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Animals inhabiting subterranean environments tend to evolve a constellation
of ‘regressive’ and ‘constructive’ features. Regressive traits like vision and
pigmentation are reduced or lost in derived organisms. In contrast, constructive
traits like non-visual sensation, are commonly augmented and evolving under
strong selection. Numerous studies have examined the genetic, developmental
and molecular bases for regressive traits, while constructive traits have received
less attention. A key constructive sensory feature in cave animals is the gustatory
system which is likely useful for animals living in complete darkness, given the need
to secure food for survival. Interestingly, despite having been studied for decades
in the Mexican tetra, Astyanax mexicanus, much remains unknown regarding
the biological basis, and adaptive relevance, of taste system evolution in cave
morphs. Here, we present a brief review of taste system research in this system,
conducted over the past ~90 years. We underscore key differences in gustation
between cave and surface fish that reside at the levels of anatomy, perception
and behavior. From this review, we sought to identify key knowledge gaps in our
understanding of constructive taste system evolution. Future studies will provide
further insights to the nature of constructive trait evolution by determining if
constructive and regressive traits evolve through similar or different genetic and
developmental mechanisms, and provide an essential case study for examining
convergence of constructive traits across geographically distinct populations.

gustatory, taste buds, taste receptor cells, chemical sensation, subterranean

Introduction

Fish live in an immersive aquatic environment where their sensory systems are continuously
in contact with a variety of chemical agents (Hara, 2012). Generally, chemoreception facilitates
diverse behaviors in fish including obtaining food, defense from predators, sex identification,
sensing carbon dioxide, and discriminating conspecifics, among others (Hara, 1971; Jonz et al.,
2015). In fish, chemoreception is governed by broad cell and organ types including taste buds,
olfactory epithelia, neuroepithelial cells, and solitary chemosensory cells (Reutter, 1986; Jonz et al.,
2015). Two major chemosensory systems commonly examined in cave animals are taste
(gustation) and smell (olfaction) — which are frequently augmented in the absence of visual input.
Olfaction in fish is detected by neurons directly exposed to the environment, and are responsive
to four chemical classes: amino acids, bile salts and acids, prostaglandins and sex steroids (Hara,
1994). Gustation is detected by taste receptor cells housed within taste buds which are responsive
to nucleotides, salts, sugars, organic acids and amino acids. While the modalities sensed by these
two systems are similar with respect to their detection of chemicals (e.g., amino acids), signals are
transmitted to different regions of the brain and mediate different behavioral outputs (Hara, 1994).
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As a consequence of life in perpetual darkness, olfaction and
gustation have undergone diverse changes in a variety of cavefish
systems. For instance, species of the Chinese cavefish genus,
Sinocyclocheilus, frequently harbor an expanded number and wider
distribution of taste buds, as well as gene duplications of taste
receptor genes (Ma et al., 2019). These features imply a ‘highly
developed sense of taste’ in this lineage (Yang et al, 2016).
Additionally, Sinocyclocheilus are regarded as having more sensitive
olfaction as a function of more anteriorly-directed, and larger,
nostrils (Ma et al., 2019). Interestingly, in Amblyopsid cavefish such
as the Spring Cavefish (Chologaster agassizi), feeding behavior
appears to rely heavily on taste, but less so on olfaction (Hill, 1969).
In other hypogean species, including Phreatichthys andruzzi
(Dezfuli et al., 2009), Astrolebus pholeter (Haspel et al., 2012), and
Poecilia mexicana (Parzefall, 2001) a large number of taste buds are
found distributed, sometimes among mechanosensitive neuromasts,
on the head and jaw.

The taste system in particular, appears to be especially labile —
capable of adapting to different life history modes and feeding
ecologies (Kasumyan, 2019). Here, we focus our attention to the
gustatory system of a well-characterized cave dwelling fish, the
Mexican tetra (Astyanax mexicanus). This species has long served as
a natural model for examining adaptive change in response to extreme
environmental pressures. With the rise of this remarkable animal
system has come substantial interest in the developmental and genetic
regulation of regressive traits. While the underpinnings of regressed
traits have been advanced through integrative studies (Moran et al,,
2023), the biological bases for constructive traits remain less well
understood. Here we focus on an example of constructive evolution
- the augmented taste system in Astyanax.

Studies of the gustatory system in blind Mexican cavefish stretch
nearly as far back as their discovery ~90years ago (Breder and
Rasquin, 1943). We begin with a review of the genetic basis for
peripheral expansion of taste buds in cavefish, both in number and
anatomical distribution (Figure 1). We then summarize recognized
differences in tastant perception, as well as current knowledge of the
developmental basis for taste system expansion. We finish with a
summary of recent studies taking a genome-level approach, examining
bitter taste receptor family members and their putative expansion
within the Astyanax lineage (Shiriagin and Korsching, 2019).
Throughout, we revisit hypotheses seeking to explain the adaptive
significance and drivers of taste system expansion, e.g., as a
“compensatory” mechanism for survival in the absence of vision
(Boudriot and Reutter, 2001). At the close of this review, we share our
assessment of important yet unresolved aspects of taste biology in
Astyanax, and propose future areas of focus.

A key finding from our review is that gustation is enhanced in
cavefish compared to surface fish at multiple levels of analysis (i.e.,
anatomical, morphological, developmental, physiological, behavioral
and genetic; Figure 2A). The characterization of these differences in
the literature, without an overarching context, has rendered it difficult
to understand the adaptive relevance and inter-relationship between
features. In the past several decades, research has mostly capitalized
on a comparative paradigm wherein cavefish represent the derived
morph and surface fish represent the (surrogate) ancestral morph -
and the polarity of evolutionary change is clear (Jeffery, 2001). Notably,
however, early classical studies did not utilize this paradigm, because
cave morphs were regarded as members of their own, separate genus
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Anoptichthys (Breder and Rasquin, 1943), and contrasts were
illustrated by comparison to closely related, or well-characterized,
teleost species (e.g., see Humbach, 1960).

Among the gustatory differences setting cavefish apart from other
fish taxa include genetic differences focused on different features of
relevance to gustation including threshold sensitivity and feeding
behavior, perceptual differences principally based on heightened
sensitivity (reduction in threshold sensitivity), anatomical differences
which are mainly reflected in the numerical and distributional
expansion of extraoral taste buds (see schematic; Figure 2B), and
developmental differences relating to the timing of appearance (and
number of taste buds) in cave and surface morphs. More recently,
genomic differences, has been examined in the context of taste receptor
genes between morphs, which may tie together some of the previously-
listed categorical differences. The following short review of the
historical and contemporary findings examines these categorical
differences between Astyanax morphs.

Genetic analyses of the numerical and
distributional expansion of taste buds

Schemmel (1967) was the first to report a profound expansion in
the distribution of extraoral taste buds in cavefish (Figure 1). Although
this work examined fish from two (of the ~30) natural cavefish
populations, Pachon cavefish harbored substantially more than
Sabinos cavefish (Schemmel, 1967; Rétaux et al., 2016). This work
implied a conceptual link between the numerical expansion of
peripheral taste buds and a heightened sensitivity to tastants. However,
it should be noted that such a causative link between higher numbers
of extraoral taste buds and a lower threshold of sensitivity has not
been experimentally proven. Moreover, as suggested by Rétaux et al.
(2016), these studies also did not discriminate between the probable
contribution of olfaction to the enhanced detection sensitivity of
cave morphs.

A later study, however, sought to connect the expansion of
extraoral taste buds to food-finding behavior. Schemmel (1980)
reported an angular difference in feeding between cave and surface
morphs. Cavefish approach the bottom substrate at a ~55° angle, while
surface fish (in the dark) tended to approach the substrate at a ~80°
angle (Figure 2C). Using a classical genetics approach, this work
concluded that the distributional expansion of taste buds and feeding
angle are most likely unlinked, and mediated by complex (polygenic)
genetic factors (Schemmel, 1980).

Studies by Wilkens (1988) expanded this classical genetic
approach, reporting estimates of the number of genes implicated in
taste bud expansion. This work revealed some diversity in the number
and (qualitative) pattern of extraoral taste bud expansion among
different cavefish populations (Wilkens, 1988). Using the approach of
Lande (1981), the estimated number of genes implicated in extraoral
expansion of taste buds was ~11-12, with the suspicion being that
Pachon cavefish are homozygous for the genes involved in expansion
(Schemmel, 1974; Wilkens 1988). This study, however, may have
overestimated the number of taste buds by scoring solitary
chemosensory cells alongside taste buds, which would likely inflate
the number of estimated genes (see Wilkens et al., 2017). By at least
one estimate, the number of loci involved in numerical expansion of
taste buds may be closer to three, as reported by Protas et al. (2008).
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The distribution of extraoral taste buds in three populations of Mexican tetra. Surface-dwelling morphs of Astyanax mexicanus (top) demonstrate a
modest distribution of taste buds (red dots) that reside close to the oral opening. Pachon cavefish (middle) have the most significant numbers, and
largest distribution, of extraoral taste buds. Cavefish from the Sabinos (bottom) cave locality (see Sierra de El Abra map, left) harbor an intermediate
distribution of extraoral taste buds that clearly exceeds those in surface fish. Map scale=15 km; redrawn from Schemmel (1967).

Wilkens (1988) reported that the largest number of taste buds
among studied cave populations was Pachén, with the number of
taste buds on the ventral jaw exceeding those in the mouth by ~3- to
4-fold. Interestingly, the genetic architecture (i.e., estimate of the
number of ‘genetic factors’) for Sabinos cavefish was comparable to
Pachoén cavefish, despite those fish harboring fewer taste buds
(Wilkens, 1988). Cavefish derived from the more western Micos
caves have taste bud numbers roughly intermediate between Pachon
and Sabinos cavefish. An interesting feature described by Wilkens
was that the larger the area of ventral head covered, the higher the
density of taste buds. At present, the biological basis for this feature
remains unexplained. In sum, Wilkens (1988) concluded that
extraoral taste bud expansion is a cave-associated feature
demonstrating an additively polygenic basis.

More recently, taste buds were scored as part of a larger genetic
analysis examining the role for peripheral taste reception in feeding
behavior. This study revisited postural differences in substrate
approach by surface and cavefish, examining this feature using a
quantitative trait locus (QTL) mapping approach. Kowalko et al.
(2013) formally tested whether postural differences in feeding angle
were associated with craniofacial morphology, body depth, and
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numerical expansion of taste buds. The authors examined correlations
using experimental F, individuals derived from both the Tinaja and
Pachon caves (each crossed to surface fish), as well as examining
co-localization of QTL in association mapping studies (Kowalko
etal., 2013).

This work scored taste buds in members of an F, pedigree, but
did not identify a significant association between feeding posture
and taste bud numbers. Interestingly, one score - ventral taste bud
number - was positively correlated with feeding posture angle, but
this association did not reach statistical significance (p=0.051).
Further, this finding did not conform to the prediction that an
expanded number of taste buds would yield a more acute feeding
angle. Rather, ventral expansion was associated with an increase in
feeding angle (reminiscent of surface fish feeding postures). The
authors concluded that the derived feeding posture in cavefish is
unlikely related, at least directly, to taste bud expansion. Interestingly,
this study revealed QTL positions associated with extraoral taste bud
numbers were different for Pachon and Tinaja cavefish (Kowalko
et al., 2013). Thus, extraoral taste bud expansion has likely evolved
independently in these two cave

populations, through

non-overlapping regions of the genome.
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A timeline of research investigations and features of constructive taste evolution in the Mexican tetra. (A) A summary of research articles addressing
taste system research across roughly seven decades. The topic of each study is indicated by one of eight principal categories determined by the
authors (see Legend, bottom right). (B) A schematic representation of an extraoral taste bud labeled to show the apical taste pore, fusiform taste
receptor cells (blue), and afferent gustatory nerve fibers (red). Note that taste buds can harbor between 50 and 150 cells, and include additional cell
types (e.g., basal cells) not represented in this schematic. (C) A schematic representation of the different feeding postures of surface (top) and cave
(bottom) morphs, which were reported to be ~80° and ~55°, respectively (see Schemmel, 1980).
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The unclear source of perceptual
differences in gustation between
surface and cavefish

One of the first studies of the taste system in Astyanax appeared
in the early 1940s focusing on heightened tastant detection in cave-
(1943)
“chemosensory reactions” by comparing responses of river (i.e.,

dwelling morphs. Breder and Rasquin examined
“surface”) morphs and cave morphs to chemical “repellents.” Their
anatomical observations revealed larger nasal pits in cave morphs, but
they reported no differences in the number or morphology of taste
organs (i.e., “taste buds”) between surface- and cave-dwelling morphs
(presumably referring strictly to those taste buds in the oral cavity, see

above). This study also did not formally discriminate between
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olfaction and taste, since chemical “repellents” included acetic and
citric acid, as well as ammonium carbonate (Breder and Rasquin,
1943). Although these acids are predicted to stimulate sour
perception - one of five canonical taste modalities, it is unclear if
ammonia would excite bitter taste receptors, olfactory receptors, or
both. Interestingly, they noted that acetic acid elicited repulsive
behavior but citric acid did not (Breder and Rasquin, 1943). Although
the avoidance reaction was comparable between morphotypes, cave
morphs were regarded as having a “stronger” reaction, i.e., a reduced
threshold of sensitivity for tastant detection. Individuals rendered
anosmic lost their reaction to these chemicals, indicating (at least a
partial) reliance on olfaction for chemical detection in their assay. In
sum, this work provided early evidence for enhanced sensitivity to
tastants in cavefish. Over a decade later, however, a similar study by
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Humbach (1960) reinforced the notion of enhanced taste sensitivity,
showing that the bitter modality was ~300x more acute, and salty/
acid/sweet were ~2000-4000x more acute, in cavefish compared to
the common minnow (Phoxinus; Humbach, 1960).

Studies exploring taste sensitivity differences in Mexican tetra
were first scored based on behavioral responses to different chemicals
(Breder and Rasquin, 1943). A contemporary QTL mapping study
similarly scored threshold sensitivity to “chemical sense” Accordingly,
amino acids dissolved in system water were detected at a much lower
concentration in Pachon cavefish compared to surface fish (Protas
etal., 2008). A potential mediator of this response could be the savory
taste receptor, TIR1, which binds glutamate and mediates the
canonical umami taste modality (Oike et al., 2007). However, since
several amino acids were examined in this study, the potential
participation of olfaction in this enhanced sensitivity cannot
be ruled out.

Although the biological basis for this lower threshold of sensitivity
has not yet been determined, Schemmel (1967) suggested it may
be explained, at least in part, by a richer supply of neurotransmitters
and/or neuromodulators in the taste receptors themselves. A study by
Bensouilah and Denizot (1991) revealed that Substance P was present
in cavefish taste buds, but not surface fish, suggesting this
neurotransmitter may be involved in the elevated gustatory sensitivity
in cave morphs. A later study by Jeffery (2001) identified expression
of another molecule in taste buds using immunohistochemistry,
Proxl, however this protein was expressed transiently during
development. Interestingly, Prox1 expression persisted in cavefish
taste buds until ~14 dpf, while its expression in mechanosensory
neuromasts continued much longer. At present, the role of Prox1 in
cavefish taste buds is unclear. However, rather than playing a role in
signal transmission, this protein may be involved in early taste bud
specification, as in mouse taste papillae where it is co-expressed
during papillae formation alongside Shh (Nakayama et al., 2008).

Enhanced taste sensitivity may be due to the larger number of
peripheral (extraoral) taste buds in cavefish. Humans with more taste
papillae (i.e., epithelial specializations housing taste buds) and taste
pores have a lower threshold for tastant detection (Miller, 1986;
Segovia et al,, 2002). Although this mechanism explaining heightened
sensitivity is intuitive, it remains to be rigorously tested. Additionally,
it is unclear how the numerical expansion of extraoral taste buds
integrates with other characterized anatomical, molecular and genetic
differences between morphotypes.

Anatomical differences of taste buds
and beyond

Using scanning electron microscopy, Zilles et al. (1983) reported
no obvious anatomical differences in the surface structure of taste
buds between cavefish, surface fish and cave x surface hybrids (Zilles
etal., 1983). Similarly, a study by Boudriot and Reutter (2001) using
transmission electron microscopy found no obvious ultrastructural
differences between taste buds of cave and surface morphs. Notably,
however, this group did report that the afferent innervation of types II
and III taste receptor cells in cavefish have a higher density of axons
in cavefish compared to surface fish (Boudriot and Reutter, 2001). A
later qualitative assessment of afferent nerves associated with taste
buds during development supports the notion that cavefish taste buds
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have more axons compared to surface fish (Varatharasan et al., 2009).
However, in contrast to findings from ultrastructural analyses,
Varatharasan et al. (2009) reported more taste receptor cells in the
taste buds of cavefish compared to surface fish. This analysis was
restricted to taste buds within the oral cavity, so it is unknown if
cavefish extraoral taste buds harbor similar taste receptor cell densities,
or cell types, as those in the cavefish oral cavity.

In addition to differences at the periphery, it is known that in
cavefish the telencephalon (which processes chemoreceptive
modalities of taste and olfaction) is ~40% larger than surface fish
(Peters et al., 1993; Franz-Odendaal and Hall, 2006). The extent to
which this change impacts taste signaling alone, as opposed to both
taste and olfaction, is currently unknown. In sum, although perceptual
differences exist, the causative explanation for these differences
between morphs remains unknown. A lower threshold for detection
of tastants, in principle, could be a function of the increased numbers
of taste buds in cavefish, the extraoral distribution of those taste buds,
or molecular differences in cavefish taste buds that impact
chemoreception. The perceptual differences for tastants between cave
and surface morphs are most likely explained by complex interactions
traversing these levels of molecular signaling, numerical expansion of
taste buds, and higher cortical functions.

The developmental basis for taste
system expansion

For years, a persistent belief in the literature was that constructive
evolution of the taste system occurred as a “compensatory” mechanism
(Schemmel, 1967; Zilles et al.,, 1983) to counteract loss of vision.
Accordingly, in the complete absence of light, there is no visual input.
To survive, animals must still obtain nutrition for which the taste
system is expected to play a central role. Yamamoto et al. (2009)
showed that sonic hedgehog may be the molecule that unites vision loss
with gustatory (and mandibular) expansion across a critical period of
development. Overexpression of sonic hedgehog at specific times
during embryogenesis linked together eye degeneration with
increased numbers of oral taste buds (Yamamoto et al, 2009).
Consistent with this, F; hybrids generated from surface x cavefish
crosses showed an inverse relationship between taste bud numbers
and eye sizes (Yamamoto et al., 2009). Collectively, this work suggested
that elevated sonic signaling in cavefish increases taste bud numbers
at the expense of eye development.

Other studies examining the timing of taste bud appearance have
focused largely on oral taste buds, and their appearance up to about
3weeks post-fertilization. Interestingly, at 5days post-fertilization
(dpf), there are minimal differences in the numbers of taste buds on
the lower jaws of cave and surface morphs. By 22 dpf, however,
cavefish had roughly three times the number of oral taste buds as
surface fish (Varatharasan et al., 2009). Moreover, this numerical
increase in taste buds is not uniform for the upper and lower jaws.
Rather, by 22 dpf they observed the numerical expansion of taste buds
was greater in the upper compared to the lower jaw (Varatharasan
etal,, 2009). These authors concluded the expansion is attributable to
an acceleration in the rate of taste bud development in cavefish. They
further suggested that this timing of expansion is coincident with the
timing of eye degeneration - suggesting a potential link between these
developmental processes. Finally, although the differences were
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modest, these authors found that cavefish harbored more cells per
taste bud at all three stages of development when compared to surface
fish (Varatharasan et al., 2009).

To examine the mechanistic link between eye regression and taste
bud expansion, Dufton et al. (2012) performed experimental lens
ablations (which lead to eye loss) and examined consequences on
different sensory systems. Ablating the lens did not impact the number
of taste buds on the jaw (Dufton et al., 2012). Further, Protas et al.
(2008) found that eye size “was not significantly correlated” with the
number of taste buds (as well as two measures of jaw size). Interestingly,
this study showed that the lengths of the dentary and maxillary bones,
and taste bud numbers, were significantly correlated (Protas et al.,
2008). Thus, although there is evidence of a developmental interaction
between vision loss and taste system expansion, the underlying genetic
bases for these trait differences remain incompletely understood.
Further, because the timing of numerical expansion of extraoral taste
buds is unknown, the extent to which eye loss is associated with
external taste bud expansion is unclear.

Genome-level analyses of gustation in
Astyanax

A recent analysis of the genes encoding taste receptors in cavefish
was performed following the release of the first draft cavefish genome
(Shiriagin and Korsching, 2019). The Astyanax genome revealed a
typical number of TIR gustatory genes (i.e., four) — which matched
the orthologues in zebrafish. Interestingly, however, this study found
that cavefish harbor a dramatic expansion of T2R genes which encode
bitter receptors (Shiriagin and Korsching, 2019). Specifically, this
study reported the presence of 24 T2R genes (three are pseudogenes)
in the Pachén cavefish genome, which contrasts starkly with the
typical numbers of T2R genes found in other teleosts, which is
generally between 3 and 5 (Dong et al., 2009). This gene family
expansion in cavefish was unexpected, as the TR gene repertoire is
believed to be tuned to the nutritional environment. Since cavefish live
amidst nutrient-poor conditions, the relevance (or value) of an
expanded T2R bitter gene repertoire is unclear. Interestingly, a dN/dS
analysis was suggestive of positive selection in two subclades of T2R
bitter genes, however three other subclades did not show evidence of
positive selection (Shiriagin and Korsching, 2019).

The authors estimated the T2R gene family expanded tens to
hundreds of millions of years ago. This timing estimate would imply
the bitter gene repertoire expanded prior to cave colonization (i.e.,
present in surface fish populations as well), thereby representing a
‘pre-adaptive’ trait (Shiriagin and Korsching, 2019). Importantly, at
the time of publication a draft surface fish genome had not yet been
completed. Thus, the ecological relevance of the T2R gene expansion
is unclear, but the authors suggested it may endow cavefish with a
broader bitter sense, which may facilitate avoidance of (bitter-tasting)
toxic compounds in the cave.

A more recent publication utilizing an updated genome draft
identified only 7 T2Rs in the cavefish genome, as opposed to 21
family members (Bhatia et al., 2022). Interestingly, however, a cell-
based analysis showed that receptors encoded by four bitter genes
(T2R1, T2R3, T2R4 and T2R114) are functional and responsive to
compounds in fish food, as well as a bitter compound (quinine;
Bhatia et al., 2022). Future studies examining the surface fish genome
are anticipated to provide an important comparison and insight to
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the timing of the T2R gene family expansion, and the extent to which
it is associated with the cave habitat.

Gaps in knowledge and areas of future
focus

Although the value of an enhanced gustatory system is intuitive,
for an organism adapted to total darkness, it must be stressed that the
precise function of cavefish extraoral taste buds remains unclear and
largely unexplored. Moreover, although expanded taste bud domains
at the periphery is tempting to regard as adaptive, it is unknown if this
re-positioning is perhaps a consequence of other evolutionary
mechanisms (e.g., indirect pleiotropy). To avoid weak inferences
regarding the adaptive significance of extraoral taste buds (see Gould
and Lewontin, 1979) rigorous analyses of taste system function are
necessary. Along these lines, one recent study argued that external
taste buds are used for preliminary assessment of food items during
random swimming or targeted searches for food (Kasumyan and
Marusov, 2015). Extraoral taste buds thus carry an importance for
determining whether to pursue (or avoid) a food item. This work
evaluated the sensitivity of Astyanax cavefish to two different amino
acids, L-glutamine and L-phenylalanine. At present, it is unclear the
extent to which olfaction was implicated in their study since amino
acids can excite olfactory receptors. It is interesting, however, to note
that L-glutamine is preferred by cave morphs and may be specifically
linked to extraoral taste sensitivity (Kasumyan and Marusov, 2015).

To gain a more comprehensive understanding of the constructive
evolution of taste, we identified several areas of opportunity. First,
with respect to taste perception, it will be important to design studies
that discriminate between gustatory and olfactory sensation. Well-
designed olfaction studies have been performed in cavefish (Bibliowicz
etal, 2013), and similar studies are needed for gustation. With respect
to extraoral taste buds, a broader survey of taste bud numbers and
distributions will be useful for determining if this feature is uniformly
associated with cave life, and how these distributions compare across
different populations. Further, presence (and large numbers of)
extraoral taste buds may predictably lower the threshold for tastant
sensitivity — such a relationship has never been experimentally
established. Therefore, studies examining how numerical diversity of
taste buds on the external body facilitate food-finding in cavefish will
be essential. Relatedly, a remaining unsolved mystery is why cavefish
harbor a different feeding posture, if this derived posture does not
relate to the expanded spatial domain of extraoral taste buds?

One potential solution to this mystery is an explicit analysis of the
genetic architecture (and genetic bases) for the numerical expansion of
taste buds. Classic studies revealed a genetic component for these features
(Schemmel, 1980; Wilkens, 1988), therefore contemporary genetics
techniques may hold promise for identifying the gene(s) responsible for
divergent extraoral taste bud phenotypes. How do these genetic changes
differ between different populations, such as Pachon and Tinaja?

It is unclear how the expansion of extraoral taste buds at the
periphery is involved in the lower threshold for sensitivity to tastants.
More broadly, it is unclear how molecular differences in cavefish taste
buds (e.g., Prox1, Substance P), neuroanatomical differences (e.g.,
higher axon density at the TBs, larger telencephalon) are potentially
implicated in the elevated sensitivity to tastants.

From a developmental standpoint, a major unanswered question
is what developmental process mediates the expanded numbers of
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taste buds in cavefish. Some work suggests a heterochronic shift in the
development of oral taste buds (Varatharasan et al., 2009), but what
explains the dramatically increased number and distribution of
extraoral taste buds? What is the life history timing of this expansion?
Is the expansion of taste bud numbers linked to vision loss, as
suggested in the literature (Zilles et al., 1983)? If so, how does this
process relate to extraoral taste bud expansion, which may occur over
a much more protracted period of life history?

Finally, from a genomic perspective, what is the bitter taste
receptor gene family (T2R genes) representation in the recently
updated surface fish genome? The absence of this information
necessarily limits our ability to infer the evolutionary mechanism(s)
mediating this genomic feature. Moreover, taste receptor structure and
expression are purportedly tuned to the nutritional environment.
Thus, are there numerical and/or structural differences are in taste
receptors of cave and surface fish, given that they occupy such different
(nutritional) environments? Identifying such differences may be key
to discerning how the taste system evolves in natural environments
differing markedly in their nutrient composition.

Conclusion

Gustatory expansion is a commonly regarded example of
constructive evolution in Astyanax cavefish. Owing to a robust
comparative paradigm, several differences have been identified
between cave and surface morphs over the past ~90years (Figure 2A).
The question of how these differences inter-relate to yield adaptive
improvements to taste sensation remain unclear. Certain assumptions,
e.g., relating external taste bud expansion to feeding posture
differences, are not supported by contemporary results. Future work
examining diverse knowledge gaps hold promise for understanding
how the differences in taste identified between cave and surface fish
ultimately confer an adaptive advantage in the subterranean
environment. This work will provide insights to both the evolution of
gustation in this fascinating system, but also provide key insights to
the broader nature of constructive trait evolution.
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