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Abstract

Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are bacterial membrane
lipids that are frequently employed as paleoenvironmental proxies because of the
strong empirical correlations between their relative abundances and environmental
temperature and pH. Despite the ubiquity of brGDGTs in modern and paleoenviron-
ments, the source organisms of these enigmatic compounds have remained elusive,
requiring paleoenvironmental applications to rely solely on observed environmental
correlations. Previous laboratory and environmental studies have suggested that the
globally abundant bacterial phylum of the Acidobacteria may be an important brGDGT
producer in nature. Here, we report on experiments with a cultured Acidobacterium,
Solibacter usitatus, that makes a large portion of its cellular membrane (24 + 9% across
all experiments) out of a structurally diverse set of tetraethers including the common
brGDGTs la, lla, llla, b, and llb. Solibacter usitatus was grown across a range of condi-
tions including temperatures from 15 to 30°C, pH from 5.0 to 6.5, and O, from 1%
to 21%, and demonstrated pronounced shifts in the degree of brGDGT methylation
across these growth conditions. The temperature response in culture was in close
agreement with trends observed in published environmental datasets, supporting a
physiological basis for the empirical relationship between brGDGT methylation num-
ber and temperature. However, brGDGT methylation at lower temperatures (15 and
20°C) was modulated by culture pH with higher pH systematically increasing the de-
gree of methylation. In contrast, pH had little effect on brGDGT cyclization, support-
ing the hypothesis that changes in bacterial community composition may underlie the
link between cyclization number and pH observed in environmental samples. Oxygen
concentration likewise affected brGDGT methylation highlighting the potential for
this environmental parameter to impact paleotemperature reconstruction. Low O,
culture conditions further resulted in the production of uncommon brGDGT isomers
that could be indicators of O, limitation. Finally, the production of brGTGTs (tri-

alkyl tetraethers) in addition to the previously discovered iso-C15-based mono- and
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1 | INTRODUCTION

Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are a
group of membrane-spanning non-isoprenoidal lipid biomarkers
first characterized from peat (Sinninghe Damsté et al., 2000) and
since discovered in virtually all modern environments including soils,
lakes, rivers, hydrothermal settings, marine environments, and sed-
imentary systems (De Jonge, Stadnitskaia, et al., 2014; Hopmans
et al., 2004; Lincoln et al., 2013; Raberg et al., 2022a; Tierney &
Russell, 2009; Weijers et al., 2006). Today, several structural varia-
tions of brGDGTs that differ in the number of cyclopentyl moieties,
the number of methyl branches, and the position of some of the
branches are routinely quantified in environmental samples and fre-
quently used for paleoenvironmental reconstruction (e.g., Lauretano
etal, 2021; Lindberg et al., 2022; Lu et al., 2019; Naafs, Gallego-Sala,
et al., 2017; Peterse et al., 2012; Weijers et al., 2007).

In environmental brGDGTs, the number of alkyl-chain methyl-
ations correlates strongly with temperature in numerous sample
types, including soils (e.g., Naafs, Inglis, et al., 2017), peats (e.g.,
Naafs, Gallego-Sala, et al., 2017), lake sediments (e.g., Martinez-
Sosa et al., 2021; Raberg et al., 2021), and marine sediments (Xiao
et al., 2022). These changes in the number of methylations are
commonly quantified by calculating indices such as the methyla-
tion index of branched tetraethers (MBT; Weijers et al., 2007; and
MBT'5y.
DGTs into the structurally based methylation (Meth) set (Raberg

De Jonge, Hopmans, et al., 2014) or by grouping brG-

et al., 2021) for comparisons with environmental temperatures.
Similarly, a correlation has been observed between pH and brGDGT
cyclopentane ring number, as demonstrated by the cyclization index
of branched tetraethers (CBT) and related indices (e.g., CBT),, and
CBT'; De Jonge, Hopmans, et al., 2014) or the cyclization (Cyc) set
(Raberg et al., 2021). Additionally, both pH (e.g., through the isomer
ratio index; Dang et al., 2016; De Jonge, Hopmans, et al., 2014) and
salinity/conductivity (e.g., Raberg et al., 2021; Wang et al., 2021)
have been shown to correlate with the positions of alkyl-chain
methylations. Finally, other environmental parameters, most notably
dissolved oxygen (Liu et al., 2014; Martinez-Sosa & Tierney, 2019;
Weber et al., 2018; Wu et al., 2021; Yao et al., 2020), can influence
brGDGT distributions in nature, adding complexity to the observed
relationships between structural distributions and temperature/
pH, posing both new challenges and new opportunities for proxy
applications.

Despite more than 20years of work on environmental brGDGTs,
the source organisms of these ubiquitous compounds remain largely

diethers in S. usitatus suggests a potential biosynthetic pathway for brGDGTs that

uses homologs of the archaeal tetraether synthase (Tes) enzyme for tetraether syn-

Acidobacteria, brGDGTs, paleoclimate

unknown. Though brGDGTs are structurally similar to membrane-
spanning isoprenoidal glycerol tetraethers produced by Archaea,
the stereochemistry of the glycerol backbone of brGDGTs points
to a bacterial source (Weijers et al., 2006). Among the myriad bac-
terial heterotrophs that exist in nature, the phylum Acidobacteria
has gained the most attention as a potential source group of envi-
ronmental brGDGTs. In soil environments, Acidobacteria frequently
represent more than 20% of all classified bacterial sequences and as
high as 70% in some acidic environments (Jones et al., 2009), with
community sequencing in environmental samples and laboratory
mesocosms showing strong correlations between Acidobacteria
populations and the production of brGDGTs (De Jonge et al., 2021;
Martinez-Sosa & Tierney, 2019; Weijers et al., 2010).

Unfortunately, the isolation and subsequent laboratory cultiva-
tion of Acidobacteria have proven difficult, resulting in only a small
pool of cultured representatives (George et al., 2011) with still no
pure cultures available for more than half of the 26 major taxonomic
subdivisions (SDs; Barns et al., 2007). Insights about the physiology
and likely heterotrophic, oligotrophic, and mostly aerobic lifestyle of
the Acidobacteria are thus largely built on genomic analyses (Eichorst
et al., 2018) and culturing work with a relatively small group of SD
1, 3, 4, 6, and 8 pure cultures. Laboratory studies with the available
strains revealed several likely brGDGT precursor lipids found within
the phylum (Sinninghe Damsté et al., 2011) including abundant
ether-bound lipids in SD 4 cultures (Sinninghe Damsté et al., 2014,
2018), and the identification of at least one common brGDGT (brG-
DGT la) in two SD 1 strains (Sinninghe Damsté et al., 2011) that is
synthesized in response to low O, in one of the two strains (Halamka
etal., 2021).

Despite these discoveries and ongoing efforts to isolate new
Acidobacteria and other soil microorganisms, no organisms that
produce the entire range of brGDGT structures found in nature
and used in proxy calibrations have emerged. Other phyla of soil
bacteria, often with equally poor representation in culture collec-
tions as Acidobacteria, cannot be dismissed as potential brGDGT
producers. Acidobacteria are not nearly as abundant in the bacte-
rial communities of some other environments, including lakes (van
Bree et al., 2020; Weber et al., 2018), that still harbor brGDGTs with
similar environmental correlations as soils (Raberg et al., 2022b).
Environmentally observed brGDGT patterns could thus be the re-
sult of microbial community shifts, the physiological responses of
various taxonomic groups, or a combination of both community
shifts and physiological responses (De Jonge et al., 2019, 2021; Guo
et al., 2022; Raberg et al., 2022a).
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As part of ongoing research into the effects of low O, on brG-
DGT production (e.g., Halamka et al., 2021), we investigated several
cultured Acidobacteria that harbor low-affinity terminal oxidases in
their genomes including the SD 3 Acidobacterium Solibacter usita-
tus (Joseph et al., 2003; Ward et al., 2009), hypothesizing that they
might be adapted to low O, environments. Here, we report that
S. usitatus produces the common brGDGTs la, lla, llla, Ib, and llb
(Weijers et al., 2007) as well as several other tetraethers including
brGTGTs (Glycerol Trialkyl Glycerol Tetraethers) and uncommon iso-
mers of brGDGT Illa and Illb. We find that tetraethers comprise a
significant fraction of this organism's cellular membrane (24 + 9% on
average across all experimental conditions) and change in relative
abundance in response to physiological constraints including tem-
perature, pH, and O,, allowing a direct comparison to brGDGT dis-
tributions observed in proxy calibration datasets. We demonstrate
that the degree of brGDGT methylation in S. usitatus in response to
temperature variations agrees with empirically developed brGDGT-
based temperature indices. In contrast, we find that the degree of
brGDGT cyclization in S. usitatus in response to pH does not match
environmental trends. Finally, we show that the brGDGT llla and Illlb

isomers found in S. usitatus respond to changes in O,.

2 | MATERIALS AND METHODS

2.1 | Microbial strains, media, and growth
conditions

Solibacter usitatus strain Ellin6076 (Joseph et al., 2003, Ward
et al., 2009); originally named Candidatus S. usitatus but suffi-
ciently described to become a fully established taxon since, (see
Oren et al.,, 2020) was acquired from the German Collection of
Microorganisms and Cell Cultures (DSM 22595) and was grown in
triplicate in a modified DSMZ 1266 medium at all presented tem-
perature (15, 20, 25, and 30°C), pH (5.0, 5.5, 6.0, 6.5), and oxygen
(1%, 5%, 21% O,) conditions (see Table S1 for overview). Modified
DSMZ 1266 medium consisted of 13.3 mm MES (2-[N-morpholino]
ethanesulfonic acid) buffer, 0.67g/L yeast extract (YE), 2.5 mm
glucose, 0.27mm MgSO,,, 0.4 mm CaCl,, 0.2 mm KH,PO,, 0.4 mm
NH,CI, 15nm (3 pg/L) Na,SeO,, 16nm (4 pg/L) Na,WO,, 1.33ml/L
SL10 trace element solution, and 1.33ml/L HS vitamin solution.
SL10 trace element solution contained 1.5 g/L FeCl, x4 H,0O,
70mg/L ZnCl,, 100mg/L MnCl, x4 H,0, 6 mg/L H;BO,, 190mg/L
CoCl, x6 H,0, 2 mg/L CuCl, x2 H,0, 24mg/L NiCl, x6 H,0, and
36mg/L Na,MoO, x2 H,0. HS vitamin solution contained 50mg/L
alpha-lipoic acid (thioctic acid), 50mg/L biotin (D+), 100mg/L Ca-
pantothenate (D+), 50mg/L cyanocobalamin (B12), 50mg/L folic
acid, 100mg/L nicotinic acid (Niacin), 100mg/L p/4-aminobenzoic
acid, 100mg/L pyridoxine hydrochloride, 100mg/L riboflavin, and
100mg/L thiamine hydrochloride. Media pH was buffered by MES
(pK, 6.15) and adjusted with 5 M NaOH to pH values of 5.0, 5.5, 6.0,
and 6.5, depending on the experiment. All pH values were confirmed
from media aliquots at the beginning and end of each experiment

using a Mettler Toledo InPro4260i pH sensor calibrated with com-
mercial pH 4.0 and 7.0 standards. No significant pH changes were
detected from culture growth.

Aerobic culture experiments were conducted in standard yellow-
capped 25ml culture tubes (18 mm diameter) with 10 ml of media
shaken at 250 rotations per minute (rpm) in atmosphere (21% O,).
Suboxic culture experiments were conducted in 100ml media bot-
tles with 60ml of media and gasket-sealed screw-cap lids. Suboxic
headspace was achieved by continuously flushing the culture head-
space through gas-impermeable 1/8" PTFE tubing connected to in/
out ports with standard %-28 liquid chromatography compression
fittings at a rate of 100ml/min with high purity N, blended with
compressed air using digital mass flow controllers (Alicat Scientific,
MC-Series). The gas blend for ~1% O, cultures consisted of 95% N,
and 5% air (v/v), and the gas blend for ~5% O, cultures consisted of
75% N, and 25% air (v/v). All suboxic cultures were stirred continu-
ously with a magnetic stir bar at 625rpm to ensure gas equilibration
between headspace and media. The long duration of these growth
experiments required that gas was bubbled through sealed sterile
water prior to entering the culture vessels to prevent rapid evapo-
ration of culture media. All cultures were incubated in temperature-
controlled forced-air incubators (capable of heating and cooling) set
to 15, 20, 25, and 30°C, depending on the experiment.

To eliminate the risk of contamination by common fast-growing
laboratory contaminants during the long growth experiments (up
to 57days), cultures were never subsampled during growth and
growth was monitored exclusively using optical density (OD) mea-
surements through the culture vessels. For aerobic culture tubes,
OD measurements were taken manually at 600nm every 1-4days
using a GENESYS 30 (Thermo Scientific) visible spectrophotometer
with adapter for culture tubes. For suboxic culture bottles, OD mea-
surements were recorded automatically every 10 min using a custom
3D-printed bottle adapter fitted with a narrow beam angle 630nm
LED (Marktech Optoelectronics, MTE7063NK2-UR) as light source
and adjustable gain optical sensor (Texas Instruments, OPT101) as
detector controlled by an ARM Cortex M3 powered microcontrol-
ler (Particle Industries, PHOTONH). All growth curves are reported
in the Sl (Figure S2). Growth rates were calculated for all replicate
cultures by fitting growth curves to the logistic equation (Table S1,
Figure S3). All cultures were inoculated from cells passaged repeat-
edly in the same medium. Based on optical densities of the inoc-
ulum and final optical densities of the batch cultures at harvest,
all experiments represent at least 6 generations of cells (Table S1),
which means the inoculum contributed maximally 1.6% of the final

extracted lipids.

2.2 | Lipid extraction and analysis

Harvested cells were extracted using the rapid acid hydrolysis-
methanolysis protocol described in Halamka et al. (2021). Briefly,
cells from liquid culture were harvested in stationary phase by cen-
trifugation (5000rpm for 3 min). Harvested cells were lyophilized
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overnight and then physically disrupted in 2 ml microcentrifuge
tubes by vortexing with 250 ul methanol (MeOH) and 250 ul volume
equivalent of 100pum muffled glass beads for 10 min at 3000rpm
using a Disruptor Genie (Scientific Industries, SI-DD38). Excess
MeOH was evaporated and 25pg of 23:0 PC (1,2-ditricosanoyl-sn
-glycero-3-phosphocholine), 25pug of 24:0 fatty acid (tetracosanoic
acid), and 25ng of C46 GTGT (glycerol trialkyl glycerol tetraether;
Huguet et al., 2006) were added to all samples as internal quantifica-
tion standards. Lipids were extracted for 20 min at 65°C with 500 pl
3 N hydrochloric acid (HCI) in MeOH (33% final water content) to
cleave headgroups and transesterify fatty acid esters to fatty acid
methyl esters (FAMEs). Samples were cooled for 10-min before the
addition of 500 pl methyl tert butyl ether (MTBE). The upper organic
phase was extracted 3 times with 500 ul n-hexane, and total lipid
extracts (TLEs) were evaporated under N,.

Monoacyl glycerol ethers (MAGEs, or monoethers) and diacyl
Glycerol Ethers (DAGEs, or diethers) were acetylated for gas chro-
matography (GC) analysis by suspending in 100 ul of dichlorometh-
ane (DCM) with the addition of 20 ul of anhydrous pyridine and 20 pl
of acetic anhydride. Samples were then incubated at 70°C for 20 min
before evaporation and resuspension in n-hexane for analysis.
FAMEs, MAGEs, and DAGEs were analyzed in the CU Boulder Earth
Systems Stable Isotope Lab on a Thermo Trace 1310 GC using a SSL
injector and a 30m DB-5 HT capillary column (Agilent Technologies,
0.25mm [.D., 0.25 pm film thickness; 2 min at 40°C, ramped to 295°C
at 15°C/min, ramped to 315°C at 5°C/min, and ramped to 375°C at
15°C/min then held for 5 min at 375°C). Compounds were identi-
fied based on retention times compared with a bacterial acid methyl
ester (BAME) standard (Millipore Sigma) and a 37 FAME standard
(Supelco) and by their characteristic fragmentation patterns using
a Thermo Scientific 1ISQ Single Quadrupole Mass Spectrometer on
full scan mode and quantified by flame ionization detector (FID) in
comparison with the 24:0 fatty acid extraction standard.

Tetraethers were analyzed in the Organic Geochemistry
Laboratory at the University of Colorado Boulder on a Thermo
Scientific Ultimate 3000 high-performance liquid chromatograph
(HPLC) coupled to a Q Exactive Focus Orbitrap-Quadrupole MS
with an atmospheric pressure chemical ionization (APCI) source
using a previously published normal phase (NP) method (Hopmans
et al., 2016) with the following modifications to slightly lengthen the
method for isomer separation (Raberg et al., 2021): the initial isoc-
ratic elution used 14% instead of 18% eluent B (9:1 hexane: isopro-
panol) and correspondingly 86% instead of 82% eluent A (hexane).
This 25-minisocratic hold was followed by a linear gradient to 35% B
over 35min instead of over 25 min (Hopmans et al., 2016); then, a lin-
ear gradient to 100% B over 30min (same as Hopmans et al., 2016),
re-equilibration to 14% B over 1 minute, and ending on a 19-min
isocratic hold at 14% B for a total of 110 min of run time with a flow
rate of 0.2 ml/min. BrGDGTs were identified using their correspond-
ing retention times in an in-house environmental reference sample
(0-1 cm surface sediment from lake 3LN, northern Quebec, Raberg
et al., 2021), their molecular masses, and the MS/MS spectra gener-
ated by data-dependent acquisition mode (ddMS/MS). A subset of

TLE samples was also analyzed by reverse phase (RP) LC (Connock
et al., 2022) to confirm relative elution order of brGDGT isomers and
further constrain their identity (data not shown). Cellular tetraether
abundances were calculated relative to fatty acids (FA) and mono/
diethers using the C24 and C46 internal standards. Tetraether abun-
dances relative to the standard brGDGTs are reported as %br:

%br = [(brGDGTx)/(la+ Ib + lc + lla+ llb + llc + llla + l1lb + lllc)] x 100
(1)

2.3 | Environmental samples

To test culture production of brGDGTs against brGDGT-based proxy
calibration datasets, we compare brGDGTs produced by S. usitatus
against a comprehensive compilation of brGDGT observations in
environmental samples (Raberg et al., 2022b). The compiled dataset
includes global observations from the six sample types most often
reported on in brGDGT literature: soil, peat, lacustrine sediment,
lacustrine settling/suspended particulate matter (SPM), marine sedi-
ment, and bone. Reported temperatures for environmental samples
were standardized where possible by Raberg et al. (2022a, 2022b)
but are necessarily++ different for some sample types (e.g., water
temperature for lacustrine SPM versus air temperature for bone). To
further supplement the dataset presented by Raberg et al. (2022b),
we compiled soils published with in situ soil temperature data (re-
corded using temperature loggers at 2-10 cm depth) from Wang
et al. (2020), Pérez-Angel et al. (2020), De Jonge et al.,, 2019,
Sigurdsson et al. (2016), Wang and Liu (2021), and Halffman
et al. (2022). We used mean monthly temperatures, either calcu-
lated from hourly measurements (De Jonge et al. 2019; Sigurdsson
etal. 2016; May 8, 2013, to May 7, 2015), provided through personal
communication (H. Wang and W. Liu, September 3, 2020; Wang
et al. 2020), or reported (Pérez-Angel et al., 2020), to calculate in
situ mean annual temperature (MAT), mean temperature of months
above freezing (MAF), mean summer (June, July, and August) tem-
perature (JJA), and temperature of the warmest month (WMT). For
all other sites, we used reported in situ temperature parameters as
available. One soil (site 5F of De Jonge et al. 2019) was removed as
an outlier (residual >3* RMSE of linear regressions between MBT’SME

and temperature for all in situ temperature parameters).

2.4 | Branched GDGT Indices and Statistics

The brGDGT indices MBT’SMe (De Jonge, Hopmans, et al., 2014),
CBT;), (De Jonge, Hopmans, et al., 2014), and degree of cyclization
(DC; Baxter et al., 2019) were calculated as follows:

MBT,

sme =(a+Ib+lc)/(la+Ib+lc+lla+Ilb+llc+1la) (2)

CBTsye = — log((Ib + 1Ib) / (la + lla)) 3)

DC=(lb+2*lc+1b+1Ib") /(la+ b+ Ic+lla+ lla’ +1lb + 1Ib") (4)
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BrGDGT fractional abundances in the methylation and cycliza-
tion sets were calculated according to Raberg et al. (2021). Broadly,
for brGDGT with roman numeral x (I, I, or 1) and letter y (a, b, or c),
the fractional abundance f in a given structural set S is calculated as

follows:
fxys =xy/ Y. (brGDGTsinS). (5)

Correlations between the calculated MBT’5Me and CBT,,, indi-
ces and the culture and environmental data were evaluated using
Pearson correlation coefficients (r) and their p-values. For culture
data from this study, the growth parameters temperature, growth
rate, pH, and % O, were evaluated. For environmental data, the en-
vironmental parameters temperature and pH were evaluated, as well
as the in situ temperatures discussed above. For statistically signifi-
cant correlations (p <.05), the regression coefficients (slope and in-
tercept) and coefficient of determination (R%) were calculated using
linear least squares fits of the index versus parameter. Coincidence
between linear regressions for the different environmental datasets
and the culture data was evaluated using the following dummy vari-

able regression model (Clogg et al., 1995):

index =intercept+ Aintercept - [culture] +slope - parameter

+ Aslope - [culture] - parameter

with [culture] representing the dummy variable (O for environmental
data, 1 for culture data), and Aintercept and Aslope representing the
intercept and slope differences between the culture and environ-
mental data sets. Significance of the regression fit differences was
evaluated using the p-values of the Aintercept and Aslope coeffi-
cients. Aintercept values that are not statistically different from O
(Aintercept p >.05) indicate concurrent culture and environmental
data (i.e., they have the same intercept); Aslope values that are not
statistically different from O (Aslope p >.05) indicate parallel culture
and environmental data (i.e., they have the same slope); comparisons
where both is the case indicate coincident culture and environmen-
tal data (i.e., they have the same intercept and slope and are there-

fore statistically indistinguishable regression fits).

3 | RESULTS

Solibacter usitatus grew successfully under all tested conditions
(Figure S1) except for pH 6.5 at 15°C. The specific growth rate
ranged from 0.23day ™! (doubling time: 3.0days) at pH 6.0, 15°C and
21% O, to 1.45day ! at pH 5.5, 30°C and 21% O, (doubling time:
11.5 h). Growth rates increased systematically from low-to-high
growth temperatures and decreased systematically from high-to-
low O, (Table S1, Figure S2). Solibacter usitatus produced a range
of saturated, monounsaturated, and terminally methyl-branched
FA, as well as several mono- (MAGE) and diether (DAGE) glycerols
with iso-C15:0 FA, iso-C17:1 FA, iso-C15:0 DAGE, and iso-C15:0
MAGE the most abundant components (data in Tables S2 and S3;

e WiLEY-

structures in Table S7). However, S. usitatus produced no iso-diabolic
acid (13,16-dimethyl octacosanedioic acid) or its mono-glycerol-
bound equivalents in agreement with the results of previous culture
work on this organism (Sinninghe Damsté et al., 2018). In addition,
we detected a wide range of tetraethers under all growth conditions
including brGTGTs and brGDGTs comprising an estimated 10%-
47% of the cellular membrane (mean = 24.0%, 1o = 9%, Tables S2
and S4). Whereas recent work on another Acidobacterium in cul-
ture, Edaphobacter aggregans, demonstrated brGDGT production,
was tied to low oxygen growth conditions (Halamka et al., 2021),
brGDGTs were abundant in S. usitatus at both low and high oxygen
concentrations and were most abundant overall at lower pH, lower
temperature, and lower O, (Figure S3).

Five of the 15 commonly studied brGDGTs—Ia, lla, llla, Ib, and
llb—were abundant in S. usitatus cultures (Figure 1, Tables S4 and
S5). Mass traces of brGDGTs Illb, Ic, llc, and Illic were also identified
in some cultures, but at exceedingly low abundances close to the
detection limit and thus not quantified further. Although 6-methyl
isomers of penta-methylated and hexa-methylated brGDGTs (lla’,
1Ib’, Nc', 11a’, NIb’, and llic’) are common in environmental samples
(De Jonge et al., 2013; De Jonge, Hopmans, et al., 2014), the isomers
detected in S. usitatus (lla, llb, and llla) were all methylated at the
C5 position. The resulting branched brGDGT indices MBT’SMe and
CBT,,,, were calculated for all culture conditions (Table S5). MBT's,,,
showed statistically significant positive correlations (p <0.05) with
culture temperature and growth rate across all data, as well as nega-
tive correlations with pH for cultures grown at 15 and 20°C (Table 1,
Figure S4). CBT5ye
(Table 1). The brGDGT responses to growth rate, temperature, pH,

was significantly correlated only with culture pH

and O, in culture, as well as comparisons with environmental data
(Figure 2), are detailed in the sections below.

In addition to the above brGDGTs, S. usitatus produced brGTGT
equivalents of brGDGT la and lla (Figure S5) with brGTGT la making
up a significant portion of the detected tetraethers across all culture
conditions (between 1.3% and 9.9%, Table S4). Solibacter usitatus
also produced variable quantities (0.11%-3.8% of detected tetra-
ethers) of a brGTGT with the same molecular mass as brGTGT llla
but a combination of C30, C15, and C17 alkyl chains instead of C31,
C15, and C16 expected in symmetric brGTGT llla (Figure S5). We
propose that the unusual C17 alkyl chain of this brGTGT (hereafter
brGTGT llla-2) could be overly branched with a methyl group at C9
in addition to the common brGDGT methylations at C5 and C13 (see
structure in Figure S5). Alternatively, the C17 alkyl chain could be
elongated (e.g., iso-C17:0 or straight C17:0) instead given the pro-
duction of the corresponding FAs by S. usitatus (Table S3).

Lastly, S. usitatus produced two uncommon brGDGT isomers
in significant quantities up to 3.5%/2.7% of detected tetraethers
(Table S4) or 3.8%br/3.0%br relative to the common brGDGTs
(Figure 3, Table S5) that showed a strong response to oxygen limita-
tion. These isomers have identical molecular masses to the hexam-
ethyl brGDGTs llla and lllb, respectively (Figure S5), and are referred
to as brGDGT llla-2 and brGDGT IlIb-2 accordingly (Figure 1). Both
Illa-2 and llIb-2 are asymmetrical tetraethers composed of a C30



ﬂ_ biol ya - HALAMKA ET AL.
WILEY-[egellsslel o .
a . . . (b) Temp (°C) 21% 0, Growth Rate
@ Lake S. usitatus  S. usitatus S. usitatus (/day)  25°C
i o 1.4 .
Sediment  21%0,25°C,pH55 21%0, 15°C,pH5.5 1% O, 25°C, pH 5.5 e 21%
08 O | 57| 5%
1.10% 1.10% 1.10% 05 & o
TIC 0.2 1%
W] o -
Illa 4.10%4 3.10%2 210%2 15° 20° 25° 30°
1nl;'1520 Hla m/z ﬂ‘(O\/\/\/\M/Y\
. 1050 OWY\)\/\/\M/\» llla
H
X-3 x-4 X-2
miz | "0l e 110 3.10 L [ WM/O/\JV\NVKM "
. _/\ 1048 HV\E‘XA/\'/\/\N\A)\/\A/\AMT I"b
lic | Nic’ 7.10%5 8.10%5 10
mlz m/z W\A/\WAASINOH
1046 1046 mr\( W e
= . M
= 710? 410" 2.10%2 on
é e lla’ m/z OMA/\/\Ar\)\A/\/\)\/\/No
2 1% }\«A J\ 1036 k(OM/W\/\/\)\/\/\/\/\/\/\OJ\'
[ OH
[7]
5 441 Ox-a 1.10,(_3
£ lb’ m o
£ m/z uo«(°
1034 1034 °V\NW\/Y\)\M/\M/~
lic 1103 6104
03 m/z C\/\W OH
1032 lic W\,\JLL 1032 "X O/W\MDA lic
A
5.10%7 61051
e 8 la la m/z ﬂk"s/\/\/\/\/\/ﬁ/\)\/\/\/\/\/\»
o 1022 Ww:)\ la
OH
5.10%3
m/z Ib m/z UV\WQ on
. Ib Ib 1020 Hm[wwo]/\ o
/ 4.10%3 510%° mo
miz m/z o oH
1018 A/\ 1018 HD'\(OW f

Normal-Phase Relative Retention Times

FIGURE 1 Mass channel extracted chromatographs, culturing growth rates, and brGDGT structures of Solibacter usitatus and

an environmental reference sample. (a) Normal phase total ion chromatogram (TIC) and selected mass channels showing data from

the environmental sample (0-1 cm surface sediment from lake 3LN, northern Quebec) and three culturing conditions of S. usitatus.
Chromatographic window spans from brGDGT llla to brGDGT Ic and retention times are relative to brGDGT la within each sample. Peak
intensities are normalized to TIC intensity within each sample and shown as y-10x in each panel. BrGDGT peaks are color-coded with their
corresponding structure labels in (c). (b) Overview of all culturing conditions analyzed for this study with averaged growth rates (1 per day)
of biological triplicates. (c) Structures of the most common brGDGTs with additional methylations at C5. Structures for common isomers
not observed in S. usitatus culture (e.g., Illa/b/c’, lla/b/c') are not shown in this figure (see Table S7 instead). Structures for the uncommon

isomers Illa-2 and lllb-2 (*) are shown in Figure 3

alkyl chain and a C32 alkyl chain that has one unsaturation in the
case of Illb-2. Both were chromatographically resolved from brG-
DGT Illa/Illb (Figure Sé) suggesting that they cannot be methylated
at the C5 position like Illa/lllb since asymmetric brGDGTs are not
readily distinguishable by liquid chromatography from their symmet-
ric counterparts (De Jonge et al., 2013; Weber et al., 2018).

With the normal phase HPLC method used in this study, brGDGT
I11a-2 eluted 3.55+0.10 min later than llla with chromatographic res-
olution of 7.5 +0.2 (Hopmans et al., 2016; Snyder et al., 1997). The
compound further eluted an estimated 2.7 min later than Illa’/llla,
(methylated at Cé), and an estimated 1.7 min later than the Illa, iso-
mer (methylated at C7, Ding et al., 2016). IIIa'/III36 and llla, were not
present in the culture samples, and their retention times were com-

pared from environmental samples analyzed with the same method

(see chromatograms in Figure Sé). These observations suggest that
brGDGT llla-2 could have an unusual methylation pattern that leads
to NP elution significantly later than the llla/llla;, IIIa’/IIIaéy and llla,
isomers. Based on the existence of the above described brGTGT
Illa-2 with its unusual C17 alkyl chain (Figure S5), it is conceivable
that brGDGT llla-2 has an equivalent structure with a C32 alkyl-
chain either overly branched or asymmetrically elongated. We thus
propose two potential structures for brGDGT llla-2 (Figure 3) that fit
our data, one a hexamethyl brGDGT that is asymmetrically methyl-
ated at C5 and C9, and the other an elongated tetramethyl brGDGT
with iso-C17:0 as a precursor.

BrGDGT llIb-2 eluted 2.19 +0.03 min later than Illa with the NP-
HPLC method (chromatographic resolution 4.6 +0.1), 1.3 min later
than the expected elution time of Illb and between |IIb’/|I|b6 and
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llb,, but 1.4 min earlier than brGDGT llla-2 (Figure S6). We hypoth-
esize that brGDGT lllb-2 is either the monocyclic or the monoun-
saturated equivalent of brGDGT Illa-2, with the elution time and
abundance of iso-C17:1in S. usitatus (Table S3) pointing to the asym-
metrically elongated structure with a double bond the most likely.
Future analyses of purified concentrated fractions of brGTGT llla-2,
brGDGT llla-2, and brGDGT IlIb-2 using GC-MS after ether cleavage
or NMR will help determine the exact structure of these isomers.
Lastly, several other uncharacterized ether lipids were detected in
S. usitatus by NP and/or RP HPLC-MS but in minor quantities. Their
structural characterization was beyond the scope of this paper and
will be the subject of future work.

3.1 | BrGDGT response to growth rate

The brGDGT distribution of S. usitatus changed with growth rate
(Figure S4) with the MBT',,_ index positively correlated across all
culture data (r =.68, p <.001, Table 1). However, growth rate was
also strongly correlated with growth temperature (r =.79, p <.001).
In a multivariable regression of MBT’5Me vs temperature and growth
rate, growth rate was not a significant predictor (p >.2) with temper-
ature alone explaining 82% of the variance in the data. Furthermore,
the MBT’SMe index within temperature subsets showed inconsistent
correlations with growth temperature ranging from positively corre-
lated at 30°C (r =.72, p <.01) to the opposite anticorrelation at 20°C
(r=-.78, p <.01, Table 1, Figure S4). This suggests that growth rate
is not the primary mechanistic driver of brGDGT distributions in S.
usitatus, although rate-controlled experiments in continuous culture
at fixed temperatures will be required to fully deconvolute its effects

in this organism.

3.2 | BrGDGT response to temperature

Growth temperature was the most impactful of the tested growth
parameters. A significant increase in methylation number, as
captured by both the MBT’SME index (r =.91, p <.001, Table 1a;
Figure 2a,b,d,e; Figure S4) and the Meth Set fractional abundances
(Equation 5; Figures S7 and S8), was observed at colder tempera-
tures. The increases in methylation number occurred in parallel in
acyclic and monocyclic brGDGTs (Figure S8); flay,,,, and flby,.,, had a
one-to-one correlation (slope = 1.00+0.03) with R%?=0.94 (p <.001)
across all culturing conditions. MBT's,,, and meth set temperature
relationships in S. usitatus were overall in good agreement with re-
lationships observed in the wide range of environmental sample
types included in the compiled environmental dataset, including
soils, peats, lacustrine sediments and SPM, marine sediments, and
bone (Figure 2a,d, Figures S8 and S9). Of these sample types, re-
gressions of the MBT'y,,, index vs. temperature for the S. usitatus
culture data were indistinguishable from environmental data sets for
lacustrine sediments (vs MAF air), peats (vs WMT air), and soils (vs
WMT air) with slope and intercept differences (A slope, A intercept)

e WiLEY-

statistically indistinguishable from O (p >.1, Table 1c). For in situ soil
data, the culture data were in strongest agreement with MBT',,, re-
gression vs WMT (warmest month temperature) with slope/intercept
differences of 0.002+0.003°C™! =0 (p-value >0.4)/0.02+0.07=0
(p >.8) followed by regression versus JJA (summer months tempera-
ture) with slope/intercept differences of 0.006 +0.003°C™* (p-value
>0.07)/-0.07 +0.07 =0 (p >.3). The inclusion of in situ temperatures
from colder months led to statistically significant differences from
the culture data, with regression vs. MAF (months above freezing
temperature) producing moderately significant slope/intercept dif-
ferences (A slope = 0.006+0.003°C™%, A intercept = -0.17+0.06,
p <.05), and regression vs MAT producing highly significant dif-
ferences (A slope = 0.011 J_rO.003°C'1, Aintercept = -0.29+0.06,
p <.001) from the culture data (Table 1c).

Although the methylation of brGDGTs in S. usitatus was most
affected by temperature, pH was also observed to have a signifi-
cant impact but only at lower temperatures, not across the entire
data set (Figure S4). Specifically, MBT',,,. values were significantly
anticorrelated with pH for S. usitatus growth at 20 and 15°C, with
correlation coefficients of -0.88 and -0.93 (p <.001, Table 1a), re-
spectively, reflecting a higher degree of brGDGT methylation with
higher pH at the same temperature.

3.3 | BrGDGT Response to pH

In addition to its effects on brGDGT methylation at lower tempera-
ture, pH affected the cyclization of brGDGTs in S. usitatus. pH was
the only growth parameter that showed a significant correlation
with the CBT;,,, index (r =.56, p <.001, Table 1a). However, the ob-
served effect on CBT;,, was nearly orthogonal to the strong anti-
correlation typically observed in environmental samples (Figure 2c,f,
Table 1a). Examination of the Cyclization Set fractional abundances

revealed that this increase in CBT with pH was driven by de-

5Me
creasing relative abundances of cyclized compounds (Ib and Ilb;
Figure S10). However, we note that these fractional abundance
decreases were slight (magnitude of linear slopes <0.7%/pH unit;
Figure S11) and that S. usitatus cultures generally plotted within
the scatter of environmental samples (Figure $10). Due to its loga-

rithmic formulation, CBT, is highly sensitive when the degree of

5Me
brGDGT cyclization is small, as was the case for S. usitatus cultures
(Figure S12). Therefore, the departure in the CBT,,, index may over-
emphasize minor changes across a limited gradient that would be
less meaningful if tested across a broader range of pH. We were un-
successful in growing S. usitatus outside of the 5.0-6.5 pH range to

further test this hypothesis.

3.4 | BrGDGT response to oxygen limitation

Due to experimental limitations, the brGDGT response in S. usitatus
was only tested at three levels of O, in the headspace (21%, 5%, and
1% O,) at one pH and temperature (pH 5.5 and 25°C). The results
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FIGURE 2 Relationships between primary brGDGTs and temperature and pH for Solibacter usitatus cultures and environmental samples.
(a) Relationship between the MBT’5Me index and temperature for cultures (pink) and environmental samples (green; SPM = suspended/
settling particulate matter). *Temperatures were associated with environmental samples following Raberg et al. (2022a); see Dataset S2

for details. Sample type-specific linear slopes are provided in (d) with 95% confidence intervals in gray. Samples with MBT',, =1 were
considered outliers and are plotted as open circles in (a) and removed from linear fits in d). (b) Relationship between the MBT',,_ index and
in situ temperatures for soils (blue) and cultures (pink). Shades of blue represent in situ soil temperatures averaged over different portions of
the year, with abbreviations as follows: mean annual temperature (MAT), mean temperature of months above freezing (MAF), mean summer
(June, July, and August) temperature (JJA), and warmest month temperature (WMT). Sample type/temperature parameter-specific linear
regressions are plotted in (e). (c) Relationship between CBT,,,, and pH for cultures and environmental samples, with sample type-specific
slopes plotted in (f). Regression coefficients and statistics for d-f are provided in Table 1

showed no systematic correlations of the MBT';,, and CBTy,,, indi-
ces with O, (Table 1a), but brGDGT abundances at 5% and 1% O, still

showed several differences in brGDGT methylation compared with

(vs. 0.05+0.03%br at 21% O,) were observed. These differences
led to small changes in the resulting MBT';,,. index from 0.98 at
21% O, to 0.94 and 0.97 at 5 and 1% O,, respectively (Table S5,
Figure S4).

However, the uncommon brGDGTs llla-2 and IlIb-2 (Figure 3b,
Figure S5) were strongly anticorrelated with %O, (r =-.99 and
-0.93; p <.001). BrGDGT Illa-2 increased from near-zero abun-
dance (0.08+0.04%br) at 21% O, to 2.6 +0.2%br at 5% O, and
3.8 +0.4%br at 1% O, while brGDGT Illb-2 increased from near-zero
abundance (0.3 +£0.1%br) at 21% O, to 3.0 +0.2%br at 5% O, and
1.9 +£0.2%br at 1% O, (Figure 3b).

the fully oxygenated (21% O,) condition (Figure 3a). Specifically, an
increase in brGDGT lla was observed at 5% O, (6.1 +0.2%br) rela-
tive to atmospheric O, (1.68+0.02%br) coupled to a decrease in
brGDGT la (92.5 +0.1%br at 5% O, compared with 97.0 +0.1%br
at 21% O,). At 1% O,, brGDGT la was identical within error to its
relative abundance at 21% O, (96.9 +0.3%br). Despite the similar
dominance of brGDGT la at 1% O, and 21% O,, an increase in the
proportion of brGDGT lla to 2.8 +0.3%br (vs. 1.68+0.02%br at
21% O,) and a decrease in the percentage of brGDGT llla to 0.01%
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4 | DISCUSSION
41 | Environmental relevance

Uncultured strains of S. usitatus and other presently uncul-
tured Acidobacteria with a high degree of genetic similarity to
S. usitatus are abundant in Antarctic and Arctic soils (Mannisto
et al., 2007; Pearce et al., 2012). This suggests that the S. usita-
tus strain (Ellin6076) studied here is a relevant model organism
for at least one group of potential brGDGT producers, although
a single cultured strain from a single species is certainly unlikely
to be representative of all environmentally relevant brGDGT pro-
ducers. Solibacter usitatus also provides an interesting case study
for understanding the purpose of brGDGT production in cellular
membranes. The unique properties and size of the genome of S.
usitatus provide insights into the functional modalities of this
brGDGT-producing species in the environment (Challacombe
et al., 2011; Ward et al., 2009). Solibacter usitatus has a 9.9 Mb
genome, approximately 2-5 times as large as other sequenced
Acidobacteria genomes, and the most Sigma E homologs identi-
fied in any sequenced bacterium (Challacombe et al., 2011). Sigma
E regulons in bacteria have been attributed to cellular stress re-
sponses such as nutrient limitation, oxidative stress, heat shock,
and cellular envelope stress in addition to activating outer mem-
brane synthesis and assembly (Challacombe et al., 2011; Kenyon
et al., 2005; Raivio & Silhavy, 2001; Rhodius et al., 2005). These

Gebiology. NV TR

genomic properties agree with the general consensus that many SD
1 and 3 Acidobacteria are robust oligotrophs that may have selec-
tive advantages in times of stress (Eichorst et al., 2018). The physi-
ological response of brGDGT methylation number to temperature
in S. usitatus provides insights into the competitive advantage that
brGDGTs may provide to oligotrophic bacteria.

4.2 | Implications for brGDGT-based
paleoenvironmental proxies

The data from S. usitatus show that relationships between brGDGTs
and temperature observed widely in the environment can be repro-
duced by a single bacterial species in culture (Figure 2a,d). Although
it is important to use caution when extrapolating results from S. usi-
tatus to the global environment, several implications for brGDGTs as
a paleotemperature proxy are noteworthy.

First, the membrane restructuring exhibited by S. usitatus in
response to temperature change supports the hypothesis that
methylation number plays an important role in membrane homeo-
viscosity, as suggested by early analogies to other lipid classes
(Weijers et al., 2007) and recent molecular dynamics simulations
(Naafs et al., 2021). Second, the co-occurrence of all major brGDGT
methylation numbers in S. usitatus provides support for the hypoth-
esis that physiological adaptations of a limited group of brGDGT

producers could be responsible for the distribution of the major

(@) 25°C (b) 25°C © llla-2 / llib-2 Elongated Structures
la llla 4] ma 1ia-2 lib-2 ‘CEOWVVWY\)VV\,\,\WO
100 97.0 B i B OW\/\/\/\/\(\J\/\/\/\/\/\/\OJ\
75 S 2 NS OH i OH
50 (o) (o) \A/\/\/\AWO
25 o 11 0.28 i \EO\/\/\/\/\/\/W/\)\/\/\/\/\/\/\OJ\
0.05 . 0.05 0.08 " | oH
* N 4 - ~o.
- 5 T \/\/\/\/\/Q/\
= 3.0 o
G 1001 925 al 8 s 2.6 o X I j
o 2 NS NS o
O 75 (o) g 2 °o ! \OH
el R o llla-2 / 1lb-2 Overly Branched Structures
o
S 3 4. - OKHEO\/\/\/\/\/\/W/\/I\/\)\/\)\/\/\OJ\
0.
\/\/\/\/\/\/\(\/l\/\/\/\/\/\/\
e * T )\/\/’\/\)\/\/\o -
75 21 \Ez \r\)\/\:\/\/\/\/\oj\
N N S
i 11 \(\ | )\/\)\/\/\0 o
25 0.01 OH OW\/V\/C(\/\/\ o
pH 5.5 \EO\/\/\/\/\/\/\l/\)\/\/\/\/\/\/\o
(o]

FIGURE 3

H

Influence of oxygen concentration on brGDGT production in Solibacter usitatus. (a) Relative abundance (%br) of brGDGT

la (magenta), brGDGT lla (orange), and brGDGT llla (purple) at all tested oxygen concentrations. (b) Relative abundance (%br) of brGDGT
Illa (purple), brGDGTIIIa-2 (light purple), and brGDGT IlIb-2 (brick) at all tested oxygen concentrations. (c) Proposed potential structures
for brGDGT llla-2 and brGDGT IlIb-2. *See Equation 1 for %br calculation: brGDGT llla-2 and brGDGT llIb-2 are not included in the

denominator
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methylated varieties of brGDGTs in the environment as opposed to
resulting solely from microbial community shifts.

Alterations to methylation number in S. usitatus occurred in acy-
clic and monocyclic compounds in tandem (R? =0.94; Figure S8),
further suggesting that either the enzyme responsible for C5 meth-
ylation indiscriminately methylates acyclic and monocyclic brGDGTs
alike and/or that brGDGT cyclases function independently of exist-
ing C5 methylations, as has been suggested from observations in en-
vironmental samples (Raberg et al., 2021, 2022a). The fact that these
temperature-driven variations in brGDGT distributions are mirrored
in a wide array of environmental samples may suggest that the phys-
iological basis for trends observed in S. usitatus is widespread in
nature, lending confidence to the application of brGDGT-based pa-
leotemperature proxies and encouraging their further development.
For environmental soils in particular, in situ temperatures from the
warmest months of the year produced the closest agreement with
trends observed in culture (Table 1, Figure 2b,e). We also observed
that the growth rate of S. usitatus was temperature-dependent, with
a roughly fourfold increase in growth rate when temperature was
raised from 15 to 30°C (Figure 1b, Figure S2). Growth rate was sim-
ilarly observed to be temperature-dependent in lacustrine micro-
cosm incubations (Martinez-Sosa et al., 2020). Taken together, these
observations suggest that the observed warm-season bias in em-
pirical calibrations (e.g., Dearing Crampton-Flood et al., 2020) may
originate from seasonal differences in bacterial growth rates with
increased production of brGDGTs in warm summer months, a result
that may help to guide future proxy calibration approaches.

At the same time, it is important to note the need for cold-
adapted culture isolates and isolates from other environments that
produce brGDGTs. The strain of S. usitatus studied here (Ellin6076)
was isolated from soil in a temperate climate (Victoria, Australia;
Joseph et al.,, 2003). It does not grow reliably at temperatures below
15°C, neutral or alkaline pH, and does not represent freshwater or
marine environments. This necessarily precludes studies with this
particular strain from capturing the full range of environments
where brGDGTs have been observed, particularly cold environ-
ments like the Arctic and Antarctic where brGDGTs are frequently
employed in paleoenvironmental reconstructions. Additionally, S.
usitatus was not observed to produce the 6-methyl and 7-methyl
brGDGT isomers (e.g., IIa’/IIa6 and lla,) that are widely abundant in
natural settings, pointing to other microbial producers and/or hith-
erto untested culture conditions.

Lastly, the relationship between brGDGTs and pH in S. usitatus was
significantly less pronounced than the relationship with temperature
and was opposite to the cyclization pattern typically observed in en-
vironmental samples (Figure 2c,f, Figures S9 and S11). A similar lack of
pronounced pH trends was previously observed in lacustrine micro-
cosm experiments (Martinez-Sosa et al., 2020) and molecular dynam-
ics simulations (Naafs et al., 2021). The fact that the near-universal
environmental pH dependence of brGDGT cyclization number was
absent or opposite in S. usitatus runs counter to the hypothesis that cy-
clization number has a direct physiological connection to pH (Raberg
et al., 2022a; Weijers et al., 2007). Instead, our results tentatively

support the hypothesis that cyclization number is linked to pH via
changes in bacterial community composition (De Jonge et al., 2019,
2021; Naafs et al., 2021). In contrast to its limited effect on brGDGT
cyclization, pH in S. usitatus cultures did significantly modulate brG-
DGT methylation at lower temperatures. The observed decrease in
MBT'S,\,Ie values in response to increased pH is consistent with the
effects of soil pH on brGDGT methylation recently observed in sub-
arctic soils (Halffman et al., 2022). We note, however, that the absence
of 6- and 7-methyl isomers and near absence of doubly cyclized brG-
DGTs in S. usitatus limits our ability to draw direct comparisons with
environmental samples through other pH-related indices.

4.3 | Influence of oxygen limitation on
brGDGT production

A temperature-independent methylation response was observed
in the brGDGT composition of S. usitatus when oxygen was limited
to 5% and 1% O,. At both low oxygen concentrations, brGDGT lla
increased relative to that of the atmospheric (21% O,) experiment
while brGDGT llla decreased (Figure 3a). The low overall degree of
methylation in S. usitatus at the temperature of these experiments
(25°C) led to only small changes in the MBT';,, index and makes it
difficult to ascertain whether this is a systematic membrane homeo-
stasis response to oxygen limitation. In addition, the presently un-
known exact structure and functional properties of the uncommon
brGDGTs llla-2 and llIb-2 further complicate interpretations with re-
spect to membrane homeostasis. However, the production of brG-
DGTIlla-2 and brGDGTIIIb-2 in S. usitatus under oxygen limitation
suggests these compounds have some potential as indicators of low
oxygen in environmental settings (Figure 3b). Both brGDGTIlla-2
and brGDGTIIIb-2 were only detected above trace levels in S. usita-
tus at 5% and 1% O, conditions, whereas all other pH and tempera-
ture conditions tested at 21% O, yielded trace quantities (<0.3%) or
were below the detection limit. Determining whether brGDGT llla-2
and brGDGT llIb-2 are environmentally relevant is an important step
for assessing their potential value as a sedimentary oxygen proxy.
Additionally, the overall response of environmental brGDGT distri-
butions to oxygen limitation must be resolved before brGDGT Illa-2
and brGDGT IlIb-2 can be applied to corrective measures or new
approaches in brGDGT-based proxies.

Uncovering the role of oxygen limitation on brGDGT producers
at large is paramount to ensuring the accuracy of climate records
based on these compounds. Numerous environmental studies have
highlighted that brGDGT distributions can respond to variations
in environmental redox state and dissolved oxygen (e.g., Loomis
et al.,, 2011; Martinez-Sosa & Tierney, 2019; van Bree et al., 2020;
Weber et al.,, 2018; Wu et al., 2021; Yao et al., 2020), but no clear
consensus has emerged yet on how to capture and account for oxy-
gen effects. Culture-based insights on brGDGT response to suboxic
settings are limited, but in the case of E. aggregans, 1% O, was tied to
the synthesis of brGDGT la, the only conventional brGDGT identified
in this organism (Halamka et al., 2021; Sinninghe Damsté et al., 2011).
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The increase in tetra-methylated brGDGTs in E. aggregans in response
to oxygen limitation conflicts with the increase in penta-methylated
brGDGTs in S. usitatus under similar oxygen restrictions. A suboxic
increase in brGDGT la would correspond to a warmer-than-actual
temperature signature using conventional brGDGT paleotempera-
ture indices, whereas an increase in penta- or hexa-methylated com-
pounds would correspond to colder-than-actual temperature signal.
While the enzymatic capacity of E. aggregans to produce penta- and
hexa-methylated brGDGTs remains unclear, the seemingly opposing
trends in methylation number response to oxygen limitation in cul-
ture are consistent with the complicated relationship of brGDGTs
with O, observed in environmental samples and serves as an import-
ant example of the need to further investigate the role of oxygen in

the brGDGT-producing bacterial community.

4.4 | Implications for brGDGT Biosynthesis
Several lines of evidence suggest that S. usitatus may have a differ-
ent pathway for brGDGT biosynthesis than what has been proposed
for other Acidobacteria. Most Acidobacteria, including those previ-
ously discovered to synthesize brGDGT la, produce the membrane-
spanning iso-diabolic acid (iDA in Figure 4) as a major membrane
component (Sinninghe Damsté et al., 2011). In addition, several
Acidobacteria produce a monoether of iso-diabolic acid (iDA MAGE
in Figure 4), which is particularly prominent in acid hydrolysis extracts
from SD 4 Acidobacteria and occurs with additional methylations at
the C5 position (Sinninghe Damsté et al., 2014). Based on the abun-
dance of these likely brGDGT precursors and the known possibility
of tail-to-tail condensation of FAs to make other membrane-spanning
di-acids (Fitz & Arigoni, 1992), Sinninghe Damsté et al. (2011, 2014)
proposed iso-diabolic acid synthesis via the condensation of two iso-
C15 FAs by a still unknown enzyme as the first step toward brGDGT
synthesis (Figure 4a, iso-diabolic acid pathway). The discovery of an
operon for bacterial ether lipid biosynthesis (elb) in myxobacteria
(Lorenzen et al., 2014) then provided a potential mechanism for the
conversion of ester to ether bonds to form mono-, di-, and eventu-
ally tetraethers by the EIbD enzyme as the second key step of this
proposed pathway (Figure 4a), with several SD 4 genomes containing
homologs of the entire elb operon (Sinninghe Damsté et al., 2018).
Contrary to most Acidobacteria studied to date, S. usitatus does
not have detectable levels of iso-diabolic acid in its cellular mem-
brane (Table S4 and Sinninghe Damsté et al., 2018), but the organ-
ism does produce iso-C15 mono and diethers (i15:0 MAGE and i15:0
DAGE in Figure 4; Table S4 and Sinninghe Damsté et al., 2018), which
have been found in several other Acidobacteria as well (Sinninghe
Damsté et al., 2018). In addition, our results show that S. usitatus
produces brGTGT equivalents of several brGDGTs. Based on these
findings and the presence of several homologs of recently discov-
ered enzymes involved in ether lipid biosynthesis in bacteria and ar-
chaea (Jackson et al., 2021; Zeng et al., 2019, 2022), we propose an
alternative pathway for brGDGT synthesis in S. usitatus (Figure 4b)
based on tail-to-tail condensation of two iso-C15 diethers akin to the
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biosynthesis of isoprenoidal GDGTs in Archaea (Galliker et al., 1998;
Nemoto et al., 2003; Zeng et al., 2022) and as originally suggested for
bacterial tetraether synthesis by Weijers et al. (2006). We hypoth-
esize that in S. usitatus, the conversion of ester to ether lipids is the
first step toward brGDGT synthesis and involves homologs of the
plasmalogen ether lipid synthase PISAR (Table S5, Figure S10) instead
of EIbD, which S. usitatus lacks (Figure S10). PIsAR was discovered to
mediate the reduction in ester to ether bonds in the anaerobic bac-
terial pathogen Clostridium perfringens (Jackson et al., 2021) and has
been proposed to perform a similar function in the synthesis of ether
lipids in the bacterium Thermotoga maritima (Sahonero-Canavesi
et al., 2022). Next, we suggest that the condensation of the resulting
iso-C15 diethers is mediated by one or both S. usitatus homologs of
the tetraether synthase Tes enzyme (Figure $10), which is involved
in the synthesis of isoprenoidal GDGTs from diether precursors in
archaea and also produces GTGTs as potential intermediates (Zeng
et al., 2022). Lastly, we suggest that the homologs of the archaeal
GDGT ring synthases GrsA and GrsB in S. usitatus (Figure $S10) could
be involved in the formation of pentacyclic brGDGTs akin to their
function in the formation of cyclized isoprenoidal GDGTs in archaea
(Zeng et al., 2019).

Although we propose the above diether condensation pathway
for S. usitatus (Figure 4b) based on potential intermediates and re-
cent enzyme discoveries, it is possible that an iso-diabolic acid path-
way exists instead or in addition in this organism. Intermediates in
biosynthetic pathways only accumulate at rate-limiting steps and the
findings reported in Halamka et al. (2021) suggest that the abundance
of iso-diabolic acid in the membrane of the SD1 Acidobacterium E.
aggregans decreases with increased brGDGT production. The appar-
ent absence of iso-diabolic acid in S. usitatus thus cannot rule out its
potential role in brGDGT synthesis at a step that is not rate-limiting,
leading to a subsequent lack of measurable iso-diabolic acid in this
organism. Future work using isotopic tracers in vivo and/or purified
enzyme fractions in vitro has the potential to resolve the exact path-
way of brGDGT biosynthesis in S. usitatus.

5 | FUTURE DIRECTIONS

This study demonstrates that the degree of brGDGT methylationin a
single bacterial species functions as a physiological response to chang-
ing temperature, with distributions that are in strong agreement with
environmental observations. The results serve as laboratory-based
support for the use of brGDGTs as a paleothermometer, while also
presenting possible caveats for the effects of pH and O, on brGDGT
proxies as well as new potential opportunities for using some brG-
DGT structures to identify suboxic conditions in the past. The results
of this study do not demonstrate a clear relationship between the
degree of brGDGT cyclization and pH. Instead, our findings under-
score the need for further investigation into the effects of microbial
community structure as well as other potential physiological factors
such as nutrient availability and carbon sources on brGDGT cycliza-
tion. Detection of brGDGTs with varying degrees of cyclization and



“ L wiLey- e

HALAMKA ET AL.

@) isodiabolic acid pathway

analytes

(o]
15:0 FA | <— "oy~ Ao,

¢ condensation

unknown
[o]
iDA < HOWWOH
¢ +glycerol

OH o
A AN VA =)
o OH

intermediates? /

o
00
Y\)\/\/\/\/\/\)Koj\
OH

DA ¥ o
MAGE O AN

iDA ﬁ(owmmo / reduction
& o
MAGE <— W\MJ} EIbD or PIsAR

IDA ¢ OVWWY\WD
DAGE EK(DV\/\/\/\/\/\(\/I\/\/\/\/\/\)KO ;‘/

Y
va0aT] AT
0\/\/\/\/\/\/\(\ o

la
L | - OH
cyclization
GrsA/B

brGDGT

| \EOWWOL

®) diether condensation pathway

analytes

Ho\g/\/\/\/\/\/\r >

+glycerol

oH
\(ng(\/\/\/\/\/\r S
SN

o

reduction ) intermediate? .
ElbD or PIsAR i(iﬁ.(\/vv\/v\r i15:0
OH
0 )\/\/\/\/\/\/\ .
\( \/\/\/\/\/\/\r o 115:0
o )\/\/\/\/\/\/\Oj\ > DAGE
OH
condensation intermediate?
e NI AT | eTeT
OH o
\(o\/\/\/\/\/\/Y\)\/\/\/\/\/\/\o . brGDGT
O\/\/\/\/\/\/\r\)\/\/\/\/\/\/\oj\ol‘ a

cyclization
GrsA/B

OH \/\Nv\ﬁ/\)\/\/\/\/\/\/\o
\(0 —>» | brGDGT
O\AW/WO

b

OH

FIGURE 4 Hypothesized biosynthetic pathways for brGDGT production (excluding C5/C6 methylations). (a) (in blue): Pathway based

on tail-to-tail condensation of two iso-C15:0 FAs to form iso-diabolic acid as a key intermediate in brGDGT biosynthesis, first proposed

by Sinninghe Damsté et al. (2011, 2014, 2018). (b) (in red): Diether condensation pathway (Weijers et al., 2006) proposed for Solibacter
usitatus based on the abundance of several potential intermediates and the existence of S. usitatus homologs of enzymes that perform
similar functions in archaeal GDGTs and ester bond reduction in bacteria: Tes (tetra ether synthase), GrsA/B (GDGT ring synthesis), and
PIsAR (plasmalogen synthase). Expected analytes produced by standard acid hydrolysis (which cleaves ester bonds, shown in green) for each
pathway are listed on the far left and right side. Analytes that are boxed have been found in S. usitatus. Ester bonds shown in green; ether
bonds shown in orange. Analytes: i15:0 FA = iso-C15:0 fatty acid; iDA = iso-diabolic acid; iDA MAGE = 1-iso-diabolic acid monoalkanoic
glycerol monoether; iDA DAGE = 1,2-iso-diabolic acid dialkanoic glycerol diether; i15:0 MAGE = 1-iso-C15:0 monoalkyl glycerol monoether;
i15:0 DAGE = 1,2-is0-C15:0 dialkyl glycerol diether; brGTGT la = branched glycerol trialkyl glycerol tetraether

methylation suggest that S. usitatus can serve as a potential genetic
system to test hypotheses about the biosynthesis of brGDGTs in cul-
ture, as well as studies on the evolutionary origin of genes involved in
brGDGT synthesis in bacteria.
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Supplementary Figures
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Fig. S1. Growth curves of S. usitatus at different oxygen concentrations, temperatures and pH. Symbol shapes

differentiate replicate cultures. Lines are fits to the logistic equation for growth rate estimates (see Fig. S3 and Table

S1 for details). Optical density measurements for suboxic experiments were recorded automatically as described

in the Materials & Methods and thus have much higher data density than manually recorded growth curves. For




visual clarity, optical density measurements for suboxic experiments are rescaled in this figure (1 : 3.96) to adjust

for the longer pathlength through the 100mL bottles and thus 3.96x higher OD readings.
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in each panel. Right: common fragments across tetraethers are highlighted in the same colors (pink & red)
while characteristic fragments of each tetraether are highlighted in their own color (brGDGTs are color-
coded as in Fig. 1 and Fig. 3). Both proposed structures for brGTGT llla-2, brGDGT llla-2 and brGDGT
IlIb-2 are consistent with the respective fragmentation pattern. The exact location of the methyl branches
for overly branched structures is speculative (but must be on the same alkyl chain in brGTGT llla-2). The

double bond in brGDGT Illb-2 could be a ring instead (structure not shown).
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were <0.01 except where marked with an asterisk. Samples with FA = 0 or 1 were treated as outliers and

removed from statistical analyses (r, n, and p values). *“Temperatures were associated with different sample

types following Raberg et al. (2022a). Schematics of Methylation Set groupings are provided at top.
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error. Coefficients with p values = 0.01 are plotted as open circles. Abbreviations are defined in Figure 2

caption. See Table 1 for MBT’sme regression parameters.
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proteins. Protein BLAST scores of S. usitatus homologs are provided below each protein (see Table S5 for details). PIsAR (ether lipid biosynthesis),
Tes (tetraether synthesis) and GrsA/B (GDGT ring synthesis) from Clostridium perfrigens, Methanosarcina acetivorans, and Sulfolobus
acidocaldarius, respectively, all have close homologs and domain structure in S. usitatus. EIbD (ether lipid biosynthesis) from Myxococcus xanthus
and one of its BLAST results in S. usitatus is also included and shows how only the PF500501 portion of the protein (AMP-binding domain) matches

proteins in S. usitatus (all with less than 40% coverage).
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Supplementary Information Tables

Table S1. Culture growth rates (u) and generation estimates for all experiments with S. usitatus. Growth
rates were calculated for all replicates by fitting OD measurements to the logistic equation below using non-

linear least squares regressions in R (t is time, fit parameters p and K represent the growth rate and carrying

K

CapaCity / max OD) oD (t) = W

. Growth rates of individual replicates are listed with the

standard errors of the regression fit. Growth rate averages are listed with the standard deviation of the

replicates. Generation estimates were calculated based on optical densities of the inoculum and final optical

densities of the cultures at harvest and are averaged across replicate cultures: #gen = log, %D;—"T' See
t

Fig. S1 for visualization of growth curves and Fig. S2 for visualization of growth rates. See Dataset S1 for

these data in spreadsheet format.

Growth rates (day™)
Temperature % O2
°C) PR ww)
Rep. 1 Rep. 2 Rep. 3 Average #gen

15 5.0 21 0.25+0.02 0.36+0.06 0.28+0.03 0.30+0.06 8.02+0.02
15 5.5 21 0.28+0.02 0.31£0.03 0.28+0.02 0.2940.02 8.321+0.07
15 6.0 21 0.26+0.03 0.17+0.01 0.26+0.03 0.23+0.05 8.37+0.09
20 5.0 21 0.37+0.02 0.35+0.01 0.42+0.02 0.38+0.03 8.65+0.07
20 5.5 21 0.58+0.06 0.52+0.05 0.46+0.01 0.52+0.06 8.47+0.08
20 6.0 21 0.50+0.03 0.58+0.05 0.57+0.04 0.55+0.05 8.56+0.09
20 6.5 21 0.58+0.04 0.51+0.03 0.53+0.04 0.54+0.04 8.92+0.02
25 5.0 21 0.43+0.01 0.53+0.02 0.52+0.05 0.49+0.05 8.21+0.03
25 5.5 21 0.73+0.03 0.83+0.03 0.79+0.02 0.78+0.05 8.24+0.03
25 6.0 21 1.04+0.11 1.011£0.10 1.00£0.10 1.021+0.02 8.28+0.00
25 6.5 21 1.071£0.09 1.00£0.08 0.70+0.07 0.92+0.20 8.66+0.01
30 5.0 21 0.73+0.07 1.16+0.21 0.70+0.06 0.86+0.26 8.2910.03
30 5.5 21 1.4810.29 1.4110.24 1.47+0.30 1.4510.03 8.321+0.03
30 6.0 21 1.1210.12 1.131£0.13 1.161£0.14 1.1410.02 8.52+0.00
30 6.5 21 0.82+0.05 0.94+0.08 1.00+0.09 0.92+0.09 8.59+0.01
25 5.5 5 0.50+0.00 0.66+0.00 0.54+0.00 0.57+0.09 6.37+0.03
25 5.5 1 0.36+0.00 0.30+0.00 0.34+0.00 0.33+0.03 6.36+0.02
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Table S2. Overall membrane composition estimates for S. usitatus for all experimental conditions. Tetraether abundances were calculated relative
to fatty acids and mono/di-ethers using the C24:0 fatty acid and C46 GTGT internal standards. Reported relative abundances are the statistical
means and standard deviations of biological triplicates. The last column ('All') represents the statistical average and standard deviation across all

experiments. See Dataset S1 for these data in spreadsheet format.

Experimental Conditions

T(°C)| 15 15 15 20 20 20 20 25 25 25 25 30 30 30 30 25 25

pH| 50 | 55 | 60 | 50 | 55 | 60 | 65 | 50 | 55 | 6.0 | 65 | 50 | 55 | 6.0 | 6.5 | 55 | 55 | Al

% 02| 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 5 1

Major lipid classes' relative abundances in % (mean * 1 standard deviation)

40.9| 58.6| 53.9| 47.1| 61.5| 51.1| 59.5| 42.0| 79.7| 70.6| 62.6| 39.6| 71.4| 68.4| 60.2| 75.0/ 649 59.2
+23.8| £11.0| +8.3| +9.2| #8.2| +8.6| £16.2| £11.5| +2.8| £#11.8| £10.0| £20.3| £#12.2| +5.2| #12.3| +6.7| +5.7| 121
monoethers | 121 16.8| 20.9| 19.0 12.8| 14.9| 146 34.3| 10.2| 12.8| 20.5| 385 156/ 154| 183| 4.7/ 34| 16.8

& diethers +4.0] #22| +54| 0.9 +3.3| #1.0] #6.1| #1.5] 2.9 44| +2.0| +14.9| 74| +2.1| +8.8| #0.3| +0.7| 8.8

47.0| 24.7| 25.2| 33.8| 25.7| 34.0| 25.9| 23.7| 10.1| 16.6| 16.9| 22.0| 13.0| 16.1| 21.5| 20.3| 31.6| 24.0
+23.7| +8.8| +3.4| #9.7| #52| +8.3| £10.7| #10.1| #0.1| +7.4| +104| +5.6] #4.9| +3.1| +4.8| +6.7| #5.0] 9.0

fatty acids

tetraethers
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Table S3. Gas chromatography data including fatty acids, mono-ethers and di-ethers for S. usitatus for all experimental conditions. Relative
abundances for each sample were calculated from flame ionization detector (FID) peak areas (n.d. = not detected). Reported relative abundances
are the statistical means and standard deviations of biological triplicates. Most unsaturated fatty acids (e.g., i15:1, i17:1, 18:1) were detected as
multiple closely eluting isomers that reflect different positions of the double bond and were summed together for this data overview. The last column
('All') represents the statistical average and standard deviation across all experiments. See Table S7 for chemical structures and full names of key

fatty acids and mono/diethers. See Dataset S1 for these data in spreadsheet format.

Experimental Conditions

T(°C)| 15 15 | 15 | 20 | 20 | 20 20 25 25 25 25 30 30 30 30 25 | 25
pH| 50 | 55| 6.0 | 50 | 55 | 6.0 | 6.5 50 | 55 | 6.0 6.5 5.0 55 | 6.0 | 65 | 55 | 55 | All
%02 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 5 1
Fatty acid relative abundances in % (mean * 1 standard deviation)
14:0 <1 <1 <1 <1 <1| <A1 <1 32| <1 <1 <1 1.1 <1 <1 <1 <1 <1 <1
+1.3 1.2
i15:1 16| 12| <1 <1 37 16 1.7 <1| 54 4.6 1.6 <1 401 22 <1| 98| 34| 25
+1.8| 1.3 +1.7| £0.8] 2.2 +2.8| 3.0/ 04 +3.6| 1.5 +0.3| +0.1| #2.5
i15:0 28| 13| 20| <1 20| <1 122 <1| 16.0{ 12.8| 13.9 1.3 15.0] 11.8| 10.6| 40.2| 44.1| 11.0
42| +1.0| £1.7 2.8 +14.3 6.0 £11.0| £11.9| £2.2| +£12.3| #5.8| +14.8| +0.5| +1.2| #13.2
15:0 71 69| 7.9| 37| <1 39| 108 8.0/ 1.5 2.9 6.9 4.3 34| 6.1 119 16| 3.1 5.3
+2.9| +2.0| +6.6| 6.4 +5.3| 55| 69| £1.2| 04| 6.3| *4.1| 53| £3.1| 55| 04| +0.3| *3.2
i16:0 <1 <1 <1 <1 <1| <A1 <1 <1 <A1 <1 <1 <1 <1 <1 <1 <1 <1 <1
16:1 23| 43| 37| 18| 5.0/ 48 2.3 <1| 49 6.8 3.3 1.3 48| 53 1.7/ 6.9 94| 41
+2.6| +1.8| £1.5| +0.6| £1.1| +1.0| 0.9 +0.6| 0.6| £1.1| £1.6] *2.2| £1.0{ £0.8| +0.4| #0.6| *2.3
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16:0 <1| 13| <1 15 17| 16 3.0 <1| 20 1.1 3.2 <1 1.3 15 26| <1 33| 1.7

0.3 +0.2| #0.4| +0.2| 0.8 +0.4| 0.2| 0.2 +0.3| #0.1| 0.5 +0.3| *0.9

i17:1 35.1| 43.5| 36.4| 37.3| 46.8| 42.3| 16.2| 17.9| 41.4| 457 27.6| 23.2| 404| 427 19.2| 26.1| 19.7| 33.0

+13.3| +8.9| +6.8| #5.7| 55 +2.7| +13.2| 4.5 +2.6| 4.4| +£3.2| £179| 35| 19| +1.4| +1.1| +0.5| +10.8

i17:0 27| 32| 20/ 30 31 3.0 185 29| 29 29| 105 3.2 3.7\ 3.7 174 16| 3.1 5.1

+0.7| $0.7| +0.3| +0.9| +0.4| +0.4| 49| +1.3| +x0.5| +0.7| 9.1 £1.8| 0.7| +0.4| 2.0/ #0.1| #0.3| 5.2

17:1 6.3| 4.8/ 83| 504 63 6.8 43 6.4 34 1.1 <1 3.0 3.7 <1 28| 3.7 3.7/ 41

7.1 £3.3| +4.9| +1.6| +0.9| +0.7| +29| 5.6 +1.1| 0.2 49| 45 +1.1| $0.4| £0.9| #2.3

17:0 52| 39| 42| 6.1 6.6 5.0 3.7 35| 4.8 1.0 22 <1 <1 1.1 22| 17/ 21| 3.2

$0.7| £2.7| £2.7| #1.7| £1.7| +1.5| £1.6| 2.7 +1.9] 10.2| 2.3 +0.2| +1.3| +0.5| +0.2| #1.9

18:1 51| 26| 254 42| 23| 29 2.0 24| 20 1.9 1.5 2.7 16| 2.1 21 <1 15| 24

+4.8| +0.5| +0.2| +0.6| +0.2| +0.7| 0.8 +1.0| +0.4| +0.6| +0.2| +1.2| +0.2| +0.4| 0.5 +0.1| #1.0

18:0 34| 27| 254 44| 29| 35 2.8 52| 2.8 1.8 2.7 4.1 19| 25 36 <1 <1 28

+1.0/ £0.5| £0.7| +0.4| +0.3| +0.9| +0.9| +1.5| +1.1| 06| 1.1 0.1 +0.6| 0.5 1.3 1.2

19:1 <1 <1 <1 14, <1 <1 <1 16| <1 <1 <1 1.6 <1 <1 <1 <1 <1 <1

0.5 0.4 0.7
20:0 <1 <1 <1 11 <1 <1 <1 1.8] <1 <1 <1 1.9 <1 <1 <1 <1 <1 <1
10.1 0.6 0.5

iDA nd.| nd.| nd.| nd.| nd.| nd. n.d. nd.| n.d. n.d. n.d. n.d. n.d.| n.d. nd.| nd.| nd.| n.d.
Mono/diether relative abundances in % (mean * 1 standard deviation)

1-i15:0 6.4| 59| 114 79| 43| 6.0/ 123 231 17 55 11.2| 215 52| 64| 118 1.8 33| 8.6

MAGE +2.5| +2.3| t5.6| +2.9| +1.4| +0.6| 6.1| +14.6| +0.2| +3.5| +3.8| +14.9| +2.7| +1.2| 4.1 £0.1| £1.0| 6.1

2-i15:0 27, 14, 12| 23 15 <1 <1 19| <1 <1 <1 1.5 <1 <1 <1 <1 <A1 1.1

MAGE +1.4| £0.3| +0.4| +1.2| +0.2 0.5 0.7 $0.7

1,2-i15:0 16.6| 15.3| 15.5| 18.9| 11.7| 15.8 74| 207, 91 9.7/ 13.1| 27.3| 12.6| 11.6] 111 3.7 12| 13.0

DAGE +7.3| +4.8| +4.5| +1.0| +3.9| +3.8| +3.7| +8.9| +2.8| +3.4| 25| +10.1| +6.9| +1.9| 19.8| #0.7| #0.2| 6.2
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Table S4. Liquid chromatography data including all branched GTGTs and branched GDGTs for S. usitatus for all experimental conditions. Relative

abundances for each sample were calculated from TIC peak areas (n.q. = not quantified due to exceedingly low abundance or complete absence).

Reported relative abundances are the statistical means and standard deviations of biological triplicates vs all listed compounds. Note that Fig. 3

visualizes abundances relative to the standard brGDGTs (Table S5) rather than the whole dataset listed here. The last column ('All') represents the

statistical average and standard deviation across all experiments. See Fig. 1, Fig. 3 and Table S7 for chemical structures. See Dataset S1 for these

data in spreadsheet format.

Experimental Conditions

T(°C)| 15 15 15 20 20 20 20 25 25 25 25 30 30 30 30 25 25
pH| 5.0 5.5 6.0 5.0 55 | 6.0 6.5 | 5.0 5.5 6.0 6.5 5.0 5.5 6.0 6.5 55 | 55 All
%02 | 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 5 1
Branched GTGT relative abundances in % (mean * 1 standard deviation)
brGTGT 52| 4.9 34 3.1 54| 4.0 74 23 3.8 3.2 9.9 1.8 1.7 1.3 6.2| 2.0 1.6 4.0
la +1.3| +#0.6| +0.6| #0.7| #1.3] +0.6| +0.3| #1.7| #14| +01| +3.6/ #0.7| #0.1| +0.1| #1.9 06| 0.3 #2.3
brGTGT | 0.31| 0.18| 0.12 1.1] 0.53| 0.21| 0.09| 0.99 1.7] 0.35| 0.11| 0.14| 0.28| 0.18| 0.06| 0.69| 0.44| 0.44
lla +0.16| +0.05| #0.04| +0.4| #0.32| +0.03| #0.02| +1.53| +0.1]| #0.02| +0.04| +0.13| +0.01| #0.02| +0.01| #0.11| +0.16| *0.45
brGTGT | 0.20| 0.14| 0.11| 0.49| 041| 0.17, 0.11| 0.53 1.1 0.28| 0.11] 0.32| 0.33] 0.22f 0.19 3.8/ 091 0.56
llla +0.08| +0.04| +0.03| +0.14| +0.10] +0.01] #0.01]| +0.56| +0.5| +0.01| +0.04| +0.04| +0.01] #0.03| +0.01] +0.9| +0.22| #0.88
Standard branched GDGT relative abundances in % (mean * 1 standard deviation)
brGDGT 55 51 42 80 76 74 72 92 90 93 89 95 96 96 93 82 89 80
la 2 13 2 13 2 10 10 13 2 10 4 +1 10 10 2 +1 +1 17
brGDGT | 0.40| 0.51| 0.40 1.2| 0.90 1.0| 0.26 1.9 1.2 19| 0.22 1.9 1.9 16| 0.18 1.2| 0.33 1.0
Ib +0.05| +#0.09| #0.15| +0.5| #0.33| +0.2| #0.03| +1.1| +0.2| +0.1| #0.02] +0.2| +0.1| +0.1| £0.00| +0.1| +0.07| 0.7
brGDGT ng.| ng., ng.| ng. ng.| ng., ng. ng. ng.| ng.| ng. ng.l ng.l ng. ng. ng.| ng. n.qg.
Ic
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brGDGT 36 40 48 13 16 20 18 1.7 1.6 1.3 1.0/ 0.58| 0.15| 0.21| 0.19 5.4 2.5 12
lla +1 12 12 12 +1 +1 +0| #0.3] +0.0/ +0.1] #0.1] +0.39| £0.01| +0.00| £0.01] #0.1| 0.2 #16

brGDGT | 0.25| 0.44| 043| n.g.| 0.16| 0.23, 004, n.g., ng.l ng.| ng. ng.| ng. ng. ng/| ng. ng.| 0.09
Ib +0.04| +0.16| £0.24 +0.07| +£0.03| +£0.00 +0.16

brGDGT ng.| ng., ng.| ng., ng.| ng., ng. ng. ng.| ng.| ng. ng.l ng.l ng. ng. ng.| ng. n.qg.
llc

brGDGT 29 3.3 52| 0.99] 0.30| 0.46 24| 0.04| 0.05| 0.05| 0.05| 0.07f 0.03| 0.03 0.06| 0.03] 0.01] 0.94
llla 10.2| +0.4| +0.6| +1.24| +0.02| £0.04| +0.1| £0.01| £0.03| +£0.01| +0.01| +0.05| +£0.00| +0.00| +0.00| +0.00| +0.00| #1.55

brGDGT ng.| ng., ng.| ng., ng. ng., ng.| ng. ng.| ng.| ng. ng.l ng.l ng. ng. ng.| ng. n.qg.
111b

brGDGT ng.| ng., ng.| ng. ng. ng., ng. ng. ng.| ng.| ng. ng.l ng.l ng. ng. ng.| ng. n.qg.
llic

Uncommon branched GDGT relative abundances in % (mean * 1 standard deviation)

brGDGT n.g.| n.g.| n.g.| 005 0.03] 0.02] n.g.| 0.04/ 0.07{ 0.02| 0.01] 0.03] 0.03] 0.03| 0.04 2.3 3.5 0.36
llla-2 +0.01| £0.01| +0.00 +0.02| +0.03| +0.00| +£0.00| +£0.00| #0.00| £0.00| +0.00f #0.2| +0.4| #0.97

brGDGT n.g.| n.g.l n.g.| 0.14| 0.08 0.02| 0.01| 0.14| 0.26| 0.02| 0.01| 0.05| 0.04] 0.04| o0.07 2.7 1.7 0.31
b-2 +0.02| +0.04| +0.00] +0.00| +0.15] £0.10] £0.00| +0.00| +0.01| +0.00| +0.00] +0.01| 0.2| 0.2| #0.73
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Table S5. Calculated methylation index of brGDGTs (MBT’sme); cyclization index of brGDGTs (CBTswme); degree of cyclization (DC); and branched

GDGT abundances relative to standard branched GDGTs (% of brGDGTs, abbreviated as %br in main text). Because the degree of cyclization is

very low for all samples, DC is listed here in % (i.e. x 100). See Dataset S1 for all data in spreadsheet format.

MBT’sme = (la+1b +1Ic)/(la+1b+Ic+lla+ b+ lic + llla)

CBTsme = - log( (Ib + 1Ib) / (Ila + 1la) )

DC[%]=(b+2*Ic+Illb+IIb)/(la+Ib+Ic+lla+lla +lb+Illb’)* 100

Y%br=[(brGDGTx )/ (la+Ib+Ic+lla+llb+lic+Illa+llb+1lc)]* 100

T(°C)| 15 15 15 20 20 20 20 25 25 25 25 30 30 30 30 25 25
pH| 5.0 5.5 6.0 5.0 5.5 6.0 6.5 5.0 5.5 6.0 6.5 5.0 5.5 6.0 6.5 5.5 5.5
%02| 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 5 1
Indices
MBT 0.58| 0.54| 0.44| 0.85| 0.82| 0.79| 0.78] 0.98| 0.98| 0.99] 0.99| 0.99 1.0 1.0 1.0/ 0.94| 0.97
Me | +0.01| £0.03| +0.02| +0.02| +0.02| +0.01| +0.00| +0.00| +0.00| +0.00| +0.00| +0.00| +0.0| +0.0| +0.0| +0.00| +0.00
CBT. 2.1 2.0 2.1 1.9 2.0 1.9 2.5 1.7 1.9 1.7 2.6 1.7 1.7 1.8 2.7 1.9 2.4
SMe +0.1] +0.1| #0.2| +0.2| +0.2| #0.1] 0.0/ +0.2| #0.1| 0.0/ #0.0] +0.0/ +0.0] #0.0] 0.0/ 0.0 #01
DC [%] 0.71 1.0 0.92 1.2 1.1 1.3] 0.33 2.0 1.3 2.0 0.24 1.9 2.0 1.7] 0.20 1.3] 0.36
° | +0.10] #0.3| +0.43| #0.5| +0.4| #0.2| +0.03| #1.0| #0.2| +0.1] #0.02| #0.2| #0.1| +0.1] #0.00| +0.1| +0.09
Branched GDGT abundances relative to standard branched GDGTs (%br)
brGDGT | 57.8| 53.5| 43.9| 83.7| 81.1| 77.6| 781 96.3| 97.0/| 96.6| 98.6| 97.4| 97.9| 98.1| 99.5| 925/ 96.9
la +1.3] +3.3] #1.9| 21| +2.0| #0.7] +04| #1.3| #0.1| +0.1| #0.1] 0.2 #0.1| #0.1] 0.0/ #0.1| 0.3
brGDGT | 0.43| 0.54| 0.42| 1.22| 097 1.07| 0.28] 1.96| 1.31| 2.00] 0.24| 1.92| 1.96| 1.67| 0.20] 1.31| 0.36
Ib +0.05| +0.10| #0.16| +0.50| +0.35| +0.18| +0.03| £1.04| +0.17| £0.10| +0.02| +0.20| #0.10| +0.11] £0.00| +0.12| +0.09
brGDGT ng.| ng., ng.| ng., ng.| ng., ng. ng. ng.| ng.| ng. ng.l ng.l ng. ng. ng.| ng.
Ic
brGDGT | 38.4| 421 49.9| 14.0f 175 20.7| 19.0| 1.71| 1.68| 1.37| 1.14| 059 0.16| 0.21| 0.21| 6.15| 2.77
lla +1.0] +2.6| +16| #1.7| +1.6| #0.6] +0.2| +0.28]| +0.02| £0.07| +0.10| +0.40| +0.01| +0.00| +0.01| +0.18| +0.26
brGDGT | 0.26| 0.47| 045/ n.q.l 0.17| 0.25 004, n.g. ng.l ng. ng. ng.| ng. ng.| ng/| ng.| nagq.
Ib +0.04| +0.17| £0.25 +0.08| +0.03| +0.00
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brGDGT ng.| ng., ng.| ng. ng.| ng., ng. ng. ng.| ng. ng. ng.l ng.l ng. ng. ng.| ng.
llc
brGDGT | 3.11| 3.44| 5.39| 1.04| 0.32| 048] 2.60| 0.04| 0.05| 0.05| 0.05| 0.08/ 0.03| 0.04| 0.06/ 0.03] 0.01
llla +0.26| +0.48| +0.65| +1.31| £0.02| +0.04| +0.15| £0.01| £0.03| +0.01| +0.01| +0.05| +0.00| +0.00| +0.00| +0.00| +0.00
brGDGT ng.| ng., ng.| ng., ng.| ng., ng. ng. ng.| ng.| ng. ng.l ng.l ng. ng. ng.| ng.
b
brGDGT ng.| ng., ng.| ng., ng.| ng., ng. ng. ng.| ng.| ng. ng.l ng.l ng. ng. ng.| ng.
llic
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Table S6. Protein BLAST results from the S. usitatus Ellin6076 proteome (https://www.uniprot.org/proteomes/UP000000671, retrieved Feb. 27 2022)

for proteins potentially involved in brGDGT biosynthesis (e-value < 1e71°). See Figure S12 for domain visualizations.

Query BLASTP results from S. usitatus Ellin6076
Protein
Organism Gene Locus UniProtID AAs |Gene Locus UniProtID AAs Coverage Identity e-value
PIsA Clostridium perfringens CPE1195 Q8XL47 1004 JAcid 0922 QO02AJ5 1188 96% 30.2% 1.48e-126
PIsR Clostridium perfringens CPE1194 Q8XL48 420 |Acid 0921  QO02AJ6 589 96% 20.9% 2.33e-14
Tes Methanosarcina acetivorans MA_1486 Q8TQQ4 509 JAcid 5929 QO1U00 545 96% 40.2% 1.38e-139
Acid 2410 Q025C7 714 92% 30.1% 4.18e-62
GrsA Sulfolobus acidocaldarius Saci 1585 Q4J8I0 489 [Acid 5783 QO1UEOQ 597 75% 29.3% 3.90e-38
GrsB Sulfolobus acidocaldarius Saci 0240 Q4JC22 528 |Acid 5783 QO1UEO 597 84% 25.2% 1.29e-40
ElbD Myxococcus xanthus MXAN_1528 Q1DC43 1470 |Acid_7444 QO01PR8 597 37% 26.4% 1.29e-57
Acid 0997 QO02AC7 468 31% 30.9% 4.88e-51
Acid 5700 QO01UM3 554 30% 30.0% 1.80e-45
Acid_3608 QO020R4 540 36% 27.7% 6.05e-44
Acid 1327 Q029G6 496 32% 27.7% 1.55e-04
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Table S7. Chemical structures of compounds discussed in the manuscript.

FAs (fatty acids)
i15:0 FA (iso C15:0 fatty acid)

Hoxn/\/\/\/\/\/\r
@)

iDA (iso diabolic acid / 13,16-dimethyl-octacosanedioic acid)

0
HO}(\/\/\/\/\/\(\)\/\/\/\/\/\/&OH
0

MAGEs (monoalkyl/monoalkanoic glycerol monoethers)

i15:0 MAGE (1-iso C15:0 monoalkyl! glycerol monoether) aka 1-iso C15 MGE
OH

i15:0 MAGE (2-iso C15:0 monoalkyl! glycerol monoether) aka 2-iso C15 MGE
OH

ey

OH

iDA MAGE (iso-diabolic acid monoalkanoic glycerol monoether) aka iso-diabolic acid MGE
OH

OH
@]
O\/\/\/\/\/\/Y\)\/\/\/\N\)LOH
DAGEs (dialkyl/dialkanoic glycerol diethers)

1,2-i15:0 DAGE (1,2-iso C15:0 dialkyl glycerol diether) aka 1,2-iso C15 DGE
OH

\EZ\/\/\/\/\/\/Y
SN

1,2-iDA DAGE (1,2-iso diabolic acid dialkanoic glycerol diether)

OH 0]
0)

K[ WM/NéOH
O\/\/\/\/\/\/\|/\)\/\/\/\/\/\)LOH

GTGTs (glycerol trialkyl glycerol tetraethers)
brGTGT la
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OH

LA VAR

brGTGT lla

WWM

brGTGT llla-2 (proposed potential structures)

OH

1§ )\/\/\/\/\/\/\/\

\(o\/\/\/\/\/\/Y (o)
O\AM/\A/W/\)\/V\/\N\/\OJ\

OH

GDGTs (glycerol dialkyl glycerol tetraethers)

brGDGT la
OH
\EO\/\/\/\/\/\/Y\)\/\/\/\/\/\/\O
0\/\/\/\/\/\/\(\)\/\/\/\/\/\/\0)\
OH

brGDGT Ib

mm
MWM

brGDGT Ic

m
AT aaaaas!

brGDGT lla
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AN WA

brGDGT IIb

o OWQ/\)WWWO
T )

brGDGT lic
OH (0)
0)
(0)
(o} OH
brGDGT llla

LSV A

brGDGT llla’ / lllas
OH
(o)
K( \/\/\/\/\/\/\(\)\/\/\/\r\/\/\o
O\A/\)\/\/\/ﬁ/\)\/\/\/\/\/\/\oj\
OH

brGDGT lllar
OH
(o)
KE \/\/\/\/\/\/Y\)\/\/\)\/\/\/\O
(0)
OH

brGDGT llib

o Omo
\EOWWVWWL

brGDGT IlIb’ / llibs
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OM/M/\)\MNVV\O
OH

OMWWO
OH

brGDGT llic

Uncommon GDGTs

brGDGT llla-2 (proposed potential structures)

OH

\(0\/\/\/\/\/\/\(\)\/\)\/\)\/\/\0
O\/\/\/\/\/\/\r\)\/\/\/\/\/\/\oj\

OH

OH

K[o\/\/\/\/\/\/Y\)\/\/\/\/\/\/\/\O
0%/\/\/\/\/\(\)\/\/\/\/\/\/\0%

OH

brGDGT llIb-2 (proposed potential structures)

\(wwwj\
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