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ABSTRACT
We present a highly efficient method for the extraction of optical properties of very large molecules via the Bethe–Salpeter equation. The
crutch of this approach is the calculation of the action of the effective Coulombic interaction,W, through a stochastic time-dependent Hartree
propagation, which uses only ten stochastic orbitals rather than propagating the full sea of occupied states. This leads to a scaling that is at
most cubic in system size with trivial parallelization of the calculation. We apply this new method to calculate the spectra and electronic
density of the dominant excitons of a carbon-nanohoop bound fullerene system with 520 electrons using less than 4000 core hours.
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I. INTRODUCTION

Accurate calculation of optical spectra for large systems
is essential for future novel optical and electronic devices, in
fields ranging from photovoltaics,1 photocatalysis,2 and organic
semiconductors3,4 to even the mechanisms of UV damage on DNA.5
The ubiquitous method of the field is time-dependent density func-
tional theory (TD-DFT), but, unfortunately, this method lacks the
accuracy needed for predictive power in most electronically com-
plex systems. The Bethe–Salpeter Equation (BSE) formalism is an
increasingly popular alternative for calculating electronic spectra.6
The success of the BSE is due to the proper inclusion of an effective
long range exchange kernel, which solves the failures of TD-DFT
in accurately describing charge transfer excitations and avoiding
crossings.7,8

Current conventional methods for solving the BSE are substan-
tially more computationally demanding than most implementations
of TD-DFT due to the explicit calculation of a large number of
occupied and virtual electronic states and the evaluation of a large
number of screened exchange integrals between valence and con-
duction states, yielding a typical scaling of O(n6o), for no valence
orbitals.9–11 TD-DFT with local exchange functionals has a naive
scaling of O(n4o). However, progress in the field has reduced the
scaling with techniques, which only requires the occupied orbitals
that implicitly interact with all conduction states, what we later
term a “mixed representation.”12–22 While very important for TD-
DFT, the speedup gained from the use of an approximate iterative

method vs direct diagonalization is only worthwhile in BSE if
solving for the absorption is the algorithmic bottleneck, as is also
the case for efficient BSE algorithms that approximate the dielectric
response.23

To go beyond TD-DFT to BSE requires constructing the effec-
tive Coulombic interaction, W, the most computationally expen-
sive step. To overcome this issue, we adopt our previous stable
iterative methods14,15 and pull from our previous studies in both
TD-DFT/BSE14,15,24–26 and stochastic GW27–31 to present an effi-
cient stochastic generation of W within an iterative BSE technique.
Our combined approach uses stochastic time-dependent propaga-
tion to obtain the action of W on each required term in linear
scaling.27 In our work, the scaling is achieved with equispaced grids
and delocalized functions, which make it easy to achieve full spatial
convergence when smooth pseudopotentials are used. Overall, this
results in an efficient method with at most cubic scaling with respect
to system size. (We note that when, instead, localized basis sets are
used for W and for the solution of the BSE equation, a similarly
cubic scaling behavior can be achieved when balancing the require-
ments of basis-set convergence and localization.21,22) The method
and its application to a large organic semiconductor are detailed
below.

II. METHOD
Everymethod for solving the BSE has two numerical parts: con-

struction of the “kernels,” i.e., the action of the effective interaction
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W on a given transition, and then diagonalizing or iterating the
resulting Bethe–Salpeter Hamiltonian-like operator for the excitons.
The full algorithm is covered here for completeness.

The starting point is a closed shell molecular system with 2Nocc
electrons. We are interested in excitons composed of a mixture
of no occupied (valence) orbitals, ϕi,ϕj, . . ., times nc conduction
(virtual) ones written as ϕa,ϕb, . . .. Typically, no ≪ Nocc states are
considered. The orbitals are eigenstates of a zero-order Hamil-
tonian H0, with occupied-state eigenvalues εi, εj, . . . and virtual-
state eigenvalues εa, εb, . . .. Formally, the zero-order Hamiltonian
eigenvalues should come from a very accurate method, specifically
self-consistent GW. In addition, we will use the well-established
Tamm–Dancoff approximation.

For singlet excitations, the excitation energies of the system are
the eigenvalues of the (nonc × nonc) Tamm–Dancoff matrix A that
couples excitons, i.e., occupied-virtual pairs,

A(i, a; j, b) = (εGWa − εGWj )δa,bδi,j + 2(ia∣ jb) − (ϕaϕb∣W∣ϕiϕj),
(1)

with exchange elements,

(ia∣ jb) = ∫ ϕi(r)ϕa(r)∣r − r′∣−1ϕj(r′)ϕb(r
′
)drdr′,

whileW ≡W(ω = 0) refers to the static effective Columbic interac-
tion approximation, and its matrix elements are

(ϕaϕb∣W∣ϕiϕj) ≡ ∫ ϕa(r)ϕb(r)W(r, r
′
)ϕi(r′)ϕj(r′)drdr′.

The superscript in εGW denotes, as mentioned, that high
quality GW single particle energies should be used. In practice, for
systems that are not too small, starting at medium sized systems with
a few dozen electrons, it is sufficient to use the DFT eigenstates plus
a GW derived correction, called a scissors approximation. We cal-
culate the HOMO and LUMO GW energies by the linear-scaling
stochastic-GW (sGW) method27–31 and use the scissors approxima-
tion: εGWi ≃ εi + δo and εGWa ≃ εa + δc, where δo ≡ εGWHOMO − εHOMO and
analogously for δc. Furthermore, for higher accuracy, we use the
self-consistent ΔGW0 approach where the sGWHOMO and LUMO
corrections are a posteriori shifted self-consistently; for large sys-
tems, this approach was found to be an excellent approximation to
eigenvalue-only self-consistent GW0 and to the experiment.30

A. Mixed representation iterative solution
The simplest derivation of an iterativemethod for the BSE spec-

trum starts with the linear-response time-dependent Hartree–Fock
(TD-HF) equation.15,32,33 For an initially real occupied state per-
turbed along the x axis, ψj(r, t = 0) = e

−iαxϕj, one performs a linear
response expansion in α, ψj(r, t) ≃ e−iεjt(ϕj(r) − iα fj(r, t)), where
fj(r, t = 0) = xϕj(r). The formally non-linear TD-HF equation for
ψj then converts, for small α, to a linear equation for fj. In the
Tamm–Dancoff approximation (where fj is not coupled to f ∗j ), this
evolution equation reads

i∣ ḟ j⟩ = A∣ fj⟩, (2)

where

A ≡ QĀ, (3)

and

Ā∣ fj⟩ = (H0 + Δ − εj)∣ fj⟩ + (δv − δX)∣ϕj⟩. (4)

Here, we introduced several terms. Δ ≡ δc − δo is the ΔGW0
scissors shift. The exciton Coulomb potential is δv(r, t)
= ∫ ∣r − r

′
∣
−1δn(r′, t)dr′, where the exciton density is δn(r, t)

= 2∑i ϕi(r) fi(r, t) and the sum extends over the occupied states.
The exciton exchange δX is defined analogously, again under the
Tamm–Dancoff approximation,

⟨r∣δX(t)∣ϕj⟩ =∑
i
fi(r, t)∫ ∣r − r

′
∣
−1ϕi(r′)ϕj(r′)dr′. (5)

Finally, Q is a projection operator that ensures that the excited
functions fj have no overlap with the occupied space, i.e., Q = I − P,
with P ≡ ∑s≤Nocc

∣ϕs⟩⟨ϕs∣.
The BSE equation results then when the static effective interac-

tionW replaces the Coulombic interaction in the exchange operator,
yielding eventually (hiding the time-dependence of f )

⟨r∣Ā∣ fj⟩ ≡ (H0 + Δ − εj) fj(r) + δv(r)ϕj(r) −∑
i
fi(r)Wij(r), (6)

where the action of W on the occupied–occupied term is W ij(r)
≡ ∫ W(r, r′; ω = 0)ϕi(r

′
)ϕj(r

′
)dr′.

The linear form of the time-dependent equation readily implies
that the frequency-dependent spectrum can be obtained from the
dipole–dipole correlation function, where up to a constant,

σ(ω) = ω⟨ f 0∣δ(A − ω)∣ f 0⟩ ≡ ω⟨ f 0∣ f (ω)⟩, (7)

where f 0j (r) = ⟨r∣Q∣ fj(t = 0)⟩ = ⟨r∣Qx∣ϕj⟩, and the (smoothed) delta
function is readily expressed using a Chebyshev expansion in A,

∣ f (ω)⟩ ≡ δ(A − ω)∣ f 0⟩ ≃∑
n
gn(ω)∣ f n⟩, (8)

where ∣ f n⟩ are obtained by iteratively applying a scaled A, starting
from ∣ f 0⟩, while gn(ω) are numerical coefficients.34–36 The spec-
trum evaluation, therefore, reduces to calculation of the residues,
Rn ≡ ⟨ f 0∣ f n⟩. Numerically, one just requires the application of A on
an arbitrary exciton vector fj(r), i.e., f → Af .

While here we use Eq. (6), based on the mixed hole-grid repre-
sentation fj(r), we note that in many cases one would want to use an
explicit electron–hole basis. For example, for systems such as large
quantum dots, where Nocc is very large and we are interested in a
smaller number of conduction states relative to the total number of
occupied electron states, nc < Nocc, it is numerically better to replace
Q by a projection to the nc conduction states, Q = ∑c≤nc ∣ϕc⟩⟨ϕc∣.
Then, the fundamental iterated object is the electron–hole basis coef-
ficients, fia ≡ ⟨ϕa∣ fi⟩. In the electron–hole basis, the initial state is
simply the x-dipoles elements, f 0ia ≡ fia(t = 0) = ⟨ϕa∣x∣ϕi⟩. Further-
more, it is easy to see that the iterative application of A on f , as
given in Eqs. (3) and (6), becomes in the electron–hole basis: (Af )ia
= ∑j,b A(i, a; j, b) fjb and A is here exactly the BSE matrix from
Eq. (1). Practically, the action by A would be done then as

(Af )ia = (εa − εi + Δ) fia + ⟨ϕa∣δv − δX∣ϕj⟩, (9)

J. Chem. Phys. 157, 031104 (2022); doi: 10.1063/5.0100213 157, 031104-2

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0100213/16545767/031104_1_online.pdf

https://scitation.org/journal/jcp


The Journal
of Chemical Physics COMMUNICATION scitation.org/journal/jcp

i.e., given the set of coefficients fjb, one would calculate the mixed
representation vectors fj(r), from which δv and δX follow, and then
dot product per the equation above.

Note that using the electron–hole basis coefficients reduces
the spectral range of A, which will be controlled now by the high-
est conduction state included, instead of the (much larger) highest
eigenvalue of H0, thereby reducing the number of required Cheby-
shev terms. In addition, the use of the electron–hole basis within
this method allows us to use a specific state-selected GW shift.
Thus, with such a basis, the Hamiltonian is not used explicitly so, if
desired εa and εi could come directly from a GW calculation rather
than a global scissors shift, as shown in Eq. (1). Similarly, the same
formalism carries over trivially to localized orthogonal basis sets,
where εa and εi would be replaced by the Hamiltonian matrices
within the electron and hole spaces, respectively. The expressions
for non-orthogonal basis sets can be similarly derived.

B. Stochastic evaluation of the action of W
The main numerical task in our formalism is the prepara-

tion of all no(no + 1)/2 functions W ij(r). W is made from a static
Coulomb part and a polarization component, W = v + vχv ≡ v
+Wpol (where v(r, r′) = ∣r − r′∣−1), so Wij(r) = qij +Wpol

ij , where
qij ≡ ∫ ∣r − r

′
∣
−1ϕi(r

′
)ϕj(r

′
)dr′.

As is well-known, the action of Wpol can be obtained by
time-dependent Hartree (TD-H) calculations.37–39 Specifically, for
each pair of occupied functions 1 ≤ i, j ≤ no, one calculates the
source “potential” qij(r) due to the ϕiϕj density-like source term.
Then, the full set of all occupied states is perturbed, ψs(r, t = 0)
= e−iαqij(r)ϕs(r), s = 1, . . . , Nocc, where α ≈ 10−6 − 10−4 is a small
perturbation strength, just as in the linear-response TD-HF deriva-
tion above. Note that, to avoid a plethora of indices, we do not
denote the dependence of ψs on i, j.

The perturbed states are then numerically propagated with a
TD-H Hamiltonian,

iψ̇s(r, t) = (H0 + uij(r, t))ψs(r, t), (10)

where uij(r, t) is the potential due to the time-dependent density
perturbation,

uij(r, t) ≡ ∫ ∣r − r
′
∣
−1
(nα(r′, t) − nα=0(r′, t = 0))dr′, (11)

where nα(r, t) = 2∑s ∣ψs(r, t)∣
2 is the density due to the propagated

perturbed orbitals. This potential, used to propagate the time-
dependent Hamiltonian, is then scaled to give the result of acting
with the time-dependent effective potential,W(t), i.e.,

⟨r∣Wpol
(t)∣ϕiϕj⟩ = α−1uij(r, t). (12)

Finally, the desired action of the static polarization is obtained by
damped integration of the action of the time-dependent polariza-
tion,Wpol

(ω = 0) = ∫
∞
0 e−γ

2t2/2Wpol
(t)dt, i.e.,

Wpol
ij (r) = ⟨r∣W

pol
(ω = 0)∣ϕiϕj⟩ = α−1∫

∞

0
e−γ

2t2/2uij(r, t)dt, (13)

where we introduced a Gaussian damping function where the width
γ is a numerical convergence parameter.

The one caveat in this overall approach is that the propa-
gation of the full set of occupied orbitals is very expensive for
large systems. The need to propagate a huge number of valence
and conduction orbitals is what makes the generation of W the
most expensive step in a BSE calculation, even with highly opti-
mized codes such as in Refs. 9 and 10. We, therefore, use here our
stochastic-TD-H approach26,27,40 that leads to a stochastic W, out-
lined below. (Note that this is exactly the same approach we use in
our stochastic GW method,27 with a small improvement detailed
later.) Briefly, in stochastic-TD-H (or stochastic-TD-DFT in the
general case), we replace the full set of occupied orbitals by a few
random–sign combinations of all occupied states,

ηℓ(r) = L−
1
2 ∑
s≤Nocc

(±1)ϕs(r), (14)

where ℓ = 1, . . . ,L, and for large systems, a very small number of
states is sufficient, L≪ Nocc. The L stochastic occupied states are
then treated in the TD-H procedure as if they were the full set
of Nocc molecular orbitals, i.e., they are perturbed (ηℓ(r, t = 0+)
= e−iαqij(r)ηℓ(r)) and propagated withH0 + uij(r, t), where the time-
dependent density used in constructing u is now obtained from
n(r, t) = 2∑ℓ≤L ∣ηℓ(r, t)∣

2. Note that two sets need to be propagated,
the perturbed ∣ηαℓ(t)⟩ and unperturbed ∣ηα=0(t)⟩ stochastic orbitals.

At long times, this simple stochastic TD-H approach would
eventually become unstable due to “contamination” by occupied
states. This means that the excited component, ηαℓ(r, t) − η

α=0
ℓ (r, t),

has in it occupied-states’ amplitudes. For regular TD-H propagation
of all states, this is not a problem since, in the overall density, the
“contamination” of a propagated state ψj(r, t) by an occupied ϕi(r)
is exactly canceled by the “contamination” of the opposite pair.19
However, in our stochastic occupied orbitals, there is no such can-
cellation. Luckily, the instability gets tamed as the system size gets
bigger, but we did find that it affects the results here if untreated for
medium system sizes.

To prevent the instability, we simply “clean” the stochastic
orbitals periodically, so after everyM’th time step, we write

∣ηαℓ(t)⟩→ ∣η
α=0
ℓ (t)⟩ +Q∣η

α
ℓ(t) − η

α=0
ℓ (t)⟩, (15)

with t = 0,Mdt, 2Mdt, . . .. This does not increase the scaling of the
method since the required cleaning frequency decreases (i.e., a larger
M is possible) with increasing system size. Also note that, after each
cleaning step, we renormalize each ∣ηαℓ(t)⟩ orbital so it keeps its
initial norm. In our calculations detailed below, we found M = 10
suffices for a total time of t = 300.

Finally, a well-known technical aspect is that the finite grid box
leads to a fixed vacuum potential at the edge of the box that affects
the zero-point energy of the systemwhen calculatingW, thus requir-
ing a constant shift to the system. Formally, this term relates to the
zero-momentum limit k→ 0 of the interaction, so it is labeled as
W(k→ 0). Existing codes address differently the numerical quadra-
ture issues associated with accurately converging the calculation of
this zero-point, either accounting for the average potential with a
constant shift (done in Refs. 9, 42, and 43) or Monte-Carlo sampling
the zero-point shift (as done in Ref. 10).

We use a variation of the constant-shift procedures (Refs. 42
and 43) to find the required shift. We repeat the iterative calcula-
tion for a medium size (i.e., a lesser number of valence states, no,
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than the one eventually used) at several different box sizes, and
for each run, find the average Kohn–Sham potential on the box
boundary, vbndry. Then, we approximateW(k→ 0) = ϵ−1eff v

bndry, and
the parameter ϵ−1eff , playing the role of an inverse dielectric con-
stant, is fit so that the spectra from the different box-sizes runs
overlap.

Summarizing the resulting algorithm: we use stochastic TD-H
to prepare W ij(r) for no(no + 1)/2 occupied-state pairs. Separately
we use sGW to calculate the self-consistent GW scissors shift Δ and
subtract from it the W(k→ 0) term. Then, for each polarization,
we start with the dipole exciton state. The Tamm–Dancoff opera-
tor [Eq. (6)] is successively applied and the Chebyshev residues Rn
are used to calculate the absorption frequencies. As usual, if one
wants to characterize the different peaks, then the Chebyshev expan-
sion of the frequency-resolved exciton state [Eq. (8)] can be used
(potentially with filter-diagonalization44,45 for resolving different
sub-peaks).

The two parts of the method, preparingW ij and applying the A
operator, both scale as O(n2ong) for ng grid points, more gentle than
most current methods. Formally, this is cubic scaling with system
size but, in practice, the scaling is better since no often rises only
gently with Nocc. In addition, the number of grid points would be
reduced in future studies as we have shown that very sparse grids
suffice when using orthogonal projected augmented waves (OPAW)
instead of pseudo-potentials.46

III. RESULTS
We demonstrate the algorithm on a characteristic large organic

semiconducting system, a carbon nanohoop–fullerene complex. In
the past decade, cycloparaphenylenes (CPPs), also known as carbon
nanohoops, have emerged as highly structurally tunable emitters,
with rich size-dependent opto-electronic properties and host–guest
chemistry.47 While substantial DFT modeling has been completed
on CPP + fullerene complexes,41,48–50 extraction of optical prop-
erties at this level of theory is difficult due to the characteristic
charge transfer states in CPPs. Furthermore, it has already been
established that the BSE formalism is very accurate in predicting the
properties of other fullerene–polymer complexes.51 Here, we present
detailed results for the smallest such CPP + fullerene “pea-pod,”52,53

[10]-CPP + C60 (Fig. 1).
To simulate [10]-CPP + C60, we use a generous box of

(Nx,Ny,Nz) = (100, 100, 84) with a grid spacing of 0.5 bohr using
norm-conserving pseudo-potentials (NCPPs) with stochastic DFT
at the LDA level.26,54,55 The effective inverse dielectric constant
was found to be 0.30, which gives, at this grid size, a shift of
−W(k→ 0) = −0.29 eV.

The DFT gap is 1.02 eV. This gap is corrected with stochastic
GW by an amount of 1.24 eV, and after applying the self-consistent
ΔGW0, this gap correction rises to 1.33 eV (i.e., a fundamental
ΔGW0 gap of 2.35 eV). Combined with −W(k→ 0), the overall
scissors shift used is Δ = 1.04 eV.

The calculations of the action ofW [Eqs. (10)–(13)] were done
with a broadening of γ = 0.1 Hartree. A time-step dt = 0.1 a.u. was
used for a split-operator propagation, and the cleaning was done
every M = 10 steps. The runs were done for n0 = 100 valence states,
requiring n0(n0 + 1)/2 = 5005 actions of W. For each realization of
the action ofW, only L = 10 stochastic time-dependent orbitals were

FIG. 1. (a) Structure of [10]-CPP + C60, where atomic coordinate information
can be found in Ref. 41. (b) The HOMO wavefunction from the stochastic DFT
calculation. The charge transfer transition from orbital (b) to (c) is the dominant
contribution to the lowest energy exciton. The π → π∗ transition shown in orbitals
(d) to (e) comprises the second largest contribution to the lowest energy exciton.

used. We verified that the error due to the finite L was small, observ-
ing a shift <0.02 eV shift in the most sensitive lowest exciton upon
doubling the number of stochastic orbitals.

The BSE iterative Chebyshev procedure was then done using
the no = 100 valence states. The Chebyshev expansion of δ(A − ω) is

FIG. 2. Absorption spectrum of [10]-CPP+C60 calculated from an iterative solution
of the BSE with a stochastic W .
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FIG. 3. (Top) Exciton densities for the four lowest prominent exciton peaks, as labeled in Fig. 2. (Bottom) Matrix of the corresponding (valence, conduction) transition ∣ fia(ω)∣
to the exciton density above for each of these frequencies. A small window (no, nc) = (30, 30) is shown for the lowest exciton, which includes prominent contributions
from only a few electron–hole states, while a (100, 100) window is used to show the higher energy excitons. The axes are labeled by the corresponding valence/conduction
energies. The square pixels are for a given valence to conduction transition, and due to degeneracy and rising density of states, the energy labels are not linear. Also, note
that while the much weaker intensity higher no and/or nc transitions are not visible in this colored matrix, they are important for the quantitative spectrum.

evaluated with a Gaussian broadening of 0.08 eV; this does not affect
the spectrum significantly as it is naturally broadened due to a large
number of excitons. The runs took a total of 4000 core hours, i.e., 40
wall hours on a 100-core AMDMilan cluster.

In Fig. 2, we show the calculated absorption spectrum, both
total and separated to in-plane (x and y), and perpendicular (z)
polarizations. While there are no gas phase spectra of [10]-CPP
+ C60 due to the fullerene slipping out of its “pea-pod,” for the
lowest exciton energy, we get a reasonable agreement with just [10]-
CPP,56,57 and a stabilizing [10]-CPP + C60-[2]-Rotaxane complex.58
For just 10-[CPP] in the gas phase, the lowest strong transition sits
0.4 eV higher than that shown in Fig. 2. Qualitatively, with the
addition of the fullerene in the middle in our simulations, the over-
all dielectric constant would increase, thereby lowering the energy
of the first exciton state. This shift is consistent with the shift to
lower energies seen in the stabilized [10]-CPP + C60-[2]-Rotaxane
complex in solution.

Figure 3 shows the exciton density of four prominent excitons
as labeled in Fig. 2, and, for the sake of analysis, we also extract
the exciton density in the electron–hole state basis. Specifically, we
calculate ∣ fj(ω)⟩ at the four exciton peak frequencies and then cal-
culate the overlap onto a set of unoccupied wave functions, giving
us fia for as many a as we desire. For the lowest peak, most of
the exciton density is concentrated at near-gap i, a states. However,
for the largest spectrum peak at 6.83 eV, labeled (iv) in Fig. 2, one
ought to go beyond the figure and use (100, 250) states to capture
the same amount of density, a basis size that is very substantial.

This demonstrates the strengths of the stochastic resolution of the
action ofW in our present approach, as the full unoccupied space is
sampled rather than just a subset of conduction states.

IV. FORWARD PERSPECTIVE
Our results show that even larger systems are feasible. This is

evident by the fact that the runs were not optimized. For example,
while we used n0 = 100, a smaller number n0 = 70 would have suf-
ficed, reducing the cost by a factor of two. Similarly, the box size was
very large, and a grid with almost half the points (or even less with
OPAW46) would have sufficed.With optimized parameters, one can,
therefore, easily reach systems with 1000–2000 electrons.

An interesting feature of the method is that, for larger sys-
tems, it becomes less and less sensitive to stochastic errors. Those
errors appear primarily in the sGW calculation of the scissors shift,
but this calculation scales sub-linearly with system size. Already
here the sGW calculation took less than 20% of the total calcula-
tion and had an error of 0.05 eV, so for larger systems, an even
higher accuracy would be obtained with a small fraction of the total
cost.

An interesting question is how to go to huge systems, with
many thousands of electrons. For this, we note that, while this imple-
mentation of the BSE scales formally cubically, it holds promise to
give eventually quadratic scaling. To achieve this, one would need to
implement localized occupied basis sets (see Refs. 21, 22, 59, and 60)
for reducing the number of i, j pairs for which W ij(r) needs to be
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calculated, and perhaps even stochastically sample these ϕi(r)ϕj(r)
pairs. These previous methods with optimal basis sets will serve as
direct guides for further reducing the scaling of this method.

Furthermore, as briefly mentioned above, we hope to expand
beyond the Tamm–Dancoff approximations in future works, in
which the antiresonant perturbation f −i (r, t = 0) = − fi(r, t = 0)
must also be propagated, and interact with each other viaW.14,15 In
addition, dynamical corrections to W could be implemented at the
plasmon-pole level of theory37 or beyond at select frequencies.61
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