we can

reduce the problem of determining that a distributed execution

observes causal delivery to a condition that is locally checkable at

each process. We call this condition local causal delivery:

Definition 4 (Local causal delivery). A process 𝑝 observes
local causal delivery if, for all messages 𝑚1 and 𝑚2 such that
deliver𝑝 (𝑚1) and deliver𝑝 (𝑚2) are in ℎ𝑝 ,

VC (𝑚1) <𝑣𝑐 VC (𝑚2) =⇒ deliver𝑝 (𝑚1) →𝑝 deliver𝑝 (𝑚2).

The heart of our verification task will be to prove that our implemen-

tation of the causal broadcast protocol of Section 2.2 ensures that

processes that run the protocol observe local causal delivery. From

there, given Equation (1), we can prove that executions produced

by a distributed system of processes that run the causal broadcast

protocol observe global causal delivery:

Theorem 1 (Global Correctness of Causal Broadcast Pro-

tocol). An execution in which all processes run the causal broadcast
protocol observes causal delivery.

In the following sections, we show how we use Liquid Haskell

to implement the causal broadcast protocol, to make the statement

of Theorem 1 precise, and to prove Theorem 1. After presenting

the implementation in Section 3, in Section 4 we develop the ma-

chinery necessary to express Definitions 2 and 4 and Theorem 1 as

refinement types.

3 IMPLEMENTATION
In this section, we describe our implementation of Birman et al.’s

causal broadcast protocol as a Liquid Haskell library. Section 3.1

describes the types we use to implement our system model and

vector clock operations, and in Section 3.2 we give a brief overview

of refinement types and Liquid Haskell before diving into our im-

plementation of the protocol itself in Section 3.3. Finally, Section 3.4

discusses how a user application would use our library.

3.1 System Model and Vector Clocks
We begin by defining Haskell types to implement our system model

and vector clock operations. Process identifiers are natural numbers

and double as indexes into vector clocks, which are represented

by a list of natural numbers. Messages have type M r, where the

r parameter is the application-defined type of the raw message

content (e.g., a JSON-formatted string).

type PID = Nat

type VC = [Nat]

data M r = M { mVC::VC , mSender ::PID , mRaw::r }

A message has three fields: mVC and mSender are respectively the

metadata that capture when the message was sent (as a VC) and

who sent it (as a PID), and mRaw contains the raw message content.

An event can be either a Broadcast (to the network) or a Deliver

(to the local user application for processing), and a process history

H is a list of events.

data Event r = Broadcast (M r) | Deliver PID (M r)

type H r = [Event r]

To implement the vector clock protocol of Section 2.2.1, we need

some standard vector clock operations, with the below interface:

vcEmpty :: Nat → VC

vcTick :: VC → PID → VC

vcCombine :: VC → VC → VC

vcLessEqual :: VC → VC → Bool

vcLess :: VC → VC → Bool

vcEmpty initializes a vector clock of a given size with zeroes, vcTick

increments a vector clock at a given index, vcCombine computes

the pointwise maximum of two vector clocks, and vcLessEqual

and vcLess implement the vector clock ordering described in Sec-

tion 2.2.1. As we will see in the following sections, our causal

broadcast implementation uses vcTick and vcCombine when broad-

casting and delivering messages, respectively. The prose definitions

of all these operations translate directly into idiomatic Haskell; for

example, the implementation of vcCombine is zipWith max.

3.2 Brief Background: Refinement Types and
Liquid Haskell

Traditionally, refinement types [29, 42] have let programmers spec-

ify types augmented with logical predicates, called refinement pred-
icates, that restrict the set of values that can inhabit a type. For

example, in Liquid Haskell one could give vcCombine the following

signature:

vcCombine :: v:VC → {v' :VC | len v' == len v}

→ {v'':VC | len v'' == len v}

The refinement on v’ expresses the precondition that v and v will

have the same length, and the return type expresses the postcon-

dition that the returned vector clock will have the same length as

the argument vector clocks. Liquid Haskell automatically proves

that such postconditions hold by generating verification conditions

that are checked at compile time by the underlying SMT solver (by

default, Z3 [9]). If the solver cannot ensure that the verification

conditions are valid, typechecking fails. In our actual implementa-

tion, additional Liquid Haskell refinements on VC and PID — elided

in this paper for readability — ensure that all functions are called

with compatible vector clocks (having the same length) and PIDs

(natural numbers smaller than the length of a vector clock).
4

4
Recall from Section 2.1 that wemodel a distributed system as a finite set of𝑁 processes.

We want our implementation to be agnostic to 𝑁 , yet we need to know what 𝑁 is

because it determines the length of vector clocks (and hence what constitutes a valid

index into a vector clock). We accomplish this in Liquid Haskell by parameterizing

types with an𝑁 expression value which will be provided at initialization by application

code. For readability, we elide these length-indexing parameters from types in this

paper, although they are ubiquitous in our implementation.



IFL 2022, August 31–September 02, 2022, Copenhagen, Denmark Patrick Redmond, Gan Shen, Niki Vazou, and Lindsey Kuper

Aside from preconditions and postconditions of individual func-

tions, though, Liquid Haskell makes it possible to verify extrinsic
properties that relate two functions, or calls to the same function

applied to different inputs. As an example, here is a Liquid Haskell

proof that vcCombine is commutative:

type Comm a A

= x:a → y:a → {_:Proof | A x y == A y x}

vcCombineComm :: n:Nat → Comm n {vcCombine}

vcCombineComm _n [] [] = ()

vcCombineComm n (_x:xs) (_y:ys) =

vcCombineComm (n - 1) xs ys

Here, vcCombineComm is a Haskell function that returns a value of

Proof type (a type alias for (), Haskell’s unit type), refined by the

predicate vcCombine x y == vcCombine y x. The proof is by induction

on the structure of vector clocks. The base case, in which both x

and y are empty lists, is automatic for the SMT solver, so the body

of the base case need not say anything but (). The inductive case

has a recursive call to vcCombineComm. We use a similar approach to

prove that vcCombine is associative, idempotent, and inflationary,

and that vcLess is a strict partial order. In general, programmers

can specify arbitrary extrinsic properties in refinement types, in-

cluding properties that refer to arbitrary Haskell functions via the

notion of reflection [39]. The programmer can then prove those

extrinsic properties by writing Haskell programs that inhabit those

refinement types, using Liquid Haskell’s provided proof combina-
tors — with the help of the underlying SMT solver to simplify the

construction of these proofs-as-programs [36, 39].

Liquid Haskell thus occupies a position at the intersection of

SMT-based program verifiers such as Dafny [18], and theorem

provers that leverage the Curry-Howard correspondence such as

Coq [4] andAgda [26]. A Liquid Haskell program can consist of both

application code like vcCombine (which runs at execution time, as

usual) and verification code like vcCombineComm (which is never run,

but merely typechecked), but, pleasantly, both are just Haskell pro-

grams, albeit annotated with refinement types. Since Liquid Haskell

is based on Haskell, programmers can gradually port Haskell pro-

grams to Liquid Haskell, adding richer specifications to code as they

go. For instance, a programmermight beginwith an implementation

of vcCombine with the type VC -> VC -> VC, later refine it to the more

specific refinement type above, even later prove vcCombineComm, and

still later use the proof returned by vcCombineComm as a premise to

prove another, more interesting property.

3.3 Causal Broadcast Protocol Implementation
We express the causal broadcast protocol of Section 2.2 as a state

transition system.

3.3.1 Process Type. The state data structure P r represents a process
and is parameterized by the type of raw content, r:

data P r = P { pVC::VC, pID::PID , pDQ ::[M r]

, pHist ::{ h:H r | histVC h == pVC }}

The fields of P include the local vector clock pVC, the local process

identifier pID, a delay queue of received but not-yet-delivered mes-

sages pDQ, and (importantly for our verification task) the process

history pHist. We provide a pEmpty :: Nat -> PID -> P r function

that initializes a process with a vector clock of the given length

containing zeroes, the given process identifier, and an empty delay

queue and empty process history.

The type of the process history pHist deserves further discus-

sion, as it is our first use of a Liquid Haskell feature called datatype
refinements. The datatype refinement on the pHist field says that it

contains a history h of the type H r defined in the previous section,

but with an additional constraint histVC h == pVC. This constraint

expresses the intuition that the vector clock pVC and the history

h “agree” with each other: for any process p starting with a pVC

containing all zeros and an empty pHist, each addition of a Deliver

(pID p) m event to the history for some message m must coincide

with an update to pVC p of the form vcCombine (mVC m) (pVC p). Ac-

cordingly, histVC h is defined as the supremum of vector clocks on

Deliver events in h. We extrinsically prove in Liquid Haskell that

this pVC-pHist agreement property is true for the empty process

and preserved by each transition in our state transition system. We

next describe these transition functions.

3.3.2 State Transitions. The transition functions are receive,

deliver, and broadcast, with the following interface:

receive :: M r → P r → P r

deliver :: P r → Maybe (M r, P r)

broadcast :: r → P r → (M r, P r)

The receive function adds a message from the network to the

delay queue, the deliver function pops a deliverable message (if

any) from the delay queue, and the broadcast function prepares

raw content of type r for network transport by wrapping it in a

message. Of these transition functions, only deliver and broadcast

are particularly interesting from the perspective of our verification

effort, since receive only adds messages to the delay queue and

cannot affect whether causal delivery is violated. We next discuss

the implementation of deliver and broadcast, respectively.

3.3.3 Deliver. Figure 4 shows the implementation of

deliver, as well as its constituents dequeue, deliverable, and

deliverableHelper. At a high level, deliver calls dequeue on a

process’s delay queue and then performs bookkeeping: If dequeue

popped a deliverable message, then deliver returns that message

and updates the process with a new vector clock according to the

vector clock protocol, the new delay queue returned by dequeue,

and a new process history which records the delivery of the

message. The dequeue function plays its part by removing and

returning the first deliverable message found in the delay queue.

The deliverable predicate implements the deliverability condi-

tion of Definition 3 to check whether a message m is deliverable

at time p_vc. It works by calling deliverableHelper (mSender m) on

each offset in the message vector clock mVC m and process vector

clock p_vc, and returning the conjunction of those results. The

function finAsc n provides those offsets in ascending order, and,

combined with zipWith, lets us implement the subtle deliverabil-

ity condition of Definition 3 in deliverableHelper, almost exactly

as Definition 3 is written (except that our vector clocks are zero-

indexed). We omit the implementation of finAsc from Figure 4 for

brevity, but its refinement type guarantees that it returns an as-

cending list of length n containing Nats less than n, using Liquid

Haskell’s abstract refinements feature [37].
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deliver :: P r → Maybe (M r, P r)

deliver p =

case dequeue (pVC p) (pDQ p) of

Nothing → Nothing

Just (m, pDQ ') →
Just (m, p{ pVC = vcCombine (mVC m) (pVC p)

, pDQ = pDQ '

, pHist =

Deliver (pID p) m : pHist p })

dequeue :: VC → DQ r → Maybe (M r, DQ r)

dequeue _now [] = Nothing

dequeue now (x:xs)

| deliverable x now = Just (x, xs)

| otherwise = case dequeue now xs of

-- Skip past x.

Nothing → Nothing

Just (m, xs ') → Just (m, x:xs ')

deliverable :: M r → VC → Bool

deliverable m p_vc = let n = length p_vc in

and (zipWith3 (deliverableHelper (mSender m))

(finAsc n) (mVC m) p_vc)

deliverableHelper

:: PID → PID → Clock → Clock → Bool

deliverableHelper m_id k m_vc_k p_vc_k

| k == m_id = m_vc_k == p_vc_k + 1

| otherwise = m_vc_k <= p_vc_k

finAsc :: n:Nat →
{ xs:[{x:Nat | x < n}]<{\a b → a < b}>

| len xs == n }

Figure 4: Implementation of deliver and its helpers.

broadcast :: r → P r → (M r, P r)

broadcast raw p =

let m = M { mVC = vcTick (pVC p) (pID p)

, mSender = pID p

, mRaw = raw }

p' = p { pDQ = m : pDQ p

, pHist = Broadcast m : pHist p }

Just tup = deliver p'

in tup

Figure 5: Implementation of broadcast. We prove that deliver
p’ is a Just value using an extrinsic proof.

3.3.4 Broadcast. Figure 5 shows the implementation of the

broadcast function. First, broadcast constructs a message m for the

value raw by incrementing the pID p index of its own vector clockpVC

p, and attaching that pID p to m as mSender. Next, broadcast con-

structs an intermediate process value p’ containing m at the head

of the delay queue and a new process history recording the broad-

cast event for this message. Last, broadcast delegates to deliver to

deliver m at its own sender, p’. As we will see in Section 4, imple-

menting broadcast in terms of deliver simplifies proving properties

about our implementation, because proofs about broadcast can of-

ten delegate to existing proofs about deliver.

Although deliver’s return type is Maybe (M r, P r), the deliver

p’ call in broadcast is guaranteed by Liquid Haskell to evaluate to

a Just value containing the next process and the message to be

broadcast. We prove this property using an extrinsic proof, not

shown here. The intuition is that messages a process sends to itself

are always immediately deliverable, because when a process incre-

ments its own index in the vector clock that it places in a message,

the message immediately becomes deliverable at that process.

3.4 Example Application Architecture
The receive, deliver, and broadcast functions are the interface

made available to user applications of our causal broadcast library.

When deliver returns a message, the user application must process

it immediately. The user application must also immediately put the

message returned by broadcast on the network and also process

the message locally.
5
This design implies that user applications

should not update their own state directly when communication is

in order, but rather, generate a message and then update their state

in response to its delivery.

Figure 6 shows an example architecture of an application us-

ing our causal broadcast library. A collection of (potentially geo-

distributed) peer nodes, which we call the causal broadcast cluster,
each run the causal broadcast protocol along with their user appli-

cation code (for instance, a key-value store or a group chat applica-

tion). Clients of the application communicate their requests to the

nodes; one or more clients may communicate with each node. The

application instance on a node generates messages, broadcasts them

to other nodes, and delivers messages received from other nodes.

Later on, in Section 5, we will see a case study of an application

with this architecture.

4 VERIFICATION
In this section we mechanize causal delivery and local causal de-

livery (Definitions 2 and 4) for our implementation of the causal

broadcast protocol, and we describe the highlights of our Liquid

Haskell proof development, culminating in a mechanized proof of

Theorem 1. In Section 4.1 we show how we express local causal

delivery (abbreviated “LCD” henceforth) as a refinement type in

Liquid Haskell, and in Section 4.2 we show that each of the receive,

deliver, and broadcast transitions of Section 3.3 results in a process

that observes LCD. We then leverage this fact to prove Theorem 1

in Section 4.3. Finally, in Section 4.4 we briefly discuss the liveness

of our implementation.

4.1 Local Causal Delivery as a Refinement Type
As we saw in Section 3.3.1, a process tracks the history of events

that have occurred on it so far, including message broadcasts and

5
In practical applications, it may be advantageous to separate these concerns about

handling return values into an additional message-handling layer, but that is beyond

our scope.
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Figure 6: Example architecture for a distributed application
using our causal broadcast library. The mnemonic standins
Process, Event, and Message refer to the types P r, Event r, and M

r defined in our implementation. An application node using
this architecture participates in the causal broadcast protocol
using a single process data structure and the functions receive
, broadcast, and deliver to safely manage message-passing
state. Clients make requests to a node, possibly updating
application state, and the node may generate messages to
replicate updates or perform other tasks.

deliveries. We can examine a process’s history and see whether the

process has been delivering messages in an order consistent with

the messages’ vector clock ordering. Therefore, we can express

local causal delivery (Definition 4) as a refinement type as follows:

type LocalCausalDelivery r ID HIST

= {m1 : M r | elem (Deliver ID m1) HIST }

→ {m2 : M r | elem (Deliver ID m2) HIST

&& vcLess (mVC m1) (mVC m2) }

→ { _:Proof | processOrder HIST

(Deliver ID m1) (Deliver ID m2) }

The type alias LocalCausalDelivery r ID HIST fixes a process

identifier ID and a process history HIST.6 It is the type of a function

that given messages m1 and m2, both of which have already been

delivered in the specified process history and for which the vector

clock of m1 is less than that of m2, produces a proof that the delivery

event of m1 precedes the delivery event of m2 in the process history.

The vcLess function is part of the vector clock interface described

in Section 3.1, and the predicate processOrder h e e’ returns True

if event e is present in the list of events that precede event e’ in a

process history h.

The LocalCausalDelivery type captures what it means for a given

process to observe LCD: it says that if we consider any twomessages

that are in the process’s history, and those messages’ vector clocks

have an order, then there is evidence – in this case, in the form of

an affirmative answer from an SMT solver – that those messages

appear in the process history in their vector clock order, rather than

the other way around. Our next step will be to show that this LCD

property actually holds for processes running our implementation

of the causal broadcast protocol.

4.2 Local Causal Delivery Preservation
Recall the state transition system consisting of the process type P

r and the functions receive, deliver, and broadcast discussed in

Section 3.3. We need to prove (1) that a process observes LCD in

6
In Liquid Haskell, type aliases can be parameterized either with ordinary Haskell type

variables or with Liquid Haskell expression variables. In the latter case, the parameter

is written in ALL CAPS.

its initial, empty state returned by pEmpty, and (2) that whenever a

process satisfying LCD transitions to a new state via any sequence

of steps of the receive, deliver, or broadcast transition functions,

the resulting process state still observes LCD. A proof that the

empty process observes LCD as defined in Section 4.1 is trivially

discharged by Liquid Haskell, so we turn our attention to proving

that each of the state transitions preserves LCD. Most of the action

of our proof development happens in handling deliver steps, as we

will see below in Section 4.2.1.

To use the LocalCausalDelivery type alias with the process type,

P r, we need a small adapter to extract the pID and pHist fields.7

type LCD r PROC =

LocalCausalDelivery r {pID PROC} {pHist PROC}

To encode the inputs to each of the causal broadcast protocol

transition functions, we define a sum type over the arguments,

Op r. Each function takes a P r input and additional arguments

corresponding to one of the Op r constructors.

data Op r = OpReceive (M r)

| OpDeliver

| OpBroadcast r

To apply those transition functions to a process value, we define

step. It branches on the constructor of Op r, calls a transition func-

tion discussed in Section 3.3, extracts the next process value, and

throws away information unneeded for the proof.

step :: Op r → P r → P r

step (OpReceive m) p = receive m p

step (OpBroadcast r) p = case broadcast r p of

(_, p') → p'

step (OpDeliver ) p = case deliver p of

Just (_, p') → p'

Nothing → p

Next, we prove a stepLCD lemma, which states that for a given

operation op and process p, if LCD holds for p, then it still holds

after applying op to p using step:

stepLCD :: op : Op r

→ p : P r

→ LCD r {p}

→ LCD r {step op p}

The proof of stepLCD branches on the constructors for op, followed

by delegation to lemmas about each of the transition functions.

stepLCD op p pLCD =

case op ? step op p of

OpBroadcast r → broadcastLCDpres r p pLCD

OpReceive m → receiveLCDpres m p pLCD

OpDeliver → deliverLCDpres p pLCD

By far the most involved of these three lemmas is deliverLCDpres,

the one that deals with deliver steps. Proving broadcastLCDpres is

straightforward because calling broadcast only adds a Broadcast

event to the process history (and then calls deliver), and so if a

process observes LCD before calling broadcast, then it is easy to

show that it still does after adding the event (and for calling deliver

7
When instantiating a Liquid Haskell type alias parameterized by expression variables,

the expressions are wrapped with braces to distinguish them from type parameters.
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to deliver the message locally, we can delegate to deliverLCDpres).

Proving receiveLCDpres is even more straightforward because call-

ing receive does not modify the process history, and so if a process

observes LCD before calling receive, it is easy to show that it still

does afterward. We therefore omit discussion of receiveLCDpres

and broadcastLCDpres and focus on the proof of deliverLCDpres in

the next section.

4.2.1 Deliver Transition Preservation Lemma. The deliverLCDpres

lemma states that a process’s observation of LCD is preserved

through calls to the deliver function. The proof begins by decon-

structing the two cases of dequeue, echoing the definition of deliver

(Figure 4). In the case that dequeue returns Nothing, so does its caller

deliver, and the process state is unchanged. This line of reasoning

is automatically carried out by Liquid Haskell without needing to

be explicitly written in the proof. As a result, we can use the input

evidence that the original process observes LCD to complete the

case.

More interesting is the case in which dequeue returns a message

m that has been deemed deliverable. We need to show that in an

updated process state p’ in which m has been delivered, the process

still observes LCD. Recalling the definition of LocalCausalDelivery

from Section 4.1, we need to show that for all messages m1 and m2

where the vector clock of m1 is less than that of m2, m1’s delivery

event occurs before m2’s delivery event in p’’s process history. There

are three cases to consider:

• Case m == m1. When m is equal to m1, it is the most recently

delivered message on p’, but since vcLess (mVC m1) (mVC m2),

this would be a causal violation, and so we show this case is

impossible. Recall that since m was deliverable on the orig-

inal process p, deliverable m (pVC p) is True, which implies

a relationship between mVC m and pVC p: the mSender m offset

in mVC m is exactly one greater than that of pVC p, and all

other offsets of mVC m are less than or equal to that of pVC

p. Additionally, vcLessEqual (mVC m1) (mVC m2) by vcLess, and

vcLessEqual (mVC m2) (histVC p) because the delivery of m2 is

in pHist p and because vcCombine is inflationary, and histVC

p == pVC p by the data refinement on processes. Finally, since

vcLessEqual is transitive, we can combine these facts to con-

clude that vcLessEqual (mVC m1) (pVC p), which contradicts the

relationship implied by deliverable m (pVC p).

• Case m == m2. When m is equal to m2, it is the most recently

delivered message on p’. Let e1 be the delivery event for m1

with the definition Deliver (pID p’) m1 and similarly let e2

be the delivery event for the equivalent messages m2 and m.

Since pHist p’ is e2:pHist p, and e1 is known to already be in

pHist p, we can conclude that e1 precedes e2 in p’’s history,

and so processOrder (pHist p’) e1 e2, as required by LCD.

• Case m /= m1 && m /= m2. Finally, when m is a new message

distinct from both m1 and m2, we show that the addition of a

deliver event for m to pHist p does not change the delivery

ordering of m1 and m2. That is, with event e1 for delivery of

m1, e2 for m2, and e3 for m, since pHist p’ is e3:pHist p, and

since e1 and e2 were in pHist p (and both are still in pHist

p’), we can conclude that orderings about elements in pHist

p are unchanged in pHist p’.

Description LOC
Implementation without refinements 236

Implementation-supporting proofs and refinements 448

List lemmas, extra proof combinators, shims 161

Proofs about relations (Section 3.1) 217

Model for preservation of LCD (Section 4.1) 27

LCD preservation (Section 4.2) 51

LCD preservation, broadcast case 64

LCD preservation, receive case 44

LCD preservation, deliver case (Section 4.2.1) 273

Model for preservation of CD (Section 4.3) 130

CD preservation 138

CD preservation via LCD 139

Table 1: Lines of code used in our implementation and proof
development. The LOC count includes Liquid Haskell defini-
tions, theorems, proofs, and other annotations.

With these pieces in place, we can conclude that a LCD-observing

process continues to observe LCD after any call to deliver.

4.3 Global Causal Delivery Preservation
The lcdStep property we proved in the previous section says that

running the causal broadcast protocol for one step on a given pro-

cess preserves local causal delivery for that process. However, The-

orem 1 pertains to entire executions as opposed to individual pro-

cesses. To complete the proof, then, we must define an additional

global state transition system, where states represent executions,

and a step nondeterministically picks any process in an execution

and runs the causal broadcast protocol for one (local) step on that

process. Unlike the local state transition system, which is actually

what is used at run time to execute the causal broadcast protocol,

our global states and global steps are for verification purposes only.

We define a global execution state as a mapping from PIDs to

P r process states. We can then express (global) causal delivery

(Definition 2) as a refinement type, as follows:

type CausalDelivery r X

= pid : PID

→ {m1 : M r | elem (Deliver pid m1)

(pHist (X pid)) }

→ {m2 : M r | elem (Deliver pid m2)

(pHist (X pid))

&& happensBefore X

(Broadcast m1)

(Broadcast m2) }

→ {_: Proof | processOrder (pHist (X pid))

(Deliver pid m1)

(Deliver pid m2) }

The CausalDelivery type is reminiscent of the LocalCausalDelivery

type that we saw in Section 4.1, but instead of referring to one par-

ticular process, it refers to an entire execution, X. CausalDelivery r

X says that for any process in X, messages are delivered in causal or-

der on that process. Another key difference is that instead of using

vcLess, CausalDelivery uses a happensBefore predicate, which takes

an execution argument and two events. This is as it should be; the
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definition of causal delivery should be agnostic to the mechanism
used by our particular protocol. However, our lcdStep lemma only

establishes that messages on a process are delivered in an order

consistent with their vector-clock ordering, not the happens-before

ordering. To bridge this gap and get from local causal delivery to

global causal delivery, we must leverage Equation (1)’s correspon-

dence between vector clocks and happens-before, which we express

as a pair of axioms in Liquid Haskell, one for each direction of the

correspondence.

We can now prove that a single global execution step preserves

causal delivery. The xStepCD lemma states that if we have a causal-

delivery-observing execution x, if we pick out any given process

(identified by pid) from that execution and run any given operation

op on that process, then the resulting execution will also observe

causal delivery.

xStepCD :: op: Op r

→ x: Execution

→ pid: PID

→ CausalDelivery r x

→ CausalDelivery r {xStep op pid x}

The proof of xStepCD proceeds in three stages:

(1) Global to local. First, we show that if the original execution

observes causal delivery, then every process in it observes

local causal delivery. For this, we use the reflection direction

of the vector-clock/happens-before correspondence, which

says that messages with a given vector clock ordering were

broadcast in the corresponding happens-before order.

(2) Local step. Next, we show that if any process in an execution

takes a local step, then every process in the execution will

still observe local causal delivery. This is easy to show using

our lcdStep lemma.

(3) Local to global. Finally, we show that if every process in

an execution observes local causal delivery, then the en-

tire execution observes causal delivery. For this, we use the

preservation direction of the vector-clock/happens-before

correspondence, which says that messages broadcast in a

given happens-before order have the corresponding vector

clock order.

Since the vector-clock/happens-before correspondence lets us rea-

son in a process-local fashion, instead of having to reason about

events spread across a global execution using happens-before, we

enjoy a sort of “local reasoning for free” without the need for a

more heavyweight proof technique such as separation logic. With

the proof of xStepCD complete, all that remains to prove Theorem 1

is to extrapolate from global executions that take one step to those

that take any number of steps, which is straightforward to do in

Liquid Haskell by induction on the number of steps. Since an empty

global execution observes causal delivery, we can conclude that

any global execution where all processes are running our protocol

observes causal delivery, completing the proof of Theorem 1.

Table 1 summarizes the size of each component of our proof

development in terms of lines of Liquid Haskell code, and Figure 7

gives a visual overview of the important components of the proof:

the xStepCD property and its proof in three stages outlined above;

the stepLCD property and its reliance on lemmas for broadcast,

Figure 7: A high-level overview of the key components of
our proof development. Arrows indicate dependencies, solid
boxes indicate theorems and lemmas, and dashed boxes indi-
cate axioms.

receive, and deliver, and our use of the two directions of the vector-

clock/happens-before correspondence. In all, our proof develop-

ment weighs in at 1692 lines of code for 236 lines of implementation

code.

4.4 Discussion: Liveness
A useful implementation is not only safe, but live, which in our

case would mean that messages will not languish forever in the

delay queue. As mentioned in Section 2.1, for our safety result we

need not make any assumption of reliable message receipt, since

we do not have to worry about the delivery order of messages

that are never received. A proof of liveness, though, would need to

rest on the assumption of a reliable message transport layer, that

is, one in which sent messages are eventually received — albeit

in arbitrary order and with arbitrarily long latency. Otherwise, a

message could be stuck forever in the delay queue if a message

that causally precedes it is lost, because it would never become

deliverable. Proofs of liveness properties are considered “much

harder” [13] than proofs of safety properties. While we do not offer

any mechanized liveness proof, in the following section we argue

informally for the liveness of our implementation under the reliable

message reception assumption.

5 CASE STUDY
In this section we describe a key-value store (KVS) application

implemented in the architectural pattern depicted by Figure 6 and

using our causal broadcast library from Section 3. The KVS is an in-

memory replicated data store consisting of message-passing nodes,

each of which simultaneously serves client requests via HTTP. Sec-

tion 5.1 covers the implementation of the KVS and demonstrates

that it is not difficult to integrate our causal broadcast protocol

with an application to obtain the benefits of causal broadcast. In

particular, causal broadcast can be used to ensure causal consistency
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of replicated data [2, 21].
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In Section 5.2 we describe how we de-

ployed the KVS to a cluster of geo-distributed nodes and evaluated

its performance.

5.1 Design and Implementation
We implemented the KVS using several commonly used Haskell

libraries, such as servant [24] to express HTTP endpoints concisely

as types, stm to express multithreaded access to state, ekg to gather
runtime statistics, and aeson to provide JSON (de)serialization.

Clients may request to PUT a value at a key, DELETE a key-value

pair specified by key, or GET the value corresponding to a specified

key. Servers broadcast by directly POSTing messages to each other.

Nodes receiving PUT or DELETE requests from their local clients call

broadcast to prepare a message to be immediately applied locally

and broadcast to other nodes. When a node makes a POST request,

the endpoint calls receive to inject the message into the node’s

delay queue. Changes to the delay queue wake a background thread

which calls deliver, possibly removing a message from the delay

queue and applying it to the process state. Since messages received

via the POST endpoint are from other nodes, deliver will return

Nothing in cases where the causal dependencies of the message are

not satisfied. Therefore all nodes (and hence all clients of those

nodes) observe the effects of causally-related KvCommands in the

same (causal) order.

5.2 Deployment and Evaluation
We deployed an eight-node KVS causal broadcast cluster, globally

distributed across AWS regions (two nodes in us-west-1 (N. Califor-
nia), one in us-west-2 (Oregon), two in us-east-1 (N. Virginia), one
in ap-northeast-1 (Tokyo), and two in eu-central-1 (Frankfurt)), and
24 client nodes with three clients assigned to each KVS node. All

the nodes were AWS EC2 t3.micro instances with 2 vCPUs at 2.5

GHz and 1 GiB of memory. The 50th-percentile inter-region ping

latencies vary from about 20ms between us-west-1 and us-west-2 to

about 225ms between ap-northeast-1 and eu-central-1. Each of the

eight nodes in the cluster ran an instance of our KVS application

compiled with GHC 8.10.7.

We conducted a simple experiment in which each of the 24

clients made 10,000 curl requests at 20 requests per second to their
assigned KVS replica in the same region (for a total of 240,000 client

requests), uniformly distributed over GET, PUT, and DELETE requests.
For PUT requests, we used randomly generated JSON data for values,

and ensured that there were key collisions, requiring resolution by

causal order, by drawing keys from among the lowercase ASCII

characters.

Two-thirds (160,000) of the 240,000 requests generated by clients

were PUT and DELETE requests. Each resulted in a broadcast from

the client’s assigned KVS replica to the seven other nodes in the

cluster, generating 160,000 × 7 = 1,120,000 unicast messages among

the eight KVS nodes. To alleviate this message amplification and

maintain throughput, we sent multiple unicast messages in each

request; typically, two or three messages were sent at a time. The

8
For simplicity, we adopt a “sticky sessions” model, in which a given client will only

ever talk to a given server. In a setting where clients can communicate with more than

one server, clients would need to participate in the propagation of causal metadata

generated by the servers [21], whereas with sticky sessions, causal metadata is only

exchanged among the servers.

KVS replicas handled all requests and delivered all messages in

the time it took for clients to send them (10 minutes) with a load

average of 0.10, indicating that the cluster was not CPU-bound and

that no messages got stuck indefinitely in delay queues. As a static

verification approach, Liquid Haskell itself imposes no running

time overhead compared to vanilla Haskell, and no Liquid Haskell

annotations were required in the KVS application code.

We recorded the length of the delay queue after each message

delivery and maintained an average. Over all nodes, the average

length of the delay queue after a delivery came to 7.2 delayed

messages. From prior experiments with a differentmix of KVS nodes

and clients, we observe that more nodes in the causal broadcast

cluster results in increased likelihood of messages being received

out of causal order, motivating the need for causal broadcast.

6 RELATEDWORK
Machine-checked correctness proofs of executable distributed proto-

col implementations. Much work on distributed systems verification

has focused on specifying and verifying properties of models using

tools such as TLA+ [17], rather than of executable implementa-

tions. Here, our focus is on mechanized verification of executable

distributed protocol implementations; lacking space for a compre-

hensive account of the literature, we mention a few highlights.

Verdi [41] is a Coq framework for implementing distributed

systems; verified executable OCaml implementations can be ex-

tracted from Coq. IronFleet [13] uses the Dafny verification lan-

guage, which compiles both to verification conditions checked by

an SMT solver and to executable code. Both Verdi and IronFleet

have been used to verify safety properties (in particular, lineariz-

ability) of distributed consensus protocol implementations (Raft

and Multi-Paxos, respectively) and of strongly-consistent key-value

store implementations, and IronFleet additionally considers live-

ness properties. The ShadowDB project [31] uses a language called

EventML that compiles both to a logical specification and to exe-

cutable code that is automatically guaranteed to satisfy the spec-

ification, and correctness properties of the logical specification

can then be proved using the Nuprl proof assistant. Schiper et al.

[31] used this workflow to verify the correctness of a Paxos-based

atomic broadcast protocol. None ofWilcox et al., Hawblitzel et al., or

Schiper et al. looked at causal broadcast or causal message ordering

in particular.

Lesani et al. [19] present a technique and Coq-based framework

for mechanically verifying the causal consistency of distributed key-

value store (KVS) implementations, with executable OCaml KVSes

extracted from Coq. Lesani et al.’s verification approach effectively

bakes a notion of causal message delivery into an abstract causal

operational semantics that specifies how a causally consistent KVS

should behave. In more recent work, Gondelman et al. [12] use the

Coq-based Aneris distributed separation logic framework [15] —

itself built on top of the Iris separation logic framework [14] — to

specify and verify the causal consistency of a distributed KVS and

further verify the correctness of a session manager library imple-

mented on top of the KVS. These implementations are written in

AnerisLang, a domain-specific language intended to be used with

the Aneris framework for implementing distributed systems. Both

Lesani et al.’s and Gondelman et al.’s work is specific to the KVS use
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case, whereas our verified causal broadcast implementation factors

out causal message delivery into a separate layer, agnostic to the

content of messages, that can be used as a standalone component

in a variety of applications. Moreover, Liquid Haskell’s SMT au-

tomation simplifies our proof effort by comparison. Unlike Lesani

et al. and Gondelman et al., we did not attempt to verify the causal

consistency of our KVS. However, we hypothesize that building on

an underlying verified causal messaging layer would simplify the

KVS verification task by separating lower-level message delivery

concerns from higher-level application semantics.

Causal broadcast for CRDT convergence. Conflict-free replicated
data types (CRDTs) [33, 34] are data structures designed for replica-

tion. Their operations must satisfy certain mathematical properties

that can be leveraged to ensure strong convergence [34], meaning

that replicas are guaranteed to have equivalent state if they have

received and applied the same unordered set of updates. While the

simplest CRDTs ask little of the underlying messaging layer, many

CRDTs implemented in the operation-based style rely on causal

delivery to ensure that, for example, a message updating an ele-

ment of a set will not be delivered before the message inserting

that element.

Gomes et al. [11] use the Isabelle/HOL proof assistant [40] to

implement and verify the strong convergence of operation-based

CRDTs under an assumption of causal delivery, modeled by the net-

work axioms in their proof development. Our work is complemen-

tary to Gomes et al.’s: one could deploy their verified-convergent

CRDTs atop our verified causal broadcast protocol to get an “end-

to-end” convergence guarantee on top of a weaker network model

that offers no causal delivery guarantee.

Liu et al. [20] use Liquid Haskell to verify the convergence of

operation-based CRDT implementations. Liu et al.’s CRDTs do not
assume causal delivery, which complicates their implementation

(and verification). In fact, Liu et al.’s verified two-phase map im-

plementation includes a “pending buffer” for updates that arrived

out of order, and a collection of data-structure-specific rules to

determine which updates should be buffered. These mechanisms

resemble the delay queue and the deliverable predicate, but are

specific to application-level data structures and use an ad hoc deliv-

ery policy, rather than operating at the messaging layer and using

the more general principle of causal delivery. We hypothesize that

our library could lessen the need for such ad hoc mechanisms.

The most closely related work to this paper — and the only

other mechanically verified causal broadcast implementation that

we are aware of — was recently carried out by Nieto et al. [25] as

part of a larger proof development that verifies the correctness of

a variety of CRDTs using the aforementioned Aneris separation

logic framework. Nieto et al.’s proof development consists of a

verified stack of components, at the base of which is a verified

causal broadcast library, followed by a library of CRDT components,

and finally CRDT implementations. To verify the causal broadcast

library, Nieto et al. take a similar approach to Gondelman et al.’s

aforementioned verified key-value store, but adapted to the more

general setting of causal broadcast. Their approach thus supports

our hypothesis that it is possible to simplify the verification of

higher-level application properties, such as causal consistency of a

key-value store or convergence of CRDTs, by decoupling them from

lower-level message delivery properties, such as causal broadcast.

Compared to our work, Nieto et al.’s verification effort is more

broadly scoped: most obviously, they tackle verification of clients of
causal broadcast, in addition to the causal broadcast protocol itself.

Additionally, their implementation is intended to be used on top

of an unreliable transport protocol, UDP, and as such it includes

mechanisms to ensure reliable message delivery (although their ver-

ification, like ours, is limited to safety properties only).
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We deploy

and empirically evaluate the performance of our implementation,

whereas Nieto et al. do not. Finally, our approach differs from Ni-

eto et al.’s conceptually in that we frame the problem in terms of

refinement types, whereas Nieto et al. take the separation-logic ap-

proach of defining logical resources and giving specifications about

how those resources are used by their implementations. Our use of

Liquid Haskell lets us take advantage of SMT automation where

possible, using manual proofs only when needed. On the other

hand, Nieto et al.’s use of standard separation logic mechanisms is

a boon for modularity.

7 CONCLUSION
Causal message broadcast is a widely used building block of dis-

tributed applications, motivating the need for practically usable

verified implementations. We use Liquid Haskell to give a novel

encoding of causal message delivery as a refinement type. We then

verify the safety of an executable causal broadcast library imple-

mented in Haskell using a combination of manual theorem proving

and SMT automation. Our verified-safe library can be used in real

distributed systems, as we demonstrate with a case-study imple-

mentation and deployment of a distributed key-value store.
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