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Abstract

We address the problem of evaluation of multiloop Feynman integrals by means of their Mellin-Barnes
representation. After a brief overview of available capabilities through open source toolkits and their appli-
cation in various circumstances, we introduce a new code MBcreate which allows one to automatically
deduce a concise Mellin-Barnes representation for a given parametric integral. A thorough discussion of its
implementation and use is provided.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Overview

Feynman parametrization of momentum (or position, for that matter) space integrals is un-
doubtedly the most widespread tool to perform D-dimensional loop integrals — see, e.g., recent
books [1,2]. After this rather straightforward step, one ends up with an N-fold parametric integral
of the form
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where the integrand

N
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is encoded in two Symanzik functions U ({x}) and F ({x}; {s}), depending on Feynman param-
eters {x} = {x1, ..., xn} and kinematical invariants {s} = {s, ..., syr}. The former are defined
by trees and 2-trees of a given Feynman graph, respectively. I/ is a linear in each x; polyno-
mial with positive coefficients. The dependence on external kinematical invariants and masses
s enters linearly through the F polynomial only. In the case of vanishing masses, the latter
is linear in each x; as well but not otherwise. These graph polynomials possess, correspond-
ingly, the degrees of homogeneity 4 and & + 1 in Feynman parameters, U ({Ax}) = AU ({x}) and
F{ax}; {s}) = AL F({x}; {s}), where h is the number of loops. Finally, the exponents of these
polynomials are py =a — (h+ 1)D/2 and pp = —a + hD/2 witha = vazl a; and individual
a;’s corresponding to the powers of appearing propagators in the initial momentum integrand.
An extensive discussion of their construction can be found in Refs. [3,1].

The focus of the present paper is on the calculation of (1) by transforming it from the real
axis to the complex plane where information about integrand’s singularities will be sufficient to
compute Iy making use of powerful theorems of the Complex Analysis. The starting point for
this well-known method is based on the following Mellin-Barnes (MB) representation
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which allows one to partition a complicated polynomial in terms of its two ‘simpler’ components
A and B. In this equation, the contour C goes from —ioco to +ioo in the complex plane and the
poles of I'(... 4 z) are to its left while the ones of I'(... — z) are to its right with these left/right
poles corresponding to infrared/ultraviolet singularities of the original integral. This formula is
usually applied repeatedly enough number of times to a given parametric integral Iy in order
to solve all x-integrations in terms of products of Euler Gamma functions. This yields a sought-
after MB representation for a given Feynman integral in the form of an n-fold complex integral
(generally n # N)
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The ‘additive’ dependence of the second Symanzik polynomial F({x}; {s}) on the kinematical
invariants/masses sy is thus transformed into the multiplicative dependence on their di-powers.
The above MB representation (4) was successfully employed in analytical calculations of
Feynman integrals starting with the seminal work of Refs. [4,5] where three- and four-point
massless ladders at generic values of squared external momenta were obtained. Since multiloop
Feynman integrals are rather involved objects, they are usually evaluated as a Laurent expan-
sion in the parameter of dimensional regularization € = (4 — D)/2, rather than for generic D
values. Emerging poles in € have different origin reflecting divergent regions in the initial mo-
mentum integrals: they can stem from ultraviolet, infrared, collinear etc. domains. A systematic
study of MB representation (4) for dimensionally regularized Feynman integrals was initiated in
Refs. [6,7] where two complementary strategies for resolving occurring singularities in € near

2



A.V. Belitsky, A.V. Smirnov and V.A. Smirnov Nuclear Physics B 986 (2023) 116067

€ = 0 were devised. More than that, two public computer codes based on these techniques were
developed in [8,9], respectively. This laid out the foundation for a widespread use of the MB
techniques by QFT practitioners, see, e.g., Chapter 5 of [1] for a review.

Admittedly the MB method had seen its better days in the rear-view mirror as it passed its pin-
nacle on the stage of calculation tools being superseded by the introduction of canonical integral
bases [10] within the method of differential equations (DEs) [11,12]. A historical remark is in or-
der to make this point clear to the reader. To reveal the so-called BDS Ansatz [13] for four-gluon
scattering amplitudes at three-loop order, it was necessary to evaluate two four-leg Feynman
integrals associated with triple ladder-box and tennis-court graphs. This was performed in [14]
and [13], respectively, making use of the MB technique at the time when no computer codes
were yet available. The resolution of integrand’s singularities was the bottleneck of its successful
calculation, making the task of its manual examination colossally tedious. With availability of
the codes [8,9], this complication can be immediately alleviated. Still application of the same
approach to all master integrals of the above two families of Feynman integrals would not be
even feasible, but with the use of DEs for canonical bases of integrals this goal can successfully
be achieved as was shown in Ref. [15]. More than that, in a similar manner, master integrals for
all four-leg massless on-shell non-planar graphs were also evaluated [16,17].

Nevertheless, the MB method remains powerful enough to keep its runner-up position and
can be applied in conjunction with DEs in order to fix their boundary conditions, see, e.g., Refs.
[18,19], or, in certain circumstances, it is the only available choice when DEs cannot be used or
face their own vices. A particularly suitable niche for the application of the MB technique is in
the analysis of asymptotic behavior of Feynman graphs for small/large values of occurring kine-
matical invariants/masses si: like Sudakov and heavy mass limits, just to name a few. Leading
contributions in these cases are revealed with the help of a strategy known as the Expansion by
Regions [20] (see also [21,22,1]). This is accomplished by applying the public Mathematica code
asy [23,24], — also available as the SDExpandAsy command with the FIESTAS distribution
package [25], — which is based on the analysis of the geometry of polytopes associated with
the two Symanzik polynomials U ({x}) and F({x}; {s}). It determines all leading contributions
to the I integral by scanning over various scaling behaviors of the Feynman parameters with
asymptotic values of kinematical invariants. The output is given as parametric integrals of the
I type but with reduced, scale-independent Symanzik polynomials, I/ ({x}) and F({x}). Since
there is no dependence on kinematical variables left, DEs are powerless and the MB approach
is the only game in town. This strategy was recently applied on different occasions, see [26,27],
which compelled updates to existing routines of the MB toolbox as well as development of a new
code, which will be described below.

The subsequent presentation is organized as follows. Sect. 2 describes the main contribution of
this work through the code MBcreate, which generates a concise MB representation for a given
Feynman integral. Next, Sect. 3 provides an exposition of existing codes connected with the MB
representations, which allows one to solve MB integrals in the form of the Laurent expansion in
€ with analytic coefficients expressed in terms of Riemann zeta values. Conclusions with several
appendices culminate the paper.

2. Introducing MBcreate.m
The first of order of business on the way to apply available MB tools is to derive an optimal

MB representation (4) for a given Feynman-parameter integral (1) with a minimal number ng of
complex integrations. For generic momentum-space integrals, one can proceed in two different
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ways: construct Feynman parametric representation for the entire multiloop integrand, then de-
duce corresponding MB integrals, or do it loop-by-loop, i.e., derive an MB representation for a
one-loop subintegral, then embed it into a larger two-loop integral and so on. It turns out that the
global route does not yield the minimal value for ng. An example to this point is the very first
analytical calculation of dimensionally regularized double boxes [6] where the global parametric
representation produced five MB integrations but later it was observed [28] that in the loop-by-
loop approach that it reduces down to four. The latter method was then successfully used in
planar-graph calculations, e.g., [14,13]. It found its automatic implementation in the public code
AMBRE . m [29]. Yet another algorithm to derive an optimal MB representation was proposed in
Ref. [30], however, its computer implementations is not available so far.

Starting with a generic Feynman integral (1) depending on M kinematical variables s, it is
sometimes natural to isolate them first in a factorized form (4) by means of the repeated use
of Eq. (3) at the cost of introducing M — 1 MB integrations. This can be done with the option
SplitExtraVars -> True. However, it is usually better not to do this so that the default
option is SplitExtraVars -> False. Anyway, an input for our code is a product of sev-
eral parametric polynomials F; (with positive coefficients) raised to certain (generally) complex
powers. Similarly, as discussed in the previous section, the application of expansion by regions
yields si-independent reduced Symanzik polynomials in parametric integrands. In either case,
one has to construct an optimal MB representation for these. One can of course proceed by trial
and error on a case-by-case basis looking for the magic number ng. This was done in Refs.
[26,27]. However, this is extremely time-consuming. In the lack of a proof of what a numerical
value no might be a priory, a routine that can search for its optimal value needs to be developed to
tackle this problem. So the lowest value of n( that it finds will constitute an efficiency criterion.

Therefore, consider a Feynman parametric integral independent of kinematical invariants

(0.¢]
N .
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Here F; are polynomials with positive coefficients linear in each x;, raised to powers p; =
bje +cj; aj are integers, while b}, ¢; are rational numbers when these are thought of as outputs
of the Expansion by Regions,' or complex when it is a result of kinematical split-up alluded to
at the top of the previous paragraph. Notice that a;’s can also be considered generally complex-
valued if an auxiliary analytic regularization is imposed. This latter setup is particularly relevant
for initially finite parametric integrals where one can choose to set the number of space-time
dimensions down to four, i.e., ¢ = 0. However, since its asymptotic expansion with expansion
by regions generates individually divergent contributions an intermediate regularization is nev-
ertheless required. It has to be imposed however in a manner that does not violate the rescaling
invariance of the original parametric integral under {x} — {Ax} transformation. The preservation
of this property is crucial for maintaining the opportunity to apply the so-called Cheng-Wu the-
orem [31] to the above integral. For reader’s convenience and completeness of this presentation,
the theorem is reviewed in Appendix A and boils down to reducing the delta-function constraint
down to a smaller subset of Feynman parameters. A particularly convenient choice is § (xl-0 - 1)
for a single ad hoc ip. In certain calculations, one eliminates the delta function constraint first in
favor of symmetric treatment of all integrals involved, be it Feynman-parameter or proper-time

! n this case, it is obvious that F1 =1 and = F.
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integrals, see, e.g., [26]. The procedure devised below is applicable to those circumstances as
well.

The procedure is built on the following two transformations: integration over an x-parameter,
if possible, making use of the integral

/dx xP(ax +b)! = Fp+DI'=p—q = 1)a_p_lblﬂrq'F1 , (6)
; ['(—q)

introduction of an MB integration (3) in order to apply (6). Obviously, the first x-integrations
which have to be performed in Eq. (5) are the ones over non-overlapping subsets of variables
defining the F; polynomials. Without loss of generality it suffices to address the case of just two
polynomials in the integrand F and F; (see footnote 1). Suppose that there are several variables
with this property, i.e., F> depends on all of the Feynman parameters while F is independent
of a subset X = {x;} of these.” Then Fp = F>1x¢ + F2,0 and by means of (6), we obtain the
product F ;? 11 F f %. Then one repeats this step for the next variable from X provided it belongs to

either F' p jorF p o but not both. After such integrations become impossible, one is forced to use
the MB partition (3) first before applying (6) again. It is at this step that an optimal choice of the
decomposition of the progenitor polynomial F;  into its simpler components becomes crucial
for the most efficient MB representation. The key question is to minimize the number ¢ of those
complex integrations.

The generic steps outlined above were implemented in the Mathematica package MBcre-
ate.m, which attempts to minimize the value of n¢. In particular, MBcreate . m examines and
applies the following procedures one-by-one, not necessarily in the order listed, unless it is ex-
plicitly specified.

e Factorizes kinematic invariants s from F;’s: if F;j = fj 0 + s fj,1, an MB representation
(3) is introduced to split up f; 0 and s fj 1.

o Implements the change of variables x; = né, x; = n(1 — &) for two Feynman parameters en-
tering integrands and obeying the conditions: (i) the dependence of each of the functions F
on 1 is at most linear, (ii) no more than two F;’s depend on it. Otherwise, introduces an MB
representation, integrates with respect to 1. Next introduces yet another MB decomposition
(3) with subsequent integration over .

o Searches through all {x;, x;} pairs and find cases where only one of the F; function depends
on a single variable, say x;, not the sum of the two x; + x;. Splits up that function into two
terms, one depending on the sum and the rest, solves the resulting integration with Eq. (6).

e Tries all decompositions of the form F; = x; Fj | + Fj o, where F; o does not depend on x;,
with both F; 1 and Fj o being factored into monomials accompanying residual polynomials.
Splits F; by introducing an MB integration.

o Scans all decompositions F; = x; Fj 1 + Fj o, where Fj ¢ is x;-independent and splits them
up with the MB representation (3) provided Fj 1 and/or F; already exist in the list of
functions populating the integrand. This reduces the number of polynomials which could
potentially yield a higher value of ng.

e Searches for possible splitting based on the form F; = x; F; 1 + F; where F; is one of the
factors already present in the integrand.

2 Thisisa typical situation for a bulk of contributions stemming from expansion by regions.
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e Tries the decompositions F; = x; F; 1 + Fj o where F o can depend on x; but is factorized
into a product of simpler, lower-degree polynomials.

o Searches for ‘similar’ functions F; and F; defined by the condition that F; — F; is given
by a difference of two monomials. Splits one of them, say F;, into the monomial associated
with it and the rest, even more cognate with F; function, by means of Eq. (3).

e If none of the above procedures meet their requirements, chooses a Feynman variable x;,
introduces MB representations for all F;’s in the integrand but one and performs the integra-
tion over x; of the last remaining polynomial with the help of Eq. (6).

MBcreate.m automatically applies all of the above strategies, prioritizing the search for
{x;, x;} pairs, and then solves the resulting parameter integrals whether they require an MB
representation or not. The output is given by the product of ratios of Euler Gamma functions
as in the integrand of Eq. (4). Though, currently there is no proof that the achieved value of ng
is minimal, authors’ experience and multiple tests against “manual reductions” give sufficient
confidence to expect that.

The splitting of kinematical variables can be turned on/off with an option SplitExtravVars
— True/False and is explicitly demonstrated in Section 4.

On extremely rare occasions, when an additional regularization is called for successful res-
olution of singularities discussed in the next section, an output can be encountered with Euler
Gamma of arguments depending on the parameter of analytic regularization only. These have to
be scrapped and redone by manually reshuffling the indices of x’s.

3. MB tools overhauled

Having derived an MB representation (4) for a parametric integral, one has to solve it either
exactly or as a Laurent series in € up to a desired order, with coefficients which are given by
MB integrals independent of ¢, i.e., pure numbers. This section discusses a general strategy of
accomplishing this goal. It is demonstrated using specific example of Feynman integrals in the
next section.

First, it is necessary to resolve the singularity structure in €. As was already addressed in
the introductory section, one can use either MB.m or MBresolve .m for that purpose, which
were delivered in Refs. [9,8], respectively. The initial point of MB . m is to apply MBoptimize-
dRules command in order to find straight contours and values of € obeying the rules for the
contour choice formulated immediately after Eq. (3). Such contours do not always exist from the
get-go. To alleviate the problem one can introduce an auxiliary analytic regularization comple-
mentary to the dimensional one and then proceed to contour determination with this command.
There is no universal prescriptions how to do this in a systematic way and it is not straight-
forward. Due to these complications, it is preferable to rely on MBresolve .m instead. As it
was explained in detail in Ref. [8], the code searches for optimal straight contours for the res-
olution of singularities in €. Only on rare occasions, the code is unable to perform and this
calls for an auxiliary analytic regularization. A recommended way of doing it in a systematic
fashion is to provide additive terms to all a; in Eq. (5) proportional to a parameter, say, A, i.e.,
a; — a; + r; A with the total sum Zi r; equal to zero.” The second reason why it is advantageous

3 The last condition is important because it does not affect re-parametrization invariance of parametric integrands
to choose a “gauge” condition on one of the x’s. Also numerical checks of Laurent expansions with SDExpandAsy
command of FIESTA can be used provided this condition is fulfilled.
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to apply MBresolve . mrather than MB.m is that MBresolve . m is much faster and this turns
out rather important if the number of MB integrations is very large. A comment is in order about
these two codes: every so often they used to produce real shifts of the contour which were inte-
gers this yielded error messages in the subsequent steps of analyses. The matter was resolved by
increasing the precision® of the conversion of decimal to rational output to 107>.

The next step is to evaluate pure number MB integrals involved. This is accomplished by
running the command DoAllBarnes from barnesroutines.m [32] which automatically
applies the first and the second Barnes lemmas and thereby performs some integrations in terms
of Euler Gamma functions. The current version of the routine does not include a plethora of
corollaries of the lemmas and they have to be applied by hand as in recent studies [27]. A case in
point is

/‘ ﬁ[‘(a +2)I(=b—-2)T(b+2)I'(d —2)

=-TQ-a)(a)['(=b)T'(b)

2mi Z
c
Yl —a)—y(=b)
re—-—ayr(-b)r(a—b—-Hro — 2
+TQ2—a)(~b)l(a (b —a+2)
1
—b—zF(a—b)[‘(b—a+2)(b(1ﬁ(b—a+2)+yE)—1), @)
where the pole z = 0 stays to the left of an integration contour and the pole z = —b positioned

to the right of the integration contour. A very long comprehensive list of similar formulas is
provided in the Appendix B as an attachment. Let us also mention various ways [33] to integrate
explicitly subintegrals in MB integrals which might be also implemented in DoAl11Barnes.
Since the use of these tables does not warrant successful calculation of integrals, one has to
rely on alternative techniques such as experimental mathematics. Namely, a much faster route to
find analytical expressions to MB integrals in many circumstances, however, is immediately after
the application of DoAl1lBarnes to bypass the use of corollaries of Barnes lemmas and turn
to numerical analyses of remaining MBs. In practice, the computation of the latter is not prob-
lematic since these converge very well at large imaginary values of z-integration variables due of
the exponential suppression stemming from Euler Gamma functions involved. Thus, calculating
these with sufficiently high precision is possible. Then one can use the PSLQ algorithm [34]
to obtain analytic results provided a basis of numbers, typically values of Riemann zeta func-
tion, entering the final result is known. For one-dimensional MB integrals, the current version
of NIntegrate with GlobalAdaptive strategy in Mathematica can achieve the preci-
sion of 100 or more with ease and then the built-in command FindIntegerNullVector
allows one to successfully recognize transcendentals.” Currently, Mathemat ica cannot handle
well n-fold integrals for n > 2 with sufficiently high precision and this sets a strong limitation
of this calculational strategy. For instance, for two-fold MB integrals, only an older version of
Mathematica, e.g., v.5.2, permits one to gain sufficient precision (topping at 40) with the
DoubleExponential option for NIntegrate. A lower available precision imposes a very
strong restriction on the dimension of the basis of transcendental numbers. After analytic ex-
pressions have been found with PSLQ, it is advisable to use MBintegrate of FIESTA to the
intermediate output of MBresolve to verify the former numerically. At the time of writing this

4 1If this obstruction still persists, a user can further increase the precision by opening the packages MB.m and MBre -
solve.m, searching for Rat ionalize command and making the change by her/him-self.
5 A code implementing it is provided in Appendix C.
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Fig. 1. Exemplary graphs analyzed with MB Tools in the notebook MBcreateUsage . nb attached with submission.

article, for MBs with n = 3 and higher, one has to be content with possessing numerical results
only or come up with a different, more powerful technique.

While the original MB package was distributed via hepforge https://mbtools.hepforge.org/,
the current development of MBcreate . m is undergone with the use of git and bitbucket.
Both MBcreate . mand all other MB codes are collected in the same repository and can be freely
downloaded from there: https://bitbucket.org/feynmanlntegrals/mb/src/master/.

Most of the codes require Mathematica and simply work when loaded there. However,
the MBintegrate command performs integration with the use of fortran generated codes
and requires the gf ortran compiler (which can normally be installed with package managers
such as apt -get) as well as some libraries. While the Cuba integration library [35] by T. Hahn
is shipped with the package and works perfectly with modern compilers, the original MB code
used also the cernlib library for the evaluation of polylogarithms, but the cernlib is no longer
supported, and there might be a problem to install it at modern computers. Hence a code based
on a small portion of cernlib which was provided by M. Czakon is also included in the repository.
All libraries can be compiled by calling make in the package folder.

The new package is also accompanying this submission as an ancillary file, for reader’s con-
venience, along with a Mathematica notebook MBcreateUsage . nb with thoroughly worked
out examples as discussed in the next section.

4. Examples

This section demonstrates the use of the code MBcreate . m applying it to a few examples of
increasing complexity along with other routines from the MB Toolbox.

4.1. Graph I(a)

The essence of the code can be shown with a one-loop diagram displayed in Fig. 1 (a). Using
FIESTA [25] to generate corresponding Symanzik polynomials U and F,

In[1l] := propslL = {-k1*2, -(k1 + pl)”2, -(k1 - p2)”"2};
repslL = {pl”2 -> -S1, p2™2 -> -S2 , pl*p2 -> (S1 + S2 - S12)/2};
IniFI = UF[{kl}, propslL, repslL]

Out [1] :=

{x[1] + x[2] + x[3], S1 x[1] xI[2] + S2 x[1] x[3] + s12 xI[2] xI[3], 1}
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one can feed them in directly to the MBcreate. Depending on whether one instructs the code to
split up external kinematical variables at the first step or not with the help of the option Spli-
tExtraVars, one gets equivalent representation for the graph 1 (a)

In[l] := MBcreate[IniFI, Verbose -> True, SplitExtraVars -> Truel]
Oout [1]:= (S1%z[1] S12"z[2] S2" (-1 - ep - z[1] - z[2]) Gammal[-ep - z[1]]
Gamma [-z[1]] Gamma[-ep - z[2]] Gamma[-z[2]] Gammal[ 1 + z[1l] + z[2]]

Gamma [l + ep + z[1] + z[2]])/Gamma[l - 2 ep]

and

In[l] := MBcreate[IniFI, Verbose -> True, SplitExtraVars -> False]

Out [1]:= (1/Gamma[l - 2 epl)S1”(-1 + ep - z[1]) S12"(-2 ep + z[1] - z[2])
S2"z[2] Gamma[l - 2 ep + z[1]] Gamma[ 1 - ep + z[1]] Gammal[-ep - z[2]]
Gamma [-z[2]] Gamma[ ep - z[1l] + z[2]] Gammal[2 ep - z[1] + z[2]]

respectively.

4.2. Graph I(b)

Having established what MBcreate does, one may use it as a part of an effort to calculate
Feynman graphs as function of the kinematical invariants and € parameter of dimensional regu-
larization. A case in point is the diagram in Fig. 1 (b). Considering it, for instance, in the limit of
small virtuality p% = z‘p%23 as t — 0, but exactly in the other two variables® p%z, 1’%23 and €. The
asymptotic expansion of the graph is achieved with the help of the Method of Regions [20] mak-
ing use of the FIESTA command SDExpandAsy. Then we immediately get two contributing
domains

In[1] := propslL = {-k1"2, -(k1 + p3)”2, -(k1 - pl2)”"2};
repslL = {p3"2 -> -t S123, pl2"2 -> -S12 ,
p3*pl2 -> (t S123 - 8123 + S12)/2};
SDExpandAsy [UF [{kl}, propslL, repslL], {1, 1, 1}, 0, O,
AnalyticIntegration -> False, UsingC -> False,
OnlyPrepareRegions -> True, QHullPath -> dir]

out[1]l:= {{{0, 0, 0}, {E"(ep EulerGamma) Gamma[l + ep]
FIESTA'Private‘KronekerDelta[x[1] + x[2] + x[3], 1]
(x[1] + x[2] + x[3]1)7(-1 + 2 ep)
(S12 x[1] x[3] + S123 x[2] x[3])"(-1 - ep)}},
{{o, 0, 1}, {E*(ep EulerGamma) t*-ep Gammal[l + ep]
FIESTA'Private‘KronekerDelta[x[1] + x[2] + x[3], 1]
(x[1] + x[2])°(-1 + 2 ep)
(s123 x[1] x[2] + S12 x[1] x[3] + sS123 x[2] x[3])"(-1 - ep)}}}

Starting from the first region {0, 0, 0}, it is fed into MBcreate to generate the sought after
MB representation

In[1]l:= Inil = {1, x[1]1%1lal1] x[2]1"1la[2] x[3]1"(-1 - ep + lal3]),
{{s12 x[1] + s123 x[2], -1 - ep}, {xI[1] + x[2] + x[3], -1 + 2 ep}},

6 Here and below, we use the shorthand notation Dijk..=Pi+pPj+pk+....
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False}
MBcreate [Inil*Product [x[i]*1lali]l, {i, 1, 3}], Verbose -> True,
SplitExtravVars -> True]
Out [1]:= (S12"z[1] S123"(-1 - ep - z[1l]) Gamma[l - ep - lal[3]]
Gamma [-ep + la[3]] Gammal[-ep + lal[2] - z[1]] Gamma[-z[1]]

Gamma [1 + ep + z[1]] Gamma[l + lall] + z[1]1)
/(Gamma [l - 2 ep] Gamma[l + ep] Gamma[l - ep + lal[l]l + lal[2]])

Notice that an additional factor x [1] *1a[1] x[2]"1a[2] x[3]"1a[3] isintroduced to
the second, monomial element of the input array. Its sole purpose is to provide an additional
analytic regularization for safe use of subsequent codes from the MB Toolbox.

The next goal is to calculate the arising MB integral analytically. This can be achieved by
first constructing its proper straight integration contour as one moves the original curved contour
separating positive and negative poles of Gamma functions and resolving arising singularities.
This is automated by the command MBresolve, where MBintegrall is the output of the
MBcreate

In[1l] := MBintegralCont = MBresolve [MBintegrall, ep, OptimizeNow -> True]
Out[1]:= {MBint[(S12"z1 S123"(-1 - ep - z1) Gammal[-ep] Gammal[-ep - zl] Gamma[-z1]
Gamma [1 + zl] Gammal[l + ep + z1])/(Gamma[l - 2 ep] Gammal[l + epl),

{{ep -> 0}, {z1 -> -(5935/11869)}}1}

Since MBresolve worked out without a hiccup for zero values of 1a, so they were ignored
from the get-go. It is advisable at this time to have a numerical value for the integral for some
random value of parameters for verification of future analytical result with MBintegrate.
Having done that, the single-fold MB integral can be recast as an infinite sum and then evalu-
ated by Mathematica. The former is accomplished with the package MBsums [36], by running

In[1l:= Lk = {S12 -> 1/2, S123 -> 1/3};
dimlsum = MBIntToSum[MBintegralCont[[1]], Lk, {zl1 -> L}]
out[1]:= {MBsum[((-1)"-nl S12”nl S123" (-1 - ep - nl)Gamma[-ep]

Gamma [-ep - nl] Gamma[l + ep + nl])/(Gamma[l - 2 ep] Gamma[l + ep]),
nl >= 0, {n1}l,

MBsum[ ((-1)*-nl S12" (-ep + nl) S123”"(-1 - nl) Gammal[-ep]

Gamma [ep - nl] Gamma[l - ep + nl])/(Gamma[l - 2 ep] Gammall + epl),
nl >= 0, {nl}]}

Then, Mathematica’s built-in Sum yields the final answer for the first region

RegionlRes = (S123"-ep Gamma[-ep] *2)/((-S12 + S123) Gammal[l - 2 ep])
+ (S12"-ep Gamma[l - ep] Gamma[-ep] Gamma[epl)/((-S12 + S123)
Gamma [l - 2 ep] Gammal[l + epl);

Completely analogous steps hold for the second region {0, 0, 1}. The reader is spared how-
ever this unnecessary reiteration and instead is instructed to consult the accompanying notebook
MBcreateUsage .nb for details. The same cell also contains information on the Laurent ex-
pansion of the total result in € with subsequent simplification of the output making use of the
symbol technology [37].
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4.3. Graphs I(c) and (d)

Application of MBcreate dose not face any complications at higher loop orders, like graphs
(c) and (d) in Fig. 1. Due to the space constraint, all of the details are relegated to the accompany-
ing notebook of examples. However, it is important to point out is that what changes drastically at
higher loops is one’s ability to evaluate MB integrals analytically. In those circumstances, when
Mathematica fails to evaluate multiple sums obtained from a given multifold MB integral,
the best hope one can have is to rely on experimental mathematics implemented in the PSLQ
algorithm alluded to in Section 3 with explicit implementation in Appendix C. In particular, it is
indispensable for analytic reconstruction of the asymptotic expansion of the three-loop graph in
Fig. 1 (d).

5. Conclusion

This work introduced a new package for the conversion of Feynman integrals into an MB form
with a minimal number of complex integrations, MBcreate. Also an update to several routines
in the MB toolbox was provided to have error-free outputs at each step of analytical calculation
of Laurent expansion of Feynman integrals. These were thoroughly tested against calculations
done mostly “by hand” in Refs. [26,27].

For completeness, it is worth pointing out that while the strategy outlined above heavily re-
lies on the PSLQ algorithm, there is yet another alternative way to evaluate MB integrals by
transforming them into infinite series representation by closing integration contours and taking
residues with a help of computer code presented in Ref. [36]. The very problem of finding se-
ries representations for a given MB integrals was recently analyzed in [38,39] making use of an
approach based on conic hulls. A public computer code was also given there.
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Appendix A. Folklore Cheng-Wu theorem

Consider an N-fold integral on the standard simplex

IN=/deJ({x}), sz{{x}eRN:Zjilxizl,xizl}, )

X

with the integrand being a homogeneous function of the x; variables of degree r, i.e., F({Ax}) =
A" F({x}). This integral is not invariant under this rescaling instead it has the degree r + N.
To alleviate this predicament, perform a projective transformation by passing to another set of
variables {y} as

XiZYi/(Zjvzl)’i), i=1,...,N. )

This change leaves the simplex domain invariant S; = S,. Then, taking into account the emerg-
ing Jacobian

dVx=aVy/ (ZN y,->N, (10)
i=1

the integral in these new variables becomes

In= / Ny I/ (ZN yi)rw , (11
i=1

;
and is explicitly rescaling invariant.

The latter property becomes crucial in the efficient solution of integrals by means of the ap-
plication of the so-called Cheng-Wu theorem [31], which specifies various possible choices for
multifold integrations. To formulate it, introduce a constraint on the integration variables in the
integrand but integrate over unconstrained Ri’ space, i.e.,

X N N r+N
v = [ a¥xs (Zi_lxi - 1) J(xp with T({xh=J({xh/ (Zi_le) :
0

12)

The Cheng-Wu theorem states that one can freely change the argument of the Dirac delta function
to
N

Do il xi—l (13)
with X being a subset of N labels. In particular, one can choose just one, say ig, in which case
this variable is set to x;, = 1 and the unconstrained integration is performed over the remaining
N — 1 ones. It is important to realize that one could not have applied it to the original integral (8)
since it is not rescaling invariant.

Though proofs of the Cheng-Wu theorem can be found in Refs. [40,1,2], it is enlightening
however to present it again. One can directly prove it making use of the Stokes’s theorem [2]
applied to (12), but it is instructive to invoke instead its relation to the Feynman parameter integral
for a graph as given in Eq. (2). Using it as a starting point, one can next integrate-in a variable to
obtain the well-known Schwinger, aka alpha, representation for the integral

12
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R o (FUED\ Pt
IN_iF(a—hDﬂ)/d o [U (o)) exp( u({g}))]_[ai . (14)
0

i=1

Obviously, the integrand (2) is obtained from this one by the rescaling {o} = p{x} and subsequent
integration with respect to p. Using this representation as a starting point, the proof of the Cheng-
Wu theorem becomes elementary. Namely, resolve the unity in terms of a constraint involving a
subset of «’s, as on the right hand side of Eq. (13)

1=7d05(2i62ai —0), (15)
0

and substitute it into the integrand of Eq. (14). Next, change the variables to {«} = o {x} and use
scaling properties of all functions involved to get the integral

1 ry &
N A als 1
N F(a—hD/2)/ xl_[xl Zx,
0

i=1 ieX

oo
_ —hDJj2— Fxp
x [U{xD] D/z/daa“ hD/2 1exp (—a . (16)
U({x})
0
Finally integrating over o gives original integrand with a constraint encompassing only a subset

of integration variables.
Appendix B. Corollaries of Barnes lemmas (V.S. 2004)

For readers convenience, a very long list of corollaries of Barnes lemmas by V.S. is attached
with this paper in the file barnes . txt.

Appendix C. PSLQ

Since the original Broadhurst’s PSLQ code is not freely available to general public, here is a
‘one-line’ routine based on the FindIntegerNullVector command in Mathematica:

PSLQ [num_?NumericQ, basis_?VectorQ] :=

Module [{coefficients, result},

coefficients = FindIntegerNullVector [Prepend [N [basis, Precision[num]], num]];
result = Rest [coefficients] .basis/First[coefficients];

Sign[N[result]] Sign[num] result];

The syntax is self-explanatory from the following example:

In[1l]:=

Num = -4.2306193701686518817682268282580510275171911584045617944546633\
2782312410899782814554047544567313363330613025333597361955278613729766\
333'99.43031384975686;

Basis = {1, EulerGamma, EulerGamma’2, EulerGamma”3, EulerGamma™4, Pi"2,
Pi™4, EulerGamma Pi”2, EulerGamma”2 Pi”*2, EulerGamma”3 Pi”2,

13
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EulerGamma Pi®4, Zetal[3], Zetal[3] EulerGamma};
PSLQ [Num, Basis]

Out [1]= 1/16 (-76 - 44 EulerGamma - 22 EulerGamma”™2 - \[Pi]"2
+ 14 EulerGamma \[Pi]”*2 - 24 Zetal3])

Above, an overcomplete basis is used for demonstration purposes only of the uniqueness of the
reconstruction. A more efficient choice would require lower precision of numerical inputs.

Appendix D. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/
j-nuclphysb.2022.116067.
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