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Abstract

We address the problem of evaluation of multiloop Feynman integrals by means of their Mellin-Barnes 
representation. After a brief overview of available capabilities through open source toolkits and their appli-
cation in various circumstances, we introduce a new code MBcreate which allows one to automatically 
deduce a concise Mellin-Barnes representation for a given parametric integral. A thorough discussion of its 
implementation and use is provided.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Overview

Feynman parametrization of momentum (or position, for that matter) space integrals is un-
doubtedly the most widespread tool to perform D-dimensional loop integrals – see, e.g., recent 
books [1,2]. After this rather straightforward step, one ends up with an N -fold parametric integral 
of the form

IN({s}) =
∞�

0

dNx δ

��N

i=1
xi − 1

�
J ({x}; {s}) , (1)
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where the integrand

J ({x}; {s}) = Up1 ({x})Fp2 ({x}; {s})
N�

i=1

x
ai−1
i , (2)

is encoded in two Symanzik functions U ({x}) and F ({x}; {s}), depending on Feynman param-
eters {x} = {x1, . . . , xN } and kinematical invariants {s} = {s1, . . . , sM}. The former are defned 
by trees and 2-trees of a given Feynman graph, respectively. U is a linear in each xi polyno-
mial with positive coeffcients. The dependence on external kinematical invariants and masses 
sk enters linearly through the F polynomial only. In the case of vanishing masses, the latter 
is linear in each xi as well but not otherwise. These graph polynomials possess, correspond-
ingly, the degrees of homogeneity h and h + 1 in Feynman parameters, U({λx}) = λhU({x}) and 
F({λx}; {s}) = λh+1F({x}; {s}), where h is the number of loops. Finally, the exponents of these 
polynomials are p1 = a − (h + 1)D/2 and p2 = −a + hD/2 with a = �N

i=1 ai and individual 
ai ’s corresponding to the powers of appearing propagators in the initial momentum integrand. 
An extensive discussion of their construction can be found in Refs. [3,1].

The focus of the present paper is on the calculation of (1) by transforming it from the real 
axis to the complex plane where information about integrand’s singularities will be suffcient to 
compute IN making use of powerful theorems of the Complex Analysis. The starting point for 
this well-known method is based on the following Mellin-Barnes (MB) representation

1

(A + B)λ
= 1

�(λ)

�
C

dz

2πi

Bz

Aλ+z
�(λ + z)�(−z) , (3)

which allows one to partition a complicated polynomial in terms of its two ‘simpler’ components 
A and B . In this equation, the contour C goes from −i∞ to +i∞ in the complex plane and the 
poles of �(. . . + z) are to its left while the ones of �(. . . − z) are to its right with these left/right 
poles corresponding to infrared/ultraviolet singularities of the original integral. This formula is 
usually applied repeatedly enough number of times to a given parametric integral IN in order 
to solve all x-integrations in terms of products of Euler Gamma functions. This yields a sought-
after MB representation for a given Feynman integral in the form of an n-fold complex integral 
(generally n �= N )
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s
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k . (4)

The ‘additive’ dependence of the second Symanzik polynomial F({x}; {s}) on the kinematical 
invariants/masses sk is thus transformed into the multiplicative dependence on their dk-powers.

The above MB representation (4) was successfully employed in analytical calculations of 
Feynman integrals starting with the seminal work of Refs. [4,5] where three- and four-point 
massless ladders at generic values of squared external momenta were obtained. Since multiloop 
Feynman integrals are rather involved objects, they are usually evaluated as a Laurent expan-
sion in the parameter of dimensional regularization ε = (4 − D)/2, rather than for generic D
values. Emerging poles in ε have different origin refecting divergent regions in the initial mo-
mentum integrals: they can stem from ultraviolet, infrared, collinear etc. domains. A systematic 
study of MB representation (4) for dimensionally regularized Feynman integrals was initiated in 
Refs. [6,7] where two complementary strategies for resolving occurring singularities in ε near 
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ε = 0 were devised. More than that, two public computer codes based on these techniques were 
developed in [8,9], respectively. This laid out the foundation for a widespread use of the MB 
techniques by QFT practitioners, see, e.g., Chapter 5 of [1] for a review.

Admittedly the MB method had seen its better days in the rear-view mirror as it passed its pin-
nacle on the stage of calculation tools being superseded by the introduction of canonical integral 
bases [10] within the method of differential equations (DEs) [11,12]. A historical remark is in or-
der to make this point clear to the reader. To reveal the so-called BDS Ansatz [13] for four-gluon 
scattering amplitudes at three-loop order, it was necessary to evaluate two four-leg Feynman 
integrals associated with triple ladder-box and tennis-court graphs. This was performed in [14]
and [13], respectively, making use of the MB technique at the time when no computer codes 
were yet available. The resolution of integrand’s singularities was the bottleneck of its successful 
calculation, making the task of its manual examination colossally tedious. With availability of 
the codes [8,9], this complication can be immediately alleviated. Still application of the same 
approach to all master integrals of the above two families of Feynman integrals would not be 
even feasible, but with the use of DEs for canonical bases of integrals this goal can successfully 
be achieved as was shown in Ref. [15]. More than that, in a similar manner, master integrals for 
all four-leg massless on-shell non-planar graphs were also evaluated [16,17].

Nevertheless, the MB method remains powerful enough to keep its runner-up position and 
can be applied in conjunction with DEs in order to fx their boundary conditions, see, e.g., Refs. 
[18,19], or, in certain circumstances, it is the only available choice when DEs cannot be used or 
face their own vices. A particularly suitable niche for the application of the MB technique is in 
the analysis of asymptotic behavior of Feynman graphs for small/large values of occurring kine-
matical invariants/masses sk : like Sudakov and heavy mass limits, just to name a few. Leading 
contributions in these cases are revealed with the help of a strategy known as the Expansion by 
Regions [20] (see also [21,22,1]). This is accomplished by applying the public Mathematica code
asy [23,24], – also available as the SDExpandAsy command with the FIESTA5 distribution 
package [25], – which is based on the analysis of the geometry of polytopes associated with 
the two Symanzik polynomials U({x}) and F({x}; {s}). It determines all leading contributions 
to the IN integral by scanning over various scaling behaviors of the Feynman parameters with 
asymptotic values of kinematical invariants. The output is given as parametric integrals of the 
IN type but with reduced, scale-independent Symanzik polynomials, �U({x}) and �F({x}). Since 
there is no dependence on kinematical variables left, DEs are powerless and the MB approach 
is the only game in town. This strategy was recently applied on different occasions, see [26,27], 
which compelled updates to existing routines of the MB toolbox as well as development of a new 
code, which will be described below.

The subsequent presentation is organized as follows. Sect. 2 describes the main contribution of 
this work through the code MBcreate, which generates a concise MB representation for a given 
Feynman integral. Next, Sect. 3 provides an exposition of existing codes connected with the MB 
representations, which allows one to solve MB integrals in the form of the Laurent expansion in 
ε with analytic coeffcients expressed in terms of Riemann zeta values. Conclusions with several 
appendices culminate the paper.

2. Introducing MBcreate.m

The frst of order of business on the way to apply available MB tools is to derive an optimal 
MB representation (4) for a given Feynman-parameter integral (1) with a minimal number n0 of 
complex integrations. For generic momentum-space integrals, one can proceed in two different 
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ways: construct Feynman parametric representation for the entire multiloop integrand, then de-
duce corresponding MB integrals, or do it loop-by-loop, i.e., derive an MB representation for a 
one-loop subintegral, then embed it into a larger two-loop integral and so on. It turns out that the 
global route does not yield the minimal value for n0. An example to this point is the very frst 
analytical calculation of dimensionally regularized double boxes [6] where the global parametric 
representation produced fve MB integrations but later it was observed [28] that in the loop-by-
loop approach that it reduces down to four. The latter method was then successfully used in 
planar-graph calculations, e.g., [14,13]. It found its automatic implementation in the public code
AMBRE.m [29]. Yet another algorithm to derive an optimal MB representation was proposed in 
Ref. [30], however, its computer implementations is not available so far.

Starting with a generic Feynman integral (1) depending on M kinematical variables sk , it is 
sometimes natural to isolate them frst in a factorized form (4) by means of the repeated use 
of Eq. (3) at the cost of introducing M − 1 MB integrations. This can be done with the option
SplitExtraVars -> True. However, it is usually better not to do this so that the default 
option is SplitExtraVars -> False. Anyway, an input for our code is a product of sev-
eral parametric polynomials Fj (with positive coeffcients) raised to certain (generally) complex 
powers. Similarly, as discussed in the previous section, the application of expansion by regions 
yields sk-independent reduced Symanzik polynomials in parametric integrands. In either case, 
one has to construct an optimal MB representation for these. One can of course proceed by trial 
and error on a case-by-case basis looking for the magic number n0. This was done in Refs. 
[26,27]. However, this is extremely time-consuming. In the lack of a proof of what a numerical 
value n0 might be a priory, a routine that can search for its optimal value needs to be developed to 
tackle this problem. So the lowest value of n0 that it fnds will constitute an effciency criterion.

Therefore, consider a Feynman parametric integral independent of kinematical invariants

∞�
0

dNx
�
i

x
ai−1
i δ

��N

i=1
xi − 1

��
j

F
pj

j ({x}) . (5)

Here Fj are polynomials with positive coeffcients linear in each xi , raised to powers pj =
bj ε + cj ; aj are integers, while bj , cj are rational numbers when these are thought of as outputs 
of the Expansion by Regions,1 or complex when it is a result of kinematical split-up alluded to 
at the top of the previous paragraph. Notice that ai’s can also be considered generally complex-
valued if an auxiliary analytic regularization is imposed. This latter setup is particularly relevant 
for initially fnite parametric integrals where one can choose to set the number of space-time 
dimensions down to four, i.e., ε = 0. However, since its asymptotic expansion with expansion 
by regions generates individually divergent contributions an intermediate regularization is nev-
ertheless required. It has to be imposed however in a manner that does not violate the rescaling 
invariance of the original parametric integral under {x} → {λx} transformation. The preservation 
of this property is crucial for maintaining the opportunity to apply the so-called Cheng-Wu the-
orem [31] to the above integral. For reader’s convenience and completeness of this presentation, 
the theorem is reviewed in Appendix A and boils down to reducing the delta-function constraint 
down to a smaller subset of Feynman parameters. A particularly convenient choice is δ

�
xi0 − 1



for a single ad hoc i0. In certain calculations, one eliminates the delta function constraint frst in 
favor of symmetric treatment of all integrals involved, be it Feynman-parameter or proper-time 

1 In this case, it is obvious that F1 = �U and F2 = �F .
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integrals, see, e.g., [26]. The procedure devised below is applicable to those circumstances as 
well.

The procedure is built on the following two transformations: integration over an x-parameter, 
if possible, making use of the integral

∞�
0

dx xp(ax + b)q = �(p + 1)�(−p − q − 1)

�(−q)
a−p−1bp+q+1 , (6)

introduction of an MB integration (3) in order to apply (6). Obviously, the frst x-integrations 
which have to be performed in Eq. (5) are the ones over non-overlapping subsets of variables 
defning the Fj polynomials. Without loss of generality it suffces to address the case of just two 
polynomials in the integrand F1 and F2 (see footnote 1). Suppose that there are several variables 
with this property, i.e., F2 depends on all of the Feynman parameters while F1 is independent 
of a subset 
 = {x�} of these.2 Then F2 = F2,1x� + F2,0 and by means of (6), we obtain the 
product Fp1

j,1F
p0
j,0. Then one repeats this step for the next variable from 
 provided it belongs to 

either Fp1
j,1 or Fp0

j,0 but not both. After such integrations become impossible, one is forced to use 
the MB partition (3) frst before applying (6) again. It is at this step that an optimal choice of the
decomposition of the progenitor polynomial Fj,... into its simpler components becomes crucial 
for the most effcient MB representation. The key question is to minimize the number n0 of those 
complex integrations.

The generic steps outlined above were implemented in the Mathematica package MBcre-
ate.m, which attempts to minimize the value of n0. In particular, MBcreate.m examines and 
applies the following procedures one-by-one, not necessarily in the order listed, unless it is ex-
plicitly specifed.

• Factorizes kinematic invariants sk from Fj ’s: if Fj = fj,0 + skfj,1, an MB representation 
(3) is introduced to split up fj,0 and skfj,1.

• Implements the change of variables xi = ηξ, xj = η(1 − ξ) for two Feynman parameters en-
tering integrands and obeying the conditions: (i) the dependence of each of the functions Fj

on η is at most linear, (ii) no more than two Fj ’s depend on it. Otherwise, introduces an MB 
representation, integrates with respect to η. Next introduces yet another MB decomposition 
(3) with subsequent integration over ξ .

• Searches through all {xi, xj } pairs and fnd cases where only one of the Fj function depends 
on a single variable, say xi , not the sum of the two xi + xj . Splits up that function into two 
terms, one depending on the sum and the rest, solves the resulting integration with Eq. (6).

• Tries all decompositions of the form Fj = xiFj,1 + Fj,0, where Fj,0 does not depend on xi , 
with both Fj,1 and Fj,0 being factored into monomials accompanying residual polynomials. 
Splits Fj by introducing an MB integration.

• Scans all decompositions Fj = xiFj,1 + Fj,0, where Fj,0 is xi -independent and splits them 
up with the MB representation (3) provided Fj,1 and/or Fj,0 already exist in the list of 
functions populating the integrand. This reduces the number of polynomials which could 
potentially yield a higher value of n0.

• Searches for possible splitting based on the form Fj = xiFj,1 + Fi where Fi is one of the 
factors already present in the integrand.

2 This is a typical situation for a bulk of contributions stemming from expansion by regions.
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• Tries the decompositions Fj = xiFj,1 + Fj,0 where Fj,0 can depend on xi but is factorized 
into a product of simpler, lower-degree polynomials.

• Searches for ‘similar’ functions Fi and Fj defned by the condition that Fi − Fj is given 
by a difference of two monomials. Splits one of them, say Fi , into the monomial associated 
with it and the rest, even more cognate with Fj function, by means of Eq. (3).

• If none of the above procedures meet their requirements, chooses a Feynman variable xi , 
introduces MB representations for all Fj ’s in the integrand but one and performs the integra-
tion over xi of the last remaining polynomial with the help of Eq. (6).

MBcreate.m automatically applies all of the above strategies, prioritizing the search for 
{xi, xj } pairs, and then solves the resulting parameter integrals whether they require an MB 
representation or not. The output is given by the product of ratios of Euler Gamma functions 
as in the integrand of Eq. (4). Though, currently there is no proof that the achieved value of n0
is minimal, authors’ experience and multiple tests against “manual reductions” give suffcient 
confdence to expect that.

The splitting of kinematical variables can be turned on/off with an optionSplitExtraVars 
→ True/False and is explicitly demonstrated in Section 4.

On extremely rare occasions, when an additional regularization is called for successful res-
olution of singularities discussed in the next section, an output can be encountered with Euler 
Gamma of arguments depending on the parameter of analytic regularization only. These have to 
be scrapped and redone by manually reshuffing the indices of x’s.

3. MB tools overhauled

Having derived an MB representation (4) for a parametric integral, one has to solve it either 
exactly or as a Laurent series in ε up to a desired order, with coeffcients which are given by 
MB integrals independent of ε, i.e., pure numbers. This section discusses a general strategy of 
accomplishing this goal. It is demonstrated using specifc example of Feynman integrals in the 
next section.

First, it is necessary to resolve the singularity structure in ε. As was already addressed in 
the introductory section, one can use either MB.m or MBresolve.m for that purpose, which 
were delivered in Refs. [9,8], respectively. The initial point of MB.m is to apply MBoptimize-
dRules command in order to fnd straight contours and values of ε obeying the rules for the 
contour choice formulated immediately after Eq. (3). Such contours do not always exist from the 
get-go. To alleviate the problem one can introduce an auxiliary analytic regularization comple-
mentary to the dimensional one and then proceed to contour determination with this command. 
There is no universal prescriptions how to do this in a systematic way and it is not straight-
forward. Due to these complications, it is preferable to rely on MBresolve.m instead. As it 
was explained in detail in Ref. [8], the code searches for optimal straight contours for the res-
olution of singularities in ε. Only on rare occasions, the code is unable to perform and this 
calls for an auxiliary analytic regularization. A recommended way of doing it in a systematic 
fashion is to provide additive terms to all ai in Eq. (5) proportional to a parameter, say, λ, i.e., 
ai → ai + riλ with the total sum 

�
i ri equal to zero.3 The second reason why it is advantageous 

3 The last condition is important because it does not affect re-parametrization invariance of parametric integrands 
to choose a “gauge” condition on one of the x’s. Also numerical checks of Laurent expansions with SDExpandAsy
command of FIESTA can be used provided this condition is fulflled.

6



A.V. Belitsky, A.V. Smirnov and V.A. Smirnov Nuclear Physics B 986 (2023) 116067

to apply MBresolve.m rather than MB.m is that MBresolve.m is much faster and this turns 
out rather important if the number of MB integrations is very large. A comment is in order about 
these two codes: every so often they used to produce real shifts of the contour which were inte-
gers this yielded error messages in the subsequent steps of analyses. The matter was resolved by 
increasing the precision4 of the conversion of decimal to rational output to 10−5.

The next step is to evaluate pure number MB integrals involved. This is accomplished by 
running the command DoAllBarnes from barnesroutines.m [32] which automatically 
applies the frst and the second Barnes lemmas and thereby performs some integrations in terms 
of Euler Gamma functions. The current version of the routine does not include a plethora of 
corollaries of the lemmas and they have to be applied by hand as in recent studies [27]. A case in 
point is�

C

dz

2πi

�(a + z)�(−b − z)�(b + z)�(d − z)

z
= −�(2 − a)�(a)�(−b)�(b)

+ �(2 − a)�(−b)�(a − b − 1)�(b − a + 2)
ψ(1 − a) − ψ(−b)

�(1 − a)�(1 − b)

− 1

b2 �(a − b)�(b − a + 2)(b(ψ(b − a + 2) + γE) − 1) , (7)

where the pole z = 0 stays to the left of an integration contour and the pole z = −b positioned 
to the right of the integration contour. A very long comprehensive list of similar formulas is 
provided in the Appendix B as an attachment. Let us also mention various ways [33] to integrate 
explicitly subintegrals in MB integrals which might be also implemented in DoAllBarnes.

Since the use of these tables does not warrant successful calculation of integrals, one has to 
rely on alternative techniques such as experimental mathematics. Namely, a much faster route to 
fnd analytical expressions to MB integrals in many circumstances, however, is immediately after 
the application of DoAllBarnes to bypass the use of corollaries of Barnes lemmas and turn 
to numerical analyses of remaining MBs. In practice, the computation of the latter is not prob-
lematic since these converge very well at large imaginary values of z-integration variables due of 
the exponential suppression stemming from Euler Gamma functions involved. Thus, calculating 
these with suffciently high precision is possible. Then one can use the PSLQ algorithm [34]
to obtain analytic results provided a basis of numbers, typically values of Riemann zeta func-
tion, entering the fnal result is known. For one-dimensional MB integrals, the current version 
of NIntegrate with GlobalAdaptive strategy in Mathematica can achieve the preci-
sion of 100 or more with ease and then the built-in command FindIntegerNullVector
allows one to successfully recognize transcendentals.5 Currently, Mathematica cannot handle 
well n-fold integrals for n > 2 with suffciently high precision and this sets a strong limitation 
of this calculational strategy. For instance, for two-fold MB integrals, only an older version of
Mathematica, e.g., v.5.2, permits one to gain suffcient precision (topping at 40) with the
DoubleExponential option for NIntegrate. A lower available precision imposes a very 
strong restriction on the dimension of the basis of transcendental numbers. After analytic ex-
pressions have been found with PSLQ, it is advisable to use MBintegrate of FIESTA to the 
intermediate output of MBresolve to verify the former numerically. At the time of writing this 

4 If this obstruction still persists, a user can further increase the precision by opening the packages MB.m and MBre-
solve.m, searching for Rationalize command and making the change by her/him-self.

5 A code implementing it is provided in Appendix C.
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Fig. 1. Exemplary graphs analyzed with MB Tools in the notebook MBcreateUsage.nb attached with submission.

article, for MBs with n = 3 and higher, one has to be content with possessing numerical results 
only or come up with a different, more powerful technique.

While the original MB package was distributed via hepforge https://mbtools .hepforge .org/, 
the current development of MBcreate.m is undergone with the use of git and bitbucket. 
Both MBcreate.m and all other MB codes are collected in the same repository and can be freely 
downloaded from there: https://bitbucket .org /feynmanIntegrals /mb /src /master/.

Most of the codes require Mathematica and simply work when loaded there. However, 
the MBintegrate command performs integration with the use of fortran generated codes 
and requires the gfortran compiler (which can normally be installed with package managers 
such as apt-get) as well as some libraries. While the Cuba integration library [35] by T. Hahn 
is shipped with the package and works perfectly with modern compilers, the original MB code 
used also the cernlib library for the evaluation of polylogarithms, but the cernlib is no longer 
supported, and there might be a problem to install it at modern computers. Hence a code based 
on a small portion of cernlib which was provided by M. Czakon is also included in the repository. 
All libraries can be compiled by calling make in the package folder.

The new package is also accompanying this submission as an ancillary fle, for reader’s con-
venience, along with a Mathematica notebook MBcreateUsage.nb with thoroughly worked 
out examples as discussed in the next section.

4. Examples

This section demonstrates the use of the code MBcreate.m applying it to a few examples of 
increasing complexity along with other routines from the MB Toolbox.

4.1. Graph 1(a)

The essence of the code can be shown with a one-loop diagram displayed in Fig. 1 (a). Using 
FIESTA [25] to generate corresponding Symanzik polynomials U and F ,

In[1]:= props1L = {-k1^2, -(k1 + p1)^2, -(k1 - p2)^2};
reps1L = {p1^2 -> -S1, p2^2 -> -S2 , p1*p2 -> (S1 + S2 - S12)/2};
IniFI = UF[{k1}, props1L, reps1L]

Out[1]:=
{x[1] + x[2] + x[3], S1 x[1] x[2] + S2 x[1] x[3] + S12 x[2] x[3], 1}
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one can feed them in directly to the MBcreate. Depending on whether one instructs the code to 
split up external kinematical variables at the frst step or not with the help of the option Spli-
tExtraVars, one gets equivalent representation for the graph 1 (a)

In[1]:= MBcreate[IniFI, Verbose -> True, SplitExtraVars -> True]
Out[1]:= (S1^z[1] S12^z[2] S2^(-1 - ep - z[1] - z[2]) Gamma[-ep - z[1]]

Gamma[-z[1]] Gamma[-ep - z[2]] Gamma[-z[2]] Gamma[ 1 + z[1] + z[2]]
Gamma[1 + ep + z[1] + z[2]])/Gamma[1 - 2 ep]

and

In[1]:= MBcreate[IniFI, Verbose -> True, SplitExtraVars -> False]
Out[1]:= (1/Gamma[1 - 2 ep])S1^(-1 + ep - z[1]) S12^(-2 ep + z[1] - z[2])

S2^z[2] Gamma[1 - 2 ep + z[1]] Gamma[ 1 - ep + z[1]] Gamma[-ep - z[2]]
Gamma[-z[2]] Gamma[ ep - z[1] + z[2]] Gamma[2 ep - z[1] + z[2]]

respectively.

4.2. Graph 1(b)

Having established what MBcreate does, one may use it as a part of an effort to calculate 
Feynman graphs as function of the kinematical invariants and ε parameter of dimensional regu-
larization. A case in point is the diagram in Fig. 1 (b). Considering it, for instance, in the limit of 
small virtuality p2

3 ≡ tp2
123 as t → 0, but exactly in the other two variables6 p2

12, p2
123 and ε. The 

asymptotic expansion of the graph is achieved with the help of the Method of Regions [20] mak-
ing use of the FIESTA command SDExpandAsy. Then we immediately get two contributing 
domains

In[1]:= props1L = {-k1^2, -(k1 + p3)^2, -(k1 - p12)^2};
reps1L = {p3^2 -> -t S123, p12^2 -> -S12 ,
p3*p12 -> (t S123 - S123 + S12)/2};
SDExpandAsy[UF[{k1}, props1L, reps1L], {1, 1, 1}, 0, 0,
AnalyticIntegration -> False, UsingC -> False,
OnlyPrepareRegions -> True, QHullPath -> dir]

Out[1]:= {{{0, 0, 0}, {E^(ep EulerGamma) Gamma[1 + ep]
FIESTA‘Private‘KronekerDelta[x[1] + x[2] + x[3], 1]

(x[1] + x[2] + x[3])^(-1 + 2 ep)
(S12 x[1] x[3] + S123 x[2] x[3])^(-1 - ep)}},
{{0, 0, 1}, {E^(ep EulerGamma) t^-ep Gamma[1 + ep]
FIESTA‘Private‘KronekerDelta[x[1] + x[2] + x[3], 1]
(x[1] + x[2])^(-1 + 2 ep)
(S123 x[1] x[2] + S12 x[1] x[3] + S123 x[2] x[3])^(-1 - ep)}}}

Starting from the frst region {0,0,0}, it is fed into MBcreate to generate the sought after 
MB representation

In[1]:= Ini1 = {1, x[1]^la[1] x[2]^la[2] x[3]^(-1 - ep + la[3]),
{{S12 x[1] + S123 x[2], -1 - ep}, {x[1] + x[2] + x[3], -1 + 2 ep}},

6 Here and below, we use the shorthand notation pijk... = pi + pj + pk + . . . .
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False}
MBcreate[Ini1*Product[x[i]^la[i], {i, 1, 3}], Verbose -> True,
SplitExtraVars -> True]

Out[1]:= (S12^z[1] S123^(-1 - ep - z[1]) Gamma[1 - ep - la[3]]
Gamma[-ep + la[3]] Gamma[-ep + la[2] - z[1]] Gamma[-z[1]]
Gamma[1 + ep + z[1]] Gamma[1 + la[1] + z[1]])
/(Gamma[1 - 2 ep] Gamma[1 + ep] Gamma[1 - ep + la[1] + la[2]])

Notice that an additional factor x[1]^la[1] x[2]^la[2] x[3]^la[3] is introduced to 
the second, monomial element of the input array. Its sole purpose is to provide an additional 
analytic regularization for safe use of subsequent codes from the MB Toolbox.

The next goal is to calculate the arising MB integral analytically. This can be achieved by 
frst constructing its proper straight integration contour as one moves the original curved contour 
separating positive and negative poles of Gamma functions and resolving arising singularities. 
This is automated by the command MBresolve, where MBintegral1 is the output of the
MBcreate

In[1]:= MBintegralCont = MBresolve[MBintegral1, ep, OptimizeNow -> True]
Out[1]:= {MBint[(S12^z1 S123^(-1 - ep - z1) Gamma[-ep] Gamma[-ep - z1] Gamma[-z1]

Gamma[1 + z1] Gamma[1 + ep + z1])/(Gamma[1 - 2 ep] Gamma[1 + ep]),
{{ep -> 0}, {z1 -> -(5935/11869)}}]}

Since MBresolve worked out without a hiccup for zero values of la, so they were ignored 
from the get-go. It is advisable at this time to have a numerical value for the integral for some 
random value of parameters for verifcation of future analytical result with MBintegrate.

Having done that, the single-fold MB integral can be recast as an infnite sum and then evalu-
ated by Mathematica. The former is accomplished with the package MBsums [36], by running

In[1]:= Lk = {S12 -> 1/2, S123 -> 1/3};
dim1sum = MBIntToSum[MBintegralCont[[1]], Lk, {z1 -> L}]

Out[1]:= {MBsum[((-1)^-n1 S12^n1 S123^(-1 - ep - n1)Gamma[-ep]
Gamma[-ep - n1] Gamma[1 + ep + n1])/(Gamma[1 - 2 ep] Gamma[1 + ep]),
n1 >= 0, {n1}],
MBsum[((-1)^-n1 S12^(-ep + n1) S123^(-1 - n1) Gamma[-ep]
Gamma[ep - n1] Gamma[1 - ep + n1])/(Gamma[1 - 2 ep] Gamma[1 + ep]),
n1 >= 0, {n1}]}

Then, Mathematica’s built-in Sum yields the fnal answer for the frst region

Region1Res = (S123^-ep Gamma[-ep]^2)/((-S12 + S123) Gamma[1 - 2 ep])
+ (S12^-ep Gamma[1 - ep] Gamma[-ep] Gamma[ep])/((-S12 + S123)
Gamma[1 - 2 ep] Gamma[1 + ep]);

Completely analogous steps hold for the second region {0,0,1}. The reader is spared how-
ever this unnecessary reiteration and instead is instructed to consult the accompanying notebook
MBcreateUsage.nb for details. The same cell also contains information on the Laurent ex-
pansion of the total result in ε with subsequent simplifcation of the output making use of the 
symbol technology [37].

10
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4.3. Graphs 1(c) and (d)

Application of MBcreate dose not face any complications at higher loop orders, like graphs 
(c) and (d) in Fig. 1. Due to the space constraint, all of the details are relegated to the accompany-
ing notebook of examples. However, it is important to point out is that what changes drastically at 
higher loops is one’s ability to evaluate MB integrals analytically. In those circumstances, when
Mathematica fails to evaluate multiple sums obtained from a given multifold MB integral, 
the best hope one can have is to rely on experimental mathematics implemented in the PSLQ
algorithm alluded to in Section 3 with explicit implementation in Appendix C. In particular, it is 
indispensable for analytic reconstruction of the asymptotic expansion of the three-loop graph in 
Fig. 1 (d).

5. Conclusion

This work introduced a new package for the conversion of Feynman integrals into an MB form 
with a minimal number of complex integrations, MBcreate. Also an update to several routines 
in the MB toolbox was provided to have error-free outputs at each step of analytical calculation 
of Laurent expansion of Feynman integrals. These were thoroughly tested against calculations 
done mostly “by hand” in Refs. [26,27].

For completeness, it is worth pointing out that while the strategy outlined above heavily re-
lies on the PSLQ algorithm, there is yet another alternative way to evaluate MB integrals by 
transforming them into infnite series representation by closing integration contours and taking 
residues with a help of computer code presented in Ref. [36]. The very problem of fnding se-
ries representations for a given MB integrals was recently analyzed in [38,39] making use of an 
approach based on conic hulls. A public computer code was also given there.
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Appendix A. Folklore Cheng-Wu theorem

Consider an N -fold integral on the standard simplex

IN =
�
Sx

dNx J ({x}) , Sx =
�
{x} ∈ RN :

�N

i=1
xi = 1, xi ≥ 1

�
, (8)

with the integrand being a homogeneous function of the xi variables of degree r , i.e., F({λx}) =
λrF ({x}). This integral is not invariant under this rescaling instead it has the degree r + N . 
To alleviate this predicament, perform a projective transformation by passing to another set of 
variables {y} as

xi = yi/

��N

i=1
yi

�
, i = 1, . . . ,N . (9)

This change leaves the simplex domain invariant Sx = Sy . Then, taking into account the emerg-
ing Jacobian

dNx = dNy/

��N

i=1
yi

�N

, (10)

the integral in these new variables becomes

IN =
�
Sy

dNy J ({y})/
��N

i=1
yi

�r+N

, (11)

and is explicitly rescaling invariant.
The latter property becomes crucial in the effcient solution of integrals by means of the ap-

plication of the so-called Cheng-Wu theorem [31], which specifes various possible choices for 
multifold integrations. To formulate it, introduce a constraint on the integration variables in the 
integrand but integrate over unconstrained RN+ space, i.e.,

IN =
∞�

0

dNx δ

��N

i=1
xi − 1

�
J ({x}) with J ({x}) = J ({x})/

��N

i=1
xi

�r+N

.

(12)

The Cheng-Wu theorem states that one can freely change the argument of the Dirac delta function 
to �N

i=1
xi − 1 →

�
i∈


xi − 1 (13)

with 
 being a subset of N labels. In particular, one can choose just one, say i0, in which case 
this variable is set to xi0 = 1 and the unconstrained integration is performed over the remaining 
N − 1 ones. It is important to realize that one could not have applied it to the original integral (8)
since it is not rescaling invariant.

Though proofs of the Cheng-Wu theorem can be found in Refs. [40,1,2], it is enlightening 
however to present it again. One can directly prove it making use of the Stokes’s theorem [2]
applied to (12), but it is instructive to invoke instead its relation to the Feynman parameter integral 
for a graph as given in Eq. (2). Using it as a starting point, one can next integrate-in a variable to 
obtain the well-known Schwinger, aka alpha, representation for the integral

12
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IN = 1

�(a − hD/2)

∞�
0

dNα [U ({α})]−D/2 exp

�
−F ({α})
U ({α})

� N�
i=1

α
ai−1
i . (14)

Obviously, the integrand (2) is obtained from this one by the rescaling {α} = ρ{x} and subsequent 
integration with respect to ρ. Using this representation as a starting point, the proof of the Cheng-
Wu theorem becomes elementary. Namely, resolve the unity in terms of a constraint involving a 
subset of α’s, as on the right hand side of Eq. (13)

1 =
∞�

0

dσ δ
	�

i∈

αi − σ



, (15)

and substitute it into the integrand of Eq. (14). Next, change the variables to {α} = σ {x} and use 
scaling properties of all functions involved to get the integral

IN = 1

�(a − hD/2)

∞�
0

dNx

N�
i=1

x
ai−1
i δ

��
i∈


xi − 1

�

× [U({x})]−D/2

∞�
0

dσ σa−hD/2−1 exp

�
−σ

F({x})
U({x})

�
. (16)

Finally integrating over σ gives original integrand with a constraint encompassing only a subset 
of integration variables.

Appendix B. Corollaries of Barnes lemmas (V.S. 2004)

For readers convenience, a very long list of corollaries of Barnes lemmas by V.S. is attached 
with this paper in the fle barnes.txt.

Appendix C. PSLQ

Since the original Broadhurst’s PSLQ code is not freely available to general public, here is a 
‘one-line’ routine based on the FindIntegerNullVector command in Mathematica:

PSLQ[num_?NumericQ, basis_?VectorQ] :=
Module[{coefficients, result},
coefficients = FindIntegerNullVector[Prepend[N[basis, Precision[num]], num]];
result = Rest[coefficients].basis/First[coefficients];
Sign[N[result]] Sign[num] result];

The syntax is self-explanatory from the following example:

In[1]:=
Num = -4.2306193701686518817682268282580510275171911584045617944546633\
2782312410899782814554047544567313363330613025333597361955278613729766\
333‘99.43031384975686;

Basis = {1, EulerGamma, EulerGamma^2, EulerGamma^3, EulerGamma^4, Pi^2,
Pi^4, EulerGamma Pi^2, EulerGamma^2 Pi^2, EulerGamma^3 Pi^2,
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EulerGamma Pi^4, Zeta[3], Zeta[3] EulerGamma};

PSLQ[Num, Basis]

Out[1]= 1/16 (-76 - 44 EulerGamma - 22 EulerGamma^2 - \[Pi]^2
+ 14 EulerGamma \[Pi]^2 - 24 Zeta[3])

Above, an overcomplete basis is used for demonstration purposes only of the uniqueness of the 
reconstruction. A more effcient choice would require lower precision of numerical inputs.

Appendix D. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /
j .nuclphysb.2022 .116067.
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