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Abstract

We address the problem of unambiguous reconstruction of rational functions of many variables. This 
is particularly relevant for recovery of exact expansion coefficients in integration-by-parts identites (IBPs) 
based on modular arithmetic. These IBPs are indispensable in modern approaches to evaluation of multiloop 
Feynman integrals by means of differential equations. Modular arithmetic is far more superior to algebraic 
implementations when one deals with high-multiplicity situations involving a large number of Lorentz 
invariants. We introduce a new method based on balanced relations which allows one to achieve the goal 
of a robust functional restoration with minimal data input. The technique is implemented as a Mathematica 
package Reconstruction.m in the FIRE6 environment and thus successfully demonstrates a proof of 
concept.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.

1. Introduction

Integration-by-parts identities (IBPs) [1], see also Chapter 6 of the book [2], are an indispens-
able tool to reduce an arbitrarily large set of Feynman integrals to a finite set [3] of the so-called 
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Master Integrals (MIs). With development of powerful computers, a number of programs had be-
come available over the past twenty years to handle algebraically a plethora of IBPs. The bulk of 
them [4–8] (for the exception of [9]) is based on the renowned Laporta algorithm [10] of Gauss 
elimination for a given choice of priority ordering.

IBPs form a system of linear algebraic equations with matrix coefficients whose elements are 
generically given by rational functions

F(x) = P(x)

Q(x)
. (1)

Here P and Q are polynomials of (typically) different degrees in the number of space-time 
dimension d and (L − 1) Lorentz invariants. These are cumulatively denoted by the vector of 
variables x = (x1, . . . , xL).

The main problem with the Laporta reduction is the swelling of intermediate expressions when 
one performs the elimination in an algebraic manner and which, in turn, leads to severe computer 
performance issues, as these become incredibly time consuming to manipulate with and hard to 
store in a memory. The final form of the coefficients is, however, rather concise in length (several 
orders of magnitude less than their intermediate form).

A natural way out would be to perform all calculations numerically and then attempt their an-
alytic reconstruction. The use of floating point arithmetic is a no-starter in this context however 
since one is aiming at an exact reconstruction of the expansion coefficients. The use of rational 
numbers instead is plagued by problems akin to ones emerging in analytic treatments since they 
require arbitrary precision arithmetic which is time consuming. So an idea was put forward in 
Ref. [11] to use numerical techniques over finite fields in computer algebra manipulations of 
IBPs. These are obviously advantageous compared to the ones we just alluded to above since, 
as the name suggests, there is only a finite number of elements involved (with well-defined in-
verses) and they can be represented by machine-size integers. Their disadvantage, however, is 
information loss along the way and thus the necessity to use several finite fields for back recov-
ery of rational numbers. However, these efforts are far less demanding than the direct use of the 
latter. This rational reconstruction from its images in several fields has been known for quite a 
while and is implemented through the Extended Euclidean Algorithm [12,13] which relies on the 
Chinese Remainder Theorem [14].

Having addressed the proper numbers for numerical calculations, the main problem then con-
sists in the actual reconstruction of the black box (1) from sample data (aka black box points) with 
high probability of success. While univariate methods date back to more than a century ago as 
celebrated Newton and Thiele interpolations [15] for polynomial and rational functions, respec-
tively, multivariate techniques are relatively new. Interpolations for sparse1 functions of many 
variables were addressed in Refs. [16–23]. Reconstruction methods for dense2 multivariate func-
tions are more rare. A generalization of the Thiele method was proposed and implemented with 
the release of the FIRE6 IBP reduction framework in Ref. [5]. However, it can hardly be used 
beyond two variables, since it faces severe computational challenges. The most prominent sparse 
reconstructions are based on the so-called homogeneous interpolation [21,22] and the Zippel 
algorithm [24]. The former was adopted and remastered in Refs. [25] and [26] for scattering 
amplitude problems through the FiniteFlow and FireFly packages, respectively. Fire-

1 It refers to a given upper bound on the number of terms in P and Q of Eq. (1).
2 I.e., unconstrained number of terms in P and Q.
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Fly also employs the Zippel algorithm and was recently integrated with Kira2.0 IBP program 
in Ref. [8].

In circumstances when the time of numerical computations of a single sample point is compa-
rable to the one of the total reconstruction, it is very important to have a method which requires 
minimal initial data set. In this regard, the homogeneous multivariate reconstruction is indeed a 
viable tool, however, it requires sufficiently high number of probes for successful sought-after 
reconstruction as it is very sensitive to the total power of polynomials building up the numer-
ator/denominator in Eq. (1). This technique will be used by us as a benchmark for the method 
which we propose in this work.3 We will demonstrate that it will allow us for a more economical 
computational efforts compared to the former since it requires less black box probes.

Our subsequent presentation is organized as follows. In the next section, we recall classical 
methods of univariate interpolations. Then in Sect. 3, we present our new framework based on the 
so-called balanced reconstruction. We address the issue of the most optimal ordering in Sect. 4
and then, in Sect. 5, compare our method with the homogenous one. In Sect. 6, we introduce a 
Mathematica code integrated with the FIRE6 program for the balanced reconstruction of IBPs 
and give a thorough example in Sect. 7. Finally, we conclude and discuss future directions. This 
manuscript is also accompanied by the Mathematica script code Reconstruction.m and the 
notebook reconstruction.nb detailing all recovery steps, as well as syntax and commands, 
for a typical process of IBP reduction.

2. Classical univariate reconstructions

To start with, let us recall two classical results used in polynomial and rational interpolation of 
functions of a single variable x, which we build upon in the following sections. These are known 
as Newton and Thiele methods, respectively.

Throughout this paper, we will be adhering to the following notations: N will be the number 
of samples for the Newton method, while T will be the number of data points for the Thiele 
method. Greek letters will denote integer labels of fixed numerical values of variables, e.g., xα.

2.1. Newton method

The most basic method of polynomial interpolation of a function f (x) is based on the so-
called Newton interpolating polynomials fN(x) on N distinct sampling data points xα with α =
1, . . . , N ,

fN(x) = Newtonx[f (x),N ] (2)

≡ a1 + (x − x1)
[
a2 + (x − x2)

[
a3 + (x − x3) [a4 + . . . ]

]]
.

The accompanying coefficients are defined recursively through the divided differences

a1 = f (x1) ,

a2 = [f (x1), f (x2)] ≡ f (x1) − f (x2)

x1 − x2
,

a3 = [f (x1), f (x2), f (x2)] ≡ [f (x1), f (x2)] − [f (x2), f (x3)]
x1 − x3

,

3 A preliminary version of the method, which we introduce and explore in the current paper, was discussed in Ref. [27].
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a4 = [f (x1), f (x2), f (x3), f (x4)] ≡ [f (x1), f (x2), f (x3)] − [f (x2), f (x3), f (x4)]
x1 − x4

,

...

aN = [f (x1), f (x2), f (x3), . . . , f (xN)]
≡ [f (x1), f (x2), f (x3), . . . , f (xN−1)] − [f (x2), f (x3), f (x4), . . . , f (xN)]

x1 − xN

. (3)

Obviously, if the function of interest f (x) is known to be a polynomial of a predetermined
degree deg[f (x)] to start with, one can unambiguously reconstruct it by sampling in

N = degx[f (x)] + 2 (4)

points. The last one being the control probe such that the function does not change by adding 
more data points

fN+1(x) = fN(x) = f (x) . (5)

The advantage of the Newton method compared to the naive power expansion with unknown 
coefficients is the fact that an addition on a new data point does not necessitate reevaluation of 
all of the coefficients from scratch.

2.2. Thiele method

Rational interpolation of a function f (x), which typically yields a better approximation than 
the above polynomial interpolation, is achieved with the help of the Thiele continued fraction on 
T black box probes xα with α = 1, . . . , T

fT (x) = Thielex[f (x), T ] (6)

≡ b0 + (x − x1)

[
b1 + (x − x2)

[
b2 + (x − x3) [b4 + . . . ]−1

]−1
]−1

,

and the coefficients being determined by the following relations

b1 = f (x1) ,

b2 = [f (x1), f (x2)]r ≡ x1 − x2

f (x1) − f (x2)
,

b3 = [f (x1), f (x2), f (x2)]r ≡ x1 − x3

[f (x1), f (x2)]r − [f (x2), f (x3)]r ,

b4 = [f (x1), f (x2), f (x3), f (x4)]r ≡ x1 − x4

[f (x1), f (x2), f (x3)]r − [f (x2), f (x3), f (x4)]r ,

...

bN = [f (x1), f (x2), f (x3), . . . , f (xN)]r
≡ x1 − xN

[f (x1), f (x2), f (x3), . . . , f (xN−1)]r − [f (x2), f (x3), f (x4), . . . , f (xN)]r , (7)

closely related to the reciprocal differences.
4
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Again, if a function f (x) is known to be rational to begin with, the method allows to exactly 
reconstruct it by sampling in T points, with the latter determined by the following estimate 
(including the control probe)

T � 2 × max
{
degx[Numerator[f (x)]],degx[Denominator[f (x)]]} + 1 . (8)

Akin to the Newton method, Thiele reconstruction does not require recalculation of all the bj ’s 
with every new sample added, contrary to other methods, for instance, the so-called barycentric 
interpolation [28]. Sometimes, the above algorithm may yield a vanishing denominator, for in-
stance, when two successive points possess the same dependent value or when one samples three 
collinear successive data points. In these circumstances, all one has to do is to perturb data points 
ever so slightly to get rid of the problem.

3. Balanced reconstruction

With the above lightning overview of univariate interpolations behind us, let us introduce a 
new approach to multivariate rational reconstruction, which we dub the balanced reconstruction.

Consider a rational multivariate function of L variables

F = F(x) , with x = (x1, . . . , xL) . (9)

Let us spit the total vector of variables x into three orthogonal vector subspaces

x = (d, xj , r) , with d = (x1, . . . , xj−1) , r = (xj+1, . . . , xL) , (10)

with the d-vector taking on the meaning of analytically reconstructed, or (d)one, variables, xj

being the variables under consideration and r being the (r)emainder. We designate the function 
F(x) with d reconstructed variables as

Fd(d, xj , r) . (11)

Before one starts the recovery algorithm, one has to get an estimate on the minimal number 
of sampling points needed for successful reconstruction. This is accomplished by performing the 
univariate Thiele restoration for each variables xj from the vector x with all others x\xj kept 
fixed, yielding a value Tj for a stable reconstruction. These are then used to get the minimal 
number of sample data points needed

{x1,α, α = 1, . . . , T1; x2,β , β = 1, . . . ,N2; . . . ; xL,γ , γ = 1, . . . ,NL} , (12)

with

Nj � [Tj/2] (13)

to be explained below (see Sect. 4).
The algorithm consists in the following steps.

1. Numerically compute values of the function F with fixed values of all variables in their 
respective ranges, determined from the preliminary estimates alluded to above,

x1,α , α = {1, . . . , T1} , (x2, . . . , xL)β , β = {1, . . . ,N2,...,L} . (14)

2. The first variable x1 is reconstructed by means of the Thiele method,

Fx (x1, rβ) = Thielex [F(x1, rβ), T1] . (15)
1 1

5
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3. Let d be the vector of already reconstructed variables [i.e., d = (x1) after the first step]. 
Collect tables of the function

Fd(d, xj,α, rβ) (16)

with α ∈ {1, . . . , Nj } and β ∈ {1, . . . , Nr} from the above two steps. All other variables x\x1
are handled by the balanced Newton method as follows.

4. Compute values of the function F = Fd(d0, xj,α, rβ) for a single fixed numerical value of 
the vector of already done variables d = d0, Tj values of the variable xj under reconstruction 
xj,α , α ∈ {1, . . . , Tj }, and Nr values of the rest rβ , β ∈ {1, . . . , Nr} (same as in step 1). Thiele 
reconstructs xj from the set Fd(d0, xj,α, rβ) obtaining

the balancing tables: Fd,xj
(d0, xj , rβ) = Fd(d0, xj , rβ) (17)

for the variable xj . Notice that this reconstruction step is univariate in the variable xj .
5. Balance the set of values Fd(d, xj,α, rβ) computed in step 3 with the balancing tables from 

step 4 by evaluating

V (d, xj , rβ) = Fd(d, xj,α, rβ) × Fd,xj
(d0, xj , rβ)

Fd(d0, xj,α, rβ)
. (18)

6. Factorize V (d, xj , rβ) into the numerator and denominator and separately Newton-recons-
truct them individually in xj from the set of sample points xj,α with α ∈ {1, . . . , Nj },

Fd,xj
(d, xj , rβ) = Newtonxj

[Numerator[V (d, xj , rβ)],Nj ]
Newtonxj

[Denominator[V (d, xj , rβ)],Nj ] (19)

7. Proceed to step 3 for the next variable xj+1. If j = L, the reconstruction stops.

Having introduced the algorithm, let us proceed with its optimization.

4. Optimal ordering

The order of the balanced reconstruction for multivariate functions is crucial for the overall 
execution speed of the algorithm as it affects the number of required black box probes P for 
a robust recovery. Thus, the minimization of the value of P serves as the main criterium for 
optimization. As a rough, naive estimate, it suffices to use the following rule of thumb: start with 
the variables requiring the lowest number of Thiele samples Tj = min{Tk, k = 1, . . . , L} and then 
proceed in the order of their growth (though, their order is not very relevant)

Pnaive � Tj

L∏
k �=j

[Tk/2] . (20)

However, a more accurate value of P was found experimentally by minimizing the product

Pbalance = min

{
NL

[
NL−1

[
. . .

[
N2(N1 + D1) + D2

]
. . .

]
+ DL−1

]
+ DL

}
, (21)

where

Dj = max(Tj − Nj ,0) , (22)
6
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expressed in terms of the minimal number of the Thiele (8) and balanced Newton (13) sampling 
points, respectively. While the value of T is self-explanatory, N is determined from

N � max
{
degx[Numerator[f (x)]],degx[Denominator[f (x)]]} + 2 , (23)

as it is clear from Eq. (19) with the addition of 2 needed for restoration of an overall constant 
and control probe for correctness of recovery. A rigorous proof of the above estimate (21) would 
be very welcome.

The number of different combinations one has to compare in order to determine (21) is set 
by the number L of components in x and equals to the number of inequivalent permutations 
L!. Even for L = 10, it is the minuscule 3, 628, 800 compared to the staggering, e.g., 11 trillion 
operations per second that, for instance, an M1 Max silicone can perform.

5. Benchmark and comparison

As a benchmark, let us confront our new approach with the method of multivariate homoge-
neous interpolation [21,22], and its reincarnation relevant to the dense rational reconstruction in 
Ref. [25], and the Zippel algorithm [24] implemented in [26].

The main idea behind the method of Refs. [21,22] consists in the homogeneous rescaling of 
all components of the vector x and introduction of a new function h(z, x)

x → zx , h(z,x) = F(zx) , (24)

such that one can clearly separate its numerator P from the denominator Q. The algorithm then 
consists in just three steps.

1. Thiele reconstructs the variable z with Tz black box probes (8) for arbitrary fixed values of 
all other variables x0.

2. Separate its numerator P(zx0) and the denominator Q(zx0) and Newton reconstruct them 
separately in xj variable on Nj sample points given in Eq. (23).

3. Proceed to step 2 for the next variable xj+1. If j = L − 1, the algorithm stops.

A few of comments are in order. First, the method requires generalization of the original function 
by introducing a new variable. Then, however, there is no need to reconstruct the last variable xL

since it can be recovered using homogeneity. Second, there is an unpleasant subtlety in its appli-
cation to denominators not possessing a constant term, which then vanishes for the point x = 0, 
and the rational function becomes singular. If this is the case, one has to perform ad hoc shift of 
all variables [21,22] and only then apply the above algorithm. This could potentially result in a 
more elaborate reconstruction process though. Third, the advantage of this method is the com-
plete democracy among different ordering of variable reconstructions, there is not a preferred one 
as compared to our balanced algorithm that we advocated for above. This immediately provides 
an estimate on the number of black box probes required for the robust reconstruction, cf. (20),

Phomogeneous � Tz

L−1∏
k

Nk . (25)

The Zippel algorithm [24] is advantageous when dealing with sparse polynomials, see, in 
particular, discussion in Section 2.1 of the first paper in Ref. [26]. Like in univariate techniques 
alluded to in Section 2 earlier, this method interpolates one variable at a time. At each step (aka 
7
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Table 1
Comparison between the numbers of sample points required for the balanced, 
homogeneous and Zippel reconstructions.

Rational function Balanced Homogeneous Zippel
x1

x1+x2+x3
64 36 25

x1x2
2x3

3 + x1x2x3 + x3 + 10 67 156 42

x3
1+5x2

1x2
2+x1x3+x3+1

x1+x2+x2
3+1

111 144 72

stage) coefficients of a newly found univariate polynomial are then interpolated as functions of 
the next variable. If a given coefficient does not arise at a given step, it is assumed to be zero at 
all subsequent stages as well. This obviously requires less black-box probes compared to dense 
interpolators. The estimate for the minimal number of sample points PZippel for a successful 
interpolation is not a priori known and requires practice runs.

Comparing Phomogeneous with Pbalance, one immediately observes that while the number of 
sample points for the homogenous reconstruction depends on the cumulative power of the func-
tion in question, i.e., its proportionality to Tz, the one for the balancing method is controlled by 
the individual powers of each variable. In other words, if the function possesses a very high total 
power while the individual exponents of variables building it up are small, the balancing method 
will be far more effective compared to its homogenous counterpart. The Zippel algorithm is 
undoubtedly superior to both for sparse polynomials, as can be easily seen from Table 14.

Let us provide now asymptotic estimates for the number of black box probes for both methods 
as the number of variables tends to infinity. Introducing the maximal exponent pj of each xj

variable in the rational function F(x) as

pj = max
{

degxj
[Numerator[F(x)]],degxj

[Denominator[F(x)]]
}

, (26)

we will use pm = maxj

{
pj

}
as their upper limit estimate. Then, according to Eq. (21)

Pbalance ∼ O(p1 . . . pL) ≤ O(pL
m) . (27)

On the other hand, the homogeneous reconstruction requires Tz ∼ O(p1 + · · · + pL) ≤ O(Lpm)

samples on the first step, with the other L − 1 variables requiring O(pm) probes. Cumulatively, 
this gives

Phomogeneous ≤ O(LpL
m) . (28)

Thus, the balancing method is advantageous to the homogeneous one since, in spite of a more 
complex organization of the algorithm, it requires less sample points for a robust multivariate 
reconstruction, especially with the growth of L. Its obvious disadvantage is the requirement for 
establishing a proper reconstruction order, which can however be easily achieved by means of 
preparatory estimates for each of the variable involved. And these are not time consuming.

6. Code Reconstruction.m and integration with FIRE

The algorithm introduced in Sect. 3 was implemented as a Mathematica code Recon-
struction.m and integrated within the FIRE6 environment [5] for IBP reduction of Feynman 

4 We would like to thank the anonymous referee for providing the estimates for the Zippel algorithm.
8
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integrals. The code is attached with this submission and can be simply copied into the already 
existing fire/FIRE6/mm/ folder of FIRE6 installation. Alternatively, it is freely distributed 
via the repository

https://bitbucket.org/feynmanIntegrals/fire/src/master/FIRE6/mm/Reconstruction.m

The main component of FIRE6 used as a input for the code is its modular arithmetic output 
obtained with its FIRE6p binary to generate IBP tables filename_x1_.._xL_p.tables. 
The file names imply that one chooses fixed numerical values for all variables, i.e., space-time 
dimension and Lorentz invariants, in the field of integer numbers modulo p with the value of p
being the index of a set of hard-coded primes close to 264. It is chosen with the #prime option 
in FIRE. The main reason to work with modular rather than integer arithmetic directly, is that the 
former is easier compared to the latter since there are only finitely many elements to deal with, 
as we explained at length in the Introduction, so that to find a solution to a given problem one 
could try every possibility.

The first order of business is to perform the inverse transformation from the field of primes to 
rationals since sample information over distinct fields can be combined together with the help of 
the Chinese remainder algorithm [14]. It is accomplished with the command

RationalReconstructTables["filename_x1_..._xL_p.tables",prime_max]

where the syntax is self-explanatory and prime_max stands for the maximal value of p’s used 
(starting from 1). The output is the tables filename_0.tables.

Next, the first variable x1 is reconstructed with the Thiele method using the command

ThieleReconstructTables["filename_x1_..._xL_0.tables",
x1->Range[x1_min, x1_max]]

from its range Range[x1_min, x1_max].
Analytic dependence on the remaining variables, say x2, is found by means of the balanced 

Newton command

BalancedNewtonReconstructTables["filename_x1_x2_..._xL_0.tables",
x2->Range[x2_min, x2_max],x1->x1_0]]

for a fixed value x1_0 of the done variable, which was used to prepare the balancing tables, 
and x2 reconstructed from its values in the range Range[x2_min, x2_max]. The process 
is then repeated for the other (L − 2) x’s.

To provide more input on the syntax of these commands, we will turn to an example in the 
next section along with a thorough discussion of the optimization of the reconstruction order.

7. Examples

Since there is no essential time-wise difference for the modular component of FIRE6 to handle 
multiloop Feynman integrals, we choose to demonstrate details of the reconstruction procedure 
with a planar double box for two kinematical settings, which result in two and three kinemati-
cal invariants, respectively. A user-friendly Mathematica notebook accompanies this manuscript 
as an ancillary file along with all required scripts. All computations were done on a 10 core 
MacBook Pro with Apple M1 Max silicone and 64 GB RAM.
9
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7.1. Three-variable reconstruction

We start with a massless double box, which is parametrized by two Mandelstam variables 
s = −2p1 · p2 and t = −2p1 · p3 and the space-time dimension d , such that x = (d, s, t).

7.1.1. Preparation and estimates
We begin with a preparation of the start file for the IBP reduction by running it in Mathemat-

ica:

Get["FIRE6.m"];

Internal={k1,k2};

External={p1,p2,p3};

Propagators={-k1^2,-(k1+p1+p2)^2,-k2^2,-(k2+p1+p2)^2,-(k1+p1)^2,-(k1-k2)^2,

-(k2-p3)^2,-(k2+p1)^2,-(k1-p3)^2};

Replacements={p1^2->0,p2^2->0,p3^2->0,p1p2->-s/2,p1p3->-t/2,p2p3->1/2(s+t)};

PrepareIBP[];

Prepare[AutoDetectRestrictions->True,LI->True,PositiveIndices->7];

SaveStart["doublebox"];

This creates doublebox.start.
Next, we need to get a good estimate for the minimal number of sample points required for 

each of the three variables involved. We create a configuration file with the content

#compressor none
#threads 1
#fthreads 1
#variables d,s,t
#start
#folder directory/
#problem 1 doublebox.start
#integrals doublebox.m
#output doublebox.tables

where doublebox.m refers to a Mathematica script file with a set of initial Feynman integrals 
chosen for the IBP reduction and determination of an initial set of MIs. Even though, we would 
typically not recommend a user to employ initial integrals with nonvanishing powers of invariant 
scalar products (the last two entries of Propagators), it is not essential for our demonstration, 
so we create doublebox.m which contains a single integral {1,{1,1,1,1,1,1,1,-1,-
1}}. Then, we run the bash script5 (here for d)

#!/bin/bash
for d in {100..115}
do
for p in {1..5}

5 The syntax used holds for the private version of FIRE6, soon to be made available. For the current public version, the 
syntax is FIRE6p -variables "$d"-"$s"-"$t"-"$p" -c doublebox -silent.
10
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do
FIRE6p -v "$d"_90_80_"$p" -c doublebox --quiet

done
done

to find a set of tables in the format doublebox_d0_90_80_p0.tables. The rational re-
construction from the finite fields is then accomplished from these by executing the Mathematica 
command6

For[d0=100,d0<=115,++d0,RationalReconstructTables[

"doublebox_"<>ToString[d0]<>"_90_80_0.tables",5,Silent->False]]

which generates the tables doublebox_d0_90_80_0.tables with reconstructed rational 
coefficients as well as messages in how many steps this was achieved. The one with the largest 
number, i.e., Rational reconstruction stable after 2 steps implies that we 
needed three primes to do it. Finally, an estimate on Td is obtained with

ThieleReconstructTables["doublebox_d_90_80_0.tables",d->Range[100,115]]

This creates an output file doublebox_d_90_80_0.tables as well as a message Thiele 
reconstruction stable after 11 steps. The latter tells us that an unambiguous 
Thiele reconstruction required Td = 12 tables. Similar consideration is then performed for the 
other two variables and we conclude the following: three primes are needed for the rational 
reconstruction of both s and t and Ts,t = 6 is the minimal number of tables for their rational 
Thiele reconstruction.

7.1.2. Rational reconstruction and Thiele
To start the actual reconstruction process, we need to create IBP tables making use of the 

above estimates for the minimal number of data points in each variable. These numbers depend 
on the order in which the recovery sequence is performed. Without any attempt to optimize it at 
this stage (we will dwell on it later in Sect. 7.1.4), let us consider d − s − t ordering. That is, we 
start with the variable d and use Td = 12 as a minimal number of samples in this variable, since 
it will be recovered with the Thiele method, while the remaining two will be reconstructed by 
means of the balanced Newton and these require only about half of the data points Ns,t � Ts,2/2. 
Also to warrant a robust rational restoration from primes and thus to be on a safe side, we add7

an extra prime as well, i.e., we change the maximal value of p from 4 to prime_max = 4. As it 
is obvious from the naive estimate of Pnaive in Eq. (20), d − s − t ordering is one of the inefficient 
routes.

After running the script

#!/bin/bash
for t in {80..83}
do

6 There is no need to load Reconstruction.m (separately from FIRE6.m) before this evaluation as it is intrinsi-
cally integrated in FIRE6.

7 If one wants a faster performance, one could forego this increase.
11
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for s in {90..93}
do
for d in {100..111}
do
for p in {1..4}
do
FIRE6p -v "$d"_"$s"_"$t"_"$p" -c doublebox --quiet

done
done

done
done

we generate a large list of tables doublebox_d0_s0_t0_p0.tables with fixed integer 
values d0, s0, t0, p0 of all variables in their respective ranges. The rational reconstruction 
from primes is done with the Mathematica command

For[t0=80,t0<=83,++t0,For[s0=90,s0<=93,++s0,For[d0=100,d0<=111,++d0,

RationalReconstructTables["doublebox_"

<>ToString[d0]<>"_"<>ToString[s0]<>"_"<>ToString[t0] <>"_0.tables",4]]]]

and results in doublebox_d0_s0_t0_0.tables, with subsequent restoration of the vari-
able d via the Thiele method

For[t0=80,t0<=83,++t0,For[s0=90,s0<=93,++s0,
ThieleReconstructTables["doublebox_d_"
<>ToString[s0]<>"_"<>ToString[t0]<>"_0.tables",d->Range[100,111]]]]

7.1.3. Balancing and balanced Newton
Next, we turn to the balanced Newton reconstruction of the variable s. To this end, we have to 

first create its balancing tables. This is done for a single value of the already recovered variable 
d (below d0=100), however, for the entire range α ∈ {1, . . . , Nt } of values tα of the variable t
(the very same ones as used in the construction of the initial tables in Sect. 7.1.2) but a wider 
range β ∈ {1, . . . , Ts} of values sβ for the variable s in order to be able to restore it by mean of 
the Thiele method (see Sect. 7.1.1). Thus, we run the script

#!/bin/bash
for d in 100
do
for t in {80..83}
do
for s in {90..95}
do
for p in {1..4}
do
FIRE6p -v "$d"_"$s"_"$t"_"$p" -c doublebox --quiet

done
done
12
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done
done

with subsequent rational

For[t0=80,t0<=83,++t0,
For[s0=90,s0<=95,++s0,RationalReconstructTables["doublebox_100_"
<>ToString[s0]<>"_"<>ToString[t0]<>"_0.tables",4]]]

and Thiele reconstructions

For[t0=80,t0<=83,++t0,ThieleReconstructTables["doublebox_100_s_"
<>ToString[t0]<>"_0.tables",s->Range[90,95]]]

The latter are now the balancing tables for the variable s that we sought for. Now calling the 
Mathematica command

For[t0=80,t0<=83,++t0,BalancedNewtonReconstructTables["doublebox_d_s_"

<>ToString[t0]<>"_0.tables",s->Range[90,93],d->100,Silent->False]]

we completely reconstruct the s-dependence (in addition to the previously restored d-dependence).
Following the very same steps all over again but now for t , we recover it as well. The output 

is a file doublebox_d_s_t_0.tables with full analytical dependence on all variables in-
volved. In order to avoid being repetitive, we relegate our reader’s curiocity to the accompanying 
Mathematica notebook for details.

7.1.4. Optimization
Finally, let us address the question of the most optimal choice for the variables’ sequence 

during the restoration process: these are not created equal. In spite of the fact that the time for 
computation of individual probes is about 2.5 seconds,8 when many samples are needed, the 
total time it takes to compute the initial set of black box probes can get large since the growth is 
linear. We conducted a numerical experiment to verify that the time reduction factors are linearly 
correlated with the total number of probes required for a robust reconstruction. This was indeed 
confirmed and is reported in Table 2.

7.2. Four-variable reconstruction

Let us move on to considering a case of the next level of difficulty, involving four variables. 
To stay with the same topology as above, we take one of the four external legs off-shell, say 
p2

4 �= 0. This yields three independent kinematical invariants, which we conveniently define in 
a symmetric fashion as u = −2p1 · p2, v = −2p2 · p3 and w = −2p1 · p3. Together with the 
space-time dimension d , now x is (d, u, v, w). Since there are no conceptual or algorithmic dif-
ferences in the four- (or more) variable case(s) and in order to spare the reader from parroting 
previous sections, we relegate all details to the accompanying Mathematica notebook recon-
struction.nb and accompanying script files. Here, we merely content ourself with a general 

8 With the public version of FIRE6, this time is about 20 seconds.
13
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Table 2
Comparison of 3! choices for the order of functional reconstruction 
against the number of table required according to Eq. (21) and numeri-
cal experiments yielding corresponding time reduction factors.

Order Min. number of tables Time reduction factor

d − t − s 907 1
d − s − t 878 0.96
t − d − s 854 0.91
t − s − d 778 0.83
s − d − t 582 0.67
s − t − d 573 0.66

comment. The actual reconstruction process takes just seconds, as in the previous example. What 
is more time-consuming now, on a machine with a small number of cores, is the preparation of 
modular tables, with time needed scaling linearly in the number of sample points in additional 
variables. Thus this portion of the complete reconstruction routine will heavily benefit from par-
allelization.

8. Conclusions

To conclude, in this exploratory paper, we introduced a new approach for robust reconstruction 
of rational functions of many variables from their modular arithmetic input. It is based on a 
balancing relation for recovery of a variable in question. The former is found from a small data 
set by means of the univariate Thiele method, which is then used in conjunction with the Newton 
reconstruction from a minimal original set of black box probes.

We developed a Mathematica language package, Reconstruction.m, which is intrinsi-
cally integrated into the FIRE6 environment for algebraic and modular arithmetic-based IBP 
reductions. We demonstrated its efficiency for a typical multiloop integral. We provided heuris-
tic arguments for the most optimal choice of the multivariate reconstruction and confirmed them 
with numerical experiments.

While the presently suggested balanced method wins against the homogeneous reconstruction, 
it looses to the Zippel algorithm when applied to sparse polynomials since the latter requires far 
less black-box probes. The reason for this is that our method treats both dense and sparse func-
tions on equal footings. Since the balanced method reconstructs one variable at a time, as the 
Zippel algorithm does as well, we can improve our method by explicitly enforcing the sparsity 
condition, i.e., the vanishing of certain expansion coefficients at all subsequent stages of recon-
struction once they did not emerge at an early stage, and thus achieve a much more efficient 
framework. This integration of the Zippel algorithm into the balanced reconstruction will be 
implemented in a future version of the package.

A natural extension of the current work is to use it as a stepping stone for its C++ implementa-
tion along with addressing issues of optimization and parallelization for use on supercomputers.
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