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ABSTRACT: It is well-known that on-shell maximally helicity-violating gluon scattering
amplitudes in planar maximally supersymmetric Yang-Mills theory are dual to a bosonic
Wilson loop on a null-polygonal contour. The light-like nature of the intervals is a reflection
of the mass-shell condition for massless gluons involved in scattering. Presently, we introduce
a Wilson loop prototype on a piece-wise curvilinear contour that can be interpreted in the
T-dual language to correspond to nonvanishing gluon off-shellness. We analyze it first for
four sites at one loop and demonstrate that it coincides with the four-gluon amplitude on the
Coulomb branch. Encouraged by this fact, we move on to the two-loop order. To simplify
our considerations, we only focus on the Sudakov asymptotics of the Wilson loop, when
the off-shellness goes to zero. The latter serves as a regulator of short-distance divergences
around the perimeter of the loop, i.e., divergences when gluons are integrated over a small
vicinity of the Wilson loop cusps. It does not however regulate conventional ultraviolet
divergences of interior closed loops. This unavoidably introduces a renormalization scale
dependence and thus scheme dependence into the problem. With a choice of the scale
setting and a finite renormalization, we observe exponentiation of the double logarithmic
scaling of the Wilson loop with the accompanying exponent being given by the so-called
hexagon anomalous dimension, which recently made its debut in the origin limit of six-leg
gluon amplitudes. This is contrary to the expectation for the octagon anomalous dimension
to rather emerge from our analysis suggesting that the current object encodes physics
different from the Coulomb branch scattering amplitudes.
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1 Introduction

On-shell scattering amplitudes occupy the central stage of perturbative QCD studies for
almost half a century [1] since its inception. Their infrared behavior is driven by copious
gluon emissions and cause their divergence. The latter can be tamed by introducing a small
momentum cutoff. Of course, physical amplitudes are free from this artificial scale since the
gluons hadronize into jets of particles observed in detectors replacing the cutoff with a small
physical mass parameter via the well-known Bloch-Nordsieck and Kinoshita-Lee-Nauenberg
theorems. The origin of the aforementioned cutoff, can either come from an artificial gluon
mass introduced in internal gluon propagators or from taking external gluons off their mass
shell and giving them a small virtuality. We will designate both with the same symbol m



for the qualitative discussion that follows. The choice for one or another is made depending
on circumstances where corresponding amplitudes emerge. Both regularizations appear in
various factorization schemes between ultraviolet and infrared physics as applied to strongly
interacting physical processes, the so-called collinear and transverse momentum schemes
are the two well-known examples of the use of on- and off-shell amplitudes, respectively.

The soft gluon radiation is encoded in the so-called Sudakov form factor of a simpler
problem of a two-particle decay of an off-shell gauge boson with momentum (). In Abelian
gauge theories, the problem of its infrared behavior was solved exactly a long time ago by
resumming double logarithmic dependence of the amplitude at each order of perturbation
series. For on-shell decay products, it is! [2]
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F ~ exp (— logQ(QQ/m2)> . (1.1)
In their off-shell regime, the exponent was found to be twice larger [3]. Further studies
unravelled the source for this ‘discrepancy’. It was attributed to the non-vanishing contri-
bution from ultra-soft integration in addition to the soft regime, present in both cases, as
explained in refs. [4-6].

The above Sudakov form factors are intrinsic building blocks of on-shell non-Abelian
scattering amplitudes. Perturbative structure of the latter in QCD is a topic of practical
phenomenological importance with application to collider physics. The coupling dependence
of the infrared asymptotics in this case does not stop at one loop and is driven by the
so-called cusp anomalous dimensions [7, 8],

2
86? - %Pcusp(gYM)7 (1.2)
depending on the Yang-Mills (YM) coupling gyy. Recent advances in unitarity-based
techniques allowed one to reach very high accuracy for parton-level amplitudes [1].

The problem of analytical studies of multigluon amplitudes simplify in QCD’s super-
symmetric cousins, on the one hand, and provide valuable lessons for real physics, one the
other. The past fifteen years had witnessed an explosion of activity of their exploration
within the framework of a distant cousin of QCD, the planar maximally supersymmetric
YM theory. This is where the gauge/string correspondence [9] endows one with the power
to probe all values of 't Hooft coupling g? = g2,,N./(47)? ranging from weak to strong. A
major breakthrough that led to this development was an observation of the duality between
maximally helicity violating on-shell gluon scattering amplitudes A?\rflﬂhe“ and bosonic
Wilson loops in the fundamental representation of SU(N,) gauge group, [10-12]

1
ASp—shell N tr Pexp ( » dx - A) , (1.3)

on a N-polygonal contour Cy = [z1,x2] U [x2, 23] U - - U [z, z1] with each segment being
given by the light-like gluon momentum p; to echo the gluon mass-shell condition p? = 0.

'We cite the papers on the Sudakov form factor in anti-chronological order since Sudakov studied, in
fact, the off-shell regime.



The T-duality relation p; = x; — xj41 = ;41 automatically solves the energy-momentum
conservation condition Z;V pj = 0. This duality was confirmed by two-loop analyses
for N = 4,5 point Wilson loops [13, 14] by confronting these predictions with available
results for gluon scattering amplitudes [15, 16]. Its most stringent test comes though from
the comparison of the two-loop result for N = 6 Wilson loop [17-22] with the six-gluon
MHYV scattering amplitude computed to the same order in 't Hooft coupling of the planar
theory [23, 24].

Further, the Wilson loop reformulation of gluon amplitudes paved a way for the use of
heavy machinery of integrable models to solve dynamics of the two-dimensional world-sheet
stretched on its contour [25]. It relies on a dual description of amplitudes in terms of
excitations propagating on a color flux-tube sourced by the Wilson contour. The vacuum
represented by the flux is in fact SL(2) invariant to lowest order in 't Hooft coupling [26, 27]
with its energy density determined by the cusp anomalous dimension. The framework was
dubbed the Pentagon Operator Expansion and was used to predict multiloop and strong
coupling amplitudes [28-36].

Off-shell scattering received less attention mainly because naively taking external gluons
off their mass shell renders their amplitudes gauge dependent. Nevertheless, these play a
crucial role in QCD studies. Of particular importance to phenomenological applications
in hadron-hadron collisions is the so-called high-energy factorization and Berends-Giele
recursion relations for matrix elements of currents with different number of gluon legs [37].
In the former application, contrary to the more conventional collinear factorization, am-
putated legs of Green’s functions after the LSZ reduction are not set to their mass shell.?
Gauge dependence is an obvious problem but there is a number of possible ways out of
this predicament. One consists in a modification of the Feynman diagram technique to
automatically include extra contributions that reconstitutes their gauge invariance [38, 39].
Another is to perform all calculations in a background gauge where the gauge in the internal
lines can be disentangled from the gauge of the trees and therefore the loop effects can be
computed in a gauge invariant fashion as an effective action [41, 42]. Finally, the off-shellness
can be introduced legitimately in N' = 4 SYM by considering its spontaneously broken
phase by giving non-vanishing expectation values to scalar fields and making all external
gluon legs massive [43]. This regime was dubbed the Coulomb branch.

A recent study [44] of the four-gluon scattering amplitude on the above Coulomb
branch suggested its intriguing connection to a four-point correlation function of half-BPS
operators with infinitely large R-changes. It was realized some time ago [45, 46], that for a
particular case of the so-called simplest four-point correlator, it factorizes into a product of
two objects named octagons @. The latter can be cast in a concise representation in terms
of a determinant of a semi-infinite matrix [47, 48]. This result laid out the foundation for
further considerations in refs. [49-51], where the octagon was further recast as a Fredholm
determinant of an integral operator acting on a semi-infinite line. Its kernel was identified
as a convolution of the well-known Bessel kernel with a Fermi-like distribution that depends

2See also ref. [40], where the leading double logarithmic asymptotics of 2 — 2 off-shell scattering was
related to their on-shell limit by studying infrared evolution equations.



on the external kinematics and the 't Hooft coupling. In refs. [49, 52], the null limit of the
octagon was addressed. It corresponds to the kinematics where any two nearest-neighbor
operators approach a light-like interval such that one of the conformal cross ratios, i.e., ¥y,
tends to infinity and all other can be set to zero. One can establish the asymptotic behavior
of the octagon as y — oo [46]

2

O =exp <—y4foct(g)> , (1.4)

and exactly fix the accompanying coefficients as functions of the coupling known as the
octagon anomalous dimension, [49, 52]

Coct(g9) = % cosh(27g) . (1.5)

The authors of ref. [44] suggested that the octagon is nothing else as the four-point gluon
amplitude on the Coulomb branch. In particular, in the Sudakov limit, it reads

AT O s 02 (it  s1)) (1.6)

Further evidence for emergence of the octagon anomalous dimension in the Coulomb branch
amplitudes was given ref. [53] for the five-gluon case. This made certain observations
made in ref. [49] more transparent. Namely, it was noticed there that one can write two
complementary equations which yield the octagon anomalous dimension as their solutions:
one is based on the BMN vacuum and another one on the GKP one. The origin for the latter
was obscure since the hexagonalization framework [54-56], that is used to derive the octagon,
is built on the BMN vacuum. The GKP vacuum, on the other hand, is related to spinning
strings with large angular momentum, which in the dual language corresponds to operators
with large Lorentz spin and Wilson lines. Let us point out here that a different manifestation
of eq. (1.5) in the origin limit of the on-shell six-gluon amplitude® was observed in ref. [57]
building up on the seminal work [59] at seven loop order. In this study, in addition to
the already discussed soft exponents, yet another one was found to drive the Sudakov-like
behavior, which was dubbed the hexagon anomalous dimension I'yex [57]. To make the
comparison between them transparent, we quote here their leading two terms in 't Hooft
perturbative series

To(9) = 49° +cag® +O0(¢°),  cq = {~16(2, —8(2, —4(o}, (1.7)

for a@ = {cusp, oct, hex}, respectively.

A natural question which emerges is whether the known duality between on-shell
amplitudes and Wilson loops on light-like contours has a generalization to off-shell amplitudes
and some version of a Wilson loop as well. The flux-tube, however, sourced by color charges
traveling around its contour should be different from the one in eq. (1.3), since the flux-tube
density is different in two cases, i.e., I'cusp Vs. I'oet. Thus, the goal of this paper is to propose

3Yet another place where the same flux-tube kernel has made it (unexpected) appearance is the OPE
program for N' = 4 form factors [58]. We thank Lance Dixon for pointing this out to us.



a perimeter regularization for the bosonic Wilson loop which corresponds to off-shellness of
gluons involved in scattering. Getting ahead of ourselves, however, we can report here that
what we find is that the Sudakov limit of our version of the off-shell Wilson loop is driven
by the hexagon anomalous dimension rather than the anticipated octagon. “We do not have
an explanation for this fact and this calls for further dedicated studies. Since the agreement
with the Coulomb branch amplitudes holds at one loop only, one may wonder whether there
is a way to correct the object in question in a manner consistent with alleged duality to two
loops and higher. Is the discrepancy observed related in any way to recoil effects similar
to the massless situation when the factorization formula for correlation functions in terms
of a light-like Wilson loop takes on a more involved form when one uses near light-like
distances as a regulator instead of the dimensional one [60]7 We hope to address these
issues in the future.”

Our subsequent presentation is organized as follows. In the next section, we introduce
an off-shell Wilson loop by means of dimensional reduction of its ten-dimensional progenitor.
As we demonstrate there, the off-shellness requires the Wilson loop contour to reside in
more than four dimensions. This naturally introduces a regularization of short-distance
cusp divergences around the perimeter of the loop. The main framework that we employ to
calculate loop corrections is the method of Lagrangian insertions. First, we perform a one-
loop analysis in section 3 of the four-site Wilson loop, demonstrating its exact equivalence
to the four-gluon amplitude on the Coulomb branch [44]. Next, in section 4, we provide
a set of one-loop interpolation formulas between the on- and off-shell regimes by using
analytic continuation in the parameter of dimensional regularization in the interior of the
loop. This agreement fosters further analysis of two-loop effects in section 5. Here, we
limit ourselves however only to the consideration of the small-virtuality limit which makes
calculations sufficiently involved already as the emerging integrands are akin to massive
two-loop amplitudes. To this end, we rely on the powerful technology of the expansion
by regions and Mellin-Barnes integral representations to find asymptotic behavior of all
contributing Feynman graphs. We observe exponentiation of the double logarithms and
determine the functions of the 't Hooft coupling which drives it, the hexagon anomalous
dimension. Finally, we conclude. A few appendices corroborate some of the findings in the
main body of the paper or collect discussion and formulas which were not suited for the
main text.

2 An off-shell Wilson loop

Up to now, the number of attempts to devise a version of the Wilson loop that corresponds to
off-shell gluons can be counted on the fingers of one hand. Namely, ref. [61] proposed to cut-
off the immediate vicinity of the cusps thus breaking gauge invariance of the loop. The leading
double logarithmic dependence of the four-site loop was shown to be gauge independent
however. While refs. [62, 63] proposed to modify the coordinate-space propagators “by
hand” shifting Lorentz invariant distances between two points by a mass parameter, i.e.,
z? — x? + m?. While it works at one loop, this off-shell regulator was demonstrated to fail
anticipated exponentiation property starting from two loops [63]. These three examples
exhaust the list of proposals we are aware of.



2.1 Motivation

Our goal in this section is to find a holonomy of the gauge connection whose expectation
value develops the perturbative expansion which matches the one of an off-shell four-gluon
amplitude ratio function devised* in ref. [44], partially relying on Coulomb branch analysis
of ref. [43]. Namely, the latter was given to the lowest few orders of the series in 't Hooft
coupling g% = g2 N./(47)? by

AZH_ShQH =1-g° (Z%323491234) +g* (Z%3Z§4h13;24 + 2%3Z§4h24;13) + 0(96) ’ (2.1)
in terms of the standard one- and two-loop ladder integrals® rewritten via the dual coordi-
nates as

1 d4l‘0 1 d4x0d4x0/
91234 = —5 / VR R R hig24 = */ (22
m2 ) wfagaadsats m ) (af 28280280 (25208 32004)

In this expression, the external kinematics inherits the full 10D Lorentz symmetry through
the invariants® ijj/ = :szj/

Minkowski four-dimensional subspace. The nearest-neighbor points in 10D live on light

— yjzj,, while the loop integrations are performed only on its

rays obeying the null conditions x% = yjzj 1= m? with the extra-dimensional invariants
y]2-j 41 Playing the role of the off-shellness (or external mass). Since we would like to have
massless fields to propagate in all internal lines of amplitudes, as discussed in ref. [44], we
are forced to impose another null condition on individual y-coordinates, i.e.,

y;=0. (2.3)

This equation allows one to restore the above 10D covariance at the level of the inte-
grand provided the integration variables are localized only in four dimensions [44], i.e., all
propagators can be written in terms of 10D coordinates.

2.2 Definition

Having this inspiration in mind, we start with a ten-dimensional bosonic holonomy and
dimensionally reduce it down to D = 4 4 2¢ dimension with € > 0. Equivalently for
us, we can view it as a dimensional reconstruction of the D-dimensional object from its
four-dimensional counterpart.” Its vacuum expectation value is defined by the path integral

(Wy) = Z‘l/[dA] Wy,  Z= /[dA] el (2.4)

4Strictly speaking [44] did not compute any amplitudes instead they interpreted a 10D light-like limit of
a generating function of four-point correlators as a scattering amplitude on restricted Coulomb branch of
N =4 SYM with support from multiloop D-dimensional integrands of four-leg amplitudes [64, 65]. It would
definitely be important to calculate off-shell gluon amplitudes at two loops directly using, for instance, the
background field method [41], or along the lines of ref. [43] in the Coulomb branch.

®The one-loop off-shell amplitude in N' = 4 SYM was already calculated in terms of the box integral
back in ref. [41], see eqs. (6.5.67)—(6.5.68) there, as well as more recently in ref. [43] on its Coulomb branch.

SWe use z, z and y variables for the 10D, 4D and 6D coordinates, respectively.

If we were to think about this object from the point of view of the four-dimensional Lorentz algebra, the
4D gauge-field components transform as vectors with the remaining 2e being scalars. This would imply that
the contour couples to scalars as well, reminiscent of the Maldacena-Wilson loop [66, 67]. However, we think
of our object as truly living just above four dimensions so that it transforms under the so(D,2) conformal
algebra and all D components of the gauge field are true vectors. This approach is clearly different from the
traditional dimensional reduction [68].
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Figure 1. Schematic drawing of the D = 4 + 2¢ dimensional contour of the off-shell Wilson loop
in (a) and its representation in (b) after imposing the light-like conditions (2.3) and (2.8) and
dimensional reduction of the interior to four dimensions.

Without loss of generality we will set Z = 1 in what follows. The N-site Wilson loop
defined as

1
Wy = A tr[w[lym e W[372]w[2’1ﬂ (2.5)

on a piece-wise contour [z1, 23] U [22, 23] U - - - U [2n, 21|, with links ordered from right-to-left
reflecting the path-ordering of fields in the individual Wilson segments along the contour

. [FiL M
wjy1,5 = Pexp z/ dzp AY (2) (2.6)
zj
Zj+1 Zj41 z
=1+ z/ ’ dzp AM (2) + z'2/ ’ dzMAM(z)/ dNAN(Z) + ...,
Zj Zj Zj

with AM being the D = 4 + 2¢ gauge field of N'= 4 SYM. Here and below, we recycle the
nomenclature of the z, x,y variables from the previous section, but now they are adopted
to SYM in Minkowski space-time slightly above four space-time dimensions. This implies
that z,x and y are now D—, 4- and (2¢)-dimensional, respectively. We hope that this does
not lead to any confusion.

The Boltzmann weight in the path integral is given in terms of the D-dimensional
action S = [dP”z9L(z) of the gauge-fixed Lagrangian®

1 1 1
L=———tr (FJ@NJF(&MAM)?JF...) . (2.7)

9ym 2 §
So far this Wilson loop lives above four dimensions, i.e., its contour as well as its “interior”
(see the panel (a) of figure 1). We decompose the D-dimensional coordinates as zj\/[ = (l‘;L , yJI )

in terms of the four-dimensional Minkowski coordinates z* and the auxiliary (2¢)-dimensional
orthogonal vector subspace parametrized by 2e-component vectors y!. Since vector spaces of
non-integer dimensions do not exists, the orthogonal 2& subspace in fact has to be regarded as
infinite dimensional with I = 1,2, ..., co. This is akin to the use of conventional dimensional
regularization for calculation of divergent field-theoretical integrals where integration rules

8We follow conventions of ref. [70]. Only the gluon field is rescaled with gym, while all other fields retain
their normal normalization, e.g., the Yukawa interaction term carries a single power of gym so that it is
accompanied by g3y in the ellipses of eq. (2.7).



over fractional dimensions are shown to be consistent and proven upon working in infinite
dimensional linear spaces and further analytic continuation to other values of D, fractional
or even complex (see, for instance, the standard text on renormalization [69]). This ‘loophole’
will allow us to accommodate arbitrary complex-valued vectors y!, including those possessing
zero norms’ (y!)? = 0 as in eq. (2.3). Notice that the Wilson loop in question is perfectly
well defined without the latter constraint, however, we will not attempt to verify in the
current work whether its duality to Coulomb branch amplitudes with nonvanishing internal
masses could potentially hold or not.

The reason to stay above four dimensions should be quite obvious, we would like to
couple propagating gauge fields to the auxiliary coordinates y!, which play a crucial role
in the introduction of the off-shellness, as we just alluded to above.!® Namely, any two
adjacent points along the polygonal contour in D-dimensions (see the panel (a) in figure 1)

2

form light-like distances zj;,, = 0 thus enforcing the constraint

231 = Ui - (2.8)

It is interpreted in light of the T-duality relation for four-dimensional momenta as develop-
ment of nonvanishing virtualities yJQ-j 11 for external gluons of scattering amplitudes.

Parametrizing each wy;;; j-segment (2.6) of the D-dimensional contour by the proper
time 7;, the gauge field on each of them resides at the position

T =
Ziie1 = Ti%j + TiZj+1, (2.9)

(here and below 7 = 1 — 7) and is integrated over the interval 0 < 7; < 1. From the
D-dimensional perspective!! the Zjj+1 interval is light-like (2.8), z]zj 41 =0, so the Wilson
loop contour is automorphic under the D-dimensional conformal inversion, I [zJM | = z]M / ZJQ-.
Namely, inverting an arbitrary point 2™ = 2M(r) at some proper time 7; = 7 on the
path (2.9), we find

= M M

TZ: + Tz

T =TI TN (@210)
J j+1

M = %z}w +7'Z%_1 — I[M] =

So, up to a redefinition of the proper time,

’ T

T+ 7‘212 / 2]2- e
the path retains its form. Thus classically, the D-dimensional Wilson loop is invariant under
the conformal contour deformations.
In the following few sections, we will keep the virtualities y]zj 41 completely arbitrary
since (i) the duality to Coulomb amplitudes should hold for this generic kinematics and (ii)

90ne explicit realization that a reader can imagine for a four-cusp loop contour is y} =071 +1401,5.

10 et us note that our setup does not rely on an underlying dual stringy picture, nevertheless it qualitatively
resembles a configuration for Coulomb-branch amplitudes of refs. [10, 43], where open strings stretch between
D-instantons separated by light-like distances at radial distance r = m away from the boundary. We would
like to thank Frank Coronado for a discussion of this point.

1We would like to thank Simon Caron-Huot for a discussion of the fate of the conformal symmetry.



we can discuss conformal invariance without obstruction. However, starting from section 4
below, we will assume for the sake of simplicity that all virtualities yjzj 41 Dbossess the same
value y?j 1= m?. This is done to avoid dealing with multiple scales and make underlying
calculations manageable. Obviously, this condition explicitly breaks 4+2¢ Lorentz/conformal
symmetry (see ref. [43] for corresponding discussion on the amplitude side).

2.3 Lagrangian insertions

Since off-shell amplitudes rapidly become complicated and extremely laborious to calculate
with increasing loop order, we prefer to deal with their integrands. This inevitably forces
us to use the formalism of operator insertions familiar from studies of renormalization of
composite operators [71], which was recently popularized within the context of correlation
functions starting from [72]. The usefulness of the method of Lagrangian insertion for
the Wilson loop is practically twofold. First, as we just said, it allows one to define the
notion of the integrand for the bosonic Wilson loop starting already from the one loop
order. Unfortunately, this procedure does not offer any computational simplifications in
perturbative studies on par to the correlator story. Notwithstanding, its very existence is
complemented by yet another feature of paramount importance: the ability to analytically
continue and vary the (2¢)-regulator dimensions independently of the off-shellness condition
for external kinematical variables. The reason for this is once one imposes the null
conditions (2.8), the integrand becomes a function of two independent regulator variables,
the off-shellness of the perimeter and dimensionality of the ‘internal’ space of the Wilson
loop surface. It is this property that will let us to continuously navigate between the off-shell
case in 4D and the on-shell one in the dimensionally regularized theory.

Starting with the perturbative expansion of the Wilson loop expectation value in
YM coupling

(Wn) =1+ gay (W) + gl (W) + . (2.11)

one finds individual coefficients in the series by differentiating both sides of this equation
with respect to g2, sufficient number of times and setting it afterwards to zero. In the spirit
of the computation of correlation functions [60, 72, 73], we find then at one and two loops,

1

2
nlgdy

(W) = / [dA] e WA : (2.12)

gym—0

where we rescaled the gauge field back by the YM coupling, i.e., Ayy — gymAn to regain
standard normalization of interaction terms in the gauge action for easier counting of terms
contributing to the same order of perturbation theory. To the lowest two perturbative
orders, the differential operator insertions

A(l) = i/dDZOEI(Zo), (2.13)

A® = (i/dDZOE'(zo)>2 +i/dDzo£"(zo), (2.14)



are determined by the derivatives of the Lagrangian (2.7) with respect to g2,,. It is important
to point out that our Lagrangian insertion procedure differs from other implementations
of the same idea, e.g., in refs. [60, 72-74]. Namely, as we tacitly implied in eq. (2.7), we
started with a standard ' =4 SYM Lagrangian of ref. [70] with all three-field interactions
involving a power of the Yang-Mills coupling and then rescaled only the gauge fields by
gyMm in the functional integral keeping fermion and scalars intact. The resulting vacuum
expectation values were then differentiated w.r.t. gyy eliminating thus all kinetic terms
except for the one of the gluon. The explicit form of £ and £” reads

L =tr (%FMNFMN — %QYM)\QA[QEAB, /\f] + %gYMS\aA[quB, /_\%]
+ %Q%M[¢AB7 (bCD} [(EAB7 éCD]) )
L' =tr ( — FunFYY 4 o gvnaddas, AF] - 5i59vmAaalo”?, A%}). (2.15)

Here, the gluon fields are rescaled back by the power of the YM coupling, compared to
eq. (2.7), and the fermion and scalar fields are restored, but the gauge fixing and ghost
terms being dropped by virtue of their property to yield vanishing expectation values when
inserted with gauge-invariant (Wilson loop) operators.

By considering the under-integral expression of the Wilson loop!?

/ A &S WL (z0) ... £'(2)) | (2.16)

the fields along the Wilson loop’s perimeter can Wick contract among themselves only
through the Lagrangian insertions or through the interaction terms brought down from
the action in the Boltzmann weight factor. In this manner, the Wilson loop is regarded as
a normal-ordered operator.'3 Therefore, there are two types of propagators involved, the
bulk-to-boundary and the bulk-to-bulk. The former propagate fields from the perimeter
to the interior interaction points of the loop, while the latter only connect interior points.
This allows us to separate short-distance regulators for the boundary and the bulk when we
address quantum mechanical effects.
The gauge propagator between the boundary and the bulk point zy reads

Nz -1
[=(20 = 2jj.0)” + 0]/

(A%(ZO)AIJ)V(ZZH)) = —WHMMSM) (2.17)

in the Feynman gauge. We set the conventional dimensional regulator scale to unity u =1,
so as not to pollute formulas, however, we will recover it when it becomes important for

12Note that these are not the integrands in the true meaning of the term as they were originally defined
within the context of correlation functions [60, 72, 73]. In the latter case, one could cleanly separate different
orders in YM coupling since composite operators can be defined to be independent of gym. For the Wilson
loop in question with our normalization chosen for the gauge field, our ‘integrands’ develop nontrivial
expansions in gym as explicitly shown in section 5 below. In fact, the cross talk between different integrated
operator insertion A which enter with different overall powers of the coupling, is a must for matching to
conventional perturbation theory. See section 5.5 and 5.7 below.

13The Lagrangian itself is normal ordered as well.

~10 -



our arguments. The resulting integrand is a function of the space-time dimension D of
the Lagrangian insertions and of the external kinematics, in particular, the off-shellness
x?j +1 =m?. We consider it as an independent function of both. Since the short-distance
divergences around the perimeter are now regularized by m and we can safely send € — 0
in the bulk.™ Thus, at this step we project out the overlap between the internal and
external coordinates in extra dimensions. It is important that this dimensional reduction
of the interior down to four-dimensional Minkowski space is taken at the very end of all
field Lorentz contraction, use of equations-of-motion etc. With this understanding of the
integrand, the invariant distance in the bulk-to-boundary propagator reduces to

(zo — Z;§+1)2 = (zo — 37;;‘4-1)2 - (y;;+1)2 = (z0 — x;§+1)2 + ijjx?]#l ) (2.18)

where the light-cone condition on the external kinematics (2.8) was used simultaneously
with the null conditions (2.3) on the individual y; variables. The resulting Wilson loop in
the off-shell kinematics and the four-dimensional interior can seen in the panel (b) of figure 1:
trajectories of the probes sourcing the gauge flux cease to be straight but rather develop a
pull into the auxiliary kinematical directions encoded by a unit vector n; orthogonal to
the Minkowski plane, i.e., ZEH — Tjxj + Tjxj11 + my/T;Tnj. As we will see in the next
subsection, this setup yields an exact one-loop match between the integrand of the off-shell
four-gluon scattering amplitude (2.1) and the integrand of the Wilson loop constructed in
this manner.

Finally, the bulk-to-bulk propagator has the form identical to (2.17) except that the
intervals are all four-dimensional (after dimensional reduction). Below, we will need these
only in polarization tensors since in all other circumstances we will be able to integrate
these out in the path integral before any calculations are performed at two loops.

3 One-loop test

The first order of business is to demonstrate the equivalence of the just proposed Wilson loop
along with its calculational procedure to the result quoted in eq. (2.1). The contributing
one-loop graphs are shown in figure 2 (and their cyclic permutations). Their integrands
possess the structure!'®

1 (0) C :C ,Z 72 7Z ,’ 25
<NPtI' [w[j-i-l,j}w[j’+1,j’}£/($0):|> = FgYM / de/ dT] 0:% ]4+1 ! J/ +1) 4
c 'IO_ JJ+1) (xO 3! +1)

(3.1)

valid up to O(g%M) and are proportional to the quadratic Casimir in the fundamental
representation of the SU(NV,) group Cr = (N2—1)/(2N.). The numerator, while superficially
appearing to have a nontrivial dependence on the proper times 7; ;/, is in fact independent

10Of course, when closed loops arise in the interior of the Wilson loop at higher orders, they will induce
unregularized singularities. We will return to this later on when discussing two-loop effects.

15We define the free expectation value (...)(® = J[dA]exp(iSo) . .. as a path integral averaged with the
Boltzmann weight of the free gluon action Sy = f% f dP20(00m A%)? in Feynman gauge € = 1.
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of them

n(203 25, 2j413 2575 Zjr41) = 2jj41- 2041 (To— 25) - (To—2j7) — zj541 - (R0 —2j7) Zjrjr+1- (X0 —25)
(3.2)

due to the transverse nature of the Abelian portion of the field strength tensor. This is
the first harbinger of successful comparison to the amplitude (2.1): correlation functions
computed with the Lagrangian insertion procedure in the pair-wise light-cone limits possess
the very same numerators on a diagram-by-diagram basis. Notice here that all Lorentz
contractions were performed in D-dimensions before projecting out 2e-directions of the
bulk points since otherwise one would be left only with four-dimensional inner products of
coordinates. The second step we need to perform is to convert and match the proper-time
integrals to the expected denominators of the cross integral gi1234 in eq. (2.2). This follows
immediately upon rearranging the denominators in eq. (3.1) by

(w0 — z;i+1)2 = 'ij(%j + zj%j—i-l ) (3.3)
with any explicit mentioning of the off-shellness lost in translation. The remaining 7-integrals
immediately produce products of the free scalar propagators 1/ $(2)j. Now, all that is left
to do is to show that the sum of all graphs, displayed in figure 2 and their inequivalent
permutations, add up to 27323,91234. This is almost warranted by the equivalence of the
numerators between the integrands of the Wilson loop and correlation functions alluded to
above and can be verified by rearrangement of numerators for the three graphs in figure 2.
Namely, one finds

1
n(wo; 21, 22; 23, 24) = — [2%3234 — 233[dy + Tho) — 234[3G; + h3] — (251 — Bl xhs — 3734]} )

4
(3.4)
1
n(a0; 21, 22: 22, 28) = 7 |28t — oy — apllady — ] . (3.5)
1
n(zo; 21, 225 21, 22) = —5[9631 — 289)?, (3.6)

for the diagrams in (a), (b) and (c), respectively. The cancellation mechanism is then
self-explanatory, i.e., the second and third terms in eq. (3.4) (and its analogue with the
gluon insertion stretching between the other opposite sides) cancel against the first term
in the vertex contribution (3.5) and its cyclic permutations, while the fourth term in (3.4)
together with the last one in (3.5) conspire to cancel the self-energy contributions in eq. (3.6)
and its permutations. This leaves us just the (double of the) first term in (3.4), hence
confirming the agreement between the one-loop off-shell Wilson loop and the one-loop
gluon amplitude (2.1) in the planar approximation Cr — N./2. The one-loop integrand is
explicitly conformal invariant inheriting the inversion symmetry (2.10).

4 Off-shell to on-shell

In this section, we relax the condition for internal integrations to be four-dimensional. While
massless one-loop calculations can be done on the back of an envelop, massive calculations
in dimensionally regularized (or not) theory are far from being trivial. The motivation for
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T2 I3 ) T3 T2 xs3

T4 T4 X4

T I L1

(a) (b) (¢)

Figure 2. One-loop graphs for the integrand of the off-shell four-site Wilson loop. The grey blob
stands for the Lagrangian insertion (2.15).

this is to study the dependence of the Wilson loop expectation value simultaneously both
on the off-shellness and dimensional regulator parameters and thus to be able to interpolate
between the off- and on-shell regimes. When the segments’ ‘virtualities’ tend to zero, the
Wilson loop becomes light-like and suffers from well-known ultraviolet divergences: m? = 0
no longer cuts-off short-distance behavior of gluons in the vicinity of the cusps. To tame
them properly, we have to analytically continue € in D = 4 + 2¢ in eq. (2.13) to negative
values ¢ = —e < 0. This is how we will understand the dimensionality of the internal
integration in this section. The distances are however taken to be same as they arise from
the dimensional reduction, i.e., see eq. (2.18).

When the space-dimension D is kept away from four, the massive cancellation between
various graphs observed at the end of the previous section no longer holds except for the
self-energy-like terms, i.e., the last contributions in eq. (3.4) and (3.5) and eq. (3.6) itself,
which are total derivatives as we show in the appendix A. So the exchange and the vertex
graphs have to be computed from scratch. To cast the emerging parametric integrals in
the as most eye-pleasing form as possible, we use a somewhat unorthodox version of the
Feynman parametrization to join the two denominators in eq. (3.1) promoted to their
D-dimensional versions (2.17),

F(Vl)F(UQ) F(l/l —+ 1/2)
AT A (11 — o)Az + (0 — T2) AyJritve”

with the adopted short-hand notation 79 = 7 — 7». The right-hand side is independent of

i
— 7'12/ do(m — J)l’l_l(a — 7'2)”2_1
T2

the choice for 7’s and they can be selected at will. To achieve the above simplification they
!

are taken to be 71 = 7; and 7 = 75 for Ay = —(20 — z;;+1)2 and Ay = —(zg — zj,’j,+1)2.
Performing the integral over the insertion point z, we find'6
D
1 Cr 2 2 27,2 2= 21,2 a1 (%)
<W4>](F‘i)g, 2(a) ~ T 16xD/2 <<{Z13Z24 — Z13[1940 + 2m70] — zp4[xi30 + 2m U]] 7,3/22
13,224
D
n 22%3 +2, (5 - 1)
72 D/2—1 ’
12 Z)CEIE‘HCE24

16We do not display the self-energy-like contributions in (a) and (b) diagrams since their sum cancels in
D-dimensions against the self-energy graph (c) in the same fashion as in the four dimensions as we pointed
out at the end of the previous section. Their structure is made explicit in the appendix A which makes this
statement obvious.
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Cr s o (D) T8 —1)
<W4>1(?1) 20b) — D/2 <<2213m O—5m — 2% —pa ) (4.1)
& 1670/ Dzlé,O Ti2 Dxléo

for the respective contributing graphs (a), (b) to the Wilson loop. Notice that the integrand
of the vertex diagram is related to the one of the exchange graph by sending 4 — 2
and flipping the overall sign. Here the double angle brackets stand for the three-fold
parametric integral

1 !
<<>> E/U d7'1/01d7'27'12/7_2 dO’[(’Tl*O’)(o'—7—2)]D/2—1”.7 (42)

and the denominator being
_ N 2 _ 9 9
Dyispos = (11 —0)(0 — T2) {—7’17'21*13 — 7'17'29324} — 00Tiym”. (4.3)

The above parametric integrals are not immediately expressible in terms of known special
functions. However, it is relatively straightforward to derive Mellin-Barnes representations
for them. Details of calculations involved are relegated to the appendix A. Here we merely
cite the result for the main structure 2%;23, which survives the four-dimensional limit. We
found the following three-fold contour integral for it

<<DF§/2) >> - (4.4)
o s AN
S [ () ()

F(*Zg)r(zl+23+1)F(22+Z3+1)F (17 % — 21 72’3)F(17 % — 29 723)F(§+21+22+Z3)2
F(% + 21 +22)

X

Other contributions to the exchange graph are unfortunately not as simple: they admit a
four-fold Mellin-Barnes representation which can be found in eq. (A.5). Finally, the vertex
integral is given in eq. (A.8). The complete result for the off-shell dimensionally regularized
one-loop Wilson is then obtained by adding one more exchange contribution and corrections
to other three cusps of the four-site Wilson loop, namely,

1
wy® = S sl e (4.5)
o3 2 g 2(a) g 2(b)
cyclic

with the factor of 1/2 eliminating the double counting of the exchanged graphs in the sum.
With these generic expressions in hand, we would like to extract anomalous dimensions
governing the Sudakov behavior in the off- and on-shell regimes. These can easily be deduced
by studying the following two limits: the four-dimensional vanishing off-shellness and the
on-shell dimensionally regularized case. These respective asymptotic expressions read!'”

2
9 5 m 1
log(Wa) p—am2—0 = —4g~ |log” —— + (2| , (4.6)
[ 2. 22 2
13424
'"The pole contribution is Poles = —2¢72 + ¢~ log(u* /x3523,).
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2 2
log(Wa) prame—o = —2¢% |log HT log MT — 2(5 + Poles| , (4.7)
T13 T4

as w25, 13, — o0o. In the second formula, we restored the renormalization scale p dependence
and absorbed in it certain accompanying transcendental constants along the way. We
observe indeed the well-known ‘factor of two difference’ between the Sudakov asymptotics in
the off-shell [3] and on-shell regimes [2], which is attributed to the non-vanishing contribution
from ultra-soft integration in addition to the soft regime, present in both cases, as explained
in ref. [4] (see, in particular, appendix A there), [5] (see section 12.1 there) and ref. [6].
These one-loop results are in accord with considerations of the on-shell [16] and off-shell
four-leg one-loop amplitude in refs. [11] and [44]. However, the off-shell Wilson loop (2.4)
starts to deviate from the latter two starting from two loops.

5 Two loops

Encouraged by the findings of the previous sections, we move on to the two-loop order. An
off-shell (or rather massive) two-loop calculation is a highly nontrivial endeavor. Therefore,
we will presently address only the small-m limit of the off-shell Wilson loop with four sites.
We aim to achieve two goals, first, we need to confirm that the perimeter regularization
is consistent with the Wilson loop exponentiation and, two, if this is the case, what the
corresponding function of the coupling is that governs this Sudakov behavior. So all we need
to do is to track the logarithms of the soft scale, which can be made dimensionless either
by x25 or 23,. Therefore, for our present needs, it suffices to impose the symmetric-point
condition z?; = x3, and thus introduce a single scaling variable A2 = 2%, /m? driving the
asymptotic behavior of the problem. Getting ahead of ourselves, we will demonstrate below
that a subtle cross talk between leading infrared logarithms at one and two-loop orders
will warrant exponentiation, however, our condition of equal s and t channel invariants will
prevent us from confirming that the anomalous dimension driving the Sudakov behavior
does not become a function of the dimensionless ratio'® x%,/z3,.

Next, we would like to simplify the form of the Lagrangian insertion making use of
the gauge invariance of the Wilson loop. Namely, we choose a gauge-fixed form of the
Lagrangian for this purposes. This merely entails a substitution of the first term in £’
by the expression in round brackets of eq. (2.7). In the Feynman gauge, which we use
throughout the calculation, the kinetic term of the YM action becomes particularly simple

S() = —/de() tl"(aMAN)Q . (5.1)

It is merely a free-field equation of motion. This will allow us to easily integrate it out in
the path integral when it appears along with interaction terms from the action. Recall that
we are not able to do this when Sj is connecting any two sites of the loop by free Feynman
propagators (2.17) due to normal ordering constraints on Wy discussed after eq. (2.16). To
be very specific this discussion implies the following

(N[...01]SoN[Og.. )@ = i(N[...O1IN[O2...D©® | (N[...0102)50)@ £ i(N[...0,05])®,
(5.2)

¥ Thus we will not be able to trace the fate of the conformal symmetry at two loops.
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for generic composite operators O; and where we temporarily made the normal order-
ing explicit.

Now the procedure for the calculation of <W4(2)> from eq. (2.12) is straightforward. The
expansion of the Wilson loop links'? (2.6) in YM coupling is equivalent to the number of
sites (same site can appear more than once) involved in the interaction,

Wyi=1+ 9\2(Mw2 + g?(ng' + gél{Mw‘l T (5'3)

where
1 k
wp= - trP <l / dzMAM(z)> , (5.4)

and the ellipses stand for higher order terms which are irrelevant for the current two-loop
analysis. Substituting the above series into eq. (2.12) for n = 2, we naturally introduce the
following nomenclature for contributions in the Wilson loop average

W)@ =W + Wi 4 w? (5.5)
corresponding to the two, three and four Wilson links involved in the interaction, respectively,

[ i
WIEQ) = 79\]?1\44/[@4] € kaA(Q)

: (5.6)

gym—0

Before we proceed with explicit calculations at two loops, first, we return back to the
one-loop contributions to demonstrate a formalism which will be easily generalizable to
higher loop orders in the analysis of the asymptotic m — 0 behavior of the Wilson loop.

5.1 Back to one loop
At one loop, we only need to keep the two-gluon term ws in the expansion of the path-ordered
exponential such that

(W) = —i (wsS)” (5.7)

The only graph which induces the double logarithmic scaling is the one where a gluon
dresses up a single cusp. One representative example is given figure 3 (a) and its coordinate
space integral, after dimensional reduction of the interior to four-dimensions, reads?’
1 iCF 1 1
<W4>%i)g. 3(a) = — (271')4 (.%'12 . 1'23)/0 dS/O dt/d4x0 ('“)OD(xg;fo) . 80D(x0; 1'33) N

in terms of the stripped bulk-to-boundary propagators

D(zo;25;11) = 1/[(z0 — :v‘;jﬂ)? + m?s3]. (5.8)

19Recall that we rescaled A there by gym to have the usual counting of its powers to match a given
quantum order.

20We drop the 2e-portion of the D-dimensional scalar products in the numerator, cf., eq. (3.4), since these
cannot affect the Sudakov scaling we are after.
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Figure 3. One- and two-loop Feynman graphs possessing at least double logarithmic dependence
on the off-shellness. The large grey blob stands for the virtual loops of gluons, ghosts, fermions and
scalars, while the small empty one is the insertion of the Feynman gauge YM action (5.1). The
multiplicity factors of the displayed graphs are (from left top to right bottom) m, = {4,4,4,4,8,4}.
Notice that the Lagrangian insertions in the last two graphs were integrated out by means of fields’
equations of motion as explained in section 5.7.

The four-dimensional portion of the path is parametrized by a straight line, Le., 2}, , =
5x; + sxj4q and its curvilinearity is encoded in the mass term. The coordinate-space
integral can be evaluated using conventional Feynman parametrization and the following
basic integral

i D (o)  T(a—D/2)
<D/2 /d 2 — L T [—L]e-D2 (5.9)
In this manner, we find
L Cp (! 1 1 L \
(W4>%i)g. 3a) = _7(27r)2 /0 ds/o dt/o dajdagd(ag + ag — 1)IntE3;H21] (:Em,a:ég;al,ag),
(5.10)
with the one-loop parametric integrand being
Tr12 T _ _ T19 - T
Intf:g],[m (29, Thy; 1, ) = (L12 23) +m? (s5/ag +tt/ay) (L122 23) ) (5.11)
[32],[21] [32],[21]
where the denominator is
s ss tt
Lz o1 = (212 — 23)° + 072m2 + a—lmZ. (5.12)
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What is the most efficient way to extract the m? — 0 asymptotic behavior of this integral
that can be easily generalized to higher loops? We answer this question in the next

two sections.?!

5.2 Method of regions

To evaluate the leading and subleading logarithms of the parameter A in the limit A — oo,
we apply the strategy of expansion by regions which was introduced in the case of threshold
expansions of Feynman integrals in [75] (see also [76] and [77]) and formulated for momentum
integrals in the language of the Feynman-parameter representation in [78]. According to
this strategy, the expansion of a given Feynman integral is given by a sum over so-called
regions. In a sense, it is akin to (but more general than) the well-known Wilson operator
product expansion on the diagrammatic level.

Typically, the task of determining all contributing regions governing a given asymptotics
is a highly tedious task. An algorithmic way to reveal them was found in [79]. It is based
on the geometry of polytopes connected with basic functions determining the Feynman-
parameter integrand. This was a very important step both for theoretical as well as
practical reasons. First, it allowed one to formulate expansion by regions in an unambiguous
mathematical framework. Second, a first public code asy was made available by ref. [79].
The latter was further improved in [80] and successfully applied to various problems involving
Feynman integrals. The most recent version of the code asy2.1.m is available from the
FIESTAS distribution package [81].

The expansion by regions has the status of an experimental mathematics. However,
currently there are no known counterexamples where this strategy was shown to fail. An
interested reader can find a discussion of the problem with the mathematical justification
of this strategy in ref. [82] as well as in the comprehensive review [83].

As we have already seen in the previous section at one loop, and as it will be even more
obvious below, all graphs are expressed in terms of parametric integrals over multidimensional
unit cube where the number of integration variables is less or equal to six. To be able to
literally apply the code asy to the problem at hand, we need to map this hypercube to R’}.
This is easily accomplished by the following transformation of variables

Ty

=7 5.13
1—|—ZE]'7 ( )

Qj
for all proper times (s,t, etc) and Feynman a-parameters. The integration now runs over
the half infinite interval 0 < x; < oco. For each Feynman graph, we obtain an integral
of a rational function of 9, z1,xo, ..., where we inverted the scaling variable and defined
d = 1/A. The denominator in the integrand is a product of simple factors (1 + z;) in
positive integer powers coming from the Jacobian as well as a polynomial P(d;x1,xo,...)
which is unapologetically cumbersome since it inherits the structure of the Feynman-joined

2'Running ahead of our presentation, let us point out that we will employ the method of the Mellin-Barnes
representation. In recent years the latter has lost its apex position on the stage of Feynman integrals being
superseded by a more powerful method of differential equations. However, in our situation, the differential
equations can hardly be applied so that we will rely on the good old Mellin-Barnes technique.
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bulk-to-boundary propagators. Let us emphasize that, in our calculation, we encounter
only polynomials with positive coefficients, so that there are no complications connected
with negative terms, like in the case of the threshold expansion [80].

As in the case of well-known application of the Wilson operator product expansion,
even if one starts with a finite observable (say, a cross section for deep-inelastic scattering),
individual terms in its twist expansion develop singularities due to approximations involved
and thus require a regularization. At the level of dimensionally regularized Feynman
graphs, when one expands them at the level of the integrand for large/small values of
external kinematical variables, these develop extra poles in the parameter of dimensional
regularization € = (4—D)/2. These extra poles have to cancel at every order of the expansion
and thus provide a crucial self-consistency check on the correctness of the calculation: the
sum of pole parts of the expanded integral in € equals the pole part of the initial integral.

However, even if the initial integral is convergent in four-dimensions, we are forced to
introduce a regularization in order for individual terms in the expansion by regions to be
well defined as § — 0. This is easily accomplished by introducing an analytic regularization
for the integrand’s denominator. Since the d-dependence only enters in the polynomial P
introduced earlier, it suffices to just shift its power n by some parameter 7, i.e., P — P™"".

Let us now give a few hints of the code use. Suppose that the denominator of a four-fold
parametric integral has the form (1 + 21)?(1 + 22)3(1 + x4) P?(; 71, 22, ¥3,74). Then to
reveal all regions of the parameter space, we turn to asy and run

r = WilsonExpand[(1 + x1)(1 + x2)(1 + x4),P, {x1, X2, X3,%a},0 — X]
As an output we obtain a set of regions r;. Here is a typical output
r = {{0,0,0,1},{1,0,0,1},{0,0,0,0},{1,0,0,0},...}.

Several comments are in order about the implementation. First, notice that the initial
version of the code asy was intended for conventional Feynman diagrams (not a Wilson
loop calculation), so that the first two arguments of the routine WilsonExpand are reserved
for the two basic polynomials in the Feynman parametric representation. To apply this
routine in the present calculation, it is necessary to reveal all factors of the denominator
and then distribute them as factors among the first two places. Second, one can put them
all in the first place and set 1 in the second place or vice versa. Third, one does not have to
provide powers of any polynomials: existence of a region does not depend on it!

Next, according to the prescriptions of the expansion by regions, the contribution of a
given region r; is obtained then from the initial integral by the following three steps

(i) rescaling the variables as: zp — 0Ty, i=1,....4,

4
(ii) multiplication of the integrand by: §2i=1 (73 ) (5.14)
(iii) expansion of the integrand as: 0—0.

As § — 0, each region of parametric integrals obtained in this fashion scales as %7 with
some integer a > 0 and an integer b. It is clear that we can immediately ignore regions
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inducing positive a’s and take into account only regions with the leading power behavior
6. The latter produce contributions of the form §°7(C(n) + O(6)) with a function C(n)
that can possess a series of poles in 1 as 7 — 0. In our two-loop analysis which follows, we
encounter 79 behavior with j = 0,1, -1, —2, —3, —4. Our goal is to evaluate the leading
and subleading logarithms, i.e., log™ § with n = 4, 3,2. Therefore, the problem reduces to
the evaluation of the coefficients C'(n) determined by parametric integrals which are only
functions of the auxiliary analytic regularization parameter 7. Since we are interested only
in double and higher logarithms of ¢, it is sufficient to evaluate the coefficients C;(n) in a
Laurent expansion in 77 and keep only double and higher order poles in 1. Recall that the
poles in 7 in the sum of the contributions of all the regions should cancel and this is a vital
self-consistency check of the entire procedure.

5.2.1 Example: one loop

To illustrate the formalism, let us use the integral appearing in the above one-loop example

as a case of study,

1 1 1
J :/0 ds/o dt/o dardagd(ag + ag — 1)Int§g]7[21](x‘f2,x§3;041,042). (5.15)

It contains all the ingredients relevant to more complex cases without obscuring the method
with irrelevant complications. After the change of variables (5.13), we find

3

1 %) 1% 00
) = 30-20) [ don [ o | O o PG e s (5.16)

with a rather lengthy polynomial

P(8;21,22,73) = 0xo+20x122 +5m%x2 +0x3+0x1203+x203+0T903+ 12013 +2021 2223
+5£B%$2:E3 —|—m§m3 +$1x§x3+5a@1x§m3 +5m%x%x3 —}—5331:6%

+2021 Toxs + 0T TS . (5.17)

Since we are interested only in the leading power behavior, we can replace (1 — 24) by 1 in
the prefactor from the get-go.
Next, we define an analytically regularized version of the integral J(8) — J(d,n) as

T3

5, :l/md /md /wd . 5.18
j( 77) 2 0 X1 0 T2 0 :U?’(l—|—:U3)2P1_77((5;x1,:r2,$3) ( )

By running WilsonExpand in Mathematica,

r = WilsonExpand[1 + x3,P, {x1,%2,%3},0 — %]
we obtain eight regions

r= {{O, 1, 1}, {0, 0, 1}, {—1, 1, O}, {—1, 0, O}, {—1, 0, —1}, {O, 1, O}, {O, 0, O}, {O, 0, —1}}.
(5.19)
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Using the prescriptions formulated in (5.14), we immediately observe that only four regions
r; with labels j = 3,4, 6,7 are non-zero at leading order, with the following scaling behaviors
{1,677,6",1}. Their contribution to J(d,n) is given by

J(6,m) = C3(n) +67"Ca(n) + 67Cs(n) + C7(n) + O(9), (5.20)

where the C-coefficients are determined by the integral

Cj(n) 1/md /md /wam;() (5.21)
i(n) =3 x x ci(n), :
J n 2 0 1 0 2 0 (1 + .%'3)2 7 n
with the integrands
cj(n) = { n_lxs(xwz + x3 + X223 + T1T223 + x%)"’l , (5.22)
xn—lxn—1$3(x1 + 23 + 2123 + 2923 + T1T0w3) T L,

zd(1+z1 + 21 + 2102 + z1x3)T ! 73337133%7(1 + 1)1+ xg)”_l} i
Now we have to evaluate the resulting reduced integrals. This is what we turn to in the
next section.
5.3 Mellin-Barnes technique

Some of the integrations can be performed analytically for generic values of n by the
repeated use of a single table integral, i.e.,

F(l + a)F(_l — o= B) aa+,3+1b—o¢—1
I'(=p) '

However, a vast majority of nested integrations result in hypergeometric functions. Of

/OOO dz z%(a + bx)? = (5.23)

course, their poles in 7 can be evaluated by a variety of techniques, but we need a method
which can be generalized to multifold parametric integrals arising at two loops without the
need of advanced case-by-case analyses.

When evaluating the coefficients C}j, we need to resolve singularities in the integration
variables z; in such a manner that the poles in 77 become manifest. For parametric integrals
stemming from conventional Feynman graphs, there is a plethora of various strategies
based on the so-called sector decompositions which are implemented in public computer
codes to achieve this goal. However, they cannot be applied (at least, without significant
adjustments) to generic parametric integrals, like the ones we encounter for the Wilson loop
calculation where proper times enter on equal footing with Feynman parameters. In our
calculation, we applied for this purpose the well-known method of the Mellin-Barnes (MB)
representation (see, e.g., chapter 5 of [77] for a review). The basic tool is summarized by
the following simple formula

1 /Hoodzf(l/—i—z)f‘(—z) A3

B — .24
[Al + AQ]V —ico 2Tl F(l/) A11/+z ’ (5 )

which splits a denominator in terms of preselected components. Here the contour of

integration is chosen in a standard way: the poles with a I'(... + z) dependence are to the
left of the contour and the poles with a I'(... — z) dependence are to its right.
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The above-introduced MB partitioning results in a decomposition of complicated
polynomials building up denominators at the cost of introducing extra integrations over the
MB parameters z’s. We apply it iteratively with an aim to obtain a minimal number of
resulting MB integrations. Depending on a sequence of partitioning result may vary quite
substantially. The goal is to make the decompositions of the polynomials involved in such a
way that the resulting integrals over the z-variables could be taken explicitly with the help
of eq. (5.23).

The end game is that each given coefficient C} is represented as a multiple MB integral
with an integrand containing Euler gamma functions in its numerator and denominator. It
turns out that such MB integral representations are very convenient to resolve singularities
with respect to a given regularization parameter (in particular, € within dimensional
regularization or our analytical parameter 1) and obtain results in terms of Laurent series
in this parameter. The first step in this procedure is a resolution of singularities in the
regularization parameter. Roughly speaking, within each of the two known variants of this
procedure, one takes residues and shifts integration contours to obtain, in the end of the
day, a linear combination of multiple MB integrals where the Laurent expansion in the
regularization parameter becomes possible directly in the integrand.

The first strategy of resolving singularities in MB integrals was presented in ref. [84]
and the second one in ref. [85]. Both of them were implemented as computer codes
in [86] and [87], respectively. Mathematica implemented commands for the resolution of
singularities are MBresolve and MBcontinue, correspondingly. In fact, these two versions
are compatible in the sense of syntaxis involved and can be used interchangeably. In our
calculation, our choice was driven by evaluation timing: sometimes one worked faster than
the other, although, in most cases, they were essentially compatible.

The above two strategies of resolving singularities in MB integrals are known for more
than twenty years and were applied successfully in multiple calculations. We refer to
chapter 5 of [77] as well to [88] for details. This method offers us a real possibility to
perform all two-loop calculations in question to the end: contributions of regions, expressed
in terms of up to six-fold parametric integrals, are reduced to an up to five-fold MB integrals.
Relying either on MBresolve or MBcontinue to resolve singularities in 7, we then apply the
command DoAllBarnes [89] which is based on the first and the second Barnes lemmas and
their corollaries. After this, a lot of MB integrations are taken explicitly.

Most contributions of regions are then evaluated as linear combinations of double
and higher poles in n with coefficients which are linear combinations of just two elements
{1, 7%} accompanied by rational coefficients. Still in some cases, single and even double
MB integrations are left. In these situations, we use the possibility to evaluate single and
double MB integrals numerically with a high precision. For single integrals, we can have
the precision of thousand digits and more. For double integrals, the precision of 35 decimal
places is certainly accessible. Since there are only two elements in the basis of numbers
involved in our results, we can apply the PSLQ algorithm [90], for example, implemented
as a Mathematica built-in command FindIntegerNullVector, and present results for the
remaining single and double MB integrals in an analytical form.
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5.3.1 Example: one loop

In application to the one-loop case, the coefficient C3 can easily be found by means of the
recursive use of eq. (5.23). Performing them in the order z; — x9 — x3, we obtain

Cs(n) = 5T (1~ 2) (=TT +2m) = 5 + .. (5.25)

22
where we left after the second equality sign only the term responsible for double logarithmic
asymptotic in the Laurent expansion. Turning next to Cjy, only one integration can be done
with the help of (5.23), i.e., with respect to 1, yielding

INQE 277 72771(1 + x2)2"_1x§n
= d . 2
Caln) = 2I(1 — / 562/ (1 —i— x3)? (14 x3 + x223)" (5.26)

Next, we proceed with the MB technique. Partitioning the 14+x3 and zax3 in its denominator
with (5.24), we introduce an extra one-fold z-integration. However, now by changing the
order of integrations of z and x;, we can again solve the z; integrals by the repeated
application of eq. (5.23). In this manner, we obtain

< +ioo dz T(1+4 20+ 2)I(n+ 2)°T(—2)T'(1 — 3n — 2
Gy = [ PO NPT 30=9) o
—ico 2mi 2I'(24+n+ 2)
Finally, we apply MBresolve/MBcontinue to get the pole part in n
Caln) = — + (5.28)
4(n) = o T )
Analogous considerations for regions 6 and 7 yield
Coln) = = + Crln) = — = + (5.29)
67 2772 ) 7\n 2772 s .

Summing up all nonvanishing regions together in (5.20) and expanding in 7, we find
that all poles cancel, leaving just the finite part

1
j:§10g25+.... (5.30)

Upon the substitution § — 1/A, we recover our result for the diagram in figure 3(a)

Wl s =~z (@ +010), (5:31)

in the multicolor limit, where we introduced
{=1log A, = 213 (5.32)

Adding up the other three cusp contributions, we reproduce the well-known results for the
off-shell Sudakov behavior (4.6).
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5.4 Webs

A significant reduction in the number of Feynman graphs one needs to calculate is achieved
by means of non-Abelian exponentiation theorems [91, 92]. Applied to the Wilson loop
in question which admits the perturbative series (2.11), it can be summarized by the
following formula

log(Wx) = g2 (Wa )W + g (W)@ s + -, - (5.33)

The one-loop term simply exponentiates, while the two-loop quantum effects contribute
only through maximally non-Abelian webs. What this implies is that only contributions
proportional to the color factor Cr N, have to be selected from corresponding Feynman
graphs. For the case at hand, it is rather straightforward to understand that the Abelian
C%-structure of (Wy)® is already accounted for by the one-loop term since the (Abelian)
gluons can be attached in any order to Wilson links. In other words

W) = 2 [T+ W) et (5.34)

Thus, we can focus only on the second term. Feynman graphs which possess the maximally
non-Abelian color structure Cr N, at two loops, on the one hand, and produce at a least
double logarithmic dependence on A, on the other, are shown in figure 3 (b — f).

5.5 Self-energy insertion

Let us start our two-loop calculation with the graph (b) in figure 3, which involves gluon
polarization tensor from various fields of the theory and induces W22 . Since wy is accompa-
nied by two powers of the YM coupling, we have to expand everything else to order O(g2,,),
i.e., these are terms coming from interactions. There are several sources for gluon couplings.
Namely, the gluon self-coupling from the non-Abelian gluon field strength tensors in the
differential insertion A as well as the three-gluon coupling in the gauge-fixed action S, i.e.,

e = e (1 —igyy Ve +...) , (5.35)
where
Y, = / dPaoVy(zo), Vi = F(00 A%) AL A . (5.36)

On the other hand, there is just one source for fermions, scalars and ghosts in the path
integral (2.12) to this order in coupling: it is the Boltzmann weight. Their effects appear
through the substitution Vy — Vs + Ven + Vi + Vs in eq. (5.35). We will not list explicitly
other three-field vertices from the A/ = 4 Lagrangian since a reader can figure them out on
his/her own properly accounting for their normalization relative to the three-gluon one. The

notations for those are self-explanatory. Combining everything together, we deduce WQ(Q)

9) 1 1 , ‘ (0)
W = 5 <w2 {2[1/; + V5 + VF+ V] (Sg — 2150) — 2iV28) — 3v§}> . (5.37)
Notice the combination (S3 — 2iSy) accompanying the first term. It has a very simple
manifestation in Feynman rules. A simple analysis demonstrates that the linear term in Sy
cancels exactly the quadratic S3 when it is inserted into the same gluon line, i.e.,

Sg‘same gluon = 25y . (538)
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This property is well known, see, e.g., ref. [73]. So far all ingredients entering the vacuum
expectation value are D-dimensional. As a next step, we will integrate out all factors of the
free action in the path integral making use of the formulas like (5.2). Namely, we employ

<w2v§ (sg - 2i80)>(0) — 122 <w2vg>(0) ,

(waV2s, (S5 - 21'50)>(0) = 242 <V§¢g>(0) : (5.39)
<w2Vg250>(0) =4 <w2V§>(O) )

to obtain

Wi = % (wo[-V2 = V3, -V} - V§]>(O) . (5.40)
This is of course the usual form of vacuum polarization from conventional perturbation
theory.

Now, we are in a position to dimensionally reduce this expression and introduce the
off-shellness. Of course, the latter will regularize short-distance divergences stemming from
integrations in the vicinity of the cusps but it will not regularize ultraviolet singularities
stemming from closed internal loops. Since we want to keep the majority of calculations in
four dimensions we will choose this route but then we will have to introduce a renormalization
procedure for internal divergent subgraphs. Another way would be to perform an analytic
continuation in € to negative values ¢ = —e and continue with this extra regulator in
addition to m. We will comment on it at the end of this section.

Adding up individual loops spelled out in the appendix B, we find the self-energy
insertion into the one-loop Wilson graph

12

2N.C
WéQ) :—(20)8F/d;v’fldxé”/d4x0d4x0/D(xo;xl)(—12)Htr (xo,zo/)D(xz0;22), (5.41)
T
which is defined in terms of the transverse tensor

1 (200/) 1 (To0r)

tr _ 7 %

Wy = 20 <gmu2 —2 1,12 R (5.42)
00’ 00’

This expression is gauge invariant and enjoys conformal symmetry as well. Emergence of the
latter should not be a surprise since the position space renormalization affects only coincident
points by introducing singular delta functions, while away from them renormalized and bare
amplitudes are identical. It is an established fact that a two-point function, if conformal
invariant, must be gauge invariant too [94, 95].

5.5.1 Differential renormalization

Obviously the polarization tensors introduced in the previous section possess short-distance
ultraviolet singularities as xqr — x¢ due to products of virtual bulk-to-bulk propagators,
which are not tempered distributions. So these need to be renormalized. As we already
pointed out before, one way would be to use D-dimensionally regularized version of all
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propagators D (z,0) = I'(1 —¢)/(2%)!7¢ with D = 4 — 2¢ and then subtract 1/e-poles in a
conventional manner. In fact, we would have to resort to dimensional reduction in order
to preserve supersymmetry. This procedure sets up a particular renormalization scheme.
Actually pole subtraction could be done even before any integrations are performed, i.e.,
at the integrand level. Namely, making use of the Laurent expansion for a product of
regularized internal propagators, one finds [96]

71—//[/2 6727’713)]

2

2 2
12D (z,0) = %5“—26) (z) — iulog 22/ +0(e), (5.43)
where O = 9. One can now subtract poles at the integrand level. We would like to avoid
this step altogether since we prefer to stay in four dimensions and deal with all graphs,
ultraviolet divergent or not, on equal footing.

A renormalization procedure which does not introduce a regulator at an intermediate
stage and which is very well tailored to our application in the position space is the so-called
differential renormalization [97]. The idea behind this scheme is to rewrite products of
propagators as derivatives of less singular functions with derivatives understood via the
theory of distributions: formally integrating by parts and moving them to act on smooth test
functions. This step implicitly executes divergent subtractions. The resulting expressions
are then identical to the original ones away from singular points but have a well-defined
behavior when these do sit on top of each other.

Namely, the product of two propagators, which, as we know, does not have a four-
dimensional Fourier transform, is replaced with [97], cf. eq. (5.43) above,

1 log [2?/p*]

D?(z,0) — D&(x,0) = ~3 —

(5.44)
This expression possesses a Fourier transform when one drops divergent surface terms in the
integration by part of the d’Alambertian in the distribution theory sense. Higher powers of
the inverse squared distances are understood as derivatives of D (x,0). An ambiguity in
the renormalization scale % — e ;2 results in a local ~ ad™¥ () modification of the above
relation and performs a scheme transformation.

Since, in principle, one could introduce different renormalization scales for different
contributions to the integrand, there is an a priory intrinsic ambiguity in the differential
renormalization scheme. However, it can be fixed in gauge theories making use of Ward-
Takahashi identities between various graphs. This is what is known as the constrained
differential renormalization [98]. Redoing the calculation that led to eq. (5.42) for II'

H1p2?
we found according to the rules of ref. [98]

5N.—2ns—ng/2

chnf+ns/2ﬂ_26(4)
6N,

I (x,O) = (aluauz_gmlmlj) ON

H1p2 D%{(IE,O)-F

()],
(5.45)

where we kept contributions from gluons/ghosts, n¢ fundamental fermions and ng scalars
separately. This result agrees with corresponding expressions in refs. [99] and [100] for the
gluon-fermion and scalar terms, respectively. The reason why we kept effects of different
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particle types apart is to notice that in supersymmetric YM theories with NV = 1,2, 4
supercharges, the contact term vanishes identically. It is an interesting fact akin to the
vanishing of 2e-dimensional contributions to the tensor structure of the polarization tensor
in the dimensional reduction scheme [101].

Making use of the differential renormalization, we find for (5.41)

@) _4NCCF
W= T

where p is an arbitrary renormalization scale. So this contribution requires a scale setting

log(i2/m?) [ + O(0)] , (5.46)

procedure! For physical processes, there are several prescriptions to handle it, see, e.g.,
refs. [102-105]. The Wilson loop in question is not per se an observable, so it enjoys even
more freedom. Let us motivate our choice. In the well-studied massless case, one chooses
to regulate the cusp and UV divergences in the same fashion by means of dimensional
regularization. But even in that case there is an ambiguity in the scale setting which is
typically solved in a minimal fashion by identifying puyv = picusp- But this is in no way
unique since one can introduce a finite renormalization by setting pyyv = e picusp With some
constant a (recall the MS and DR subtractions in dimensional reduction regularization [101]).
In the current “massive” case, the situation is somewhat similar. Namely, the short-distance
cusp divergences are regularized by the off-shellness m? = :c% +1- So what should one
choose for ;12? If one sets it equal to e*m?, the self-energies will possess at most £2-behavior,
but it will be a pure finite renormalization with no higher logarithms to induce it. It is
known that in dimensional regularization, one generates an extra overall logarithm from
divergent subgraphs after subtraction on top of the ones of the parent graph, see, e.g., [13].
For the off-shell case, the reductionism suggests that since ©? should be non-vanishing even
in the massless case, yet another option is to set it to 235 = 23,. Then the self-energy graph
will contain a triple logarithm as expected. More generally, we can use the freedom in the
scale setting procedure of ultraviolet divergences to have its mass dimension carried by the
off-shellness but accompanied by a power of the only scaling variable in the problem, i.e.,
A = z3;/2%,. Therefore, we introduce the following parametrization

p? =e*m2A~, (5.47)
with some rationals®? a and «, so that

@) 4N.Cr
W= gy

So we kill two birds with one stone: we introduce a scale setting and a finite renormalization

o —al? + 0(0)] . (5.48)

with a choice of these two numbers. These will be fixed below.

Before we close this section, let us mention that we performed the above calculation in
the dimensional reduction scheme as well making use of the momentum-space polarization
operator of ref. [101] and Fourier transforming it to the position space. After subtraction of
the ultraviolet pole in e, we ended up with the subtracted form of eq. (5.41) which differs
from (5.46) by a rescaling of 2, as expected.

22Gcheme transformation constants are of lower degree of transcendentality than a given loop order
can produce.
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5.6 Abelian cross ladders

Let us turn next to the diagrams (c,d) of figure 3 with the Abelian cross ladders. Since all
powers of the YM coupling are already accounted for by the Wilson links, the differential
operator insertion A® has to be taken at tree level. The generic form of this contribution

to Wf) is

1 ) (0)
w = -5 (wa(S3 = 2iS0)) - (5.49)
For the diagram (c), we find immediately its contribution to the web
N t
Wf) Fig. 3(c = CF/ dSQ/ dsl/ dtQ/ thl/ qudOég(S a1+a2— ) (5.50)
ig.

X/O dﬁldﬁgé(ﬁl—{—52—1)IHtE3;]7[21]($§§,$§%;al,ag)lnt&,’%}’pu($i22,$§%;51,[32),

where only the N.C'r color factor is kept. Here the integrand given by the product of two
one-loop integrands (5.11). Similarly, for the graph (d), we get

N t
Wf) _ CF/ ds/ dtQ/thl/ dr/ dardasd(ay+as—1) (5.51)

Fig. 3(d

x /0 dpdfad (Br+Ba— 1)ty oy (24h, 2has 00, 00)Intlyd 1 (25,215 51, Ba)

The latter integral enjoys both hard scales 25 and x3,, but as we advocated earlier all we
need is its value at the symmetric point x2; = 73,. Evaluation of these contributions yields

(2) NCF 14

4 rig 30— (4m)t [ 2t ”Wﬂ (5.52)
(2) N.Cr

+ Irig. 3(a) W[ 2425”0(4)} (5.53)

Notice that the integral in figure 3 (¢) does not have cubic or quadratic terms following
the quartic: these cancel between various contribution in the product of the two terms of
eq. (5.11). Though, the second terms in Int’s are proportional to m?2, nevertheless they
induce logarithms of lower degree when multiplied by the first ones.

5.7 Three-gluon vertex

Finally, the three-gluon vertex contribution to the Wilson loop average reads

Wi = % (wsVs (2 + 450 + z'sg)>(0) . (5.54)

Since we have an inner interaction vertex, we can integrate out the free YM action in the
path integral. As can be anticipated the last two terms in round braces cancel against each
other via the identity

0
<w3v3sg>( "= 4i (wsV3S0)© (5.55)
leaving only the first term of the regular perturbative series

W = (ws(—i)Vs)© . (5.56)
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Now that we exhausted the use of the equations of motion, we can dimensionally reduce
this expression and get the following parametric integral for the diagram in figure 3 (e)

O = s [ [ [
w. |Fi ) = dss dsq dt daldagdagé(al + g + ag — 1)7 ,
3 IFig. 3(e) 16(27)2 Jo 0 o 0 L[232];[21]2

(5.57)
where the numerators is
_ 2 (.2 2
N(e) = t(az — ar)azziz(ry — 4m*), (5.58)
while the denominator reads
L[32];[21}2 = a1a2m2(31 - 32)2 + o3 (§1tx%3 + mz(t - 6_‘1)2) (5.59)
+ asas (52751‘%3 +m?(t — §2)2) +m? (15151 + aas252 + astt) .
Their calculation according to the procedure outlined above yields
(2 _NCF 11,4 3,3 3 2
Wl 5600 = 2 10 -36+ (1+36) 2+ o) . (5.60)

The last graph to address is Fig. 3 (f). Since the gluons dress up two cusps rather
than one, the resulting integral

N,.Cp 1 1 1 1 e
W kg, 3() = — / ds/ dt/ dr/ dodasdazd(an + ag + ag — 1) —5—D——
) 16(2m)*Jo " Jo o Jo Laagsorpon
(5.61)
is function of the two hard scales z%; and z3, entering in the numerator
(s = azatz((ar + tag)rd, + 5an (2l + 23, — 4m?))
+ a1y ((as + tag)ads + ras(zis + 23, — 4m?))
— ag(23; + 22, — 4m?) (Bon a3y + rasas,) , (5.62)
as well as the denominator
Lisg);[32):[21) = Q102 (Etx% +m?(5 — t)z) + agar3 (frxi +m?(t — 7’)2) (5.63)

+ aqas (57’3:%3 + sra3y +m?(s — 7“)2> +m? (185 + astt + agrr) .

The three-term numerator is a reflection of the three tensor structures of the three-gluon
vertex. Analyzing the small-m asymptotic behavior of this graph at the symmetric point
x?, = x3,, we find that the last term in the numerator is O(¢), while the other two give
identical contributions. Summing these up, we deduce

N.C
W?E2)|Fig. 3(f) = (47T)§ {szQ + 0(5)} . (5.64)
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5.8 Sudakov scaling

Adding all graphs up together accompanied by the corresponding multiplicity factors, we
observe an immediate cancellation of the ¢* dependence. To cancel £3, we have to properly
choose the coefficient « in the scale setting procedure for p?: this is achieved for a = 3/4.
Finally, the rational contribution to the coefficient of ¢? is scheme dependent and can be
eliminated by equating a = 1/2. The transcendental portion of this coefficient is scheme
independent and is the main result of this section. Combined with the one-loop asymptotics,
the Sudakov behavior is driven by the exponent

log(Wy) = —(4g® — 429" 0* + O(¢) (5.65)

in the planar limit. Surprisingly enough, we find that the function of the coupling accompa-
nying £2 is T'hex shown in eq. (1.7), which made its first appearance in the hexagon remainder
function when all cross ratios tend to zero [57]. Of course, to this order in coupling we
cannot clearly differentiate whether it is truly ['hex or rather a linear combination of the cusp
and hexagon anomalous dimensions (or of all three) that governs the asymptotic behavior.??
A three-loop calculation would resolve this predicament. However, it is currently out of

reach since it requires a three-loop massive calculation.

6 Conclusions

In this paper, we proposed a generalization of the bosonic Wilson loop on a piece-wise
contour to the case of the cusps separated in Minkowski space by timelike, rather than
null, intervals. The motivation behind it was to find a generalization of the scattering
amplitudes/Wilson loop duality, well-known for on-shell massless setup, to the off-shell
situation. This was achieved by considering a holonomy of the gauge connection just above
four dimensions and subsequent dimensional reduction of its interior down to four with
the extra dimensions of the perimeter accommodating the off-shellness. Practically this
was done by means of the formalism of Lagrangian insertions which clearly disentangle the
boundary from the bulk.

Performing a one-loop calculation of the off-shell Wilson loop for four sites, we demon-
strated its exact equivalence at the integrand level to the one of the four-gluon amplitude
in the Coulomb branch of N' =4 SYM [44] before setting all virtualities y]2'j+1 to the same
fixed value m?. This implies that the former enjoys conformal symmetry to this order in
coupling. By calculating its asymptotics of vanishing virtuality we uncovered a well-known
form of the Sudakov behavior with a factor of 2 difference between the on- and off-shell
amplitudes at this order. This repeated and confirmed the familiar Abelian Sudakov form
factor story known for almost half a century. However, it appears that it was taken for
granted that this doubling is the only effect that occurs at higher loop orders for the infrared
asymptotics of scattering amplitudes for dimensional versus off-shell regulator, see [6, 11].
Results of ref. [44] suggested instead a different mechanism and pointed to a completely
different function of the coupling that drives the infrared evolution of amplitudes in the

ZWe are grateful to Benjamin Basso and Lance Dixon for a discussion of this issue.
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off-shell regime, and this is the octagon anomalous dimension Ty, see eq. (1.7). Quite
recently it was demonstrated the octagon O is exactly equivalent to the Sudakov limit of a
two-particle off-shell form factor in N'=4 SYM [106].

In fact, we observed that the agreement between the off-shell Wilson loop and Coulomb
branch amplitudes holds already at the level of integrands. At two loops this identification
would be far more involved since, even with the use of Lagrangian insertions, the definition
of integrands is not unique. Making use of fields’ equations of motion one can recast them
in different shapes and forms, which will be equivalent only at the integrated level. Our
findings in this work suggest that even for integrals, our proposal needs alterations plausibly
along the lines mentioned in the Introduction.

Due to availability of perturbative data for the Coulomb branch scattering amplitudes
through octagons alluded to above, we calculated the off-shell Wilson loop at O(g*) in
't Hooft coupling. We considered only its Sudakov limit at a symmetric point which is
sufficient to deduce the anomalous dimension which governs it. The analysis was involved
and subtle. The non-vanishing off-shellness regularizes only short-distance divergences
around the perimeter of the loop, i.e., cusp singularities. However, the interior quantum
loops had to be dealt with separately: they had to be renormalized by an independent
procedure. We chose differential renormalization as such since it leaves the dimensionality of
the interior intact. Subtraction of emerging ultraviolet divergences lead to the introduction
of yet another independent mass scale in addition to the off-shellness. We observed that
upon a proper choice of the renormalization scale setting procedure, the off-shell Wilson
loop enjoys exponentiation of the Sudakov double logarithms, however, the accompanying
coefficient was found to be I'hex, see eq. (1.7). The latter was first discovered in the origin
limit of the remainder function of on-shell six gluon amplitude in ref. [57]. Does it imply
that the conformal symmetry is violated starting from two loops? Of course, all that
conformal symmetry says about the structure of the Wilson loop is that it is a function of
two conformal cross ratios, while the dependence on the ’t Hooft coupling is completely
arbitrary from this standpoint. To address this question in a systematic fashion, we have
to restore generic kinematics in order to elucidate the role of perimeter regularization in
the pattern of its breaking, if any. It can also be studied by means of conformal Ward
identities along the lines of refs. [14, 107]. Another natural question which arises is whether
the exponent governing the current Sudakov behavior is universal. Is it the same for the
off-shell Wilson loop with any number of sites? This question can be addressed in a rather
straightforward manner making use of the technique employed in this paper.

A posteriori, it appears dubious for the octagon anomalous dimension to even emerge
from a bosonic Wilson loop calculation, especially at higher loops. The perturbative
expansion of 'yt contains only even zeta values, while Wilson loops pour-forth both, even
and odd. So were the octagon anomalous dimension to stem from one, what constraints on
its form and perturbative series would ensure this?

While we apparently have a robust definition of the off-shell Wilson loop order-by-order
in the perturbative expansion, can it be lifted nonperturbatively? If it does, it would be
interesting to understand the dynamics of the emerging two-dimensional world-sheet. The
energy-density of the gauge flux sourced by the contour is different from either the cusp or
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the octagon anomalous dimensions. It is known that all three I',,’s are accommodated in
the same equation with a tilted flux-tube kernel [57]. Is there a tilted form of a long-range
Baxter equation which is their progenitor and what kind of integrable model it corresponds
to? If this problem has an affirmative solution, it would be interesting to explore the
spectrum of excitation propagating on the tilted world-sheet, their dispersion relations and
scattering matrices. Hopefully, some of these questions can be answered in the not too far
distant future.
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A Mellin-Barnes representation

Let us provide details for the reduction of parametric integrals in the body of the paper
to contour integral representations. We will focus on the most complicated exchange
contribution in figure 2 (a) and merely state results for the rest. We split it according to
the structure of the numerator in terms of its z2-dependence, i.e., coefficients accompanying
22423, 233, 23, and the rest. The starting point is the well-known formula [108, 109]

1 B 1/d21d22 (Al>21 (142>Z2 F(—Zl)F(—ZQ)F(Z1+ZQ+V)
[Al—I—AQ—l-AQ]V N Ag (27’[‘i)2 Asg As F(Z/) ’

(which is a natural generalization of eq. (5.24) quoted in the main text) with implicit

(A1)

integration contours running along the imaginary axis and separating poles of the Euler
Gamma functions with positive and negative signs of j’s. We apply it to the denominator
D defined in eq. (4.3). After this, the integral over o can be performed in terms of the
Appell function F; [110] (see eq. (3.6) there), which reads

T _ 1y 5 _atp-1L(@)['(B) Ti2 Ti2
/72 do(r1—0)* Yo —1)""1075° = 1) 7’ Tth) Fy (5,—7,—5,a+6,—7_2,7__2> .
Unfortunately, we were not able to perform the remaining integrals over the proper times 7|
and 75 analytically due to the coupled nature of the two arguments of the Appell function.
To be able to advance and do it, however, we will proceed with a further Mellin-Barnes
representation for the Appell function itself.

Before we do it, however, we observe that for the 2%;23,-structure, the Appell function
actually reduces to the simpler hypergeometric function o F7 by means of the known identity

Fi (o B1, B2; Br + Pos 11, 12) = (1 — 12) "%y (06,51,51 + [, 7-_12> ,
T2

~32 -



such that

2 z z D 3
L'(D/2) — 2\—D/2 ! ! dz; ‘ 223\ (23, \ 72 F(§+Z1+22)
«Dﬂﬁm»‘”_m) .A‘”lod” ll%ﬁ”‘%)7ﬂ m? ) T(D+221+22)
D D

R —y A D D T
><Tf27'1 2 Ty 2 7'51 o FY (54—214—2275+Z1+22;D+221+2Z2;—ﬁl;).

(£.2)

Finally, employing the Mellin-Barnes representation for o F7,

I'(v)
C()T(B)T(y — a)T(y — B)

X / ﬁ(1 — 1) T (=2)a+2) B+ 2)'(y—a—F—=2), (A.3)

21

oFy (o0, By, 7) =

we obtain a three-fold contour integral which is quoted in eq. (4.4) of the main text.
For z2;-coefficient, the Fy does not simplify and is left as it is. However, to employ a
well-known contour integral form for it [111], namely,
. . ___ Iy
Fl (aaﬁl7ﬁ2a777177—2) - F(a)l—‘(ﬂﬂr(ﬂz)

dz1dzo 21 29 F(le)F(fzg)F(/J’l+z1)1’(ﬂ2+z2)1“(a+21+22)
| G e e Flr+eit22)

(A.4)

one has to make sure that both arguments of the function have phases obeying the constraints
larg(—712)| < m. This is not the case in eq. (A.2) since both integration regions 7 < 7
contribute on equal footing. The problem can be partially alleviated by reducing the region
71 < To to the other one 71 > 7. In fact the result for the latter just doubles. However,
after this is done, while the first argument in eq. (A.2) satisfies the above condition, the
second one does not. To correct this, we use the transformation

- —a— T
Fi (0381, Byim1,m2) = (1—2) 2 (1—m) " |y <’Y—Oé;7—ﬁ1—52,52;7%7'177122> :
Assembling everything together, we obtain the following four-fold integral
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Figure 4. One-loop vacuum polarization from gluons, ghosts and fermions/scalars.

where

—ﬂ—ZQ,CkQ—D/Q—FQ—i-Zl—22+23,041—D/2+1—22—Z4
Oé2—D/2+2—22+23,042—D+3—22—Z4

Favos = 3F ( 1) . (A6)
Finally, let us address the last term in the numerator of eq. (3.4), which we referred to in
the main body as to the self-energy-like contribution. Indeed in the exchange graph 2(a) it
can be integrated over the proper times to get

Wo(ff)shell iT2( il“(D/2) / dn/ de/deo 25, — 3;322][3733 34] s
32D 711E01 7'1%2] /[ 7'2%3_7'25504] /

Y

zF2 D/2-1) _ _ _
32; /dD R L D/2) ([_x%?’]l DI2_[_g2 |1 D/2)
(A7)

and depends only on the boundary values of the links. The last contribution to the graph
(b) as well the diagram (c) admit the same form and add up to zero.
Last but not least, the vertex graph is deduced from the exchange by taking the residue

at zo = 0 and setting x3, = 0. In this case, the hypergeometric function 3F reduces to

products of Euler Gammas and the result reads

D D
222 m25' F(E) _ 22%3 F(2 _1) —
13 DD/QO 7.122 D1:)/2O 1
13, T13;

dzs 22\ [((f—2—2—3)(d+2:—4) L4z -1
D/2 1/H QszF (7712) 2( -1

z
%—Z2—3)(d+2’3—4) B 22 +1

X F(ZQ + Q)F(ZQ + 23 + I)F (g + 21) r ( g 23 + 2)
d
2

F(*g+z1+22+3)F(%+21+23*1)F( 21722723+1)F(%+Z1+Z2+23)

A.
T (=242 +3)T(—d — 25 + 4L (d+ 221 + 22 + 23) -

It was also rechecked by an explicit calculation as well.

B Vacuum polarization tensors

Let us quote here the form of vacuum contributions from gluon, ghost, fermion/scalar fields
to the gluon propagator. Calculating corresponding Green functions, we find

4N,
(47_‘_26)4 §araz /d4l‘0d4l'0/D(-T1; :L‘[))l_[f:l“2 (mo, xo/)D(xQ; xo/) ,
(B.1)

(A (2) A2 (22)V2)© = —
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where the polarization tensors (in the Feynman gauge)

1 n9uipe (3700’>u1 (3300’)#2
H%wz (zo,zo) = 10 xSOI —22 5580/ , (B.2)
h (700/) 1 (o0 )
H%l#& (1'07 -%'0’) =2 'l;lgo, k2 ) (B.3)
4nf +n oo/ oo’
Hffum (z0, wor) = - Guipe — 2( )MQ( )M ) (B.4)
Ne Toor

correspond to respective diagrams on the right hand-side of the equality sign of figure 4.
The first and second structures agree with known polarization tensors, respectively, see,
e.g., ref. [93]. Here, when displaying results for ‘adjoint matter’, we were slightly more
generic and exhibited them for n; fundamental fermions and ny real scalars. In N = 4
SYM, n¢ = 4N, and ng = 6N,..
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