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1. Introduction

A matricial system S will be a subspace of complex n x n matrices M,, which contains
the unit and is closed under taking adjoints, i.e., $* = §. Matricial systems were first
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systematically studied by Choi and Effros [4] and have been the subject of heavy inves-
tigation recently in quantum information theory under the guise of “quantum graphs.”
Many interesting “quantum” extensions of classical graph invariants, such as clique, in-
dependence, and chromatic numbers and the Lovéasz theta invariant, have been found
for quantum graphs. (See, for example, [3,5].)

In the study of matricial systems, trace duality plays an important role, which is the
fact that the cone of positive-semidefinite matrices is self-polar under the bilinear pairing
(A, B) — tr(B*A). The trace pairing gives a non-degenerate inner product structure on
M,,, known by various names such as the Frobenius or Hilbert—Schmidt inner product.
A matricial system S C M,, can be completely characterized as the range of a unique
orthogonal projection Ps with respect to the Hilbert—Schmidt inner product.

Given a linear operator ® : M, — M,, we can define an adjoint ®' : M, — M,
determined by the functional equation tr(B*®(A)) = tr(®f(B)*A) for all A, B € M,,.
The projection Ps onto a matricial system has many nice properties. For instance, Ps is
unital, i.e., Ps(1) = 1, sends self-adjoint matrices to self-adjoint matrices, and has Pl =
Ps. The fact that Ps is unital and is its own adjoint implies that Ps is trace-preserving
as well, that is, tr(Ps(A)) = tr(A) for all A € M,,. However, Ps rarely preserves the set
of positive-semidefinite matrices, so is generally not a quantum operation, to which we
refer the reader to the Background section below for a precise definition. In fact, Ps is a
quantum operation exactly when S is injective as an operator system in the sense of Choi
and Effros [4], the most significant examples being when S is a subalgebra of M,,. For
a matricial system which is a subalgebra, Ps is known as the (unique) trace-preserving
conditional expectation of M,, onto S.

The goal of this note is to investigate quantum operations ¢ which approximate Ps as
closely as possible while sharing the same properties outlined in the previous paragraph.
Precisely, we would like to investigate quantum operations ® : M,, — M, which are
unital, preserve the trace, and whose range is equal to S. As the projection canonically
identifies the system, any such quantum operation should contain interesting information
on the structure and properties of the matricial system and should be able to be used
to derive useful invariants. As mentioned already, the best approximating operation to
Ps being itself is equivalent to injectivity.

We begin by defining an inner-product metric on the space of linear operators on M,
compatible with the cone structure given by the positivity-preserving operators, which
will be used as the metric for how closely a quantum operation approximates Ps. Since
we are working with an inner-product metric and the class of quantum operations we
consider forms a non-empty convex set, this ensures that our problem is well-posed with
a unique solution. From this basic problem, we define two numerical invariants ¢quad(S),
which is derived from the minimal distance quantum operation to Ps, and ¢y, (S) which
measures the largest incident angle of such a quantum operation with Ps. Crucially,
¢1in (S) takes the form of a (complex) semidefinite program, so is effectively computable.
Both of these invariants bear more than a passing resemblance to the quantum Lovéasz
theta invariant of Duan, Severini, and Winter [5], though both are distinct from it. We
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explicitly compute the optimal quantum operation for a family of matricial systems first
studied by Farenick and Paulsen in [6] and relate the answer to their work on quotients
of operator systems.

After studying the problem in full generality, we concentrate on the case of matricial
systems given by classical undirected graphs. In this case, we show that the approxima-
tion problem reduces from the quantum regime of operators on matrices to a simpler
problem of matrix approximation in the Hilbert—Schmidt metric. As a consequence, we
show in this case that ¢quad and ¢uin are both given by semidefinite programs. We discuss
how these graph invariants are related to the famous and well-studied theta invariant of
Lovasz [9]. While we show that these invariants lack many of the properties that make
the Lovasz theta invariant useful in so many applications, they may turn out to be of
some interest in their own right.

The outline of the paper is as follows. Section 2 contains background information on
quantum operations and complex semidefinite programs. In Section 3 we define an inner
product on the space of quantum operations and prove some basic properties about
it. Section 4 contains the definitions of ¢quaa and ¢un along with proofs of all basic
properties, computations, examples, and counterexamples.

2. Background

We will denote the n x n complex matrices by M,,, and M, will denote the positive
semidefinite n x n complex matrices. We will denote by £(M,,) the set of all linear maps
from M,, to itself. The trace of a matrix A will be denoted by tr(A).

We define the Hilbert—Schmidt inner product on M,, by

n
(A,B), :=tr(B"A) = Y Ai;Bjj,

4,J=1

with ||Alls = tr(A*A)'/? being the corresponding Hilbert-Schmidt norm on M,,. If
A, B € M, are hermitian, for convenience we will occasionally use A e B to denote
the Hilbert—Schmidt inner product.

Definition 2.1. We will say that a map ® € L(M,,) is positive if ®(M,F) C M,F. We will
say that @ is completely positive if ® @ idy, € L(M,, ® M},) is positive for all k£ € N. We
will denote by P(M,,) the cone of positive maps in £(M,,) and by CP(M,,) the cone of
completely positive maps.

There is a canonical linear isomorphism Ch from £(M,) to M, ® M, given by

Ch: o+~ Z Eij ® (D(EU)

4,J=1
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The matrix Ch(®) € M, ® M, is known as the Choi matriz associated to ®. The
following is a foundational result of M.D. Choi which we will use repeatedly; see [11,
Theorem 3.14] for a proof.

Proposition 2.2 (Choi’s Theorem). The map ® € L(M,) is completely positive if and
only if Ch(®) is positive semidefinite.

2.1. Quantum operations

We now recall the axiomatic approach to quantum operations. Fix a system @ (a
finite-dimensional Hilbert space) and let S denote the set of density operators on Q.
This is to say p € S if p € £L(Q)T and tr(p) = 1. Then a quantum operation is defined to
be a map ® : £(Q) — L(Q) satisfying the following three properties:

(1) tr(®(p)) is the probability that the process represented by the operation ® occurs,
when p is the initial state of Q). Thus, 0 < tr(®(p)) <1 for all p € S.

(2) @ is convex in the sense if {p;}; is a probability distribution and {p;}; C S then
QX pipi) = 2 pi®(pi).

(3) @ is completely positive.

Such examples of quantum operations are inner actions (conjugation by a unitary),
and the partial trace. Throughout the manuscript we will consider a special class of quan-
tum operations which will be linear maps ® € £(M,,) such that ® is unital completely
positive and trace-preserving.

2.2. Semidefinite programming

Most of the literature on semidefinite programming focuses on the case of real matri-
ces. As by necessity our semidefinite programs use hermitian matrices, we collect some
background on complex semidefinite programs here. The reader may consult [8,13] for
further information on complex semidefinite programs and [7,10,12] for the general the-
ory of semidefinite programming.

As our starting point we will say that a complex semidefinite program is an optimiza-
tion problem which can be expressed in the following form:

maximize CeoX

subject to A; e X =1b;, i=1,...,k (1)
X e M,
where C' and Ay,..., Ay are hermitian n X n complex matrices and by, ..., by are (nec-

essarily) real numbers.
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As observed in [8, section 3], every complex semidefinite program of the form (1) can
be written as a real semidefinite program as follows.

maximize C’eY

subject to A’ eY = 2b;, i=1,...,k
FijeY =0, ii=1,....n 2)
GiieY =0, ii=1,....n
Y € Man(R)*

where for A € M,, we write

A ReA —ImA o = ReC —ImC
" \ImA ReA ) T \ImC ReC

[ Ey 0 (0 Ey
(B0 ) 0 (2 5).

Note that Re A and Im A represent the element-wise real and imaginary parts, i.e.
(Re A);; = Re(A;j). It is straightforward to check that the program (2) returns twice
the value of the program (1).

We now write the dual program to (2):

minimize  2b7y

ul (3)
subject to ZyiAg +7Z—-C" € My, (R)*
i=1
T P Q :
where b = [by,...,b]" and Z = Q -P for some P,Q € M,(R). Since
A, .. A}, C" are invariant under the involution (é g) — <_DB C) and this

involution preserves Ma,(R)™ and leaves the objective function invariant, by averaging
we can omit the term Z without affecting the value of the program. Translating the
resulting program back to complex form gives the complex dual program to the complex
primal semidefinite program (1):

minimize b’y

k (4)
subject to Zy,»Ai —-CeM;f

=1

where b = [by,...,bx]7.
This allows us to restate the strong duality theorem for (real) semidefinite programs
in the setting of complex semidefinite programs. We thus refer the reader to [7, chapter



R. Araiza et al. / Linear Algebra and its Applications 663 (2023) 178—-199 183

4] or [10, section 6.3.1] for background on duality theory in semidefinite programming
and a proof of the following result.

Proposition 2.3. Consider the optimal values Vprimar and vquar of the programs (1) and
(4), respectively. If both programs are feasible, we have that Vayal > Vprimai- Moreover, if
there is X € M, invertible so that A;e X =b; for alli=1,...,k, then Vprimal = Vduai-

3. An inner product on the space of quantum operations

Definition 3.1. We define an inner product on £(M,,) by
= tr(Q(Ei)W(E);)") + Y tr(R(Ei) U (Ei;)*)
,J i#]

= tr(®(1,, ))+ > (@ Ei;)).

i#]

(5)

For two maps ®,¥ : M,, — M, we write & << ¥ if &(x) < ¥(x) for all = positive
semidefinite, i.e., if ¥ — ® is a positive map.

Lemma 3.2. Let &,V € P(M,,) be positive. If & << ¥, then ||P||x < ||¥| x-

Proof. Let z,y > 0 be positive matrices. Since ® << ¥ we have that tr(®(z)y) <
tr(¥(x)y). Now using that ®(z) and ¥(z) are positive with ®(z) < ¥(z), we have that

tr(D(2)®(x)) < tr(®(2)¥(z)) < tr(T(z)P(z)).

Let v = (v1,...,vy,) be a random vector where each entry v; € T is chosen indepen-
dently is distributed uniformly with regard to Lebesgue (probability) measure. In this
way X := vV ® Vv is a random positive semidefinite matrix. Observing

Evvivjﬁkf)l = max{éhkéj,l, 61-71(5]-7;6}, (6)
we have that
Extr(®(x)¥(x)") = Ey tr(®(v e v)¥(veVv)")

=Ey Y vi;vp; tr(®(Ey) ¥(Ep)*)

i,7,k,l
= Z Ev(viﬁjf)kvl)tr(@(Eij)\Il(Ekl)*) (7)
i,k
—Ztr U(Ew)*) + > tr(D( Ey)") = (D, 0), .

1#]

It follows that ||®||x < ||¥||x by averaging. O
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Notation 3.3. For A,B € M, let A o B denote the entrywise (Schur) product of the
matrices, i.e., (Ao B);; = A;;Bi;.

Remark 3.4. If ®(X) = Ao X and ¥(X) = Bo X, then ®(E;;)U(E;;) =0 unless ¢ = j.
Hence,

(B, ) = AiBii+ Y AijBij = tr(B*A) = (A, B), . (8)
i i#j
If we have that ® and ¥ are unital, then we have that

(@, W) =n+ Y tr(®(Ey;)¥(E;)"). (9)

i#j

Definition 3.5. For ® € L(M,,), we define &' € L(M,,) by

@/E“‘ :@E” OIn izl,...,n

(Eii) = ®(Ei) (10)
' (Ej) = ®(Eyj)ijEij  if i # j.

Lemma 3.6. We have that | ®'||x < ||®| k. Moreover, ® is positive, completely positive,
unital, or trace-preserving if ® is.

Proof. Let v be the random vector as in the proof of Lemma 3.2. If Q is either a diagonal
unitary matrix or a permutation matrix, we see that Qv and v are identically distributed
random vectors. Setting ®9(z) := Q*®(QzQ*)Q, we see from equation (7) that

1291 = || x- (11)

Let U,, be the group of all unitary diagonal matrices in M,, equipped with Haar (prob-
ability) measure. For U := diag(v) € U,, a Haar-uniformly distributed random variable
we have that, similarly to equation (7),

Ey @Y = &' (12)
Indeed,

Ey U (UE;;U)U = Eyvit; > 04019 (Eyj) 1 En- (13)
k.l

From this it follows that if ¢ # j, then i = k and j = [. If i = j, then the sum reduces to
summing over all k£ = [. It then follows by convexity of the norm that |®'||x < ||®||x. O

The following lemma is a variant of the previous, and seems well-known. For the sake
of convenience we reproduce here the treatment in [1].
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Lemma 3.7. For ® € CP(M,), a completely positive map, the matriz Ag defined by
[Ap)ij == ®(E;j)i; is positive semidefinite. Moreover, max;[Ag)i; < ||®(1)]].

Proof. The map A : E;; — E;; ® E;; induces a (non-unital) *-embedding of M,, into
M,, ® M,,. This implies that A(B) = Zij Bi;E;; ® E;; is positive semidefinite for all
B € M, positive semidefinite. Letting J,, denote the n X n matrix with all entries 1, we
see that

tr(AsB) = tr((Ch(®) o A(B))A(J,)) > 0

for all B € M, positive semidefinite; thus, Ag is positive semidefinite. The second
assertion follows since (Ag )i = ®(Ei)u < ||P(Ex)| < |21 O

Corollary 3.8. For ® € CP(M,,) define the matriz By by
[Bs)ii = ||2(1)]| i=1,...,n
[Bolij = ®(Eij)i; i # .

We have that Bg is positive semidefinite.

Proof. By the proof of Lemma 3.7, we have that Ag is positive semidefinite, and By — Ag
is a diagonal matrix with non-negative entries, and the result follows. O

Corollary 3.9. Suppose that ®,V € L(M,) are both completely positive and unital. We
have that

|Bs — Bullz < [|® — ¥ k. (14)

Proof. Since ®,¥ € L(M,,) are unital, we have that [Bg — By]i;; = 0. By (8) we have
under these assumptions that ||® — U’'||x = ||Bs — By||2. The result then follows by
Lemma 3.6. O

We end this section with one more observation on the || - || x-norm, which will not be
used in the sequel.

Let ® : M,, — M,, be a map which is self adjoint in the sense that ®(z*) = ®(x)*.
Define

CP(®) == {¥ € CP(M,) : & << U}

Note that CP(®) is a non-empty convex set. By Zorn’s lemma and closedness, the set
CP(®) has at least one <<-minimal element.

Proposition 3.10. Let ® € L(M,,) be self adjoint. Let U, be the unique element of CP(P)
minimizing U — ||¥ — ®||x. Then U, is <<-minimal in CP(P).
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Proof. Suppose there is A € CP(®) so that A << ¥, We have that ¥, —® and A—® are
positive and A—® << ¥, —®, hence by Lemma 3.2 we have that |[A—®| x < ||V.— |k,
hence A = ¥, by the minimality of ¥,. O

4. Approximating quantum operations

Definition 4.1. We say that subspace S € M,, is a matricial system if it contains the unit
and is closed under taking adjoints.

Given some matricial system S, we consider the orthogonal projection Ps : M,, — S
with respect to the Hilbert—Schmidt inner product. It holds for any matricial system
that Ps € L(M,) is unital and trace-preserving; however, it is rarely the case the Ps
is positive, let alone completely positive. We seek to approximate Ps by a quantum
operation with certain properties. These properties should be shared with Ps and allow
us to use Lemma 3.6, and so we establish our program to be

®, = argmin ||® — Ps||x
st. ®(M,) CS,
® completely positive, (15)
® unital,

® trace preserving.

Alternately, we can cast these conditions in terms of the Choi matrix Ch(®):

¢, = argmin  ||® — Ps||x
st. Ch(®)e M, ®S,
Ch(®) € (M,, ® M,)™, (16)
tr ®id(Ch(®)) = I,,,
id ® tr(Ch(®)) = I,.

An alternative to this objective is to maximize the inner product max(®, Ps)r. Geo-
metrically, inner products measure angles, and so maximizing this inner product can be
achieved by reducing the angle between ¢ and Ps.

Definition 4.2. Define ¢qyaa(S) := %(‘I)*,Psﬁa where @, is given by the program (16).
Define ¢1in(S) to be the same function with the alternative objective function
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é1in(S) = max %<(I),P5>K

st. Ch(®) € M, ® 8,
Ch(®) € (M, ® My)*, (17)
tr ®id(Ch(®)) = L,

id ® tr(Ch(®)) = I,,.

Proposition 4.3. For any matricial system S C M,

¢lin(8) > ¢quad (S) (18)

Proof. The argument ®, from the program (16) satisfies all the constraints of the pro-
gram (17) for ¢yin(S). Thus the value ¢guaa(S) = (®., Ps)k is a lower bound for the
value ¢in(S). O

Example 4.4. Consider the matricial system of all n X n matrices with constant diagonal
entries,

Sn:{X€Mn:Xii:ij,Vi,jzl,...,n}. (19)

We see that P,, the orthogonal projection S,, is given by X + X where )N(ij = X,; for
i # j, but X;; = tr(X)/n. From this, we can see that the Choi matrix of P, is

1
Ch(P,) = 2+ ZE,»J» ® Eyj.
i£]

We can view the case of So C My via the Pauli matrices where My = span{l,o,,0,,0.}
and So = span{l,o,,0,}. In this instance P»(1) = 1, Py(oy) = 04, Pa(oy) = oy,
and Py(0.) = 0. It can be seen that the projection P is positive, but not 2-positive.
There is a minimal unital completely positive map which sits over this projection,
in the sense that the difference is positivity preserving, and it is the one that maps
(1,04,0y4,0.) = (2,04,04,0).

The optimal quantum operation for the program (16) can be computed exactly.

Proposition 4.5. Given the matricial system S, from (19), the optimal quantum operation
®, is given by

tr(A)

n

A;j
In+z LEsj. (20)

®,.(A) =
(4) >4

Proof. Applying Definition 3.5, we see that P, = P,; hence, by Lemma 3.6, we can
assume that ®, = @/, since ||, — P, ||k < ||P« — Pnl|lx. Moreover, since ®,(M,,) C Sy, it
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follows that @/ (M,,) C S, using the identity (12) and the fact that Q*S,Q = S, where
Q is any diagonal unitary matrix. Since ®,(E;;) is a diagonal matrix for alli=1,...,n
and the only diagonal matrices in S,, are scalar multiples of the identity, it follows that
O (Fy) = %In since @/, is trace-preserving.

For ease of notation, for i # j, let B;; := @/ (E;;);;. We have for all |A| <1 that

E;i ® Ei1 — AE;; @ Erp — S\E]’i ® Eo1 + Ej; @ Eay = 0.
Since @’ is unital, completely positive again by Lemma 3.6, this implies that
@' (Bi;) ® E1 — AP, (Eyj) ® Er1a — AP, (Ej;) ® Eoy + ®L(Ej;;) ® Eao = 0;

hence,

1 1
ﬁfn ® E11 — |Bij|Eij ® Evg — |Bij|Ej; @ Eo1 + Eln ® Eay = 0.

This implies that |B;;| < L.
It is now easy to see that the distance is minimized when B;; = % foralli#j. O

Remark 4.6. Let 7, C M,,, be the subspace of all diagonal matrices of trace zero. We see
that S,, = J;-. There is a canonical operator space structure on M, /J,, first studied
in detail by Farenick and Paulsen [6]. It is shown therein that the map ®. given in (20)
gives a complete isometry @, : M, /T, — Sp.

Defining an operator system structure on S,, by X € My(S,,) is positive if

7 @iduy, (X) N M, 0.

we observe that S, equipped with this operator system structure is completely order
isomorphic to M, /T

Question 4.7. For any matricial system S C M, is it true that the minimizing map @,
in (15) gives a complete isometry ®, : M,,/S+ — S?

4.1. Applications to graph systems

Definition 4.8. For a given graph I' = (V, E') with |V| = n, we define the corresponding
graph system to be

The corresponding projection for this system is

Ps. = ZEH ® Eii + Z Ei; ® Eij.
i (i,J)€E
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The functions ¢iin(Sr) and ¢quad(Sr) will also be written equivalently as ¢in(I") and
(bquad (F)

Notation 4.9. We use the definition of the strong graph product I' X A of two graphs T’
and A given in [7, Definition 3.4.1]. Equivalently, we have that the strong product may
be defined by the relation

Sr @ Sp = Srxa-

Notation 4.10. For a given graph I' = (V, E), we define the graph complement I' = (V, E)
where (i,j) € E if and only if i # j and (i,5) ¢ E. We recall that the clique number
w(T) is defined as the size of the maximal subset of vertices such that all vertices are
connected. Similarly, the independence number o(I') = w(T) is defined as the size of the
maximal subset of vertices such that no vertices are connected.

We observe that graph systems may be characterized as those matricial systems S for
which the orthogonal project Ps is a Schur multiplier.

Lemma 4.11. Let Ps be a Schur multiplier. Then the program (16) is minimized by ®
being a Schur multiplier.

Proof. From Lemma 3.6 we know that given a selected ® we have that for ' as in
Definition 3.5 that ||®'—Ps|| x = [|®'—Ps||x < ||®—Ps| k. However, &’ is not necessarily
a Schur multiplier. From Corollary 3.8, consider the positive semidefinite matrix Bg, and
denote by ® its associated Schur multiplier. We have from that result that ®'(E;;) =
<I>( E;;) for all i # j, and that d is unital, trace-preserving and completely positive.

To finish, we note that |® — Ps|x = [|®' — Ps| k. This follows from ®, @, and Ps
being unital, so (& — Ps)(I,,) = 0 = (®' — Ps)(I,,). Equality follows by Definition 3.1. O

Corollary 4.12. Given a graph system Sp for I' = (V,E), the functions ¢quaa(I') and
din(T) are given by the semidefinite programs

din(I') = max  (Ae J,)/n,
st. Ay=1,Yi=1,....n
Aij = 0if (i,j) € B,
AX0

(22)

and (bquad (F) = (A* o Jn)/ﬂ, where
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A, =argmin ||A — J,||2
st. Au=1,Vi=1,...,n,
Ay =0if (4,5) € E,
Ar0,

(23)

where J, € M, is the matrixz of all ones.

Proof. Let Pr:=1,, + Z(m)eE E;; € M, be the augmented adjacency matrix of I'.

We begin by considering the program (17), the objective for which is % (P, Ps.) k-
Since Ps. is a Schur multiplier, we have by (9), using the same notation as in Corol-
lary 3.8, that

1 1 1
—(®, P, = —BpePr=—BgeJ,.
n( Psi) i n o ®LT n o e

The last equality follows by noting that ®(M,,) C S; hence, we have that for all ¢ # j
that (Bg)ij = ®(E;;)i; = 01if (¢,7) ¢ E. The Schur multiplier associated to Bg is unital,
completely positive and trace-preserving; thus, ® may be taken to be a Schur multiplier
associated to Beg.

We now turn our attention to the program (15). By the proof of Lemma 4.11 we may
replace @, by the Schur multiplier associated to Bg,. By Remark 3.4 we have that

|®. = Ps. ||k = || B, — Pr2.

Since we have already noted that for any ® satisfying the constraints of (15) that Bg e
Pr = Bg e J,, we have that the squared objective ||Bs — Pr||3 is up to a constant
independent of ® equal to ||Bg — J,,||3. Thus, these objectives are interchangeable when
computing argmin, and the result is obtained. O

We recall that from [9, Theorem 4] that the Lovdsz theta function ¥(T') of a graph
I' = (V, E) can be expressed as the following semidefinite program:

JI)=max YelJ,
st. Yy =0if (i,j) € E,
tr(Y) =1,
Y = 0.

Proposition 4.13. For any graph T' = (V, E),

ﬂ(F) > ¢1in(r) > <ﬁquad(f)' (25)
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Proof. We make the substitution Y = A/n into the program (24) to obtain:

J9() =max (AeJ,)/n
st Ay =0if (i,5) € B,
tr(A) = n,
A= 0.

(26)

By Corollary 4.12 the optimal argument A, from ¢y, (T') satisfies the constraints of ¢(T")
since tr(A,) = > ;(As)ii = >_; 1 = n. The optimal value of the semidefinite program

(26) is at least this value, so H(T") > ¢1in(T'). The second inequality follows directly from
Proposition 4.3. O

Although the inequality ¢y (') > w(T") does not hold (see the second inequality in
Proposition 4.19), a slight relaxation of the right side does work.

Proposition 4.14. For any graph T = (V, E) with |V| = n,

quad(T') > w()(w() —1)/n+ 1. (27)

Proof. If we have some maximal clique set C' where |C| = w(T"), then the number of edges
is |C|(|C| = 1)/2. Now order the graph so that 1,...,|C| are the numbers corresponding
to the elements of C'. Let our n X n matrix be

J 0
A=|"lC ] :
[ 0 Jnjol

All of the constraints hold since the diagonal is all ones, we have zeros wherever we
don’t have an edge, and the block matrix is positive semidefinite since J,, and I,, are
for any n. Therefore, the optimal value of the program must be at least (J o A)/n =
w@)(w)-1)/n+1. O

Proposition 4.15. The program (23) in the definition of ¢quada(I’) can be written as the
semidefinite program

A =argmin ¢

s.t. Aiizl, Vi=1,...7n,

Ay =0if (i,5) € E, (28)
A 0 0
0 I A =0
0 AT 24e.J,+t
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Proof. Consider the augmented adjacency matrix P = Pr := I, + Z(m-)eE E;;. Every
A € M,, which satisfies the constraints of the above program satisfies tr(AP) = tr(AJ,)
and therefore we may interchange P and J, in our calculations. Given such an A € M,,,
consider the vector A € R™ defined as

—

A: (All,...7An17A127...7An27...7141”’...’1477/”). (29)
The objective function in (23) is defined as
|[A-—P|Z=tr(A—P)?) =AeA—24eP+PeP=A"TA—24eP+PeP.

Using Schur complements [14, Thm 1.12], we can say that

—

1 A

ATA - 2AeP+PeP—1t<0 < | 5 =0
ol ITe = AT 92AeP_PeP+t|

So we write the conditions A = 0 and ATA _-24eP+PeP < t as the combined
condition

A 0 0

-

0 I A = 0.
0 AT 24eP_PeP it

The conditions are now

A =argmin ¢
st. Ay=1,Vi=1,...,n,
Ay =01if (4,7) € E,
A 0 0

—

0 I A = 0.

0 AT 24eP—_PeP+t

Since we are minimizing ¢, and tr(PP) is a constant then we may omit it to obtain

A = argmin t
st. Ay=1Vi=1,...,n,
A =0if (i,5) € E,
A 0 0

—

0 I A > 0.
0 AT 2AeP+t

This finishes the proof. O
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Lemma 4.16. The dual to ¢1n(T) is the program

(;NSHH(F) =min tr(Y)
st. Yy =0if (i,) € B, (30)
Y = J./n.

Proof. In the program (22), every constraint is written in the form E;; @« A = ¢;; and
thus we have one constraint on every element A;; except for where (¢, j) € E. Therefore
the dual program can be written as

gz;hn(F) =min Y e§

st Y Yy —Ju/n=0,
()¢5

where 6 = [0;;]. Thus, § = I, and Y e I, = tr(Y'), and we can equivalently write the
constraint as

dN)lin(F):min Y el
st. Yy =0if (i, ) € B,
Y —J,/n>=0.

Since I, is positive definite and satisfies all constraints of ¢y;, we conclude qglin = @lin. O
Proposition 4.17. For any two graphs I' = (Vr, Er) and A = (V, Ey), we have
O1in(' W A) = d1in (I') drin (A). (31)
Proof. (>) We will show that the RHS satisfies the constraints of the LHS. Let |Vp| = n
and V| = k. The RHS can be written as
G1in (I') P1in (A) = max

s.t. [Al"iizla Vi:1,...,7’l,

Ar € M5 and Ay € M, implies that Ar ® Ay € M7, and [Ar]; = [Aalee = 1 is
equivalent to [Ar ® Aplss = 1 for s = 1,...,nk. Additionally, (Ar e J,)(Ax e J;) =
(Ar @ Ap) o (Jp ® Jg) = (Ar ® Ap) @ Ty



194 R. Araiza et al. / Linear Algebra and its Applications 663 (2023) 178—-199

The tensor product of the matricial systems is Sr ® Sy = Srxma. Since Ar € Sr
and Ap € S) the tensor product Ar ® Ax € Srma, so it satisfies all the conditions for
&in (T X A). Therefore ¢pin (T K A) > ¢1in (T') drin (A).

(<) Starting with the dual program (30), the first condition is equivalent to saying
that ¥ € Sy. Once again, we write the right hand side as

Dlin(D)Prin(A) =min (Y o I,,)(Yy o I)
st [Yrli; = 0 if (i,5) € Er,
[Yalke = 0 if (k,€) € Ej,
Yr = Ju/n, Ya = Ji/k.

By the same reasoning as in the first direction, we have Yr ® YA € Spgy

It remains to show that Yr ® YA — Jpui/nk = 0. Since J,, > 0 for any n, this yields
the relations J,/n ® (Yo — Ji/k) = 0 and (Yr — J,/n) @ J/k = 0, which is equivalent
to Jp/n@Yy = Jp/n® Jp/k and Yr ® Ji/k = J,/n® Ji/k. Since Yr — J,/n > 0 and
YA —Ji/k = 0, we get that the tensor product (Yr —J,,/n)®(Ya —Ji/k) = 0. Expanding
out the product and using the relations above gives

Yr®Yy = Jn/TL@YA+YF®Jk/k‘—Jn/n®Jk/k’
t Jn/n®YA
By transitivity, this implies Yr ® Y = J,/n ® Jx/k = Jni/nk. Yr @ Y satisfies every

condition of @i, (I' X A), 50 Glin(I' K A) < G1in(T)1in(A), and by duality ¢, (I K A) <
G1in(D)dn(A). O

Proposition 4.18. For any graph T = (V, E), ¢un can be written as the vector program
1/4/¢1in(T) = max ¢

st. uju; =0if (4,§) € E,
clw, >t, VieV,

n

T —
E u; u; =n,
i=1

lefl = 1.
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Proof. Using the dual (30), make the substitution X = nY — J,:

Pin(0) =min  tr(X)/n+1
X = 0.

We will use a proof here similar to [7, Thm 3.6.1]. Write the value of the above vector
program as ¢}, ('), and denote = 1/4/¢!. (T).

(¢4, (T) > ¢yin(T)): First, let U = (uy,...,u,) be an optimal orthogonal representa-
tion with handle c. Say that the vectors are chosen such that for some k, c’u, = t. Then
define the matrix X with elements

T T
- ulu; u; u;
X.. — ey 1=1(c— i c — J , ) ;
I (cTu;)(cTuy) ( cTy; clu; i#]

To see that X is positive semidefinite, note that

T
~ u; u;

Xii >
= (cTuy)?

-1

Therefore X = D + STS for a matrix S and a diagonal matrix D with all nonnegative
values. The sum of PSD matrices is PSD, so X > 0. Note that for (i,5) € E, we assume

uiTuj =0, and thus Xij = —1 as well. To examine the trace, note that
~ 1 n ulu. _
tr(X 1=-— —t = (T).
r( )/TL + n ; (cTuk)Q ¢11n( )

X satisfies all constraints and therefore ¢} (T') > ¢yn (T).

(¢4 (T) < ¢yin(T)): Given an optimal argument X to ¢yn(T), let X = STS by
Cholesky decomposition, with s; the columns of S. We want to construct a solution
to the vector program with value £. X is singular; therefore, S must also be singular.
Hence the s; vectors do not span all of R™, and there exists a ¢ orthogonal to all the s;.
Now define u; := %(c +s;), where t = tr(X)/n + 1. Note that

;u?ui = Zg(l + X)) = Z(n—i—tr(X)) =n

i=1

as well as the relation that if (i, j) € E then s!s; = 0. For (i,j) € E we obtain

1 1
ugpuj = Z(cTc + CTSj + siTc + sgpsj) = E(l + X;;)=0.
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The value of £ for the vector program is given by

1 1 -
cTuyj = —(cTe+cTs) = — =1.

Vit vt

We have satisfied every constraint of the vector program, hence 1/4/¢f (T') > 1/v/t.
Therefore ¢iin T)<t=4¢,,(T). O

4.2. Counterezamples and computations

Here we examine several inequalities which are modifications of the above, yet none
of the following are always true for any graph T.

The wheel graph W, is defined by taking a cycle graph C,_; and connecting each
vertex {1,...,n — 1} to the vertex n. The path graph P, is defined by taking the cycle
graph C,, and removing the edge connecting 1 to n. The star graph S, is defined by
connecting each vertex {1,...,n — 1} and connecting it to vertex n, and no other edges
are placed. The complete graph is denoted as K, in which each vertex {1,...,n} is
connected to every other vertex.

Among some of the identities shown above, there are a few relaxations and related
inequalities which are not true.

Proposition 4.19. For any given graph T’ = (V, E), the following inequalities are not true:

(1) ¢1in(T) < pquaa(l');  (see Proposition 4.3)

(2) Pquaa(T) > w(T); (see Proposition 4.13)

(3) ¢quaa(T) > I(T)(WI(T) —1)/n+1; (see Proposition /.13)
(4) dquaaT' W A) < dquad(I')Pquaa(A);  (see Proposition 4.17)
(5) 9(T) < din(T).  (see Lemma /.16 and Proposition /.18)

Proof. The code by which all of the following results were obtained is contained in the
GitHub repository [2].

Counterexample for ¢jin (I') < ¢quad(T'). Consider I to be a path graph with 5 vertices,
we obtain the following values:

o () = 1.9798,
o Pquad(I') = 1.9593,
o error = 0.0205.

Counterexample for ¢quad(I') > w(I'). Consider I' to be a wheel graph of the order 5,
we obtain the following values:

o dquaa(l) = 2.9314,
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e w() =3,
e error = (0.0686.

Counterexample for ¢quaa (L) > 9(I')(I(I') — 1)/n + 1. Consider I' = K;; minus one
edge, we obtain the following values:

o Gquaa(T) = 1.18181791957969,
e O(I") = 1.999999999999876,
e error = 2.62238484927124 - 107

The primal-dual gap from computing @quad (T') was given as ¢ = 1.45- 10!, and the
gap from computing ¥(T") was 9 = 5.55 - 107!, Ignoring machine precision error, the
error of the right hand side of the inequality f(T") = 9(T')(J(T") — 1)/n+ 1 is

0f =max |f(9 & 00) — f(0)] = 1.5 - 10714,

The difference in the two sides is therefore large enough that this error cannot be
amounted to lack of precision in the solvers. Albeit a small error, it is still significant
enough to be a counterexample.

Counterexample for ¢quad(I'MA) < ¢gquad (I')Pquad (A). Consider I and A to be a path
graph of five edges, we obtain the following values:

o Pquad(T' X A) = 3.8660,
o Pquad () Pquaa(A) = 3.8387,
e error = 0.0272.

Counterexample for 9(T') < ¢y, (T). Consider a star graph with 5 edges, we obtain
the following values:

o oun(I") = 1.8000,
o (') = 4.0000,
e error = 2.200.
In this way we have provided counterexamples to all five assertions. O

4.8. Further discussion and open problems

Question 4.20. Is ¢yuad(S) expressible as a semidefinite program?

Question 4.21. Do the following identities hold for all cycle graphs C),?

¢1in(c_n) = 19(071)7 ¢1in(cn) - 19(0_71) (34)
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Remark 4.22. The equality dquada(Cr) = ¥(Cy) does not appear to hold unless n < 5 or
n="r.

Question 4.23. Is it true that @quaq Or P1in are supermultiplicative? That is, is

quuad (S oy T) > quuad (S)(ybquad (T) ) Qslin (S oy T) > lein (S)¢1in (T)

for all operator systems S C M,, and T C M}?
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