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1. Introduction

A matricial system S will be a subspace of complex n ×n matrices Mn which contains 
the unit and is closed under taking adjoints, i.e., S∗ = S. Matricial systems were first 
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systematically studied by Choi and Effros [4] and have been the subject of heavy inves-
tigation recently in quantum information theory under the guise of “quantum graphs.” 
Many interesting “quantum” extensions of classical graph invariants, such as clique, in-
dependence, and chromatic numbers and the Lovász theta invariant, have been found 
for quantum graphs. (See, for example, [3,5].)

In the study of matricial systems, trace duality plays an important role, which is the 
fact that the cone of positive-semidefinite matrices is self-polar under the bilinear pairing 
(A, B) �→ tr(B∗A). The trace pairing gives a non-degenerate inner product structure on 
Mn, known by various names such as the Frobenius or Hilbert–Schmidt inner product. 
A matricial system S ⊂ Mn can be completely characterized as the range of a unique 
orthogonal projection PS with respect to the Hilbert–Schmidt inner product.

Given a linear operator Φ : Mn → Mn, we can define an adjoint Φ† : Mn → Mn

determined by the functional equation tr(B∗Φ(A)) = tr(Φ†(B)∗A) for all A, B ∈ Mn. 
The projection PS onto a matricial system has many nice properties. For instance, PS is 
unital, i.e., PS(1) = 1, sends self-adjoint matrices to self-adjoint matrices, and has P †

S =
PS . The fact that PS is unital and is its own adjoint implies that PS is trace-preserving 
as well, that is, tr(PS(A)) = tr(A) for all A ∈ Mn. However, PS rarely preserves the set 
of positive-semidefinite matrices, so is generally not a quantum operation, to which we 
refer the reader to the Background section below for a precise definition. In fact, PS is a 
quantum operation exactly when S is injective as an operator system in the sense of Choi 
and Effros [4], the most significant examples being when S is a subalgebra of Mn. For 
a matricial system which is a subalgebra, PS is known as the (unique) trace-preserving 
conditional expectation of Mn onto S.

The goal of this note is to investigate quantum operations Φ which approximate PS as 
closely as possible while sharing the same properties outlined in the previous paragraph. 
Precisely, we would like to investigate quantum operations Φ : Mn → Mn which are 
unital, preserve the trace, and whose range is equal to S. As the projection canonically 
identifies the system, any such quantum operation should contain interesting information 
on the structure and properties of the matricial system and should be able to be used 
to derive useful invariants. As mentioned already, the best approximating operation to 
PS being itself is equivalent to injectivity.

We begin by defining an inner-product metric on the space of linear operators on Mn, 
compatible with the cone structure given by the positivity-preserving operators, which 
will be used as the metric for how closely a quantum operation approximates PS . Since 
we are working with an inner-product metric and the class of quantum operations we 
consider forms a non-empty convex set, this ensures that our problem is well-posed with 
a unique solution. From this basic problem, we define two numerical invariants φquad(S), 
which is derived from the minimal distance quantum operation to PS, and φlin(S) which 
measures the largest incident angle of such a quantum operation with PS . Crucially, 
φlin(S) takes the form of a (complex) semidefinite program, so is effectively computable. 
Both of these invariants bear more than a passing resemblance to the quantum Lovász 
theta invariant of Duan, Severini, and Winter [5], though both are distinct from it. We 
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explicitly compute the optimal quantum operation for a family of matricial systems first 
studied by Farenick and Paulsen in [6] and relate the answer to their work on quotients 
of operator systems.

After studying the problem in full generality, we concentrate on the case of matricial 
systems given by classical undirected graphs. In this case, we show that the approxima-
tion problem reduces from the quantum regime of operators on matrices to a simpler 
problem of matrix approximation in the Hilbert–Schmidt metric. As a consequence, we 
show in this case that φquad and φlin are both given by semidefinite programs. We discuss 
how these graph invariants are related to the famous and well-studied theta invariant of 
Lovász [9]. While we show that these invariants lack many of the properties that make 
the Lovász theta invariant useful in so many applications, they may turn out to be of 
some interest in their own right.

The outline of the paper is as follows. Section 2 contains background information on 
quantum operations and complex semidefinite programs. In Section 3 we define an inner 
product on the space of quantum operations and prove some basic properties about 
it. Section 4 contains the definitions of φquad and φlin along with proofs of all basic 
properties, computations, examples, and counterexamples.

2. Background

We will denote the n × n complex matrices by Mn, and M+
n will denote the positive 

semidefinite n × n complex matrices. We will denote by L(Mn) the set of all linear maps 
from Mn to itself. The trace of a matrix A will be denoted by tr(A).

We define the Hilbert–Schmidt inner product on Mn by

〈A , B〉2 := tr(B∗A) =
n∑

i,j=1
AijBij ,

with ‖A‖2 = tr(A∗A)1/2 being the corresponding Hilbert–Schmidt norm on Mn. If 
A, B ∈ Mn are hermitian, for convenience we will occasionally use A • B to denote 
the Hilbert–Schmidt inner product.

Definition 2.1. We will say that a map Φ ∈ L(Mn) is positive if Φ(M+
n ) ⊂ M+

n . We will 
say that Φ is completely positive if Φ ⊗ idMk

∈ L(Mn ⊗ Mk) is positive for all k ∈ N. We 
will denote by P(Mn) the cone of positive maps in L(Mn) and by CP(Mn) the cone of 
completely positive maps.

There is a canonical linear isomorphism Ch from L(Mn) to Mn ⊗ Mn given by

Ch : Φ �→
n∑

Eij ⊗ Φ(Eij).

i,j=1
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The matrix Ch(Φ) ∈ Mn ⊗ Mn is known as the Choi matrix associated to Φ. The 
following is a foundational result of M.D. Choi which we will use repeatedly; see [11, 
Theorem 3.14] for a proof.

Proposition 2.2 (Choi’s Theorem). The map Φ ∈ L(Mn) is completely positive if and 
only if Ch(Φ) is positive semidefinite.

2.1. Quantum operations

We now recall the axiomatic approach to quantum operations. Fix a system Q (a 
finite-dimensional Hilbert space) and let S denote the set of density operators on Q. 
This is to say ρ ∈ S if ρ ∈ L(Q)+ and tr(ρ) = 1. Then a quantum operation is defined to 
be a map Φ : L(Q) → L(Q) satisfying the following three properties:

(1) tr(Φ(ρ)) is the probability that the process represented by the operation Φ occurs, 
when ρ is the initial state of Q. Thus, 0 ≤ tr(Φ(ρ)) ≤ 1 for all ρ ∈ S.

(2) Φ is convex in the sense if {pi}i is a probability distribution and {ρi}i ⊂ S then 
Φ(

∑
piρi) =

∑
piΦ(ρi).

(3) Φ is completely positive.

Such examples of quantum operations are inner actions (conjugation by a unitary), 
and the partial trace. Throughout the manuscript we will consider a special class of quan-
tum operations which will be linear maps Φ ∈ L(Mn) such that Φ is unital completely 
positive and trace-preserving.

2.2. Semidefinite programming

Most of the literature on semidefinite programming focuses on the case of real matri-
ces. As by necessity our semidefinite programs use hermitian matrices, we collect some 
background on complex semidefinite programs here. The reader may consult [8,13] for 
further information on complex semidefinite programs and [7,10,12] for the general the-
ory of semidefinite programming.

As our starting point we will say that a complex semidefinite program is an optimiza-
tion problem which can be expressed in the following form:

maximize C • X

subject to Ai • X = bi, i = 1, . . . , k

X ∈ M+
n

(1)

where C and A1, . . . , Ak are hermitian n × n complex matrices and b1, . . . , bk are (nec-
essarily) real numbers.
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As observed in [8, section 3], every complex semidefinite program of the form (1) can 
be written as a real semidefinite program as follows.

maximize C ′ • Y

subject to A′
i • Y = 2bi, i = 1, . . . , k

Fij • Y = 0, i, j = 1, . . . , n

Gij • Y = 0, i, j = 1, . . . , n

Y ∈ M2n(R)+

(2)

where for A ∈ Mn we write

A′ :=
(

Re A − Im A
Im A Re A

)
, C ′ :=

(
Re C − Im C
Im C Re C

)

Fij :=
(

Eij 0
0 −Eij

)
, Gij :=

(
0 Eij

Eij 0

)
.

Note that Re A and Im A represent the element-wise real and imaginary parts, i.e. 
(Re A)ij = Re(Aij). It is straightforward to check that the program (2) returns twice 
the value of the program (1).

We now write the dual program to (2):

minimize 2bT y

subject to
k∑

i=1
yiA

′
i + Z − C ′ ∈ M2n(R)+

(3)

where b = [b1, . . . , bk]T and Z =
(

P Q
Q −P

)
for some P, Q ∈ Mn(R). Since 

A′
1, . . . , A′

k, C ′ are invariant under the involution 
(

A B
C D

)
�→

(
D −C

−B A

)
and this 

involution preserves M2n(R)+ and leaves the objective function invariant, by averaging 
we can omit the term Z without affecting the value of the program. Translating the 
resulting program back to complex form gives the complex dual program to the complex 
primal semidefinite program (1):

minimize bT y

subject to
k∑

i=1
yiAi − C ∈ M+

n

(4)

where b = [b1, . . . , bk]T .
This allows us to restate the strong duality theorem for (real) semidefinite programs 

in the setting of complex semidefinite programs. We thus refer the reader to [7, chapter 
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4] or [10, section 6.3.1] for background on duality theory in semidefinite programming 
and a proof of the following result.

Proposition 2.3. Consider the optimal values vprimal and vdual of the programs (1) and 
(4), respectively. If both programs are feasible, we have that vdual ≥ vprimal. Moreover, if 
there is X ∈ M+

n invertible so that Ai • X = bi for all i = 1, . . . , k, then vprimal = vdual.

3. An inner product on the space of quantum operations

Definition 3.1. We define an inner product on L(Mn) by

〈Φ , Ψ〉K : =
∑
i,j

tr(Φ(Eii)Ψ(Ejj)∗) +
∑
i�=j

tr(Φ(Eij)Ψ(Eij)∗)

= tr(Φ(In)Ψ(In)∗) +
∑
i�=j

tr(Φ(Eij)Ψ(Eij)∗).
(5)

For two maps Φ, Ψ : Mn → Mn we write Φ ≺≺ Ψ if Φ(x) 
 Ψ(x) for all x positive 
semidefinite, i.e., if Ψ − Φ is a positive map.

Lemma 3.2. Let Φ, Ψ ∈ P(Mn) be positive. If Φ ≺≺ Ψ, then ‖Φ‖K ≤ ‖Ψ‖K .

Proof. Let x, y � 0 be positive matrices. Since Φ ≺≺ Ψ we have that tr(Φ(x)y) ≤
tr(Ψ(x)y). Now using that Φ(x) and Ψ(x) are positive with Φ(x) 
 Ψ(x), we have that

tr(Φ(x)Φ(x)) ≤ tr(Φ(x)Ψ(x)) ≤ tr(Ψ(x)Ψ(x)).

Let v = (v1, . . . , vn) be a random vector where each entry vi ∈ T is chosen indepen-
dently is distributed uniformly with regard to Lebesgue (probability) measure. In this 
way x := v ⊗ v̄ is a random positive semidefinite matrix. Observing

Evvivj v̄kv̄l = max{δi,kδj,l, δi,lδj,k}, (6)

we have that

Ex tr(Φ(x)Ψ(x)∗) = Ev tr(Φ(v ⊗ v̄)Ψ(v ⊗ v̄)∗)

= Ev
∑

i,j,k,l

viv̄j v̄kvl tr(Φ(Eij)Ψ(Ekl)∗)

=
∑

i,j,k,l

Ev(viv̄j v̄kvl) tr(Φ(Eij)Ψ(Ekl)∗)

=
∑
i,k

tr(Φ(Eii)Ψ(Ekk)∗) +
∑
i�=j

tr(Φ(Eij)Ψ(Eij)∗) = 〈Φ , Ψ〉K .

(7)

It follows that ‖Φ‖K ≤ ‖Ψ‖K by averaging. �
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Notation 3.3. For A, B ∈ Mn, let A ◦ B denote the entrywise (Schur) product of the 
matrices, i.e., (A ◦ B)ij = AijBij .

Remark 3.4. If Φ(X) = A ◦ X and Ψ(X) = B ◦ X, then Φ(Eii)Ψ(Ejj) = 0 unless i = j. 
Hence,

〈Φ , Ψ〉K =
∑

i

AiiBii +
∑
i�=j

AijBij = tr(B∗A) = 〈A , B〉2 . (8)

If we have that Φ and Ψ are unital, then we have that

〈Φ , Ψ〉K = n +
∑
i�=j

tr(Φ(Eij)Ψ(Eij)∗). (9)

Definition 3.5. For Φ ∈ L(Mn), we define Φ′ ∈ L(Mn) by

Φ′(Eii) = Φ(Eii) ◦ In i = 1, . . . , n

Φ′(Eij) := Φ(Eij)ijEij if i �= j.
(10)

Lemma 3.6. We have that ‖Φ′‖K ≤ ‖Φ‖K . Moreover, Φ′ is positive, completely positive, 
unital, or trace-preserving if Φ is.

Proof. Let v be the random vector as in the proof of Lemma 3.2. If Q is either a diagonal 
unitary matrix or a permutation matrix, we see that Qv and v are identically distributed 
random vectors. Setting ΦQ(x) := Q∗Φ(QxQ∗)Q, we see from equation (7) that

‖ΦQ‖K = ‖Φ‖K . (11)

Let Un be the group of all unitary diagonal matrices in Mn equipped with Haar (prob-
ability) measure. For U := diag(v) ∈ Un a Haar-uniformly distributed random variable 
we have that, similarly to equation (7),

EU ΦU = Φ′. (12)

Indeed,

EU U∗Φ(UEijU∗)U = Ev viv̄j

∑
k,l

v̄kvlΦ(Eij)klEkl. (13)

From this it follows that if i �= j, then i = k and j = l. If i = j, then the sum reduces to 
summing over all k = l. It then follows by convexity of the norm that ‖Φ′‖K ≤ ‖Φ‖K . �

The following lemma is a variant of the previous, and seems well-known. For the sake 
of convenience we reproduce here the treatment in [1].
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Lemma 3.7. For Φ ∈ CP(Mn), a completely positive map, the matrix AΦ defined by 
[AΦ]ij := Φ(Eij)ij is positive semidefinite. Moreover, maxi[AΦ]ii ≤ ‖Φ(1)‖.

Proof. The map Δ : Eij �→ Eij ⊗ Eij induces a (non-unital) ∗-embedding of Mn into 
Mn ⊗ Mn. This implies that Δ(B) =

∑
ij BijEij ⊗ Eij is positive semidefinite for all 

B ∈ Mn positive semidefinite. Letting Jn denote the n × n matrix with all entries 1, we 
see that

tr(AΦB) = tr((Ch(Φ) ◦ Δ(B))Δ(Jn)) ≥ 0

for all B ∈ Mn positive semidefinite; thus, AΦ is positive semidefinite. The second 
assertion follows since (AΦ)ii = Φ(Eii)ii ≤ ‖Φ(Eii)‖ ≤ ‖Φ(1)‖. �
Corollary 3.8. For Φ ∈ CP(Mn) define the matrix BΦ by

[BΦ]ii = ‖Φ(1)‖ i = 1, . . . , n

[BΦ]ij = Φ(Eij)ij i �= j.

We have that BΦ is positive semidefinite.

Proof. By the proof of Lemma 3.7, we have that AΦ is positive semidefinite, and BΦ−AΦ
is a diagonal matrix with non-negative entries, and the result follows. �
Corollary 3.9. Suppose that Φ, Ψ ∈ L(Mn) are both completely positive and unital. We 
have that

‖BΦ − BΨ‖2 ≤ ‖Φ − Ψ‖K . (14)

Proof. Since Φ, Ψ ∈ L(Mn) are unital, we have that [BΦ − BΨ]ii = 0. By (8) we have 
under these assumptions that ‖Φ′ − Ψ′‖K = ‖BΦ − BΨ‖2. The result then follows by 
Lemma 3.6. �

We end this section with one more observation on the ‖ · ‖K-norm, which will not be 
used in the sequel.

Let Φ : Mn → Mn be a map which is self adjoint in the sense that Φ(x∗) = Φ(x)∗. 
Define

CP(Φ) := {Ψ ∈ CP(Mn) : Φ ≺≺ Ψ}

Note that CP(Φ) is a non-empty convex set. By Zorn’s lemma and closedness, the set 
CP(Φ) has at least one ≺≺-minimal element.

Proposition 3.10. Let Φ ∈ L(Mn) be self adjoint. Let Ψ∗ be the unique element of CP(Φ)
minimizing Ψ �→ ‖Ψ − Φ‖K . Then Ψ∗ is ≺≺-minimal in CP(Φ).
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Proof. Suppose there is Λ ∈ CP(Φ) so that Λ ≺≺ Ψ∗ We have that Ψ∗ −Φ and Λ −Φ are 
positive and Λ −Φ ≺≺ Ψ∗−Φ, hence by Lemma 3.2 we have that ‖Λ −Φ‖K ≤ ‖Ψ∗−Φ‖K , 
hence Λ = Ψ∗ by the minimality of Ψ∗. �

4. Approximating quantum operations

Definition 4.1. We say that subspace S ∈ Mn is a matricial system if it contains the unit 
and is closed under taking adjoints.

Given some matricial system S, we consider the orthogonal projection PS : Mn → S
with respect to the Hilbert–Schmidt inner product. It holds for any matricial system 
that PS ∈ L(Mn) is unital and trace-preserving; however, it is rarely the case the PS
is positive, let alone completely positive. We seek to approximate PS by a quantum 
operation with certain properties. These properties should be shared with PS and allow 
us to use Lemma 3.6, and so we establish our program to be

Φ∗ = argmin ‖Φ − PS‖K

s.t. Φ(Mn) ⊂ S,

Φ completely positive,

Φ unital,

Φ trace preserving.

(15)

Alternately, we can cast these conditions in terms of the Choi matrix Ch(Φ):

Φ∗ = argmin ‖Φ − PS‖K

s.t. Ch(Φ) ∈ Mn ⊗ S,

Ch(Φ) ∈ (Mn ⊗ Mn)+,

tr ⊗ id(Ch(Φ)) = In,

id ⊗ tr(Ch(Φ)) = In.

(16)

An alternative to this objective is to maximize the inner product max〈Φ, PS〉K . Geo-
metrically, inner products measure angles, and so maximizing this inner product can be 
achieved by reducing the angle between Φ and PS .

Definition 4.2. Define φquad(S) := 1
n 〈Φ∗, PS〉K , where Φ∗ is given by the program (16). 

Define φlin(S) to be the same function with the alternative objective function
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φlin(S) := max 1
n

〈Φ, PS〉K

s.t. Ch(Φ) ∈ Mn ⊗ S,

Ch(Φ) ∈ (Mn ⊗ Mn)+,

tr ⊗ id(Ch(Φ)) = In,

id ⊗ tr(Ch(Φ)) = In.

(17)

Proposition 4.3. For any matricial system S ⊂ Mn,

φlin(S) ≥ φquad(S). (18)

Proof. The argument Φ∗ from the program (16) satisfies all the constraints of the pro-
gram (17) for φlin(S). Thus the value φquad(S) = 1

n 〈Φ∗, PS〉K is a lower bound for the 
value φlin(S). �
Example 4.4. Consider the matricial system of all n × n matrices with constant diagonal 
entries,

Sn = {X ∈ Mn : Xii = Xjj , ∀i, j = 1, . . . , n}. (19)

We see that Pn, the orthogonal projection Sn, is given by X �→ X̃ where X̃ij = Xij for 
i �= j, but X̃ii = tr(X)/n. From this, we can see that the Choi matrix of Pn is

Ch(Pn) = 1
n

In2 +
∑
i�=j

Eij ⊗ Eij .

We can view the case of S2 ⊂ M2 via the Pauli matrices where M2 = span{1, σx, σy, σz}
and S2 = span{1, σx, σy}. In this instance P2(1) = 1, P2(σx) = σx, P2(σy) = σy, 
and P2(σz) = 0. It can be seen that the projection P2 is positive, but not 2-positive. 
There is a minimal unital completely positive map which sits over this projection, 
in the sense that the difference is positivity preserving, and it is the one that maps 
(1, σx, σy, σz) �→ (2, σx, σy, 0).

The optimal quantum operation for the program (16) can be computed exactly.

Proposition 4.5. Given the matricial system Sn from (19), the optimal quantum operation 
Φ∗ is given by

Φ∗(A) = tr(A)
n

In +
∑
i�=j

Aij

n
Eij . (20)

Proof. Applying Definition 3.5, we see that Pn = P ′
n; hence, by Lemma 3.6, we can 

assume that Φ∗ = Φ′
∗ since ‖Φ′

∗ −Pn‖K ≤ ‖Φ∗ −Pn‖K . Moreover, since Φ∗(Mn) ⊂ Sn, it 
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follows that Φ′
∗(Mn) ⊂ Sn using the identity (12) and the fact that Q∗SnQ = Sn where 

Q is any diagonal unitary matrix. Since Φ′
∗(Eii) is a diagonal matrix for all i = 1, . . . , n

and the only diagonal matrices in Sn are scalar multiples of the identity, it follows that 
Φ′

∗(Eii) = 1
n In since Φ′

∗ is trace-preserving.
For ease of notation, for i �= j, let Bij := Φ′

∗(Eij)ij . We have for all |λ| ≤ 1 that

Eii ⊗ E11 − λEij ⊗ E12 − λ̄Eji ⊗ E21 + Ejj ⊗ E22 � 0.

Since Φ′
∗ is unital, completely positive again by Lemma 3.6, this implies that

Φ′
∗(Eii) ⊗ E11 − λΦ′

∗(Eij) ⊗ E12 − λ̄Φ′
∗(Eji) ⊗ E21 + Φ′

∗(Ejj) ⊗ E22 � 0;

hence,

1
n

In ⊗ E11 − |Bij |Eij ⊗ E12 − |Bij |Eji ⊗ E21 + 1
n

In ⊗ E22 � 0.

This implies that |Bij | ≤ 1
n .

It is now easy to see that the distance is minimized when Bij = 1
n for all i �= j. �

Remark 4.6. Let Jn ⊂ Mn, be the subspace of all diagonal matrices of trace zero. We see 
that Sn = J ⊥

n . There is a canonical operator space structure on Mn/Jn, first studied 
in detail by Farenick and Paulsen [6]. It is shown therein that the map Φ∗ given in (20)
gives a complete isometry Φ∗ : Mn/Jn → Sn.

Defining an operator system structure on Sn by X ∈ Mk(Sn) is positive if

Φ−1
∗ ⊗ idMk

(X) ∩ M+
nk �= ∅,

we observe that Sn equipped with this operator system structure is completely order 
isomorphic to Mn/Jn.

Question 4.7. For any matricial system S ⊂ Mn, is it true that the minimizing map Φ∗
in (15) gives a complete isometry Φ∗ : Mn/S⊥ → S?

4.1. Applications to graph systems

Definition 4.8. For a given graph Γ = (V, E) with |V | = n, we define the corresponding 
graph system to be

SΓ := {X ∈ Mn(C) : Xij = 0, i �= j, (i, j) /∈ E}. (21)

The corresponding projection for this system is

PSΓ =
∑

Eii ⊗ Eii +
∑

Eij ⊗ Eij .

i (i,j)∈E
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The functions φlin(SΓ) and φquad(SΓ) will also be written equivalently as φlin(Γ) and 
φquad(Γ).

Notation 4.9. We use the definition of the strong graph product Γ � Λ of two graphs Γ
and Λ given in [7, Definition 3.4.1]. Equivalently, we have that the strong product may 
be defined by the relation

SΓ ⊗ SΛ = SΓ�Λ.

Notation 4.10. For a given graph Γ = (V, E), we define the graph complement Γ = (V, E)
where (i, j) ∈ E if and only if i �= j and (i, j) /∈ E. We recall that the clique number 
ω(Γ) is defined as the size of the maximal subset of vertices such that all vertices are 
connected. Similarly, the independence number α(Γ) = ω(Γ) is defined as the size of the 
maximal subset of vertices such that no vertices are connected.

We observe that graph systems may be characterized as those matricial systems S for 
which the orthogonal project PS is a Schur multiplier.

Lemma 4.11. Let PS be a Schur multiplier. Then the program (16) is minimized by Φ
being a Schur multiplier.

Proof. From Lemma 3.6 we know that given a selected Φ we have that for Φ′ as in 
Definition 3.5 that ‖Φ′−P ′

S‖K = ‖Φ′−PS‖K ≤ ‖Φ −PS‖K . However, Φ′ is not necessarily 
a Schur multiplier. From Corollary 3.8, consider the positive semidefinite matrix BΦ, and 
denote by Φ̃ its associated Schur multiplier. We have from that result that Φ′(Eij) =
Φ̃(Eij) for all i �= j, and that Φ̃ is unital, trace-preserving and completely positive.

To finish, we note that ‖Φ̃ − PS‖K = ‖Φ′ − PS‖K . This follows from Φ̃, Φ′, and PS
being unital, so (Φ̃−PS)(In) = 0 = (Φ′ −PS)(In). Equality follows by Definition 3.1. �
Corollary 4.12. Given a graph system SΓ for Γ = (V, E), the functions φquad(Γ) and 
φlin(Γ) are given by the semidefinite programs

φlin(Γ) = max (A • Jn)/n,

s.t. Aii = 1, ∀i = 1, . . . , n,

Aij = 0 if (i, j) ∈ E,

A � 0

(22)

and φquad(Γ) = (A∗ • Jn)/n, where
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A∗ = argmin ‖A − Jn‖2

s.t. Aii = 1, ∀i = 1, . . . , n,

Aij = 0 if (i, j) ∈ E,

A � 0,

(23)

where Jn ∈ Mn is the matrix of all ones.

Proof. Let PΓ := In +
∑

(i,j)∈E Eij ∈ Mn be the augmented adjacency matrix of Γ.
We begin by considering the program (17), the objective for which is 1

n 〈Φ , PSΓ〉K . 
Since PSΓ is a Schur multiplier, we have by (9), using the same notation as in Corol-
lary 3.8, that

1
n

〈Φ , PSΓ〉K = 1
n

BΦ • PΓ = 1
n

BΦ • Jn.

The last equality follows by noting that Φ(Mn) ⊂ S; hence, we have that for all i �= j

that (BΦ)ij = Φ(Eij)ij = 0 if (i, j) /∈ E. The Schur multiplier associated to BΦ is unital, 
completely positive and trace-preserving; thus, Φ may be taken to be a Schur multiplier 
associated to BΦ.

We now turn our attention to the program (15). By the proof of Lemma 4.11 we may 
replace Φ∗ by the Schur multiplier associated to BΦ∗ . By Remark 3.4 we have that

‖Φ∗ − PSΓ‖K = ‖BΦ∗ − PΓ‖2.

Since we have already noted that for any Φ satisfying the constraints of (15) that BΦ •
PΓ = BΦ • Jn, we have that the squared objective ‖BΦ − PΓ‖2

2 is up to a constant 
independent of Φ equal to ‖BΦ − Jn‖2

2. Thus, these objectives are interchangeable when 
computing argmin, and the result is obtained. �

We recall that from [9, Theorem 4] that the Lovász theta function ϑ(Γ) of a graph 
Γ = (V, E) can be expressed as the following semidefinite program:

ϑ(Γ) = max Y • Jn

s.t. Yij = 0 if (i, j) ∈ E,

tr(Y ) = 1,

Y � 0.

(24)

Proposition 4.13. For any graph Γ = (V, E),

ϑ(Γ) ≥ φlin(Γ) ≥ φquad(Γ). (25)
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Proof. We make the substitution Y = A/n into the program (24) to obtain:

ϑ(Γ) = max (A • Jn)/n

s.t. Aij = 0 if (i, j) ∈ E,

tr(A) = n,

A � 0.

(26)

By Corollary 4.12 the optimal argument A∗ from φlin(Γ) satisfies the constraints of ϑ(Γ)
since tr(A∗) =

∑
i(A∗)ii =

∑
i 1 = n. The optimal value of the semidefinite program 

(26) is at least this value, so ϑ(Γ) ≥ φlin(Γ). The second inequality follows directly from 
Proposition 4.3. �

Although the inequality φlin(Γ) ≥ ω(Γ) does not hold (see the second inequality in 
Proposition 4.19), a slight relaxation of the right side does work.

Proposition 4.14. For any graph Γ = (V, E) with |V | = n,

φquad(Γ) ≥ ω(Γ)(ω(Γ) − 1)/n + 1. (27)

Proof. If we have some maximal clique set C where |C| = ω(Γ), then the number of edges 
is |C|(|C| − 1)/2. Now order the graph so that 1, . . . , |C| are the numbers corresponding 
to the elements of C. Let our n × n matrix be

A =
[

J|C| 0
0 In−|C|

]
.

All of the constraints hold since the diagonal is all ones, we have zeros wherever we 
don’t have an edge, and the block matrix is positive semidefinite since Jn and In are 
for any n. Therefore, the optimal value of the program must be at least (J • A)/n =
ω(Γ)(ω(Γ) − 1)/n + 1. �
Proposition 4.15. The program (23) in the definition of φquad(Γ) can be written as the 
semidefinite program

A = argmin t

s.t. Aii = 1, ∀i = 1, . . . , n,

Aij = 0 if (i, j) ∈ E,⎡
⎣A 0 0

0 I 
A

T

⎤
⎦ � 0.

(28)
0 A 2A • Jn + t
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Proof. Consider the augmented adjacency matrix P = PΓ := In +
∑

(i,j)∈E Eij . Every 
A ∈ Mn which satisfies the constraints of the above program satisfies tr(AP ) = tr(AJn)
and therefore we may interchange P and Jn in our calculations. Given such an A ∈ Mn, 
consider the vector 
A ∈ Rn2 defined as


A = (A11, . . . , An1, A12, . . . , An2, . . . , A1n, . . . , Ann). (29)

The objective function in (23) is defined as

‖A − P‖2
2 = tr((A − P )2) = A • A − 2A • P + P • P = 
AT 
A − 2A • P + P • P.

Using Schur complements [14, Thm 1.12], we can say that


AT 
A − 2A • P + P • P − t ≤ 0 ⇐⇒
[

I 
A

AT 2A • P − P • P + t

]
� 0.

So we write the conditions A � 0 and 
AT 
A − 2A • P + P • P ≤ t as the combined 
condition

⎡
⎣A 0 0

0 I 
A

0 
AT 2A • P − P • P + t

⎤
⎦ � 0.

The conditions are now

A = argmin t

s.t. Aii = 1, ∀i = 1, . . . , n,

Aij = 0 if (i, j) ∈ E,⎡
⎣A 0 0

0 I 
A

0 
AT 2A • P − P • P + t

⎤
⎦ � 0.

Since we are minimizing t, and tr(PP ) is a constant then we may omit it to obtain

A = argmin t

s.t. Aii = 1, ∀i = 1, . . . , n,

Aij = 0 if (i, j) ∈ E,⎡
⎣A 0 0

0 I 
A

0 
AT 2A • P + t

⎤
⎦ � 0.

This finishes the proof. �
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Lemma 4.16. The dual to φlin(Γ) is the program

φ̃lin(Γ) = min tr(Y )

s.t. Yij = 0 if (i, j) ∈ E,

Y � Jn/n.

(30)

Proof. In the program (22), every constraint is written in the form Eij • A = δij and 
thus we have one constraint on every element Aij except for where (i, j) ∈ E. Therefore 
the dual program can be written as

φ̃lin(Γ) = min Y • δ

s.t.
∑

(i,j)/∈E

Yij − Jn/n � 0,

where δ = [δij ]. Thus, δ = In and Y • In = tr(Y ), and we can equivalently write the 
constraint as

φ̃lin(Γ) = min Y • δ

s.t. Yij = 0 if (i, j) ∈ E,

Y − Jn/n � 0.

Since In is positive definite and satisfies all constraints of φlin we conclude φ̃lin = φlin. �
Proposition 4.17. For any two graphs Γ = (VΓ, EΓ) and Λ = (VΛ, EΛ), we have

φlin(Γ � Λ) = φlin(Γ)φlin(Λ). (31)

Proof. (≥) We will show that the RHS satisfies the constraints of the LHS. Let |VΓ| = n

and |VΛ| = k. The RHS can be written as

φlin(Γ)φlin(Λ) = max 1
nk

(AΓ • Jn)(AΛ • Jk)

s.t. [AΓ]ii = 1, ∀i = 1, . . . , n,

[AΛ]�� = 1, ∀� = 1, . . . , k,

[AΓ]ij = 0 if (i, j) ∈ EΓ,

[AΛ]m� = 0 if (m, �) ∈ EΛ,

AΓ ∈ M+
n , AΛ ∈ M+

k .

AΓ ∈ M+
n and AΛ ∈ M+

k implies that AΓ ⊗ AΛ ∈ M+
nk, and [AΓ]ii = [AΛ]�� = 1 is 

equivalent to [AΓ ⊗ AΛ]ss = 1 for s = 1, . . . , nk. Additionally, (AΓ • Jn)(AΛ • Jk) =
(AΓ ⊗ AΛ) • (Jn ⊗ Jk) = (AΓ ⊗ AΛ) • Jnk.
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The tensor product of the matricial systems is SΓ ⊗ SΛ = SΓ�Λ. Since AΓ ∈ SΓ

and AΛ ∈ SΛ the tensor product AΓ ⊗ AΛ ∈ SΓ�Λ, so it satisfies all the conditions for 
φlin(Γ � Λ). Therefore φlin(Γ � Λ) ≥ φlin(Γ)φlin(Λ).

(≤) Starting with the dual program (30), the first condition is equivalent to saying 
that Y ∈ SΓ. Once again, we write the right hand side as

φ̃lin(Γ)φ̃lin(Λ) = min (YΓ • In)(YΛ • Ik)

s.t. [YΓ]ij = 0 if (i, j) ∈ EΓ,

[YΛ]k� = 0 if (k, �) ∈ EΛ,

YΓ � Jn/n, YΛ � Jk/k.

By the same reasoning as in the first direction, we have YΓ ⊗ YΛ ∈ SΓ�Λ.
It remains to show that YΓ ⊗ YΛ − Jnk/nk � 0. Since Jn � 0 for any n, this yields 

the relations Jn/n ⊗ (YΛ − Jk/k) � 0 and (YΓ − Jn/n) ⊗ Jk/k � 0, which is equivalent 
to Jn/n ⊗ YΛ � Jn/n ⊗ Jk/k and YΓ ⊗ Jk/k � Jn/n ⊗ Jk/k. Since YΓ − Jn/n � 0 and 
YΛ −Jk/k � 0, we get that the tensor product (YΓ −Jn/n) ⊗(YΛ −Jk/k) � 0. Expanding 
out the product and using the relations above gives

YΓ ⊗ YΛ � Jn/n ⊗ YΛ + YΓ ⊗ Jk/k − Jn/n ⊗ Jk/k

� Jn/n ⊗ YΛ

� Jn/n ⊗ Jk/k.

By transitivity, this implies YΓ ⊗ YΛ � Jn/n ⊗ Jk/k = Jnk/nk. YΓ ⊗ YΛ satisfies every 
condition of φ̃lin(Γ � Λ), so φ̃lin(Γ � Λ) ≤ φ̃lin(Γ)φ̃lin(Λ), and by duality φlin(Γ � Λ) ≤
φlin(Γ)φlin(Λ). �

Proposition 4.18. For any graph Γ = (V, E), φlin can be written as the vector program

1/

√
φlin(Γ) = max t

s.t. uT
i uj = 0 if (i, j) ∈ E,

cT ui ≥ t, ∀i ∈ V,

n∑
i=1

uT
i ui = n,

‖c‖ = 1.

(32)
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Proof. Using the dual (30), make the substitution X = nY − Jn:

φ̃lin(Γ) = min tr(X)/n + 1

s.t. Xij = −1 if (i, j) ∈ E,

X � 0.

(33)

We will use a proof here similar to [7, Thm 3.6.1]. Write the value of the above vector 
program as φ′

lin(Γ), and denote t̃ = 1/
√

φ′
lin(Γ).

(φ′
lin(Γ) ≥ φ̃lin(Γ)): First, let U = (u1, . . . , un) be an optimal orthogonal representa-

tion with handle c. Say that the vectors are chosen such that for some k, cT uk = t. Then 
define the matrix X̃ with elements

X̃ij = uT
i uj

(cT ui)(cT uj) − 1 =
(

c − ui

cT ui

)T (
c − uj

cT uj

)
, i �= j;

X̃ii = uT
i ui

(cT uk)2 − 1.

To see that X̃ is positive semidefinite, note that

X̃ii ≥ uT
i ui

(cT ui)2 − 1.

Therefore X̃ = D + ST S for a matrix S and a diagonal matrix D with all nonnegative 
values. The sum of PSD matrices is PSD, so X̃ � 0. Note that for (i, j) ∈ E, we assume 
uT

i uj = 0, and thus X̃ij = −1 as well. To examine the trace, note that

tr(X̃)/n + 1 = 1
n

n∑
i=1

uT
i ui

(cT uk)2 = φ′
lin(Γ).

X̃ satisfies all constraints and therefore φ′
lin(Γ) ≥ φ̃lin(Γ).

(φ′
lin(Γ) ≤ φ̃lin(Γ)): Given an optimal argument X to φ̃lin(Γ), let X = ST S by 

Cholesky decomposition, with si the columns of S. We want to construct a solution 
to the vector program with value t̃. X is singular; therefore, S must also be singular. 
Hence the si vectors do not span all of Rn, and there exists a c orthogonal to all the si. 
Now define ui := 1√

t
(c + si), where t = tr(X)/n + 1. Note that

n∑
i=1

uT
i ui =

n∑
i=1

1
t
(1 + Xii) = 1

t
(n + tr(X)) = n

as well as the relation that if (i, j) ∈ E then sT
i sj = 0. For (i, j) ∈ E we obtain

uT
i uj = 1(cT c + cT sj + sT

i c + sT
i sj) = 1(1 + Xij) = 0.
t t
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The value of t̃ for the vector program is given by

cT ui = 1√
t
(cT c + cT si) = 1√

t
= t̃.

We have satisfied every constraint of the vector program, hence 1/
√

φ′
lin(Γ) ≥ 1/

√
t. 

Therefore φ̃lin(Γ) ≤ t = φ′
lin(Γ). �

4.2. Counterexamples and computations

Here we examine several inequalities which are modifications of the above, yet none 
of the following are always true for any graph Γ.

The wheel graph Wn is defined by taking a cycle graph Cn−1 and connecting each 
vertex {1, . . . , n − 1} to the vertex n. The path graph Pn is defined by taking the cycle 
graph Cn and removing the edge connecting 1 to n. The star graph Sn is defined by 
connecting each vertex {1, . . . , n − 1} and connecting it to vertex n, and no other edges 
are placed. The complete graph is denoted as Kn, in which each vertex {1, . . . , n} is 
connected to every other vertex.

Among some of the identities shown above, there are a few relaxations and related 
inequalities which are not true.

Proposition 4.19. For any given graph Γ = (V, E), the following inequalities are not true:

(1) φlin(Γ) ≤ φquad(Γ); (see Proposition 4.3)
(2) φquad(Γ) ≥ ω(Γ); (see Proposition 4.13)
(3) φquad(Γ) ≥ ϑ(Γ)(ϑ(Γ) − 1)/n + 1; (see Proposition 4.13)
(4) φquad(Γ � Λ) ≤ φquad(Γ)φquad(Λ); (see Proposition 4.17)
(5) ϑ(Γ) ≤ φlin(Γ). (see Lemma 4.16 and Proposition 4.18)

Proof. The code by which all of the following results were obtained is contained in the 
GitHub repository [2].

Counterexample for φlin(Γ) ≤ φquad(Γ). Consider Γ to be a path graph with 5 vertices, 
we obtain the following values:

• φlin(Γ) = 1.9798,
• φquad(Γ) = 1.9593,
• error = 0.0205.

Counterexample for φquad(Γ) ≥ ω(Γ). Consider Γ to be a wheel graph of the order 5, 
we obtain the following values:

• φquad(Γ) = 2.9314,
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• ω(Γ) = 3,
• error = 0.0686.

Counterexample for φquad(Γ) ≥ ϑ(Γ)(ϑ(Γ) − 1)/n + 1. Consider Γ = K11 minus one 
edge, we obtain the following values:

• φquad(Γ) = 1.18181791957969,
• ϑ(Γ) = 1.999999999999876,
• error = 2.62238484927124 · 10−7.

The primal-dual gap from computing φquad(Γ) was given as δφ = 1.45 · 10−11, and the 
gap from computing ϑ(Γ) was δϑ = 5.55 · 10−14. Ignoring machine precision error, the 
error of the right hand side of the inequality f(Γ) = ϑ(Γ)(ϑ(Γ) − 1)/n + 1 is

δf = max
±

|f(ϑ ± δϑ) − f(θ)| = 1.5 · 10−14.

The difference in the two sides is therefore large enough that this error cannot be 
amounted to lack of precision in the solvers. Albeit a small error, it is still significant 
enough to be a counterexample.

Counterexample for φquad(Γ �Λ) ≤ φquad(Γ)φquad(Λ). Consider Γ and Λ to be a path 
graph of five edges, we obtain the following values:

• φquad(Γ � Λ) = 3.8660,
• φquad(Γ)φquad(Λ) = 3.8387,
• error = 0.0272.

Counterexample for ϑ(Γ) ≤ φlin(Γ). Consider a star graph with 5 edges, we obtain 
the following values:

• φlin(Γ) = 1.8000,
• ϑ(Γ) = 4.0000,
• error = 2.200.

In this way we have provided counterexamples to all five assertions. �
4.3. Further discussion and open problems

Question 4.20. Is φquad(S) expressible as a semidefinite program?

Question 4.21. Do the following identities hold for all cycle graphs Cn?

φlin(Cn) = ϑ(Cn), φlin(Cn) = ϑ(Cn). (34)
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Remark 4.22. The equality φquad(Cn) = ϑ(Cn) does not appear to hold unless n ≤ 5 or 
n = 7.

Question 4.23. Is it true that φquad or φlin are supermultiplicative? That is, is

φquad(S ⊗ T ) ≥ φquad(S)φquad(T ), φlin(S ⊗ T ) ≥ φlin(S)φlin(T )

for all operator systems S ⊂ Mn and T ⊂ Mk?
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