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ABSTRACT

Protocols to ensure that messages are delivered in causal order are
a ubiquitous building block of distributed systems. For instance,
distributed data storage systems can use causally ordered message
delivery to ensure causal consistency, and CRDTs can rely on the
existence of an underlying causally-ordered messaging layer to
simplify their implementation. A causal delivery protocol ensures
that when a message is delivered to a process, any causally preced-
ing messages sent to the same process have already been delivered
to it. While causal delivery protocols are widely used, verification
of their correctness is less common, much less machine-checked
proofs about executable implementations.

We implemented a standard causal broadcast protocol in Haskell
and used the Liquid Haskell solver-aided verification system to
express and mechanically prove that messages will never be de-
livered to a process in an order that violates causality. We express
this property using refinement types and prove that it holds of our
implementation, taking advantage of Liquid Haskell’s underlying
SMT solver to automate parts of the proof and using its manual
theorem-proving features for the rest. We then put our verified
causal broadcast implementation to work as the foundation of a
distributed key-value store.
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1 INTRODUCTION

Causal message delivery [5-7, 30] is a fundamental communication
abstraction for distributed computations in which processes com-
municate by sending and receiving messages. One of the challenges
of implementing distributed systems is the asynchrony of message
delivery; messages arriving at the recipient in an unexpected order
can cause confusion and bugs. A causal delivery protocol can ensure
that, when a message m is delivered to a process p, any message sent
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Figure 1: Two executions that violate causal delivery (Def-
inition 2). On the left, Carol sees Alice’s messages in the
opposite order of how they were sent. On the right, Carol
sees Bob’s message before seeing Alice’s second message. The
dashed arrows in both diagrams depict how a causal delivery
mechanism (Section 2.2) might delay received messages in a
buffer for later delivery.

“before” m (in the sense of Lamport’s “happens-before”; see Sec-
tion 2.1) will have already been delivered to p. When a mechanism
for causal message delivery is available, it simplifies the implemen-
tation of many important distributed algorithms, such as replicated
data stores that must maintain causal consistency [2, 21], conflict-
free replicated data types [34], distributed snapshot protocols [1, 3],
and applications that “involve human interaction and consist of
large numbers of communication endpoints” [35]. A particularly
useful special case of causal delivery is causal broadcast, in which
each message is sent to all processes in the system. For example, a
causal broadcast protocol enables a straightforward implementa-
tion strategy for a causally consistent replicated data store — one
of the strongest consistency models available for applications that
must maximize availability and tolerate network partitions [22].
Conflict-free replicated data types (CRDTs) implemented in the
operation-based style [33, 34] typically also assume the existence of
an underlying causal broadcast layer [34, §2.4].

What can go wrong in the absence of causal broadcast? Suppose
Alice, Bob, and Carol are exchanging group text messages. Alice
sends the message “I lost my wallet..” to the group, then finds the
missing wallet between her couch cushions and follows up with
a “Found it!” message to the group. In this situation, depicted in
Figure 1 (left), Alice has a reasonable expectation that Bob and
Carol will see the messages in the order that she sent them, and
such first-in first-out (FIFO) delivery is an aspect of causal message
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ordering. While FIFO delivery is already enforced! by standard
networking protocols such as TCP [27], it is not enough to elim-
inate all violations of causality. In an execution such as that in
Figure 1 (right), FIFO delivery is observed, and yet Carol sees Bob’s
message only after having seen Alice’s initial “I lost my wallet..”
message, so from Carol’s perspective, Bob is being rude. The issue
is that Bob’s “Glad to hear it!” response causally depends on Alice’s
second message of “Found it!”, yet Carol sees “Glad to hear it!” first.
What is called for is a mechanism that will ensure that, for every
message that is applied at a process, all of the messages on which
it causally depends — comprising its causal history — are applied at
that process first, regardless of who sent them.

One way to address the problem is to buffer messages at the
receiving end until all causally preceding broadcast messages have
been applied. The dashed arrows in Figure 1 represent the behavior
of such a buffering mechanism. A typical implementation strat-
egy is to have the sender of a message augment the message with
metadata (for instance, a vector clock; see Section 2.2.1) that summa-
rizes that message’s causal history in a way that can be efficiently
checked on the receiver’s end to determine whether the message
needs to be buffered or can be applied immediately to the receiver’s
state. Although such mechanisms are well-known in the distributed
systems literature [5-7], their implementation is “generally very
delicate and error prone” [8], motivating the need for machine-
verified implementations of causal delivery mechanisms that are
usable in real, running code.

To address this need, we use the Liquid Haskell [38] platform
to implement and verify the correctness of a well-known causal
broadcast protocol [6]. Liquid Haskell is an extension to the Haskell
programming language that adds support for refinement types [29,
42], which let programmers specify logical predicates that restrict,
or refine, the set of values described by a type. Beyond giving more
precise types to individual functions, Liquid Haskell’s reflection [36,
39] facility lets programmers use refinement types to extrinsically
specify properties that can relate multiple functions (see Section 3.2),
and then prove those properties by writing Haskell programs to
inhabit the specified types. We use this capability to prove that in
our causal broadcast implementation, processes deliver messages
in causal order, ruling out the possibility of causality-violating
executions like those in Figure 1.

We express causal delivery as a refinement type. By doing so, we
can take advantage of Liquid Haskell’s underlying SMT automation
where possible, while still availing ourselves of the full power of
Liquid Haskell’s theorem-proving capabilities via reflection where
necessary. A further advantage of Liquid Haskell as a verification
platform is that it results in immediately executable Haskell code,
with no extraction step necessary, as with proof assistants such as
Coq [4] or Isabelle [40] — making it easy to integrate our library
with existing Haskell code.

Our causal broadcast implementation is a Haskell library that
can be used in a variety of applications. While previous work has
mechanically verified the correctness of applications of causal order-
ing in distributed systems (such as causally consistent distributed
key-value stores [12, 19]), factoring the causal broadcast protocol

ITCP’s FIFO ordering guarantee applies so long as the messages in question are sent
in the same TCP session. Across sessions, additional mechanisms are necessary.
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out into its own standalone, verified component means that it can
be reused in each of these contexts. There is a need for such a
standalone component: for instance, recent work on mechanized
verification of CRDT convergence [11] assumes the existence of
a correct causal broadcast mechanism for its convergence result
to hold. Our separately-verified library could be plugged together
with such verified CRDT implementations to get an end-to-end
correctness guarantee. Therefore our library enables modular veri-
fication of higher-level properties for applications built on top of
the causal broadcast layer. While recent work [25] takes precisely
such a modular approach to verification of applications that use
causal broadcast, our work is to the best of our knowledge the first
to do so by expressing causal message delivery as a refinement type
and leveraging SMT automation.
We make the following specific contributions:

o We identify local causal delivery, a property that allows us to
reduce the problem of determining that a distributed execu-
tion observes causal delivery to one that can be verified using
information locally available at each process (Section 2.3).

o We identify design choices that make a standard causal broad-
cast protocol amenable to verification. In particular, we im-
plement the protocol in terms of a state transition system,
and we implement message broadcast in terms of message de-
livery, leading to a simpler proof development (Section 3.3).

e We present novel encodings of local causal delivery and
causal delivery as refinement types, and we give a mecha-
nized proof that our causal broadcast library implementation
satisfies the causal delivery property (Section 4).

To evaluate the practical usability of our library, we put it to work
as the foundation of a distributed in-memory key-value store and
empirically evaluate its performance when deployed to a cluster
of geo-distributed nodes (Section 5). Section 6 contextualizes our
contributions with respect to existing research, and Section 7 sum-
marizes our work. All of our code, including our causal broadcast
library, our proof development, and our key-value store case study,
is available at https://github.com/Isd-ucsc/cbcast-1h.

2 SYSTEM MODEL AND VERIFICATION TASK

In this section, we describe our system model (Section 2.1) and
the causal broadcast protocol that we implemented and verified
(Section 2.2), and we define the property that we need to show
holds of our implementation (Section 2.3).

2.1 System Model

We model a distributed system as a finite set of N processes (or
nodes) p;, i : 1..N, distinguished by process identifier i. Processes
communicate with other processes by sending and receiving mes-
sages. In our setting, all messages are broadcast messages, meaning
that they are sent to all processes in the system, including the
sender itself.? Our network model is asynchronous, meaning that
sent messages can take arbitrarily long to be received. Furthermore,
for our safety result we need not assume that sent messages are
eventually received, so our network is also unreliable (although

2For simplicity, we omit the messages that processes send to themselves from examples
in Figures 1, 2, and 3. We assume that these self-sent messages are sent and delivered
in one atomic step on the sender’s process.
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such an assumption would be necessary for liveness; see Section 4.4
for a discussion).

We distinguish between message receipt and message delivery:
processes can receive messages at any time and in any order, and
they may further choose to deliver a received message, causing
that message to take effect at the node receiving it and be handed
off to, for example, the user application running on that node. Im-
portantly, although nodes cannot control the order in which they
receive messages, they can control the order in which they deliver
those messages. Imagine a “mail clerk” on each node that intercepts
incoming messages and chooses whether, and when, to deliver each
one (by handing it off to the above application layer and recording
that it has been delivered). We must ensure that the mail clerk de-
livers the messages in an order consistent with causality, regardless
of the order in which messages were received — implementing the
behavior illustrated by the dashed arrows in Figure 1.

For our discussion of causal delivery, we need to consider two
kinds of events that occur on processes: broadcast events and deliver
events. We will use broadcast(m) to denote an event that sends a
message m to all processes, and deliverp(m) to denote an event that
delivers m on process p. We refer to the totally ordered sequence
of events that have occurred on a process p as the process history,
denoted hp. For events e and e’ in a process history hp, e and e’ are
in process order, written e —p e’, if e occurs in the subsequence of
hy that precedes e’.

An execution of a distributed system consists of the set of all
events in all process histories, together with the process order rela-
tion —, over events in each hy, and the happens-before relation — p,
over all events. The happens-before relation, due to Lamport [16],
is an irreflexive partial order that captures the potential causality
of events in an execution: for any two events e and ¢’, if e —p, €,
then e may have caused e’, but we can be certain that e’ did not
cause e.

DEFINITION 1 (HAPPENS-BEFORE (—p,p) [16]). Given events e and
e’, e happens before e/, written e —py, €', iff:

e e and e’ occur in the same process history hy and e —p €’; or

e ¢ = broadcast(m) and e’ = deliver,(m) for a given message
m and some process p; or

o ¢ >y, e’ ande” —yy e for some evente’ .

Events in the same process history are totally ordered by the
happens-before relation (For example, in Figure 1, Alice’s broadcast
of “Ilost my wallet..” happens before her broadcast of “Found it!”),
and the broadcast of a given message happens before any delivery
of that message. We say that m —y;, m’ iff broadcast(m) —p
broadcast(m”), using the notation —, for both relations.

To avoid executions like those in Figure 1, processes must deliver
messages in an order consistent with the —;, partial order. This
property is known as causal delivery; our definition is based on
standard ones [6, 28]:

DEFINITION 2 (CAUSAL DELIVERY). An execution x observes causal
delivery if, for all processes p in x, for all messages my and my such
that deliver,(m1) and deliver,(mg) are in hy,

3Although a broadcast message has N recipients, and may be implemented as N
individual unicast messages under the hood, we treat the sending of the message as a
single event on the sender’s process.
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my —pp my = deliverp(my) —p deliverp(my).

The causal delivery property says that if message my is sent before
message my in an execution, then any process delivering both
m1 and my should deliver m; first. For example, in Figure 1 (left),
the “I lost my wallet..” message causally precedes the “Found it!”
message, because Alice broadcasts both messages with “I lost my
wallet..” first, and so Bob and Carol would each need to deliver “I
lost my wallet..” first for the execution to observe causal delivery.
Furthermore, under causal delivery m; and my must be delivered
in causal order even if they were sent by different processes. For
example, in Figure 1 (right), Alice’s “Found it!” message causally
precedes Bob’s “Glad to hear it!” message, and therefore Carol, who
delivers both messages, must deliver Alice’s message first for the
execution to observe causal delivery.

2.2 Background: Causal Broadcast Protocol

The causal broadcast protocol that we implemented and verified is
due to Birman et al. [6]; in this section, we describe how it works at
a high level before discussing our Liquid Haskell implementation
in Section 3.

The protocol is based on vector clocks, a type of logical clock
well-known in the distributed systems literature [10, 23, 32]. Like
other logical clocks, vector clocks do not track physical time (which
would be problematic in distributed computations that lack a global
physical clock), but instead track the order of events. Readers al-
ready familiar with vector clocks may skip ahead to Section 2.2.2.

2.2.1  Vector Clock Protocol. A vector clock is a sequence of length
N (the number of processes in the system), which is indexed by
process identifiers i : 1..N, and where each entry is a natural num-
ber. At the beginning of an execution every process p initializes its
own vector clock, denoted VC(p), to zeroes. The protocol proceeds
as follows:

e When a process p; broadcasts a message m, p; increments
its own position in its vector clock, VC(p;)[i], by 1.

o Each message broadcast by a process p carries as metadata
the value of VC(p) that was current at the time the message
was broadcast (just after incrementing), denoted VC(m).

e When a process p delivers a message m, p updates its
own vector clock VC(p) to the pointwise maximum of
VC(m) and VC(p) by taking the maximum of the inte-
gers at each index: for k : 1..N, we update VC(p)[k] to
max(VC(m)[k], VC(p) [k]).

Figure 2 illustrates an example execution of three processes running
the vector clock protocol.

We can define a partial order on vector clocks of the same length
as follows: for two vector clocks a and b indexed by i : 1..N,

e a <y bifVi.a[i] < b[i], and

® a<y bifa<y banda# b.

This ordering is not total: for example, in Figure 2, my carries a
vector clock of [1,0,0] while ms carries a vector clock of [0,0,1],
and neither is less than the other. Correspondingly, m; and ms are
causally independent (or concurrent): neither message has a causal
dependency on the other. On the other hand, my causally depends
on my; correspondingly, m;’s vector clock [1,0,0] is less than
[1,1,0] carried by my. In fact, vector clocks under this protocol
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[0,0,0] [0,0,0] [0,0,0]
[1,0,0]

[0,0,1]

[1,1,1]

[1,1,1]

Figure 2: An example execution using the vector clock pro-
tocol. As each process broadcasts and delivers messages, it
updates its vector clock according to the protocol. For ex-
ample, when process p; broadcasts my, it increments its own
position in its clock just before broadcasting the message,
and mq carries the incremented clock [1,0,0] as metadata.

precisely characterize the causal partial ordering [10, 23]: for all
messages m, m’, it can be shown that

m—p,m = VC(m) <y VC(m'). (1)

This powerful two-way implication lets us boil down the problem
of reasoning about causal relationships between messages in a
distributed execution to a locally checkable property.

By itself, the vector clock protocol does not enforce causal deliv-
ery of messages. Indeed, the execution in Figure 2 violates causal
delivery: under causal delivery, process p3 would not deliver m;
before ms. However, the vector clock metadata attached to each
message can be used to enforce causal delivery of broadcast mes-
sages, as we will see next.

2.2.2  Deliverability. The vector clock attached to a message can be
thought of as a summary of the causal history of that message: for
example, in Figure 2, my’s vector clock of [1,1,0] expresses that
one message from p; (represented by the 1 in the first entry of the
vector) causally precedes my. Furthermore, each process’s vector
clock tracks how many messages it has delivered from each process
in the system. We can exploit this property by having the recipient
of each broadcast message compare the message’s attached vector
clock with its own vector clock to check for deliverability, as follows:

DEFINITION 3 (DELIVERABILITY [6]). A message m broadcast by
a process p; is deliverable at a process p; # p; if, fork : 1..N,

VC(m)[k] = VC(p;)[k] +1 ifk =i, and
VC(m)[k] < VC(pj)[k] otherwise.

Our notional “mail clerk” will use Definition 3’s deliverability con-
dition to decide when to deliver received messages. How it works
is a bit subtle, but worth understanding because of the key role it
plays in the protocol:

o The first clause of Definition 3 ensures that m is the recipient
pj’s next expected message from the sender, p;. The number
of messages from p; that p; has already delivered will ap-
pear in VC(pj) at index i, so VC(m)[i] should be exactly one
greater than VC(p;)[i].
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Figure 3: The executions from Figure 1, annotated with vector
clocks used by the causal broadcast protocol. On the left,
Carol buffers myy,,4 until she has delivered mj,5;. On the right,
Carol buffers my,; until she has delivered mf;pg.

o The second clause ensures that m’s causal history does not
include any messages sent by processes other than p; that p;
has not yet delivered. If m’s vector clock is greater than p;’s
vector clock in any position k # i, then it means that, before
sending m, process p; must have delivered some message m’
from py. that has not yet been delivered at p;.

Combining the vector clock protocol of Section 2.2.1 with the
deliverability property of Definition 3 gives us Birman et al.’s causal
broadcast protocol. Whenever a process receives a message, it
buffers the message until it is deliverable according to Definition 3.
Each process stores messages that need to be buffered in a process-
local queue, the delay queue. Whenever a process delivers a message
and updates its own vector clock, it can check its delay queue for
buffered messages and deliver any messages that have become
deliverable (which may in turn make others deliverable).

2.2.3  Example Executions of the Causal Broadcast Protocol. To illus-
trate how the protocol works, Figure 3 shows the two problematic
executions we saw previously in Figure 1, but now with the causal
broadcast protocol in place to prevent violations of causal delivery.
Each process keeps a vector clock with three entries corresponding
to Alice, Bob, and Carol respectively. Suppose that m,; is Alice’s
“Tlost my wallet..” message, Mg is Alice’s “Found it!” message,
and mgj,q is Bob’s “Glad to hear it!” message.

In Figure 3 (left), Bob receives Alice’s messages in the order she
broadcasted them, and so he can deliver them immediately. For
example, when Bob receives my,;, his own vector clock is [0,0,0],
and the vector clock on the message is [1,0,0]. The message is
deliverable at Bob’s process because it is one greater than Bob’s
own vector clock in the sender’s (Alice’s) position, and less than or
equal to Bob’s vector clock in the other positions, so Bob delivers it
immediately after receiving it. Carol, on the other hand, receives
M found first. This message has a vector clock of [2,0,01], so it is not
immediately deliverable at Carol’s process because Carol’s vector
clock is [0,0,0], and so the entry of 2 at the sender’s index is too
large, indicating that the message is “from the future” and needs
to be buffered in Carol’s delay queue for later delivery, after Carol
delivers myg;.
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In Figure 3 (right), Bob delivers two messages from Alice and
then broadcasts mgjqq. myjeq has a vector clock of [2,1,0], indi-
cating that it has two messages sent by Alice in its causal history.
When Carol receives mgjaq, her own vector clock is only [1,0, 01,
indicating that she has only delivered one of those messages from
Alice so far, so Carol must buffer mgj,q in her delay queue until
she receives and delivers my,,4, the missing message from Alice,
increasing her own vector clock to [2,0,0]. Now mgj,q is deliver-
able at Carol’s process, and Carol can deliver it, increasing her own
vector clock to [2,1,0].

2.3 Verification Task

Thanks to the relationship between the happens-before ordering
and the vector clock ordering expressed by Equation (1), we can
reduce the problem of determining that a distributed execution
observes causal delivery to a condition that is locally checkable at
each process. We call this condition local causal delivery:

DEFINITION 4 (LOCAL CAUSAL DELIVERY). A process p observes
local causal delivery if, for all messages my and my such that
deliverp(m1) and delivery(my) are in hp,

VC(my) <pc VC(mz) = deliverp(m1) —p deliverp(mz).

The heart of our verification task will be to prove that our implemen-
tation of the causal broadcast protocol of Section 2.2 ensures that
processes that run the protocol observe local causal delivery. From
there, given Equation (1), we can prove that executions produced
by a distributed system of processes that run the causal broadcast
protocol observe global causal delivery:

THEOREM 1 (GLOBAL CORRECTNESS OF CAUSAL BROADCAST PRrRO-
TOCOL). An execution in which all processes run the causal broadcast
protocol observes causal delivery.

In the following sections, we show how we use Liquid Haskell
to implement the causal broadcast protocol, to make the statement
of Theorem 1 precise, and to prove Theorem 1. After presenting
the implementation in Section 3, in Section 4 we develop the ma-
chinery necessary to express Definitions 2 and 4 and Theorem 1 as
refinement types.

3 IMPLEMENTATION

In this section, we describe our implementation of Birman et al.’s
causal broadcast protocol as a Liquid Haskell library. Section 3.1
describes the types we use to implement our system model and
vector clock operations, and in Section 3.2 we give a brief overview
of refinement types and Liquid Haskell before diving into our im-
plementation of the protocol itself in Section 3.3. Finally, Section 3.4
discusses how a user application would use our library.

3.1 System Model and Vector Clocks

We begin by defining Haskell types to implement our system model
and vector clock operations. Process identifiers are natural numbers
and double as indexes into vector clocks, which are represented
by a list of natural numbers. Messages have type M r, where the
r parameter is the application-defined type of the raw message
content (e.g., a JSON-formatted string).

type PID = Nat
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type VC = [Nat]
data M r = M { mVC::VC, mSender::PID, mRaw::r }

A message has three fields: mvC and mSender are respectively the
metadata that capture when the message was sent (as a VC) and
who sent it (as a PID), and mRaw contains the raw message content.

An event can be either a Broadcast (to the network) or a Deliver
(to the local user application for processing), and a process history
H is a list of events.

data Event r = Broadcast (M r) | Deliver PID (M r)
type H r = [Event r]

To implement the vector clock protocol of Section 2.2.1, we need
some standard vector clock operations, with the below interface:

vcEmpty Nat — VC

veTick :: VC — PID — VC
vcCombine :: VC — VC — VC
vcLessEqual :: VC — VC — Bool
vclLess :: VC — VC — Bool

vcEmpty initializes a vector clock of a given size with zeroes, vcTick
increments a vector clock at a given index, vcCombine computes
the pointwise maximum of two vector clocks, and vcLessEqual
and vclLess implement the vector clock ordering described in Sec-
tion 2.2.1. As we will see in the following sections, our causal
broadcast implementation uses vcTick and vcCombine when broad-
casting and delivering messages, respectively. The prose definitions
of all these operations translate directly into idiomatic Haskell; for
example, the implementation of vcCombine is zipWith max.

3.2 Brief Background: Refinement Types and
Liquid Haskell

Traditionally, refinement types [29, 42] have let programmers spec-
ify types augmented with logical predicates, called refinement pred-
icates, that restrict the set of values that can inhabit a type. For
example, in Liquid Haskell one could give vcCombine the following

signature:
vcCombine v:VC — {v' :VC | len v' ==

— {v'':VC | len v'' ==

len v}
len v}
The refinement on v’ expresses the precondition that v and v will
have the same length, and the return type expresses the postcon-
dition that the returned vector clock will have the same length as
the argument vector clocks. Liquid Haskell automatically proves
that such postconditions hold by generating verification conditions
that are checked at compile time by the underlying SMT solver (by
default, Z3 [9]). If the solver cannot ensure that the verification
conditions are valid, typechecking fails. In our actual implementa-
tion, additional Liquid Haskell refinements on VC and PID — elided
in this paper for readability — ensure that all functions are called
with compatible vector clocks (having the same length) and PIDs
(natural numbers smaller than the length of a vector clock).*

4Recall from Section 2.1 that we model a distributed system as a finite set of N processes.
We want our implementation to be agnostic to N, yet we need to know what N is
because it determines the length of vector clocks (and hence what constitutes a valid
index into a vector clock). We accomplish this in Liquid Haskell by parameterizing
types with an N expression value which will be provided at initialization by application
code. For readability, we elide these length-indexing parameters from types in this
paper, although they are ubiquitous in our implementation.
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Aside from preconditions and postconditions of individual func-
tions, though, Liquid Haskell makes it possible to verify extrinsic
properties that relate two functions, or calls to the same function
applied to different inputs. As an example, here is a Liquid Haskell
proof that vcCombine is commutative:

type Comm a A
= x:a — y:a — {_:Proof | A xy == Ay x}
vcCombineComm n:Nat — Comm n {vcCombine}
vcCombineComm _n [] [1 =0
vcCombineComm n (_x:xs) (_y:ys) =
vcCombineComm (n - 1) xs ys

Here, vcCombineComm is a Haskell function that returns a value of
Proof type (a type alias for (), Haskell’s unit type), refined by the
predicate vcCombine x y == vcCombine y x. The proofis by induction
on the structure of vector clocks. The base case, in which both x
and y are empty lists, is automatic for the SMT solver, so the body
of the base case need not say anything but (). The inductive case
has a recursive call to vcCombineComm. We use a similar approach to
prove that vcCombine is associative, idempotent, and inflationary,
and that vcless is a strict partial order. In general, programmers
can specify arbitrary extrinsic properties in refinement types, in-
cluding properties that refer to arbitrary Haskell functions via the
notion of reflection [39]. The programmer can then prove those
extrinsic properties by writing Haskell programs that inhabit those
refinement types, using Liquid Haskell’s provided proof combina-
tors — with the help of the underlying SMT solver to simplify the
construction of these proofs-as-programs [36, 39].

Liquid Haskell thus occupies a position at the intersection of
SMT-based program verifiers such as Dafny [18], and theorem
provers that leverage the Curry-Howard correspondence such as
Coq [4] and Agda [26]. A Liquid Haskell program can consist of both
application code like vcCombine (which runs at execution time, as
usual) and verification code like vcCombineComm (which is never run,
but merely typechecked), but, pleasantly, both are just Haskell pro-
grams, albeit annotated with refinement types. Since Liquid Haskell
is based on Haskell, programmers can gradually port Haskell pro-
grams to Liquid Haskell, adding richer specifications to code as they
go. For instance, a programmer might begin with an implementation
of vcCombine with the type VC -> VC -> VC, later refine it to the more
specific refinement type above, even later prove vcCombineComm, and
still later use the proof returned by vcCombineComm as a premise to
prove another, more interesting property.

3.3 Causal Broadcast Protocol Implementation

We express the causal broadcast protocol of Section 2.2 as a state
transition system.

3.3.1  Process Type. The state data structure P r represents a process
and is parameterized by the type of raw content, r:

data P r = P { pVC::VC, pID::PID, pDQ::[M r]
, pHist::{ h:H r | histVC h == pVC }}

The fields of P include the local vector clock pVc, the local process
identifier pID, a delay queue of received but not-yet-delivered mes-
sages pDQ, and (importantly for our verification task) the process
history pHist. We provide a pEmpty :: Nat -> PID -> P r function
that initializes a process with a vector clock of the given length
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containing zeroes, the given process identifier, and an empty delay
queue and empty process history.

The type of the process history pHist deserves further discus-
sion, as it is our first use of a Liquid Haskell feature called datatype
refinements. The datatype refinement on the pHist field says that it
contains a history h of the type H r defined in the previous section,
but with an additional constraint histVC h == pVC. This constraint
expresses the intuition that the vector clock pvC and the history
h “agree” with each other: for any process p starting with a pvc
containing all zeros and an empty pHist, each addition of a Deliver
(pID p) m event to the history for some message m must coincide
with an update to pVC p of the form vcCombine (mVC m) (pVC p). Ac-
cordingly, histVC h is defined as the supremum of vector clocks on
Deliver events in h. We extrinsically prove in Liquid Haskell that
this pVC-pHist agreement property is true for the empty process
and preserved by each transition in our state transition system. We
next describe these transition functions.

3.3.2 State Transitions. The transition functions are receive,
deliver, and broadcast, with the following interface:

receive Mr - Pr — Pr
deliver P r — Maybe (M r, P r)
broadcast r - Pr - (Mr, Pr)

The receive function adds a message from the network to the
delay queue, the deliver function pops a deliverable message (if
any) from the delay queue, and the broadcast function prepares
raw content of type r for network transport by wrapping it in a
message. Of these transition functions, only deliver and broadcast
are particularly interesting from the perspective of our verification
effort, since receive only adds messages to the delay queue and
cannot affect whether causal delivery is violated. We next discuss
the implementation of deliver and broadcast, respectively.

3.3.3 Deliver. Figure 4 shows the implementation of
deliver, as well as its constituents dequeue, deliverable, and
deliverableHelper. At a high level, deliver calls dequeue on a
process’s delay queue and then performs bookkeeping: If dequeue
popped a deliverable message, then deliver returns that message
and updates the process with a new vector clock according to the
vector clock protocol, the new delay queue returned by dequeue,
and a new process history which records the delivery of the
message. The dequeue function plays its part by removing and
returning the first deliverable message found in the delay queue.

The deliverable predicate implements the deliverability condi-
tion of Definition 3 to check whether a message m is deliverable
at time p_vc. It works by calling deliverableHelper (mSender m) on
each offset in the message vector clock mvC m and process vector
clock p_ve, and returning the conjunction of those results. The
function finAsc n provides those offsets in ascending order, and,
combined with zipWith, lets us implement the subtle deliverabil-
ity condition of Definition 3 in deliverableHelper, almost exactly
as Definition 3 is written (except that our vector clocks are zero-
indexed). We omit the implementation of finAsc from Figure 4 for
brevity, but its refinement type guarantees that it returns an as-
cending list of length n containing Nats less than n, using Liquid
Haskell’s abstract refinements feature [37].
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deliver P r — Maybe (M r, P r)
deliver p =
case dequeue (pVC p) (pDQ p) of
Nothing — Nothing
Just (m, pDQ') —
Just (m, p{ pVC = vcCombine (mVC m) (pVC p)
, pDQ = pDQ’
, pHist =
Deliver (pID p) m pHist p })
dequeue VC — DQ r — Maybe (M r, DQ r)
dequeue _now [] = Nothing
dequeue now (x:xs)
| deliverable x now = Just (x, xs)
| otherwise = case dequeue now xs of
-- Skip past x.
Nothing — Nothing
Just (m, xs') — Just (m, x:xs')

M r — VC — Bool
deliverable m p_vc = let n = length p_vc in
and (zipWith3 (deliverableHelper (mSender m))
(finAsc n) (mVC m) p_vc)

deliverable

deliverableHelper
PID — PID — Clock — Clock — Bool
deliverableHelper m_id k m_vc_k p_vc_k

| k == m_id = m_vc_k == p_vc_k + 1
| otherwise = m_vc_k <= p_vc_k
finAsc n:Nat —
{ xs:[{x:Nat x < n}l<{da b — a < b}>

|
| len xs =

:n}

Figure 4: Implementation of deliver and its helpers.

broadcast r—-Pr - (Mr, Pr)
broadcast raw p =
let m = M { mVC = vcTick (pVC p) (pID p)

, mSender = pID p

, mMRaw = raw }
p' =p { pDQ = m : pDQ p
, pHist = Broadcast m pHist p }

Just tup = deliver p'
in tup

Figure 5: Implementation of broadcast. We prove that deliver
p’ is a Just value using an extrinsic proof.

3.34 Broadcast. Figure 5 shows the implementation of the
broadcast function. First, broadcast constructs a message m for the
value raw by incrementing the pID p index of its own vector clockpvC
p, and attaching that pID p to m as mSender. Next, broadcast con-
structs an intermediate process value p’ containing m at the head
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of the delay queue and a new process history recording the broad-
cast event for this message. Last, broadcast delegates to deliver to
deliver m at its own sender, p’. As we will see in Section 4, imple-
menting broadcast in terms of deliver simplifies proving properties
about our implementation, because proofs about broadcast can of-
ten delegate to existing proofs about deliver.

Although deliver’s return type is Maybe (M r, P r), the deliver
p’ call in broadcast is guaranteed by Liquid Haskell to evaluate to
a Just value containing the next process and the message to be
broadcast. We prove this property using an extrinsic proof, not
shown here. The intuition is that messages a process sends to itself
are always immediately deliverable, because when a process incre-
ments its own index in the vector clock that it places in a message,
the message immediately becomes deliverable at that process.

3.4 Example Application Architecture

The receive, deliver, and broadcast functions are the interface
made available to user applications of our causal broadcast library.
When deliver returns a message, the user application must process
it immediately. The user application must also immediately put the
message returned by broadcast on the network and also process
the message locally.” This design implies that user applications
should not update their own state directly when communication is
in order, but rather, generate a message and then update their state
in response to its delivery.

Figure 6 shows an example architecture of an application us-
ing our causal broadcast library. A collection of (potentially geo-
distributed) peer nodes, which we call the causal broadcast cluster,
each run the causal broadcast protocol along with their user appli-
cation code (for instance, a key-value store or a group chat applica-
tion). Clients of the application communicate their requests to the
nodes; one or more clients may communicate with each node. The
application instance on a node generates messages, broadcasts them
to other nodes, and delivers messages received from other nodes.
Later on, in Section 5, we will see a case study of an application
with this architecture.

4 VERIFICATION

In this section we mechanize causal delivery and local causal de-
livery (Definitions 2 and 4) for our implementation of the causal
broadcast protocol, and we describe the highlights of our Liquid
Haskell proof development, culminating in a mechanized proof of
Theorem 1. In Section 4.1 we show how we express local causal
delivery (abbreviated “LCD” henceforth) as a refinement type in
Liquid Haskell, and in Section 4.2 we show that each of the receive,
deliver, and broadcast transitions of Section 3.3 results in a process
that observes LCD. We then leverage this fact to prove Theorem 1
in Section 4.3. Finally, in Section 4.4 we briefly discuss the liveness
of our implementation.

4.1 Local Causal Delivery as a Refinement Type

As we saw in Section 3.3.1, a process tracks the history of events
that have occurred on it so far, including message broadcasts and

5In practical applications, it may be advantageous to separate these concerns about
handling return values into an additional message-handling layer, but that is beyond
our scope.
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Figure 6: Example architecture for a distributed application
using our causal broadcast library. The mnemonic standins
Process, Event, and Message refer to the types P r, Event r, and M
r defined in our implementation. An application node using
this architecture participates in the causal broadcast protocol
using a single process data structure and the functions receive
, broadcast, and deliver to safely manage message-passing
state. Clients make requests to a node, possibly updating
application state, and the node may generate messages to
replicate updates or perform other tasks.

deliveries. We can examine a process’s history and see whether the
process has been delivering messages in an order consistent with
the messages’ vector clock ordering. Therefore, we can express
local causal delivery (Definition 4) as a refinement type as follows:

type LocalCausalDelivery r ID HIST
= {ml : Mr | elem (Deliver ID m1) HIST }
— {m2 : M r | elem (Deliver ID m2) HIST
&& vclLess (mVC m1) (mVC m2) }
— { _:Proof | processOrder HIST
(Deliver ID m1) (Deliver ID m2) }

The type alias LocalCausalDelivery r ID HIST fixes a process
identifier 1D and a process history HIST.S It is the type of a function
that given messages m1 and m2, both of which have already been
delivered in the specified process history and for which the vector
clock of m1 is less than that of m2, produces a proof that the delivery
event of m1 precedes the delivery event of m2 in the process history.
The vcLess function is part of the vector clock interface described
in Section 3.1, and the predicate processOrder h e e’ returns True
if event e is present in the list of events that precede event e’ in a
process history h.

The LocalCausalDelivery type captures what it means for a given
process to observe LCD: it says that if we consider any two messages
that are in the process’s history, and those messages’ vector clocks
have an order, then there is evidence - in this case, in the form of
an affirmative answer from an SMT solver - that those messages
appear in the process history in their vector clock order, rather than
the other way around. Our next step will be to show that this LCD
property actually holds for processes running our implementation
of the causal broadcast protocol.

4.2 Local Causal Delivery Preservation

Recall the state transition system consisting of the process type P
r and the functions receive, deliver, and broadcast discussed in
Section 3.3. We need to prove (1) that a process observes LCD in
®In Liquid Haskell, type aliases can be parameterized either with ordinary Haskell type

variables or with Liquid Haskell expression variables. In the latter case, the parameter
is written in ALL CAPS.
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its initial, empty state returned by pEmpty, and (2) that whenever a
process satisfying LCD transitions to a new state via any sequence
of steps of the receive, deliver, or broadcast transition functions,
the resulting process state still observes LCD. A proof that the
empty process observes LCD as defined in Section 4.1 is trivially
discharged by Liquid Haskell, so we turn our attention to proving
that each of the state transitions preserves LCD. Most of the action
of our proof development happens in handling deliver steps, as we
will see below in Section 4.2.1.

To use the LocalCausalDelivery type alias with the process type,
P r, we need a small adapter to extract the pID and pHist fields.”

type LCD r PROC =
LocalCausalDelivery r {pID PROC} {pHist PROC}

To encode the inputs to each of the causal broadcast protocol
transition functions, we define a sum type over the arguments,
Op r. Each function takes a P r input and additional arguments
corresponding to one of the Op r constructors.

data Op r = OpReceive (M r)
| OpDeliver
| OpBroadcast r

To apply those transition functions to a process value, we define
step. It branches on the constructor of Op r, calls a transition func-
tion discussed in Section 3.3, extracts the next process value, and
throws away information unneeded for the proof.

step :: Opr - P r — P r

step (OpReceive m) p = receive m p

step (OpBroadcast r) p = case broadcast r p of
-, p") — p'

step (OpDeliver ) p = case deliver p of
Just (_, p') — p'
Nothing - p

Next, we prove a stepLCD lemma, which states that for a given
operation op and process p, if LCD holds for p, then it still holds
after applying op to p using step:

stepLCD :: op : Op r
- p: Pr
— LCD r {p}
— LCD r {step op p}

The proof of stepLCD branches on the constructors for op, followed
by delegation to lemmas about each of the transition functions.

stepLCD op p pLCD =
case op ? step op p of
OpBroadcast r — broadcastLCDpres r p pLCD
m p pLCD
p pLCD

OpReceive
OpDeliver

m — receivelLCDpres
— deliverLCDpres

By far the most involved of these three lemmas is deliverLCDpres,
the one that deals with deliver steps. Proving broadcastLCDpres is
straightforward because calling broadcast only adds a Broadcast
event to the process history (and then calls deliver), and so if a
process observes LCD before calling broadcast, then it is easy to
show that it still does after adding the event (and for calling deliver

"When instantiating a Liquid Haskell type alias parameterized by expression variables,
the expressions are wrapped with braces to distinguish them from type parameters.
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to deliver the message locally, we can delegate to deliverLCDpres).
Proving receivelCDpres is even more straightforward because call-
ing receive does not modify the process history, and so if a process
observes LCD before calling receive, it is easy to show that it still
does afterward. We therefore omit discussion of receivelCDpres
and broadcastLCDpres and focus on the proof of deliverLCDpres in
the next section.

4.2.1 Deliver Transition Preservation Lemma. The deliverLCDpres
lemma states that a process’s observation of LCD is preserved
through calls to the deliver function. The proof begins by decon-
structing the two cases of dequeue, echoing the definition of deliver
(Figure 4). In the case that dequeue returns Nothing, so does its caller
deliver, and the process state is unchanged. This line of reasoning
is automatically carried out by Liquid Haskell without needing to
be explicitly written in the proof. As a result, we can use the input
evidence that the original process observes LCD to complete the
case.

More interesting is the case in which dequeue returns a message
m that has been deemed deliverable. We need to show that in an
updated process state p’ in which m has been delivered, the process
still observes LCD. Recalling the definition of LocalCausalDelivery
from Section 4.1, we need to show that for all messages m1 and m2
where the vector clock of m1 is less than that of m2, m1’s delivery
event occurs before m2’s delivery event in p’’s process history. There
are three cases to consider:

e Casem == m1. When m is equal to m1, it is the most recently
delivered message on p’, but since vcLess (mVC m1) (mVC m2),
this would be a causal violation, and so we show this case is
impossible. Recall that since m was deliverable on the orig-
inal process p, deliverable m (pVC p) is True, which implies
a relationship between mvC m and pVC p: the mSender m offset
in mVC m is exactly one greater than that of pvC p, and all
other offsets of mvC m are less than or equal to that of pvcC
p. Additionally, vcLessEqual (mVC m1) (mVC m2) by vcLess, and
vcLessEqual (mVC m2) (histVC p) because the delivery of m2 is
in pHist p and because vcCombine is inflationary, and histvc
p ==pVC p by the data refinement on processes. Finally, since
vcLessEqual is transitive, we can combine these facts to con-
clude that vclLessEqual (mVC m1) (pVC p), which contradicts the
relationship implied by deliverable m (pVC p).

e Casem == m2. When m is equal to m2, it is the most recently
delivered message on p’. Let e1 be the delivery event for m1
with the definition Deliver (pID p’) m1 and similarly let e2
be the delivery event for the equivalent messages m2 and m.
Since pHist p’ is e2:pHist p, and el is known to already be in
pHist p, we can conclude that e1 precedes e2 in p’’s history,
and so processOrder (pHist p’) el e2, as required by LCD.

e Casem /= m1 & m /= m2.Finally, when m is a new message
distinct from both m1 and m2, we show that the addition of a
deliver event for m to pHist p does not change the delivery
ordering of m1 and m2. That is, with event e1 for delivery of
m1, e2 for m2, and e3 for m, since pHist p’ is e3:pHist p, and
since el and e2 were in pHist p (and both are still in pHist
p’), we can conclude that orderings about elements in pHist
p are unchanged in pHist p’.
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Description LOC
Implementation without refinements 236
Implementation-supporting proofs and refinements 448
List lemmas, extra proof combinators, shims 161
Proofs about relations (Section 3.1) 217
Model for preservation of LCD (Section 4.1) 27
LCD preservation (Section 4.2) 51
LCD preservation, broadcast case 64
LCD preservation, receive case 44
LCD preservation, deliver case (Section 4.2.1) 273
Model for preservation of CD (Section 4.3) 130
CD preservation 138
CD preservation via LCD 139

Table 1: Lines of code used in our implementation and proof
development. The LOC count includes Liquid Haskell defini-
tions, theorems, proofs, and other annotations.

With these pieces in place, we can conclude that a LCD-observing
process continues to observe LCD after any call to deliver.

4.3 Global Causal Delivery Preservation

The lcdStep property we proved in the previous section says that
running the causal broadcast protocol for one step on a given pro-
cess preserves local causal delivery for that process. However, The-
orem 1 pertains to entire executions as opposed to individual pro-
cesses. To complete the proof, then, we must define an additional
global state transition system, where states represent executions,
and a step nondeterministically picks any process in an execution
and runs the causal broadcast protocol for one (local) step on that
process. Unlike the local state transition system, which is actually
what is used at run time to execute the causal broadcast protocol,
our global states and global steps are for verification purposes only.

We define a global execution state as a mapping from PIDs to
P r process states. We can then express (global) causal delivery
(Definition 2) as a refinement type, as follows:

type CausalDelivery r X
= pid : PID
— {ml : M r | elem (Deliver pid ml1)
(pHist (X pid)) }
— {m2 : M r | elem (Deliver pid m2)
(pHist (X pid))
&& happensBefore X
(Broadcast m1)
(Broadcast m2) }
— {_: Proof | processOrder (pHist (X pid))
(Deliver pid m1)
(Deliver pid m2) 3}

The CausalDelivery type is reminiscent of the LocalCausalDelivery
type that we saw in Section 4.1, but instead of referring to one par-
ticular process, it refers to an entire execution, X. CausalDelivery r
X says that for any process in X, messages are delivered in causal or-
der on that process. Another key difference is that instead of using
vcless, CausalDelivery uses a happensBefore predicate, which takes
an execution argument and two events. This is as it should be; the
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definition of causal delivery should be agnostic to the mechanism
used by our particular protocol. However, our 1cdStep lemma only
establishes that messages on a process are delivered in an order
consistent with their vector-clock ordering, not the happens-before
ordering. To bridge this gap and get from local causal delivery to
global causal delivery, we must leverage Equation (1)’s correspon-
dence between vector clocks and happens-before, which we express
as a pair of axioms in Liquid Haskell, one for each direction of the
correspondence.

We can now prove that a single global execution step preserves
causal delivery. The xStepCD lemma states that if we have a causal-
delivery-observing execution x, if we pick out any given process
(identified by pid) from that execution and run any given operation
op on that process, then the resulting execution will also observe
causal delivery.

xStepCD :: op: Op r

x: Execution

pid: PID

CausalDelivery r x

CausalDelivery r {xStep op pid x}

U

The proof of xStepCD proceeds in three stages:

(1) Global to local. First, we show that if the original execution
observes causal delivery, then every process in it observes
local causal delivery. For this, we use the reflection direction
of the vector-clock/happens-before correspondence, which
says that messages with a given vector clock ordering were
broadcast in the corresponding happens-before order.

(2) Local step. Next, we show that if any process in an execution

takes a local step, then every process in the execution will

still observe local causal delivery. This is easy to show using
our lcdStep lemma.

Local to global. Finally, we show that if every process in

an execution observes local causal delivery, then the en-

tire execution observes causal delivery. For this, we use the
preservation direction of the vector-clock/happens-before

correspondence, which says that messages broadcast in a

given happens-before order have the corresponding vector

clock order.

3

~

Since the vector-clock/happens-before correspondence lets us rea-
son in a process-local fashion, instead of having to reason about
events spread across a global execution using happens-before, we
enjoy a sort of “local reasoning for free” without the need for a
more heavyweight proof technique such as separation logic. With
the proof of xStepCD complete, all that remains to prove Theorem 1
is to extrapolate from global executions that take one step to those
that take any number of steps, which is straightforward to do in
Liquid Haskell by induction on the number of steps. Since an empty
global execution observes causal delivery, we can conclude that
any global execution where all processes are running our protocol
observes causal delivery, completing the proof of Theorem 1.
Table 1 summarizes the size of each component of our proof
development in terms of lines of Liquid Haskell code, and Figure 7
gives a visual overview of the important components of the proof:
the xStepCD property and its proof in three stages outlined above;
the stepLCD property and its reliance on lemmas for broadcast,
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‘ Multiple global steps preserve CD for an execution (Theorem 1) ‘

‘ (+ induction)

‘ One global step preserves CD for an execution (xStepCD) ‘

— ¥

Global to local: Local step:
execution observes CD = one local step preserves LCD all processes observe LCD =
all processes observe LCD for all processes in an execution execution observes CD

v v v

Vector clocks reflect :‘ One local step preserves LCD ! Vector clocks preserve 3
happens-before for a process (stepLCD) ' happens-before i
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Lemmas for broadcast, receive, deliver

Local to global:

Figure 7: A high-level overview of the key components of
our proof development. Arrows indicate dependencies, solid
boxes indicate theorems and lemmas, and dashed boxes indi-
cate axioms.

receive, and deliver, and our use of the two directions of the vector-
clock/happens-before correspondence. In all, our proof develop-
ment weighs in at 1692 lines of code for 236 lines of implementation
code.

4.4 Discussion: Liveness

A useful implementation is not only safe, but live, which in our
case would mean that messages will not languish forever in the
delay queue. As mentioned in Section 2.1, for our safety result we
need not make any assumption of reliable message receipt, since
we do not have to worry about the delivery order of messages
that are never received. A proof of liveness, though, would need to
rest on the assumption of a reliable message transport layer, that
is, one in which sent messages are eventually received — albeit
in arbitrary order and with arbitrarily long latency. Otherwise, a
message could be stuck forever in the delay queue if a message
that causally precedes it is lost, because it would never become
deliverable. Proofs of liveness properties are considered “much
harder” [13] than proofs of safety properties. While we do not offer
any mechanized liveness proof, in the following section we argue
informally for the liveness of our implementation under the reliable
message reception assumption.

5 CASE STUDY

In this section we describe a key-value store (KVS) application
implemented in the architectural pattern depicted by Figure 6 and
using our causal broadcast library from Section 3. The KVS is an in-
memory replicated data store consisting of message-passing nodes,
each of which simultaneously serves client requests via HTTP. Sec-
tion 5.1 covers the implementation of the KVS and demonstrates
that it is not difficult to integrate our causal broadcast protocol
with an application to obtain the benefits of causal broadcast. In
particular, causal broadcast can be used to ensure causal consistency
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of replicated data [2, 21].2 In Section 5.2 we describe how we de-
ployed the KVS to a cluster of geo-distributed nodes and evaluated
its performance.

5.1 Design and Implementation

We implemented the KVS using several commonly used Haskell
libraries, such as servant [24] to express HTTP endpoints concisely
as types, stm to express multithreaded access to state, ekg to gather
runtime statistics, and aeson to provide JSON (de)serialization.
Clients may request to PUT a value at a key, DELETE a key-value
pair specified by key, or GET the value corresponding to a specified
key. Servers broadcast by directly POSTing messages to each other.
Nodes receiving PUT or DELETE requests from their local clients call
broadcast to prepare a message to be immediately applied locally
and broadcast to other nodes. When a node makes a POST request,
the endpoint calls receive to inject the message into the node’s
delay queue. Changes to the delay queue wake a background thread
which calls deliver, possibly removing a message from the delay
queue and applying it to the process state. Since messages received
via the POST endpoint are from other nodes, deliver will return
Nothing in cases where the causal dependencies of the message are
not satisfied. Therefore all nodes (and hence all clients of those
nodes) observe the effects of causally-related KvCommands in the
same (causal) order.

5.2 Deployment and Evaluation

We deployed an eight-node KVS causal broadcast cluster, globally
distributed across AWS regions (two nodes in us-west-1 (N. Califor-
nia), one in us-west-2 (Oregon), two in us-east-1 (N. Virginia), one
in ap-northeast-1 (Tokyo), and two in eu-central-1 (Frankfurt)), and
24 client nodes with three clients assigned to each KVS node. All
the nodes were AWS EC2 t3.micro instances with 2 vCPUs at 2.5
GHz and 1 GiB of memory. The 50th-percentile inter-region ping
latencies vary from about 20ms between us-west-1 and us-west-2 to
about 225ms between ap-northeast-1 and eu-central-1. Each of the
eight nodes in the cluster ran an instance of our KVS application
compiled with GHC 8.10.7.

We conducted a simple experiment in which each of the 24
clients made 10,000 curl requests at 20 requests per second to their
assigned KVS replica in the same region (for a total of 240,000 client
requests), uniformly distributed over GET, PUT, and DELETE requests.
For PUT requests, we used randomly generated JSON data for values,
and ensured that there were key collisions, requiring resolution by
causal order, by drawing keys from among the lowercase ASCII
characters.

Two-thirds (160,000) of the 240,000 requests generated by clients
were PUT and DELETE requests. Each resulted in a broadcast from
the client’s assigned KVS replica to the seven other nodes in the
cluster, generating 160,000 X 7 = 1,120,000 unicast messages among
the eight KVS nodes. To alleviate this message amplification and
maintain throughput, we sent multiple unicast messages in each
request; typically, two or three messages were sent at a time. The

8For simplicity, we adopt a “sticky sessions” model, in which a given client will only
ever talk to a given server. In a setting where clients can communicate with more than
one server, clients would need to participate in the propagation of causal metadata
generated by the servers [21], whereas with sticky sessions, causal metadata is only
exchanged among the servers.
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KVS replicas handled all requests and delivered all messages in
the time it took for clients to send them (10 minutes) with a load
average of 0.10, indicating that the cluster was not CPU-bound and
that no messages got stuck indefinitely in delay queues. As a static
verification approach, Liquid Haskell itself imposes no running
time overhead compared to vanilla Haskell, and no Liquid Haskell
annotations were required in the KVS application code.

We recorded the length of the delay queue after each message
delivery and maintained an average. Over all nodes, the average
length of the delay queue after a delivery came to 7.2 delayed
messages. From prior experiments with a different mix of KVS nodes
and clients, we observe that more nodes in the causal broadcast
cluster results in increased likelihood of messages being received
out of causal order, motivating the need for causal broadcast.

6 RELATED WORK

Machine-checked correctness proofs of executable distributed proto-
col implementations. Much work on distributed systems verification
has focused on specifying and verifying properties of models using
tools such as TLA+ [17], rather than of executable implementa-
tions. Here, our focus is on mechanized verification of executable
distributed protocol implementations; lacking space for a compre-
hensive account of the literature, we mention a few highlights.

Verdi [41] is a Coq framework for implementing distributed
systems; verified executable OCaml implementations can be ex-
tracted from Coq. IronFleet [13] uses the Dafny verification lan-
guage, which compiles both to verification conditions checked by
an SMT solver and to executable code. Both Verdi and IronFleet
have been used to verify safety properties (in particular, lineariz-
ability) of distributed consensus protocol implementations (Raft
and Multi-Paxos, respectively) and of strongly-consistent key-value
store implementations, and IronFleet additionally considers live-
ness properties. The ShadowDB project [31] uses a language called
EventML that compiles both to a logical specification and to exe-
cutable code that is automatically guaranteed to satisfy the spec-
ification, and correctness properties of the logical specification
can then be proved using the Nuprl proof assistant. Schiper et al.
[31] used this workflow to verify the correctness of a Paxos-based
atomic broadcast protocol. None of Wilcox et al., Hawblitzel et al., or
Schiper et al. looked at causal broadcast or causal message ordering
in particular.

Lesani et al. [19] present a technique and Coq-based framework
for mechanically verifying the causal consistency of distributed key-
value store (KVS) implementations, with executable OCaml KVSes
extracted from Coq. Lesani et al.’s verification approach effectively
bakes a notion of causal message delivery into an abstract causal
operational semantics that specifies how a causally consistent KVS
should behave. In more recent work, Gondelman et al. [12] use the
Coqg-based Aneris distributed separation logic framework [15] —
itself built on top of the Iris separation logic framework [14] — to
specify and verify the causal consistency of a distributed KVS and
further verify the correctness of a session manager library imple-
mented on top of the KVS. These implementations are written in
AnerisLang, a domain-specific language intended to be used with
the Aneris framework for implementing distributed systems. Both
Lesani et al.’s and Gondelman et al.’s work is specific to the KVS use
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case, whereas our verified causal broadcast implementation factors
out causal message delivery into a separate layer, agnostic to the
content of messages, that can be used as a standalone component
in a variety of applications. Moreover, Liquid Haskell’s SMT au-
tomation simplifies our proof effort by comparison. Unlike Lesani
et al. and Gondelman et al., we did not attempt to verify the causal
consistency of our KVS. However, we hypothesize that building on
an underlying verified causal messaging layer would simplify the
KVS verification task by separating lower-level message delivery
concerns from higher-level application semantics.

Causal broadcast for CRDT convergence. Conflict-free replicated
data types (CRDTSs) [33, 34] are data structures designed for replica-
tion. Their operations must satisfy certain mathematical properties
that can be leveraged to ensure strong convergence [34], meaning
that replicas are guaranteed to have equivalent state if they have
received and applied the same unordered set of updates. While the
simplest CRDTs ask little of the underlying messaging layer, many
CRDTs implemented in the operation-based style rely on causal
delivery to ensure that, for example, a message updating an ele-
ment of a set will not be delivered before the message inserting
that element.

Gomes et al. [11] use the Isabelle/HOL proof assistant [40] to
implement and verify the strong convergence of operation-based
CRDTs under an assumption of causal delivery, modeled by the net-
work axioms in their proof development. Our work is complemen-
tary to Gomes et al.’s: one could deploy their verified-convergent
CRDTs atop our verified causal broadcast protocol to get an “end-
to-end” convergence guarantee on top of a weaker network model
that offers no causal delivery guarantee.

Liu et al. [20] use Liquid Haskell to verify the convergence of
operation-based CRDT implementations. Liu et al.’s CRDTs do not
assume causal delivery, which complicates their implementation
(and verification). In fact, Liu et al.’s verified two-phase map im-
plementation includes a “pending buffer” for updates that arrived
out of order, and a collection of data-structure-specific rules to
determine which updates should be buffered. These mechanisms
resemble the delay queue and the deliverable predicate, but are
specific to application-level data structures and use an ad hoc deliv-
ery policy, rather than operating at the messaging layer and using
the more general principle of causal delivery. We hypothesize that
our library could lessen the need for such ad hoc mechanisms.

The most closely related work to this paper — and the only
other mechanically verified causal broadcast implementation that
we are aware of — was recently carried out by Nieto et al. [25] as
part of a larger proof development that verifies the correctness of
a variety of CRDTs using the aforementioned Aneris separation
logic framework. Nieto et al.’s proof development consists of a
verified stack of components, at the base of which is a verified
causal broadcast library, followed by a library of CRDT components,
and finally CRDT implementations. To verify the causal broadcast
library, Nieto et al. take a similar approach to Gondelman et al.’s
aforementioned verified key-value store, but adapted to the more
general setting of causal broadcast. Their approach thus supports
our hypothesis that it is possible to simplify the verification of
higher-level application properties, such as causal consistency of a
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key-value store or convergence of CRDTs, by decoupling them from
lower-level message delivery properties, such as causal broadcast.

Compared to our work, Nieto et al.’s verification effort is more
broadly scoped: most obviously, they tackle verification of clients of
causal broadcast, in addition to the causal broadcast protocol itself.
Additionally, their implementation is intended to be used on top
of an unreliable transport protocol, UDP, and as such it includes
mechanisms to ensure reliable message delivery (although their ver-
ification, like ours, is limited to safety properties only).” We deploy
and empirically evaluate the performance of our implementation,
whereas Nieto et al. do not. Finally, our approach differs from Ni-
eto et al.’s conceptually in that we frame the problem in terms of
refinement types, whereas Nieto et al. take the separation-logic ap-
proach of defining logical resources and giving specifications about
how those resources are used by their implementations. Our use of
Liquid Haskell lets us take advantage of SMT automation where
possible, using manual proofs only when needed. On the other
hand, Nieto et al.’s use of standard separation logic mechanisms is
a boon for modularity.

7 CONCLUSION

Causal message broadcast is a widely used building block of dis-
tributed applications, motivating the need for practically usable
verified implementations. We use Liquid Haskell to give a novel
encoding of causal message delivery as a refinement type. We then
verify the safety of an executable causal broadcast library imple-
mented in Haskell using a combination of manual theorem proving
and SMT automation. Our verified-safe library can be used in real
distributed systems, as we demonstrate with a case-study imple-
mentation and deployment of a distributed key-value store.
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