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Abstract

We present a method for analyzing supernova remnants (SNRs) by diagnosing the drivers responsible for structure
at different angular scales. First, we perform a suite of hydrodynamic models of the Rayleigh-Taylor instability
(RTID) as a supernova (SN) collides with its surrounding medium. Using these models we demonstrate how power
spectral analysis can be used to attribute which scales in an SNR are driven by RTI and which must be caused by
intrinsic asymmetries in the initial explosion. We predict the power spectrum of turbulence driven by RTI and
identify a dominant angular mode that represents the largest scale that efficiently grows via RTI. We find that this
dominant mode relates to the density scale height in the ejecta, and therefore reveals the density profile of the SN
ejecta. If there is significant structure in an SNR on angular scales larger than this mode, then it is likely caused by
anisotropies in the explosion. Structure on angular scales smaller than the dominant mode exhibits a steep scaling
with wavenumber, possibly too steep to be consistent with a turbulent cascade, and therefore might be determined
by the saturation of RTI at different length scales (although systematic 3D studies are needed to investigate this).
We also demonstrate, consistent with previous studies, that this power spectrum is independent of the magnitude
and length scales of perturbations in the surrounding medium and therefore this diagnostic is unaffected by
“clumpiness” in the circumstellar medium.

Unified Astronomy Thesaurus concepts: Supernovae (1668); Supernova remnants (1667); Hydrodynamical
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simulations (767); Hydrodynamics (1963)

1. Introduction

Supernova remnants (SNRs) provide a powerful window
through which to study the explosive deaths of stars. By taking
careful measurements of the remnant, and combining resolved
positions of features with their measured velocities from
spectra, it is possible to map out the full 3D structure.
Combining images from several epochs makes it possible to
see the evolution of this 3D structure over time. This process
has been used successfully to develop 3D maps of several
nearby SNRs (e.g., Cassiopeia A DeLaney et al. 2010;
Milisavljevic & Fesen 2015, 1E 0102.2-7219 Vogt &
Dopita 2010; Vogt et al. 2018, N132D Vogt & Dopita 2011;
Law et al. 2020, and the Crab Nebula Charlebois et al. 2010;
Martin et al. 2021). These observations have shown that SNRs
exhibit turbulence, asymmetries, and filaments that trace
structure at a wide range of scales. The physical mechanism
(or combination of mechanisms) responsible for driving this
detailed structure is not always clear. Possibilities include the
turbulent flow driven by the Rayleigh—Taylor instability (RTI;
Chevalier & Klein 1978; Hester 2008), filaments carved out by
large-scale magnetic fields (Bucciantini et al. 2004), and
inhomogeneities traceable back to asymmetries in the initial
explosion (such as asymmetric explosions, Wongwathanarat
et al. 2013; Orlando et al. 2021; *°Ni bubbles, Blondin et al.
2001; Gabler et al. 2021; or jets, Khokhlov et al. 1999; Bear
et al. 2017). It is also debated what, if any, scales can be driven

Original content from this work may be used under the terms

BY of the Creative Commons Attribution 4.0 licence. Any further
distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

by variations, or clumps, in the gas surrounding the supernova
(SN; Celli et al. 2019).

The “character” of the anisotropy is different between
remnants; for example, the Tycho SNR exhibits a very
spherical flow, with structure only on small angular scales.
Other remnants, like Cassiopeia A, have features on both large
and small scales. Generally these large- and small-scale
anisotropies have been discussed (Fesen 2001; Warren et al.
2005; Milisavljevic & Fesen 2013; Bietenholz et al. 2021;
Martin et al. 2021; Niculescu-Duvaz et al. 2021), but
differences in the character of anisotropy between different
SNRs have not been quantified in a standard way.

The upcoming era of JWST observations provides opportu-
nities to enhance the quality of SNR observations, at
resolutions heretofore unprecedented at near- and mid-infrared
wavelengths. These observations will likely reveal new, small-
scale behavior, and additional physics revealed only through
infrared wavelengths sensitive to cool, unshocked ejecta
(Laming & Temim 2020). Interpreting this data in a manner
which allows us to directly compare to theory and reveal the
physics of the underlying explosions is vital.

We seek to develop a new way of characterizing the structure
of SNRs by using power spectral analysis to diagnose sources
of turbulence at different scales. We perform 2D hydrody-
namics calculations of the evolution of SNRs and follow up
with power spectral analysis to determine the power spectrum
of fluid turbulence arising from the RTI. In this manner we can
demonstrate which portions of the SNR are dominated by
turbulent effects due to instability, and which must arise from
elsewhere, such as the initial asymmetry/anisotropy of the
ejecta and/or circumstellar medium (CSM).
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Section 2 describes our numerical methods and hydrody-
namic models, and Section 3 explains how we perform our
power spectral analysis on the fluid ejecta properties. Our
results are presented in Sections 4, and the effect of introducing
clumping in the surrounding medium is discussed in Section 5.
The implications of our results for understanding SNR data is
discussed in Section 6.

2. Methods
2.1. Numerical Methods

Hydrodynamical calculations are performed using the JET
code. JET employs a moving-mesh hydrodynamical technique
on a polar grid, with shearing radial tracks. Each radial track
behaves somewhat like a 1D Lagrangian hydrodynamics code,
with neighboring tracks coupled by transverse fluid fluxes. The
numerical method is based on the TESS code (Duffell &
MacFadyen 2011) but is a distinct scheme that has been
employed in many calculations in gamma-ray bursts and SNe
(e.g., Duffell & MacFadyen 2013).

We evolve the nonrelativistic hydrodynamical equations in
conservation-law form:

8;/) +V.-(pv)=0 ey
O(pv) + V - (pw) + VP =0 2)

&(%Pvz + s) + V- ((%pvz + e+ P)v) =0, 3)

where p is mass density, v is velocity, P is pressure, and ¢ is the
internal energy density. The system is closed by an equation of
state € = 4P relevant for radiation-dominated flows.

The moving mesh reduces numerical diffusion and preserves
contact discontinuities to high precision, making it ideal for
studying RTI. The JET code has already been employed to
study RTI in a number of contexts (Duffell & MacFa-
dyen 2013, 2014; Duffell 2016; Duffell & Kasen 2017).

2.2. Chevalier Self-similar Solutions

Chevalier (1982) found a self-similar solution that is
commonly used to model the early phases of SNRs. The
initial conditions describe the steeply varying outer layers of an
ejecta colliding with a CSM:

pejecta X (r/t)inlﬁS’ Pcsm X re. (4)

The ejecta velocity is assumed to be homologous (v =r/f)
and collides with the stationary CSM. Where the ejecta collides
with the CSM two shocks are formed, a forward shock that
moves into the CSM and a reverse shock that moves into the
ejecta. Between these two shock fronts the contact disconti-
nuity becomes Rayleigh-Taylor unstable (Chevalier &
Klein 1978). These models most directly pertain to a young
SNR, one where a reverse shock is present and has not yet
propagated through the full SN ejecta.

Self-similar solutions for the turbulence can be found for a
range of values of n and s. A common choice is n="7, s =2
describing the steep outer layers of the ejecta with pocr '
colliding with a circumstellar wind with poc 72 The choice
n =7 appears to be consistent with some CSM interaction SNe
(Chomiuk et al. 2016).

One convenient advantage to analyzing a self-similar
solution is that we can effectively run our simulation until
the turbulence has reached a “steady state.” This way we can
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perform our analysis on an ejecta that has reached a fully
turbulent, statistically, self-similar state.

We use JET to perform a suite of Chevalier simulations for
s=0 (a constant density environment) and s=2 (a wind
environment) for n =6 — 11. We allow our ejecta to expand 6
orders of magnitude in time and the bulk of our analysis is
performed on models with an initial resolution of 2048 x 2048
(r x 6), although JET may create more radial zones as needed.
Section 4 discusses the consequences of resolution in more
detail.

3. Power Spectral Analysis

We propose analyzing SNR anisotropies by taking advan-
tage of power spectral analysis techniques. Angular variations
of physical qualities in the remnant will generically be
represented by some function f(8, ¢), which can be expressed
as a linear combination of spherical harmonics:

f(@, ) = Z jm Yim (0, d)) 5
I,m

We can calculate the amplitude associated with these
variations by integrating:

am = [1(0. 9)Y50. ). ®)

Now, while remnants are 3D, the simulations in this work
are 2D, so we can do an analogous analysis to understand the
angular variations of physical quantities in the ejecta, f(6), by
using Legendre polynomials:

fO) =5 aPi(cos ). @)
)

We can understand the proper normalization for our
amplitudes by standardizing P;(1)=1 and recalling that
Legendre polynomials are also orthogonal, so

1 2
P, (x)B,(x)dx = ————0y,. 8
[, reoB@ax = ==, ®)
Therefore the amplitude associated with f(0) is

241
2

The power associated with the angular scale Af ~ 7/l can
then be measured by

a

ff(G)Pl(cos 0)d cos@. )

C] |a1|2. (]O)

Y

In 3D, the analogous expression would be

1
20+ 1

l
> laml. 1D

m=—I

G

In this work we examine the amplitudes and power
associated with variations in both velocity and density. We
do so by examining variations in angular scales by first
pressure weighting radial quantities such that

6 [v(r, 0)P(r, O)dr
[P, O)ar

12)
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Figure 1. Rayleigh-Taylor fingers extending between the forward and reverse
shock as the ejecta expands into the surrounding medium. Shown is the RTI
arising from the Chevalier s = 2, n = 7 self-similar solution at a resolution of
8192 x 8192 (r x 6). Velocity is shown on the left and density on the right.
The color bar displays values in code units.

and

[o@r, O)P(r, 0)dr
0)) = . 13
(p(®) PG ar (13)

This pressure weighting helps to focus on anisotropies
present in the shocked region. Elsewhere the flow is cold and
the pressure is nearly zero. We also normalize these quantities
by the angle averaged value of velocity or density where
appropriate.

4. Results

Figure 1 shows a portion of our high-resolution
(8192 x 8192) model of the s =2, n="7 Chevalier solution.
The left panel shows radial velocity and the right panel displays
density. These plots are cropped to show the fine scale structure
of the RTI turbulence, but the model is calculated for a full 2D
axisymmetric ejecta.

The left panel of Figure 2 displays the power spectrum of the
s =2, n="7T7 Chevalier solution calculated in three different
resolutions, the highest resolution coming from the data in
Figure 1. The dark line tracing the high-resolution data shows
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an example of a Gaussian smoothing process we use for the
remainder of the plots in order to visualize the character of
these power spectra, but all analysis was performed on the
unsmoothed data. The right panel shows the smoothed power
laws corresponding to velocity (purple) and density (green) for
the high-resolution model. This figure also labels the different
regions of the power spectra.

The behavior of power spectrum displays a broken power
law, with a positive slope for small /, relating to large 6 angular
modes, and a negative slope for large /, small # modes. These
two slopes are broken at a value we call [y, relating to the
dominant angular mode, 6, which separates large- and small-
scale behavior (0y = 7/ly). A secondary peak is caused in the
data by the grid scale; we see this peak move to higher / as the
resolution is increased. In order to properly characterize the
slope of the small-scale behavior, without contamination from
the grid scale, we choose a minimum resolution of
2048 x 2048 (r x ) for the remaining analysis.

Figure 3 shows the power spectrum of all of the
hydrodynamic models. The two panels are the power spectra
of the velocity where the left panels show all choices of n for
the constant external density (s = 0) case, and the right panels
show the external wind (s = 2) solutions. The y-axis is scaled to
the maximum of C; and the x-axis is //n. These are log—log
plots so straight lines imply a power law in /. When plotted in
this manner the power spectra sit on top of one another,
exhibiting the same slopes and characteristic break (in terms of
[/n). The green lines shows the best fit describing the broken
power law. We find

!
U3 + (/30

To relate the power spectra to the physics of the ejecta we
must note that physical quantities are represented not by the
power, C;, but by the amplitude, e.g., év; ~ |a;,| = /Gy

G (14)

4.1. The Dominant Angular Mode 6,

The power spectra break at a value we have called the
dominant angular mode 6, = 7/ly. This represents the highest
amplitude angular scale in the SNR.

In Figure 3 we find the power spectrum peaks at a value

lo =~ 3n. (15)

In fact, one can compare by eye the value of [ to the to the
character of the turbulence. Figure 4 shows four examples of
the 2048 x 2048 resolution models with the dominant angular
mode traced out in each. ) is roughly the width of a Rayleigh—
Taylor finger or similarly the angular spacing between fingers.

We interpret this empirically derived scaling to mean that the
dominant length scale is of the order of a density scale height
(in the ejecta):

h= ‘ VL,O =r/n. (16)

Noting that [~ /80 corresponds to an angular scale, one
can associate [y to a density scale height:

h~X\=rb0 ~ 7r/ly, 17
leading to the relationship
Iy = mn. (13)
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Figure 2. Power spectrum associated with the s =2, n =7 Chevalier solution. Left: velocity power spectra at different computational resolutions. The dark line
tracing the data is the data smoothed via a Gaussian smoothing process used throughout the rest of this work for visualization purposes. Right: the smoothed power
spectra of density (green) and velocity (purple) for the high-resolution model. Dashed lines trace the slopes of the characteristic power laws and the solid vertical line
denotes the dominant mode, [y, at which they break. The secondary peak at high / is caused by the grid scale.
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Figure 3. The power spectra associated with velocity for all models. When the
x-axis is shifted by a factor of n all of the power spectra align, making sense of
the chaos. The green line denotes the best-fit function (Equation (14)). In this
plot it becomes clear that [y ~ 3n.

We find a relationship /y ~ 3n empirically, but the coefficient
may change in 3D. In fact, 3D studies by Warren & Blondin
(2013) suggest that the coefficient is larger, around [y ~ 10n in
3D, but a systematic parameter survey is necessary to
confirm this.

The value of [ is perhaps the most powerful diagnostic in
the power spectrum. The s =0 case and s =2 case follow the
same relationship for /,, suggesting that the break in the power
spectrum only depends on n. This is a direct measurement that
can be made from the SNR to reveal the density gradient of the
outer layers of SN ejecta. This density gradient can vary in
theoretical explosion models in both core collapse SN models
and for different Type Ia SN (SNIa) progenitor explosion
mechanisms.

Warren & Blondin (2013) present 3D models for an SNR
arising from an exponential ejecta profile (typical of SNe Ia).
The power spectra of their models show a value of [, that
changes with time, going from small scales to larger scales as
the remnant evolved. This is consistent with our explanation of
the density scale height determining /y. In the Chevalier models
the scale height does not evolve with time once self-similarity
is achieved. For an exponential profile, however, as the reverse
shock overtakes more of the ejecta, the density scale height

Figure 4. Four example slices of the 2048 x 2048 resolution models. Plotted is
a passive scalar where light yellow indicates fluid that originally belonged to
the SN ejecta and dark purple indicates the surrounding material. Scales here
are normalized by the radius of the shock. The dominant angular mode 6, for
each model is traced out by the dotted lines. This opening angle roughly traces
the width of the Rayleigh-Taylor fingers.

becomes larger with time (relative to the radius of the reverse
shock, Rrs). For an ejecta model with
p o< e V% (19)

with v=r/t and v, being the characteristic velocity of the
ejecta, the density scale height is given by

h =v,t. 20)
Thus, one would expect an “effective” value of n given by
R
new = r/h = —=, @1
Vel

where the relevant radius can be taken as the radial position of
the reverse shock.
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Warren & Blondin (2013) reported all of this information for
their models: the velocity v, = 0.289 (all quantities here in code
units). At time ¢t = 0.12, the reverse shock had progressed to
Rrs=0.249 with [y~61. At t=0.75, Rgs=0.716 and
lo~42. At t=2.0, Rgg=1.005 and [y~25 (values of [,
estimated by eye from their Figure 3). Thus, ly/n.y at these
three times is equal to 8.5, 12.7, and 14.4 respectively. These
are reasonably consistent with a scaling of /= 10n, a peak at
somewhat smaller angular scales than we find in 2D.

4.2. Power-law Slopes

On either side of [y, the power spectrum is very steeply
broken. The sharp peak at /, suggests that we are not seeing
evidence of a turbulent cascade, but of the driving and
saturation of the instability at each given scale in isolation. In
this case, it is possible that 2D and 3D calculations might be
expected to exhibit similar scalings, so long as they are
normalized in a consistent way. Systematic 3D studies are
needed to determine this.

In 3D, Kolmogorov turbulence is determined by the rate of
transfer of energy from scale to scale. For uniform 3D
turbulence, the power is independent of the scale (Kolmo-
gorov 1941):

&v?

—— = constant, 22)
-

where 7= A/év is an eddy turnover time, and A~ r/l is the
eddy size. So proportionally,

|6v] o< X1/3 o (r/1)"173 or Cy o< |6V /1 ~ 17573,

(23)

In 2D this becomes slightly different with the added
conservation of vorticity, which gives a cascade of constant
7 = \/bv = constant:

[6v| cc Ao I71 or Cpoc 73 24)

Our small-scale anisotropies exhibit a steeper scaling than
either of these slopes, with Clocl_3'5, and 3D studies by
Warren & Blondin (2013) also see a very steep scaling
(C,o<l*3‘9), inconsistent with Kolmogorov turbulence. Thus,
we might not be witnessing a turbulent cascade, but the growth
and saturation of RTI at each scale independently.

So why do we see no turbulent cascade? Fluctuations are
developing, with nonzero kinetic energy; one would ordinarily
expect that energy to cascade. It may be the case that eddies do
not have time to transfer their energy to smaller scales (or to
larger ones); if the eddy turnover time is longer than an
expansion time or an RTI growth time, then the turbulent
cascade might not be efficient enough to move the developed
kinetic energy from one scale to another.

4.3. Large-scale Behavior

The large-scale, small [ behavior is not as obviously
described by a simple power law; however, it is clear that the
power grows steeply with [ until the value of [ is reached. As
such we employ a power-law fit and discuss the implications of
this growth here.

The power law for large scales is quite steep; C;ox I° for
I < Iy. Therefore, RTI has very little effect at these large scales.
Chevalier et al. (1992) found that RTI does not grow for [ <7
(in the n =7, s =2 case). For the regime between this cutoff
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and [y, RTI can grow but it appears to be suppressed by the
density gradient in the ejecta (which cannot be detected by
small-scale modes). What this means is that the large-scale
structure is where information about the underlying SN can
leave significant signatures on the remnant without interference
from RTI mixing. For the purely spherical case of the Chevalier
outflow we see slope of 43, but anisotropies in the explosion
could leave a detectable signature in this regime. For example,
Lopez et al. (2011) and Lopez & Fesen (2018) show that power
in the /[ =2 and / = 3 modes can be used to distinguish between
an SNR arising from a thermonuclear explosion and one
resulting from a core collapse SN. Any additional power scales
in this large 0 regime are what we should examine while trying
to understand the fundamental nature of these explosions.

Ferrand et al. (2019, 2021, 2022) present a series of SNe Ia
explosion models expanded until they reach the remnant phase,
and calculate power spectra corresponding to the forward-
shock, reverse-shock, and contact discontinuity. For the case of
a 3D spherically symmetric model the primary character of the
power spectra is consistent with those presented here.
However, the cases where the initial models are not spherically
symmetric result in bimodal power spectra. The second peak
(around [ ~ 40) is consistent with RTI (and with our results
here) and the first peak is entirely generated from initial large-
scale asymmetries in the explosion. More systematic studies of
how SNe Ia models impart power on these larger angular scales
could lead to another method for distinguishing between Ia
progenitor theories with SNRs.

As Warren & Blondin (2013) showed, at sufficiently late
times, the density gradient becomes large enough relative to the
reverse-shock radius that RTI can grow to much larger scales.
Therefore, it might be theoretically possible for RTI to impose
large-scale asymmetries in an SNR, but only as the reverse
shock is sweeping through most of the mass in the ejecta.
Additionally, RTI in a pulsar wind nebula such as the Crab
might be able to impose asymmetries on larger scales than a
typical SNR, because the density gradient is not as steep in this
case. 3D calculations of RTI in pulsar wind nebulae are needed
in order to confirm or disprove this hypothesis.

5. External Clumps

There has been much discussion in literature debating
whether clumping observed in SNRs is inherent to the SN or
arises from a nonuniform, or “clumpy” external medium (see,
e.g., Celli et al. 2019; Sano et al. 2020, 2021; Tanaka et al.
2020; Fujita et al. 2022). Here we examine the effect of a CSM
with density variations on the power spectra of the ejecta.

For the n =7, s = 2 case we place density perturbations into
the outer medium with the function:

Appm = ¢ sin(k log(r))sin(k6). 25)

Figure 5 shows the results of this exercise. The top panel
displays the power spectra keeping the magnitude of these
perturbations (6) constant while varying the wavelength (k).
When varying k no change in the character of the power
spectrum is detected; both power-law slopes and the break in
the spectrum remain consistent. The bottom panel shows a
constant choice for k but this time varying the amplitude of the
perturbations. Here the spectra are noisier but the characteristic
slopes and dominant mode [ still remain unchanged.

Only when order-unity fluctuations are introduced, so that
Prax /Pmin =~ 7, at a very narrow (coherent) wavelength of
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Figure 5. Effect on the power spectra of varying perturbations in the
surrounding medium of the n = 7, s = 2 case according to Equation (25). Each
y-axis tilt represents one order in C;. The clumpy medium does not change the
character of the SNR power spectrum.

k=50, can the power spectrum be affected. But this is an
extreme example; generally speaking, as the forward shock
overtakes clumps in the ejecta, it is stable to perturbations and
flattens them out, so that these clumps merely introduce a small
seed to the growth of the instability. The final state of the fluid
is, generally speaking, unaffected by external clumps. This
result was also found by Chevalier et al. (1992) and by Warren
& Blondin (2013).

It is worth making the distinction between external clumps,
tested here, and internal clumps, or anisotropies in the ejecta. It
was shown by Orlando et al. (2012) that internal clumps can
significantly affect the final state of the fluid. This is another
way of saying that asymmetries in the initial explosion can be
preserved, especially if they exist on sufficiently large angular
scales.

6. Summary

Power spectral analysis is a powerful tool with which to
understand SNRs. In this work we have presented template
SNR power spectra and identified the characteristics with
which we can learn about the physics of the explosion. The
important diagnostics are as follows:

1. The power spectra take the form of a broken power law
where the break, [y, represents the largest angular scale
(0o =7/1p) that can grow via RTL

2. This mode, I, is determined by the density scale height
and therefore is a direct diagnostic of the density profile
of the outer SN ejecta layers. Empirically we find [y ~ 3n
where n is the power law describing the SN ejecta profile.
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3. The power spectrum for / > [, show a power-law slope of
Cyo<I?°, which is steeper than expected for a
Kolmogorov turbulent cascade. Therefore small-scale
behavior may instead be driven by the saturation of RTI
at these scales.

4. The [ <ly modes are where the SN ejecta can imprint
itself upon the power spectra. Additional power at these
larger angular scales in remnant data indicates aniso-
tropies endemic to the SN itself.

5. The power spectra of these remnants are stable to varying
conditions of the gas external to the SN. We show that
clumpiness in the surrounding medium will not impose
additional power in the the SNR characteristics.

Work by Warren & Blondin (2013) providing a 3D example
of an exponential density profile running into a surrounding
medium indicates that the slopes of the power spectra are fairly
consistent between our 2D models and a 3D simulation.
However the precise dependence of [, seems to shift to slightly
smaller scales; Iy ~ 10n in 3D compared to our / ~ 3nin 2D. A
systematic 3D study is required to investigate this difference.

The models and power spectra presented in this work are
most directly relevant for young SNRs, specifically those for
which the reverse shock is still present and has not yet
propagated through the full ejecta. This method, however, can
and should be applied to a larger variety of SNR models, for
example older remnants where the reverse shock has
propagated through the full ejecta, jet powered SNe, and ejecta
with an energy source to model pulsar wind nebulae. Power
spectral analysis should also be performed on observed SNRs.
By comparing what we learn from the power spectra of models
to the power spectra of observations we can make quantitative
inferences about the SN explosions from the morphology of
their remnants.
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