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Abstract
Gaussian processes are widely used as priors for unknown functions in statistics and machine learning. To achieve computa-
tionally feasible inference for large datasets, a popular approach is the Vecchia approximation, which is an ordered conditional
approximation of the data vector that implies a sparse Cholesky factor of the precision matrix. The ordering and sparsity
pattern are typically determined based on Euclidean distance of the inputs or locations corresponding to the data points. Here,
we propose instead to use a correlation-based distancemetric, which implicitly applies the Vecchia approximation in a suitable
transformed input space. The correlation-based algorithm can be carried out in quasilinear time in the size of the dataset, and
so it can be applied even for iterative inference on unknown parameters in the correlation structure. The correlation-based
approach has two advantages for complex settings: It can result in more accurate approximations, and it offers a simple,
automatic strategy that can be applied to any covariance, even when Euclidean distance is not applicable. We demonstrate
these advantages in several settings, including anisotropic, nonstationary, multivariate, and spatio-temporal processes. We
also illustrate our method on multivariate spatio-temporal temperature fields produced by a regional climate model.

Keywords Covariance approximation · Maximum–minimum-distance ordering · Nearest neighbors · Spatial statistics ·
Vecchia approximation

1 Introduction

Gaussian processes (GPs) are used for modeling functions in
a variety of settings, including geostatistics (e.g., Banerjee
et al. 2004; Cressie and Wikle 2011), nonparametric regres-
sion and machine learning (e.g., Rasmussen and Williams
2006), the analysis of computer experiments (e.g., Gu and
Wang 2018; Kennedy and O’Hagan 2001; Sacks et al. 1989),
and optimization (Jones et al. 1998). GPs can also be used
to represent wide neural networks (Yang 2019). However,
direct application of GPs requires working with and decom-
posing the data covariance matrix at a cost that is cubic in
the data size, which is often too expensive for today’s large
datasets.

Many approaches have been proposed to scale GP infer-
ence to large numbers of observations (see Heaton et al.
2019; Liu et al. 2020, for recent reviews). Among these,
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probably the most promising class of approximations in spa-
tial statistics consists of the Vecchia approximation (Vecchia
1988) and its extensions (e.g., Stein et al. 2004; Datta et al.
2016a; Guinness 2018; Sun and Stein 2016; Katzfuss and
Guinness 2021; Katzfuss et al. 2020; Schäfer et al. 2021).
As detailed in Katzfuss and Guinness (2021), the class also
contains many other popular GP approximations as special
cases (e.g., Snelson and Ghahramani 2007; Finley et al.
2009; Sang et al. 2011; Eidsvik et al. 2012; Datta et al.
2016a; Katzfuss and Gong 2020; Katzfuss 2017) and it is
closely related to composite-likelihood methods (e.g., Varin
2008; Eidsvik et al. 2014). Vecchia approximations obtain a
sparse Cholesky factor of the precision matrix via an ordered
conditional approximation, based on removing conditioning
variables in a factorization of the joint density of the GP
observations into a product of conditional distributions.

The performance of a Vecchia approximation depends
heavily on the choice of ordering of the variables and the
choice of conditioning sets (which determines the Cholesky
sparsity pattern). So far, Vecchia approximations have been
mostly applied in geospatial applications featuring isotropic
GPs in low-dimensional input spaces, for which the ordering
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and conditioning can be carried out based on the inputs or
locations. Specifically, the observations can be ordered using
a maximum–minimum-distance algorithm, and the sparsity
is determined by nearest-neighbor conditioning (Guinness
2018). Both ordering and conditioning are typically carried
out based on Euclidean distance of the corresponding inputs.
We call this existing approach Euclidean-based Vecchia
(EVecchia). EVecchia has also been used for nonisotropic
settings, including for nonstationary (Konomi et al. 2019;
Risser and Turek 2020), multivariate (Zhang et al. 2021),
space-time (White and Porcu 2019), and periodic GPs (Datta
et al. 2016a, Supplement A.9).

Here,we proposeVecchia approximationswhose ordering
and conditioning employ a correlation-based distance met-
ric; we refer to this approach as correlation-based Vecchia or
CVecchia. Correlation-based conditioning (but not ordering)
was already mentioned in the early Vecchia papers (Vec-
chia 1988; Jones and Zhang 1997; Stein et al. 2004), but
it was dismissed and not thoroughly explored, mainly due
to concerns about high computational cost and instability.
In contrast, we argue that CVecchia can improve approxi-
mation accuracy, and it can be carried out efficiently even
in the presence of unknown parameters, allowing both fre-
quentist and Bayesian parameter inference. Yu et al. (2017)
proposed a related correlation-based idea in the context of
hierarchical low-rank compression (but not factorization)
of a positive-definite matrix. So far, all previous Vecchia
approaches have based the ordering on spatial or tempo-
ral locations, without considering the covariance function to
be approximated. Conditioning sets have also been selected
based on the locations; one exception is the dynamic spatio-
temporal nearest-neighbor GP (Datta et al. 2016b), whose
adaptive neighbor-selection scheme defines a space-time dis-
tance as a function of the spatio-temporal covariance.

EVecchia andCVecchia are equivalent for strictly decreas-
ing isotropic correlation functions (Jones and Zhang 1997;
Stein et al. 2004), but CVecchia has two advantages for
more complex situations, such as anisotropic, nonstationary,
multivariate, and spatio-temporal processes: It can provide
much higher accuracy, and it offers a simple, automatic strat-
egy even when Euclidean distance is not applicable. Thus,
CVecchia greatly expands the applicability of the Vecchia
approach; in fact, CVecchia can be applied to any covariance
matrix whose individual entries can be obtained or computed
quickly, as the approximation only relies on evaluating or
accessing a near-linear number of entries. CVecchia implic-
itly applies aVecchia approximation in a suitable transformed
input domain, in which the GP of interest is isotropic and
Euclidean distance is meaningful.

The remainder of this document is organized as fol-
lows. In Sect. 2, we review Vecchia approximations from a
perspective that enables our extensions. In Sect. 3, we intro-
duce correlation-based Vecchia and discuss its properties.

Section4 provides numerical comparisons. In Sect. 5, we
illustrate the performance of our method using output from
a regional climate model. Section6 concludes and discusses
future work. Appendix A contains proofs. The code for run-
ning our method and reproducing figures can be found at
https://github.com/katzfuss-group/correlationVecchia.

2 Review of Euclidean-based Vecchia

2.1 TheVecchia approximation

Consider a centered Gaussian random vector y = (y1, y2,
. . . , yn)� ∼ Nn(0,K), whereK is an n×n positive-definite
covariance matrix. For example, y may be a vector of obser-
vations of a GP. Evaluating the Gaussian density p(y), which
typically relies on Cholesky decomposition of K, generally
requires O(n3) computing time and O(n2) memory; this is
often too expensive for large n � 103.

A promising approach to reduce the computational effort
is the Vecchia approximation. Motivated by the exact factor-
ization p(y) = ∏n

i=1 p(yi |y1:i−1) with y1:0:=∅, the Vecchia
approximation is given by

p̂(y) =
n∏

i=1

p(yi |yc(i)) = Nn(0, K̂), (1)

where c(1) = ∅ and c(i) ⊂ {1, . . . , i − 1} for i = 2, . . . , n.
We assume that all conditioning sets are at most of size m,
|c(i)| = min(m, i−1), for some integerm � n. The approx-
imate covariance matrix K̂ has a sparse inverse Cholesky
factor: K̂−1 = UU�, where U is a sparse upper triangular
matrix with at most m off-diagonal nonzeros per column,
given by Uc̃(i),i = (Kc̃(i),c̃(i))

−1e1/
(
e�
1 (Kc̃(i),c̃(i))

−1e1
)1/2,

where c̃(i) = {i} ∪ c(i) and e1 is a vector of length m + 1
with the first entry equal to one and all other entries equal
to zero (Schäfer et al. 2021). Each of the n columns of
U can be computed in O(m3) time, completely in paral-
lel. Further, the U implied by the Vecchia approximation
is the optimal sparse inverse Cholesky factor of K in terms
of Kullback–Leibler (KL) divergence betweenN (0,K) and
N (0, (UU�)−1) for the sparsity pattern forU implied by the
c(i) as above (Schäfer et al. 2021).

The size of conditioning sets, m, acts as a tuning param-
eter that trades off sparsity and computational speed against
approximation accuracy. In particular, if m = 0, then the
Vecchia approximation assumes diagonal K̂ and yields inde-
pendent y1, . . . , yn . If c(i) = {1, . . . , i − 1} and hence
m = n − 1, then the Vecchia approximation is exact. In gen-
eral, adding indices to the conditioning sets is guaranteed to
result in lower or equal KL divergence (Guinness 2018). In
many settings, high accuracy can be achieved even using rel-
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atively small m. In practice, often m < 100 is chosen with
respect to available computational resources (see, e.g., the
guidelines and discussion in Katzfuss and Guinness 2021).

2.2 Ordering and conditioning

For given m, the accuracy of a Vecchia approximation
depends on the choice of ordering of the variables y1, . . . , yn
iny, andon the choice of conditioning sets c(m+2), . . . , c(n).
Arguably the preferred approach in this setting is to combine
a maximum–minimum-distance ordering (MM; Guinness
2018) and nearest-neighbor conditioning (NN), as illustrated
in Fig. 1.

Specifically, for MM ordering, the first index i1 can be
selected arbitrarily (e.g., i1 = 1), and then the subsequent
indices are selected for k = 2, . . . , n as

ik = argmax
i ∈I\I1:k−1

min
j ∈I1:k−1

τ(i, j), (2)

where I = {1, . . . , n} and I1:k−1 = {i1, . . . , ik−1}, using
a predefined distance measure τ between the entries of y.
For simplicity of notation, assume henceforth and in (1) that
y = (y1, . . . , yn) follows MM ordering (i.e., yk = yik ).

For NN conditioning, yi conditions on the min(m, i − 1)
previously ordered variables yc(i) that are nearest to yi in
terms of τ . Specifically, for 1 < i ≤ m + 1, we have c(i) =
{1, . . . , i − 1}; for i > m + 1, we have

c(i) ⊂ {1, . . . , i − 1} of size |c(i)| = m, s.t. τ(i, j)

≤ τ(i, k)∀ j ∈ c(i), k ∈ {1, . . . , i − 1} \ c(i). (3)

We also employ an algorithm that groups similar condition-
ing sets (Guinness 2018) to lessen overall computational cost
of Vecchia approximation. Although we only consider con-
ditioning sets consisting of them nearest neighbors here, our
framework also allows the use of other neighbor-selection
strategies. For instance, Schäfer et al. (2021) uses con-
ditioning sets consisting of all variables within a ball of
a certain radius, which decreases systematically with the
MM-ordering index i ; however, we carried out exploratory
numerical studies, in which this radius-based approach was
often significantly less accurate than NN conditioning, espe-
cially for irregularly spaced inputs.

As we can see, specifying a Vecchia approximation
requires a choice of distance τ(i, j) between pairs

(
yi , y j

)
to

determine MM and NN. So far, the Vecchia approximation
has been applied in the setting where y is a realization of a
GP y(·) ∼ GP(0, K ) at inputs x1, . . . , xn , so that yi = y(xi )
and Ki j = K (xi , x j ). Then, the ordering and conditioning
for y1, . . . , yn are typically based on the Euclidean distance
between corresponding inputs:

τE (i, j) = ‖xi − x j‖,

whichwecall Euclidean-basedmaximum–minimum-distance
ordering (E-MM) and Euclidean-based nearest neighbor
conditioning (E-NN), respectively. E-MM and E-NN are
illustrated in Fig. 1. We refer to a Vecchia approximation
based on this approach as EVecchia (which is then only a
function of m). EVecchia has been shown to outperform
Vecchia approximations based on other ordering and con-
ditioning schemes for GPs in low-dimensional input spaces
(e.g., Guinness 2018; Katzfuss and Guinness 2021; Schäfer
et al. 2021).

3 Correlation-based Vecchia approximation

3.1 Definition and overview

We propose a correlation-based Vecchia (CVecchia) approx-
imation of y ∼ Nn(0,K). CVecchia consists of a Vecchia
approximation (1) for which the MM ordering (2) and NN
conditioning (3) are carried out using a correlation-based dis-
tance,

τC (i, j) = (1 − |ρi j |)1/2, where

ρi j = Ki j/(Ki iK j j )
1/2, i, j ∈ I = {1, . . . , n} (4)

which we will call C-MM and C-NN, respectively.
As we will explore in more detail below, CVecchia is

equivalent to EVecchia for many popular isotropic ker-
nels; CVecchia can be more accurate than EVecchia for
nonisotropic kernels (e.g., anisotropic, nonstationary, spatio-
temporal); and CVecchia is applicable even when EVecchia
is not (e.g., multivariate GPs, GPs based on discrete or non-
Euclidean inputs such as in text analysis or natural language
processing).

Provided that K is positive-definite, τC : I × I → [0, 1]
in (4) is a proper distance metric (Van Dongen and Enright
2012) and, in particular, satisfies the triangle inequality. This
allows us to rapidly compute C-MMandC-NNwith an adap-
tation of the algorithm in Schäfer et al. (2021) in quasilinear
time in n, assuming that each entry of K can be computed
in O(1) time; in practice, this computational cost is often
small relative to that of the core Vecchia approximation in
(1), and so the computational complexity of CVecchia can
still be thought of asO(nm3), same as for EVecchia. Among
other things, this means that CVecchia is useful even when
K depends on unknown parameters that must be inferred.

As MM and NN only depend on the ranking of distances
(not the distances themselves), other correlation-based dis-
tance metrics that are ordinally equivalent (e.g., Van Dongen
and Enright 2012) to τC in (4) will result in equivalent CVec-
chia approximations.
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Fig. 1 Euclidean (top) and correlation-based (bottom) maximum–
minimum-distance ordering (MM) and nearest-neighbor conditioning
(NN) for n = 400 spatio-temporal inputs (grey points), assuming
a spatio-temporal covariance (8) with the ratio of temporal to spa-
tial range, rt/rs = 4. The first 40 ordered inputs are numbered, and
boxes denote the nearest m = 6 previously ordered neighbors c(i) of

the i = 38th input (red circle), in the unit-square input space [0, 1]2
(left panels) and the transformed input space [0, 4] × [0, 1] (right).
Correlation-based MM and NN can be thought of as Euclidean MM
and NN in the transformed input space (bottom right). This figure is
inspired by Figure 1 in Katzfuss et al. (2022)

By definition of the correlation-based distance in (4),
C-MM and C-NN ignore the marginal variances of the vari-
ables y1, . . . , yn . Thus, one may ask whether, for example,
a better conditioning set c(i) could be obtained based on
a distance metric that takes into account highly varying
marginal variances. However, this is not the case. To see this,
note that we have KL(p(y)| p̂(y)) = ∑

i log(var(yi |yc(i))
/var(yi |y1:i−1))/2 (e.g.,Guinness 2018),wherevar(yi |ay j )
is the same for any a �= 0 and so var(yi |yc(i)) does not
depend on the marginal variances of the conditioning vari-
ables.

3.2 Properties of CVecchia in the special case of
reducible GPs

CVecchia is equivalent to EVecchia if K is the covari-
ance matrix of a realization of an isotropic GP with strictly
decreasing positive covariance function:Ki j = K (xi , x j ) =
σ 2ρ(τE (i, j)), where ρ : R+

0 → [0, 1] is strictly decreasing;
examples include Matérn and power-exponential covariance
functions. Taken one step further, this finding suggests that
CVecchia can be interpreted as EVecchia on a transformed
input space in the special case of reducible GPs, which we
define as follows:

Definition 1 (q-reducibility) A zero-mean Gaussian process
y(·) on R

d with d ≥ 1 is q-reducible if there exists a
ψ : Rd → R

q such that y
(
ψ−1(·)) is a Gaussian process

with a strictly decreasing isotropic covariance function. In
particular, y is bijectively reducible if q = d.

Definition 1 is broad enough to include many GPs of
interest. For some covariance functions, the deformation

functionψ can be easily identified, including (geometrically)
anisotropic GPs, automatic relevance determination, and
latent-dimension (i.e., dimension-expansion) approaches to
multivariate and spatio-temporal GPs. Also, some popular
nonstationary GPs are explicitly constructed in the way we
define the reducibility (e.g., Perrin and Monestiez 1999;
Schmidt and O’Hagan 2003; Vu et al. 2020).

A major advantage of CVecchia is that it is not required to
identify the deformationψ explicitly, but that it automatically
carries out the approximation in a transformed space inwhich
Euclidean distance is meaningful:

Proposition 1 Assume that a zero-mean Gaussian process
y(·) is q-reducible with respect to ψ . If the first index is
chosen to be the same for both C-MM and E-MM, then CVec-
chia of y(·) at inputs x1, . . . , xn is identical to EVecchia of
y
(
ψ−1(·)) at the transformed inputs ψ(x1), . . . , ψ(xn).

The dimension q in Proposition 1 is important, in that
EVecchia approximations become more challenging as the
input dimension increases. There have been studies on nec-
essary and sufficient conditions for reducibility and how large
q must be (e.g., Perrin and Senoussi 2000; Curriero 2006),
and sufficient conditions for related concepts have been iden-
tified (e.g., Porcu et al. 2010; Perrin andMeiring 2003; Perrin
and Schlather 2007). In some settings, theoretical guarantees
depending onq on the performance ofCVecchia for reducible
GPs can be provided using recent results for isotropic GPs
(Schäfer et al. 2021). For example, if a process is q-reducible
to an isotropic GP whose kernel is the Green’s function of
an elliptic PDE (which is equivalent to a Matérn covariance
up to edge effects), then CVecchia can provide an ε-accurate
approximation in O (

n log3q(n/ε)
)
time.
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While Proposition 1 provides an explanation for why
CVecchia can produce adaptive approximations to some
popular nonisotropic GPs, this property deserves further
investigation for its relationship to Euclidean embeddings
(Matousek 2013; Maehara 2013; Witsenhausen 1986). It is
well-known that an exact representation of a given metric
space into Euclidean space is not easy to find and that is why
approximate embeddings have been studied. For instance, the
Johnson-Lindenstrauss flattening lemma (Johnson and Lin-
denstrauss 1984) states the existence of low-distortion (no
more than a factor of 1± ε) Euclidean embedding of a given
finite metric space to q-dimensional Euclidean space where
q ≥ O (log(n)/ε). This may provide another way to carry
out performance evaluation of CVecchia approximations.

3.3 Estimation of parameters

So far, we have assumed a fixed K and p(y) = Nn(y|0,K),
but in practice K = Kθ and hence pθ often depend on
unknownparameters θ .OurCVecchia approximation p̂(y) =
∏n

i=1 p(yi |yc(i)) depends on θ both via pθ and via the corre-
lation distance τ θ

C in (4) used to determine the MM ordering
of y1, . . . , yn and the NNs in the c(i). To emphasize this, we
will sometimes use p̂θ2

θ1
(y) to denote a CVecchia approxima-

tion of pθ1 based on τ
θ2
C .

For frequentist inference, Guinness (2021) proposed to
find the maximum likelihood estimator of θ by optimizing
the Vecchia loglikelihood via Fisher scoring. Given that

log p̂(y) =
n∑

i=1

log p(yi |yc(i))

=
n∑

i=1

(
log p(yc̃(i)) − log p(yc(i))

)
, (5)

the score g(k) and the Fisher informationM(k) of p̂(y) at the
kth iteration of the Fisher-scoring algorithm can be computed
by addition and subtraction of the score and Fisher informa-
tion of each of the 2n normal distributions of dimension at
most m + 1 on the right-hand side of (5). The parameter
vector is then updated as θ (k+1) = θ (k) + (M(k))−1g(k).

For CVecchia, we propose to use a modified Fisher-
scoring algorithm, where we now compute g(k)

= ∂
∂θ

log p̂θ̃
(k)

θ (y)|θ=θ (k) andM(k) = −E
∂2

∂θ2
log p̂θ̃

(k)

θ (y)|θ=θ (k)

with fixed ordering and conditioning based on τ θ̃
(k)

C . In other
words, when computing derivatives of the CVecchia log-
likelihood for the Fisher-scoring updates, the dependence of
the ordering and conditioning on θ is ignored. Instead, the

ordering and conditioning are updated based on θ̃
(k) = θ (k)

after certain iterations k ∈ G, and θ̃
(k) = θ̃

(k−1)
otherwise.

For simplicity, we can update the ordering and conditioning

at the end of each iteration, G = {1, 2, 3, 4, . . .}. Alter-
natively, the computational cost can be reduced by setting
G = {1, 2, 4, 8 . . .} and thus skipping this update for expo-
nentially increasing numbers of iterations, exploiting that the
parameter values tend to change less and less with increas-
ing iteration numbers. In either case, repeatedly updating
the ordering and conditioning over the course of the Fisher-
scoring algorithm did not introduce convergence problems
in our numerical experiments.

As the Vecchia approximation implies a valid density
p̂(y) = Nn(y|0, K̂), it is also possible to carry out Bayesian
inference on θ , assuming a prior p(θ) has been specified.
However, the dependence of C-MM and C-NN on θ again
presents a challenge. In the context of a spatio-temporal
covariance, Datta et al. (2016b) essentially proposed to
approximate the posterior as p̂(θ |y) ∝ p(θ) p̂θ

θ (y) based on
C-NN, meaning that the conditioning sets c(i) are recom-
puted for every θ at which the posterior is evaluated. How-
ever, in our exploratory studies, we found this approach to
lead to unstable and sinuous approximate posteriors. Instead,
we propose to first obtain a maximum likelihood or maxi-
mum a posteriori estimate θ̂ using Fisher scoring, as above.

Then, we approximate the posterior as p̂(θ |y) ∝ p(θ) p̂θ̂
θ (y),

with fixed correlation distance τ θ̂
C and hence fixed C-MM

and C-NN based on θ = θ̂ . This approach leads to smooth
posteriors, as illustrated in Sect. 4.7.

3.4 Prediction

Our method can be used for accurate and efficient pre-
diction of an unobserved vector y∗ = (y∗

1 , . . . , y
∗
n∗) with

(
y�, y∗�)� ∼ Nn+n∗

(
0,Kall

)
. For prediction and uncer-

tainty analysis, the goal is to obtain the joint posterior
predictive distribution p(y∗|y). Following Katzfuss et al.
(2020), we apply a Vecchia approximation to

(
y�, y∗�)�

with the entries of y∗ ordered after those of y to obtain a
CVecchia approximation of the posterior predictive distribu-
tion,

p̂(y∗|y) =
n∗
∏

i=1

p(y∗
i |yco(i), y∗

cu(i)) = Nn∗(μ∗, K̂∗), (6)

where y∗
1 , . . . , y

∗
n∗ are assumed to follow a restricted C-MM

ordering, which is obtained from a C-MM ordering of all
(observed and unobserved) variables under the restriction
of having the observed variables be ordered first (in which
case the ordering of the unobserved variables takes the dis-
tances to observed variables into account). As recommended
inKatzfuss et al. (2020),we allow the unobserved variables to
condition on both observed and (previously ordered) unob-
served variables. Specifically, y∗

i conditions on the nearest
(in terms of correlation-based distance with respect to Kall )
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m variables among y1, . . . , yn, y∗
1 , . . . , y

∗
i−1. For notational

convenience, in (6) the resulting conditioning set is split into
indices co(i) corresponding to observed variables and cu(i)
corresponding to unobserved variables; either co(i) or cu(i)
can be an empty set for any i . Each of the conditional dis-
tributions in the product in (6) can be computed in O (

m3
)

time, resulting in fast prediction or joint simulation even for
large n and n∗.

In practice,Kall will typically depend on unknown param-
eters θ . Predictions can then be based on a frequentist
estimate of θ or based on samples from the Bayesian pos-
terior of θ , which can be obtained using the observed data
y as described in Sect. 3.3. Then, given a frequentist esti-
mate θ̂ , the posterior predictive distribution is obtained as

p̂θ̂

θ̂
(y∗|y) using similar notation as in Sect. 3.3. Given sam-

ples θ (1), . . . , θ (L) from the posterior, we can account for
posterior uncertainty in θ and obtain an averaged posterior

predictive distribution p̂(y∗|y) = (1/L)
∑L

l=1 p̂
θ̂

θ (l) (y
∗|y),

where θ̂ is again a maximum likelihood or maximum a pos-
teriori estimate.

3.5 Noise

The methods discussed so far are most appropriate if y
is observed without noise. However, data in many appli-
cation areas are typically modeled as a GP with additive
noise. Suppose now that we observe z = y + ε with
ε = (ε1, . . . , εn)

� ∼ Nn(0,D), where D is diagonal.
A straightforward way of extending our methods to this

noisy setting is to apply the same CVecchia approach to the
covariance matrix of z, which is � = K + D. However, in
this approach the noise termsweaken the screening effect and
hence an accurate CVecchia approximationwill often require
a larger m than in the noise-free case. Interestingly, if the
signal and noise variances are both constant (i.e.,Ki i = K j j

and Di i = D j j for all i, j), then C-MM and C-NN do not
depend on the noise variance (even if it is zero). This can
be seen by noting that τC (i, j) ≤ τC (i, k) if and only if
τ+D
C (i, j) ≤ τ+D

C (i, k), where τ+D
C (i, j) = (1 − |ρ+D

i j |)1/2
withρ+D

i j = �i j/(�i i� j j )
1/2 for i, j ∈ I. For varying noise

variances, high-noise observations move farther away from
other observations in terms of correlation distance, and so
they are less likely to be included in conditioning sets; this
makes intuitive sense, in that their high noise means that they
contain less information about y.

An alternative way of extending our methods to the noisy
setting is to apply CVecchia to the (now latent) noise-free
variables y as before and then add noise. In other words, we
set �̂ = K̂+D, where K̂ is obtained usingCVecchia as in pre-
vious sections. While this is conceptually simple, inference
then requires obtaining the Cholesky factor of the posterior
precision matrix var(y|z)−1 = K̂−1 + D−1, which can be

very expensive due to fill-in. Fortunately, the computational
speed of CVecchia can be maintained without introducing
meaningful additional approximation error by approximating
the Cholesky factor using an incomplete Cholesky factoriza-
tion (IC), as proposed for EVecchia in Schäfer et al. (2021).
This approach is useful both for parameter inference based
on evaluating the CVecchia likelihood and for making pre-
dictions. We demonstrate numerically in Sect. 4.7 that this
IC-based approach can by highly accurate in the context of
CVecchia as well.

4 Examples and numerical comparisons

We conducted simulation experiments to demonstrate that
CVecchia is widely applicable and highly accurate. Specifi-
cally, we considered anisotropic, nonstationary, multivariate,
and spatio-temporal GPs, and an example without any
explicit inputs. We begin by assuming that the covariance
matrices are known; then, we demonstrate parameter esti-
mation and prediction using our methods. Throughout, our
proposed CVecchia approach is denoted by C-MM + C-
NN.We compared to existing or other reasonable competing
Vecchia approximations, which necessarily differ between
simulation scenarios, because none of them aremeaningfully
applicable across all the scenarios. We compared the differ-
ent Vecchia methods in terms of the KL-divergence between
the exact distribution N (0,K) and the approximate distri-
bution N (0, K̂), averaged over 10 simulations in settings
with known covariance structure and over 200 simulations
in parameter-inference or prediction settings. Comparisons
are carried out as a function of m, as all considered Vecchia
methods become more accurate and more computationally
expensive asm increases, with a time complexity ofO(nm3).

4.1 Anisotropic and nonstationary GPs

We considered nonstationary GPs at n = 302 = 900
inputs selected uniformly at random on the unit square,
X = [0, 1]2. We compared various combinations of order-
ing (E-MM, C-MM, X-ord, Y-ord) and conditioning (E-NN,
C-NN) schemes, where X-ord and Y-ord denote ordering by
the first or second coordinate of the input space, respectively.
EVecchia corresponds to E-MM + E-NN. Vecchia (1988)’s
original approach is given by Y-ord + E-NN.

We used a nonstationary Matérn covariance function
(Paciorek and Schervish 2006; Stein 2005):

K (x, x′) = σ 2 |A(x)|1/4 ∣
∣A(x′)

∣
∣1/4

|Ã(x, x′)|1/2
M ν(x)+ν(x′)

2

((
(x − x′)�Ã(x, x′)−1(x − x′)

)1/2)
, x, x′ ∈ X ,

(7)
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where Mν(0) = 1, Mν(x) = xνBν(x) for x > 0, Bν is
a modified Bessel function of order ν, ν : X → R

+ is
the smoothness, A : X → R

d×d is a (positive definite)
anisotropy matrix, and Ã(x, x′) = (A(x) + A(x′))/2. For
simplicity, we assumed σ = 1.

We considered the following settings as special cases of
(7):

Anisotropic: ν(x) ≡ 0.5, A(x) ≡ 10−2 diag(a−2, 1),
where a is the degree of anisotropy.
Varying smoothness:ν(x) = 0.2+1.3x1 (i.e., varying as
a function of the first coordinate), A ≡ 10−2 diag(1, 1).
Varying rotation: ν(x) ≡ 0.5,

A(x) =
(

cos η(x) sin η(x)
− sin η(x) cos η(x)

)�

diag(10−4, 10−2)

(
cos η(x) sin η(x)

− sin η(x) cos η(x)

)

is a rotation matrix with spatially varying angle η(x) =
πx1
2 .

In the anisotropic setting, the correlation-based distance
τC (i, j) is a strictly increasing function of ‖x̃i − x̃ j‖,
where x̃i = A−1/2xi , because Bν(·) is strictly decreas-
ing; thus, CVecchia is equivalent to EVecchia applied to the
transformed inputs x̃1, . . . , x̃n . For varying smoothness and
rotation, the transformed space is not easily identified. How-
ever, as shown inFig. 2,C-NNwas alwaysmore accurate than
E-NN. In addition, using C-MM instead of E-MM led to fur-
ther improvements for the anisotropic and varying-rotation
setting. The improvement of CVecchia over existingmethods
was especially pronounced for strong anisotropy (i.e., large
a) and for varying rotation.

4.2 Multivariate GP

We considered a p-variate GP, y(·) = (y(1)(·), . . . , y(p)(·))�
∼ GP(0, K ), with a cross-covariance function based on a
latent dimension separating the processes (Apanasovich and
Genton 2010),

Ki, j (x, x′) = cov
(
y(i)(x), y( j)(x′)

)

= σ 2 exp
( − ‖x̃i − x̃′

j‖/r
)
,

x, x′ ∈ X , i, j ∈ {1, . . . , p},

where x̃i = (
x�, νi

)� ∈ R
2+1, and νi represents the location

of the i-th component of the multivariate GP in the latent
dimension. Thus, the dependence between y(i)(·) and y( j)(·)
decreases with their latent distance |νi − ν j |. We assumed
σ 2 = 1, r = 0.1, and ν1 = 0. We considered a total of n
observations stacked into a vector y = (y(1)�, . . . , y(p)�)�,

where y( j) = (y( j)
1 , . . . , y( j)

n j )� with y( j)
i = y( j)(x( j)

i ), and
n = ∑

n j .
Here, τC (i, j) is a strictly increasing function of ‖x̃i−x̃ j‖,

and so CVecchia is equivalent to EVecchia applied to the
transformed inputs x̃1, . . . , x̃n in the expanded (2 + 1)-
dimensional input space. The competingmethods considered
in Sect. 4.1 are not directly applicable in this multivari-
ate setting, and so we considered the following alternative
approaches. S-E-MM separately orders the entries of each
y( j) according to an MM ordering of the corresponding
inputs x( j)

1 , . . . , x( j)
n j , and then orders y(1), then y(2), and so

forth, in y. To construct conditioning sets of size m, J-E-NN
considers the nearest m inputs in X among all previously
ordered variables in the joint vector y, while S-E-NN car-
ries out nearest-neighbor conditioning separately for each
y(1), . . . , y(p). D-E-NN divides m by p and finds the m/p
nearest previously ordered neighbors among each of the com-
ponents y(1), . . . , y(p) (according to their inputs in X ).

We compared these variousVecchia approaches for bivari-
ate (p = 2) and trivariate (p = 3) GPs, with each process
observed at n j = 400 randomly sampled locations in X . In
both cases, we assumed that the processes were observed in a
misaligned manner (i.e., x( j)

i �= x(k)
i for j �= k). As shown in

Fig. 3, C-NN outperformed other conditioning approaches;
C-MM provided additional improvements in some settings
over S-E-MM. We also considered the setting of identi-
cal observation locations for the different processes (i.e.,
x( j)
i = x(k)

i ), but the results were very similar to the mis-
aligned case and are hence not shown.

4.3 Spatio-temporal GP

Weconsidered a spatio-temporal GP indexed by a space-time
input coordinate x = (s�, t)�, where we assumed that space
is scaled to the unit square, s ∈ [0, 1]2, and time is scaled
to the unit interval, t ∈ [0, 1]. We considered a space-time
covariance function of the form

K
(
x, x′) = σ 2 exp(−‖(s − s′)‖/rs − |t − t ′|/rt )

= σ 2 exp(−‖A−1(x − x′)‖), (8)

where rs and rt are the spatial and temporal range parameters,
andA = diag(rs, rs, rt ).We assumed that σ 2 = 1, rs = 0.1,
and rt = 1.0.

Here, τC (i, j) is a strictly increasing function of ‖x̃i−x̃ j‖,
where x̃i = A−1/2x, and so CVecchia is equivalent to EVec-
chia applied to the transformed inputs x̃1, . . . , x̃n . As space
and time are not commensurable, the previous competing
methods are again not meaningful. We considered ordering
by time (T-ord), and conditioning on the NN in time (T-NN).
Note that, when inputs are taken at the same time point, T-ord
orders the inputs according to the values of the second spa-
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Fig. 2 Log10-scaleKLdivergences between true and approximate like-
lihoods of GPs with the degree of anisotropy a = 10 for increasing size
of conditioning sets m (top left), with m = 30 for increasing a (top

right), with varying smoothness parameter ν = 0.2+ 1.3x1 (a function
of the first coordinate) for increasing m (bottom left), and with varying
rotation angle η = πx1

2 for increasing m (bottom right)

tial coordinate. If these values are again the same, it uses the
values of the first coordinate. Further, we considered E-NN
based on the distance of the (unit-scaled) space-time coordi-
nates, ‖x − x′‖. To our understanding, the correlation-based
conditioning approach proposed in Datta et al. (2016b) cor-
responds to T-ord + C-NN.

As illustrated in Fig. 4, we simulated n = 900 space-
time observations on the unit cube according to four different
simulation scenarios, the latter three of which were chosen to
mimic common observation patterns for environmental data:

Random Space-time coordinates are selected uniformly at
random, and so they are irregular in space and time.

Station Observations are obtained at 9 regular time points
at 100 irregularly spaced “monitoring stations.”

Gridded Observations are obtained at 9 regular time points
on a regular grid of size 10 × 10 = 100 in space
(e.g., mimicking output from climate models).

Satellite Similar to data frompolar-orbiting satellites, at 900
regularly spaced time points, we have 90 observa-
tions along each of 5 one-dimensional tracks at two
repeat cycles.

As shown in Fig. 5, CVecchia outperformed the competing
methods.

Note that we repeated the experiments from Sects. 4.1–4.3
for larger n = 3600, but we found out that the shapes of the
KL curves were very similar to those in Figs. 2, 3 and 5.

4.4 Gaussian hierarchical model

We have so far considered only cases in which covariance
structure is computed based on inputs. In this subsection,
we offer an example that has no inputs, so that CVecchia
is applicable but EVecchia is not. Motivated by hierarchical
models which are widely used for combining information
and describing heterogeneity between sub-populations, we
assumed that μ ∼ N (

0, σ 2
0

)
and

μi1,...,i j | μi1,...,i j−1

i .i .d.∼ N (μi1,...,i j−1 , σ
2
j )

ik = 1, 2, k = 1, . . . , j, j = 1, . . . , J ,

where σ 2
0 = σ 2

1 = . . . = σ 2
k = 1. We observe y =

{yi1,...,i J : ik = 1, 2, k = 1, . . . , J } with yi1,...,i J = μi1,...,i J
at the finest level. This hierarchical model is illustrated
for depth J = 3 in the left panel of Fig. 6. We have
cov

(
yi1,...,i J , yl1,...,l J

) = ∑α
r=0 σ 2

r , where α is the level up
to which yi1,...,i J and yl1,...,l J have a common ancestor.

We conducted a numerical comparison using depth J =
12, and son = 212 = 4,096.Because the competingmethods
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Fig. 3 Log10-scaleKLdivergences between true and approximate like-
lihoods of distinctly observed bivariate GPs with distance in latent
dimension � = |ν1 − ν2| = 0.4 for increasing size of conditioning sets
m (top left) and withm = 20 for increasing� (top right), and distinctly

observed trivariate GPs with distance in latent dimension � = 0.4,
where ν j = ( j − 1)�, for increasing m (bottom left) and with m = 20
for increasing � (bottom right)
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Fig. 4 Inputs for spatio-temporal simulation scenarios plotted against spatial coordinates x1 and x2. The inputs are color-coded by time, although
later time points exactly cover earlier time points in the Station and Gridded case, and also to some degree in the Satellite scenario due to its two
repeat cycles

used in other experiments are again not directly applicable,
we compared three variants of the Vecchia approximation in
the right panel of Fig. 6, where L-ord denotes lexicographic
(or simply left-to-right) ordering, R-ord denotes random
ordering, and R-N conditions on randomly selected previ-
ously ordered entries. We repeated R-ord + R-N 200 times,
but interestingly the resulting KL divergences appear quite
similar when plotted on the log scale. CVecchia strongly out-
performed the other two methods.

4.5 Parameter estimation

We examined the performance of frequentist parameter esti-
mation using Fisher scoring (Sect. 3.3) in the Station and
Satellite space-time scenarios of Sect. 4.3. The task was to
estimate the range parameters rs and rt . We updated the
ordering and conditioning at every Fisher-scoring iteration
(G = {1, 2, 3, . . .}).

We compared the different approximation methods
described in Sect. 4.3. For reference, we also considered
“optimal” parameter estimation using the exact GP without
Vecchia approximation (or, equivalently, a Vecchia approx-
imation with m = n − 1). The methods were compared in
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Fig. 5 Log10-scale KL divergences between true and approximate likelihoods of spatio-temporal GPs (Fig. 4) for increasing size of conditioning
sets m
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Fig. 6 A graphical representation of the hierarchical normal model with J = 3 (left) and log10-scale KL divergences between true and approximate
likelihoods with J = 12 for increasing m (right)

terms of the average KL divergence between the true distri-
bution (using the true parameter values) and the approximate
distribution (using each method’s estimated parameters). We
also computed the root mean squared difference (RMSD)
between the values of rs and rt as estimated by the exact GP
and as estimated by the different Vecchia approximations.

As shown in Fig. 7, CVecchia produced by far the most
accurate estimated distributions, which were similar to those
based on the exact GP for m ≥ 25. While the RSMDs were
quite noisy, despite averaging over 200 simulated datasets,
CVecchia also generally performed best in terms of RMSD.

4.6 Prediction

To illustrate prediction performance, we again considered
the Random, Station, and Satellite space-time scenarios from
Sect. 4.3. Of the 900 space-time observations, 100 were ran-
domly selected as test data, and so the training data consisted
of the remaining n = 800 observations. To lessen the com-
putational cost of our many comparisons, we assumed that
the covariance parameters were known.

Figure 8 shows the prediction performance for the 100
test data, as measured by the logarithmic score (see Gneiting
and Katzfuss 2014, for details) averaged over 200 simulation
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Fig. 7 Performance in parameter estimation using Fisher scoring under
two spatio-temporal scenarios (Station and Satellite) in Fig. 4. Each
subfigure contains three plots: Log10-scale KL divergences between

true and estimated likelihoods (left) and root mean squared difference
(RMSD) for spatial range parameter (top right) and for temporal range
parameter (bottom right), for increasing size of conditioning sets m

runs. In the Random and Station scenarios, CVecchia and T-
ord + C-NN both performed well. In the Satellite scenario,
CVecchia performed best.

4.7 Bayesian inference for noisy data

We considered Bayesian inference with CVecchia for noisy
data under the Random, Station, and Satellite space-time
scenarios of Sect. 4.3. The task was to calculate posterior
densities of the range parameters rs and rt . We assumed
that the priors were log(rs) ∼ N (

log(0.1), 0.62
)
and

log(rt ) ∼ N (
log(1.0), 0.62

)
, with constant noise variances,

D = (0.4)In . Figure9 presents two different approaches
described in Sect. 3.5: One is the naive approach that directly
uses the covariance matrix of the noisy observations, and the
other is the IC-based approach that applies CVecchia to the
noise-free variables and then adds the noise. As claimed in
Sect. 3.5, Fig. 9 shows that, while CVecchia provided reliable
approximate posteriors compared to the other methods, the
IC-based approach provided further improvements. C-MM
and C-NN were fixed based on the true values of θ ; we also
tried updating C-MM for each evaluated θ value, but this
resulted in unstable posteriors.
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Fig. 9 True and approximate
posterior densities of spatial and
temporal ranges under three
space-time scenarios from
Fig. 4: Random (top), Station
(center), and Satellite (bottom).
For each scenario, the left (right)
five columns are posteriors of
the spatial (temporal) range
parameter. For each range
parameter, the first (second) row
presents posteriors with the
naive (IC-based) approach for
size of conditioning sets
m = 5, 10, 20, 30, 40. For
m ≥ 10, some lines are not
visible because they are covered
by the (exact) black lines
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5 Application to real data

We assessed the use and efficacy of CVecchia to fit and
predict regional climate model (RCM) outputs. The North
American Regional Climate Change Assessment Program
(NARCCAP; Mearns et al. 2009) is a research program
designed to (1) provide high-resolution projections of cli-
mate change, (2) investigate uncertainties in regional climate
change simulations based on different atmosphere-ocean
general circulation models (AOGCMs), and (3) evaluate
RCM performance over North America (Mearns et al. 2012).
While the program ran 50-km spatial resolution simula-
tion based on multiple RCMs driven by multiple AOGCMs,
we only considered the Canadian regional climate model
(CRCM) using the NCEP-DOE Reanalysis II (NCEP) as
boundary conditions. The details on RCMs and AOGCMs
in the NARCCAP are available from https://www.narccap.
ucar.edu/.

In particular, we studied a bivariate spatio-temporal
dataset given by maximum and minimum daily surface air
temperature (tasmax and tasmin) fields for June–August
2001 (92 days) in the South region (Arkansas, Kansas,
Louisiana, Mississippi, Oklahoma, and Texas; see Karl
and Koss 1984). Figure10 shows tasmax and tasmin fields
in the South region on selected days. The cartographic
boundary files of the south region are available from
https://www.census.gov/. The total sample size is ntotal =
78,384 × 2 = 156,768. We split the dataset into training
(ntrain = 114,298) and test (ntest = 42, 470) sets in the
following manner: (1) randomly select 12 locations for each
time slice; (2) assign observations (for both variables) cor-
responding to space-time locations on the 52 × 3 space-time
cube centered at the selected locations to the test set; and (3)
assign the remaining space-time locations to the training set.

We fit a joint model of tasmin and tasmax using the train-
ing set and then carried out predictions on the test set. Let
ytasmin and ytasmax be training vectors of tasmin and tasmax,
respectively. We modeled them as

[
ytasmin

ytasmax

]

∼ Nn+n

([
1 0
1 1

] [
β0

β1

]

,K
)

using a Matérn covariance function with a different range
parameter for each dimension (latitude, longitude, time, and
latent dimension); that is,

Ki, j = K (x̃i , x̃ j )

= σ 2 21−ν

�(ν)
‖A−1(x̃i − x̃ j )‖ν Bν(‖A−1(x̃i − x̃ j )‖),

x̃ = (
x�, ξ

)�
, x is a space-time coordinate, ξ is an indicator

variable that indicates whether x̃ corresponds to tasmin, � is
the gamma function, Bν is the modified Bessel function of

the second kind, and A = diag(rlat , rlon, rt , rl). Assuming
that ν = 0.75 (based on preliminary analyses) and a nugget
of zero, we estimated the unknown parameters β0, β1, rlat ,
rlon , rt , rl using the Fisher scoring approach described in
Sect. 3.3; the result is given in Table 1.

Figure 11 shows the prediction performance for the test
set, as measured by the root mean square prediction error
(RMSPE), compared to five other Vecchia variants. S-E-MM
+ S-E-NN and S-E-MM + J-E-NN are from Sect. 4.2 and
based on Euclidean distance between unit-scaled space-time
coordinates. T-ord + T-NN is from Sect. 4.3. Note that T-ord
separately orders observations of each temperature field by
time and then joins them. S-C-NN carries out C-NN condi-
tioning separately for each temperature field, while J-C-NN
searches C-NN in the joint vector. We applied a group-
ing algorithm (Guinness 2018) for improving computational
efficiency to all methods except T-ord + T-NN, because inter-
estingly it resulted in a doubling of the computational cost
for that method.

CVecchia (C-MM + C-NN) provided the lowest RMSPE
for anym considered. The improvementwas substantial, with
CVecchia’s accuracy with m = 10 surpassing that of S-E-
MM + J-E-NN with m = 50, whose computational cost is
roughly two orders ofmagnitude higher due to the cubic scal-
ing in m. Moreover, as shown in the right panel of Fig. 11,
CVecchia offered a better trade-off between run time and
prediction accuracy. The run-time analysis was performed
on a 64-bit workstation with 16 GB RAM and an Intel Core
i7-8700K CPU running at 3.70 GHz. We also carried out a
comparison in terms of the logarithmic score, but the result-
ing curves looked almost identical to the RMSPE curves in
Fig. 11.

6 Conclusions

We have introduced CVecchia, a covariance approximation
that results in a sparse inverse Cholesky factor, whose order-
ing and sparsity pattern are based on the correlation structure.
For reducible GPs, CVecchia implicitly applies a Euclidean-
based Vecchia approximation in a transformed input domain
in which the GP is isotropic. CVecchia is applicable to any
covariance matrix, and it even allows for likelihood-based
inference on unknown covariance parameters. We numeri-
cally demonstrated the applicability of CVecchia to a variety
of covariance structures, some of which had no applicable
existing Vecchia approximations. In settings with suitable
existing approximations, CVecchia strongly outperformed
them.

Special cases of our general CVecchia idea have already
been successfully employed in several applications (which
were started later but completed earlier than the present
paper): Katzfuss et al. (2022) used the idea to approxi-
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Table 1 For the NARCCAP
data, parameter estimates for the
six methods (m = 50) using a
Matérn covariance function with
a different range parameter for
each dimension, smoothness
ν = 0.75, and zero nugget

β̂0 β̂1 σ̂ 2 r̂lat r̂lon r̂t r̂l

S-E-MM + S-E-NN 278.513 12.084 61.983 0.819 0.742 0.036 2.000

S-E-MM + J-E-NN 278.200 14.033 62.906 0.828 0.750 0.036 2.681

T-ord + T-NN 275.143 13.613 70.134 0.890 0.792 0.001 2.000

T-ord + S-C-NN 268.826 11.451 51.585 0.719 0.656 0.040 2.000

T-ord + J-C-NN 266.677 12.198 51.331 0.716 0.654 0.040 2.498

C-MM + C-NN 276.754 13.054 38.859 0.593 0.543 0.026 1.668

Temperatures are in Kelvin, the spatial region is scaled to fit into the unit square (without changing its shape),
and the time period is scaled to the unit interval.

Fig. 10 Minimum (top) and
maximum (bottom) surface air
temperature fields (in degrees
Kelvin) in the South region
(Arkansas, Kansas, Louisiana,
Mississippi, Oklahoma and
Texas) from NARCCAP
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Fig. 11 For the NARCCAP data, root mean squared prediction error (on a log scale) at held-out test points as a function ofm (left) and as a function
of training time of the Fisher-scoring algorithm (right)
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mate anisotropic GPs for computer-model emulation in high
input dimension;Messier and Katzfuss (2021) approximated
spatio-temporal land-use regression for ground-level nitro-
gen dioxide; and in the context of nonparametric inference
(Kidd and Katzfuss 2021), ideas related to CVecchia were
used with sample correlations instead of parametric correla-
tions.

While we have largely focused on geospatial settings
here, CVecchia can also be applied to large-scale machine
learning settings where input domains are not Euclidean
and there is no explicit expression of covariance function.
Examples include: multi-task learning (Groot et al. 2011;
Williams et al. 2007), where multiple observations are col-
lected frommultiple related tasks and joint modeling utilizes
intra- and inter-task relatedness; natural language processing
(NLP; see Min et al. 2021, for recent review), where words
are represented in a latent vector space using word embed-
ding methods (e.g., Beck et al. 2014; Beck 2017; Deriu et al.
2017) and CVecchia can be applied efficiently based on only
geometric relations between word vectors; and modeling of
multiple interacting latent chemical species in biochemical
interaction networks (Gao et al. 2008), where the covariance
function of gene expression is an integral equation of inputs.
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Science Foundation (NSF) Grant DMS-1953005. Katzfuss’ research
was also partially supported by NSF Grants DMS-1654083 and CCF-
1934904. We would like to thank Florian Schäfer and Joseph Guinness
for helpful comments and discussions.

A Proofs

Before proving the main result (Proposition 1 in Sect. 3.2),
we shall need the following simple lemma.

Lemma 1 Suppose that y(·) ∼ GP(0, K ) on R
d is q-

reducible with respect to ψ . Define y0(·) = y
(
ψ−1(·)) ∼

GP(0, K0). Then,

K (x, x′) = K0(‖ψ(x) − ψ(x′)‖), x, x′ ∈ R
d .

Proof of Lemma 1 Note that the isotropic covariance function
K0 is only a function of Euclidean distance between inputs.
For any inputs x, x′ ∈ R

d ,

K (x, x′) = cov
(
y(x), y(x′)

)

= cov
(
y
(
ψ−1(ψ(x))

)
, y

(
ψ−1(ψ(x′))

))

= K0
(‖ψ(x) − ψ(x′)‖) ,

where ψ(x), ψ(x′) ∈ R
q . ��

Proof of Proposition 1 From Lemma 1,

τC (i, j) =
(

1 − K (xi , x j )
√
K (xi , xi )

√
K (x j , x j )

)1/2

=
⎛

⎝1 − K0
(‖ψ(xi ) − ψ(x j )‖

)

√
K0 (‖ψ(xi ) − ψ(xi )‖)

√
K0

(‖ψ(x j ) − ψ(x j )‖
)

⎞

⎠

1/2

=
(

1 − K0
(‖ψ(xi ) − ψ(x j )‖

)

K0(0)

)1/2

,

which is strictly increasing in τ
ψ
E (i, j) = ‖ψ(xi ) − ψ(x j )‖,

the Euclidean distances between the corresponding transfor-
mations. Then, since each step of the MM ordering only
depends on the ranking of distances between inputs, for each
k,

argmax
i ∈I\I1:k−1

min
j ∈I1:k−1

τC (i, j)

= argmax
i ∈I\I1:k−1

min
j ∈I1:k−1

τ
ψ
E (i, j),

and so C-MM of the inputs is identical to E-MM of their
transformations. For the same reason, C-NN of the inputs
is identical to E-NN of their transformations. Therefore, if
the first index is chosen to be same for both C-MM and E-
MM orderings, CVecchia of y(·) at the inputs x1, . . . , xn
is equivalent to EVecchia of y

(
ψ−1(·)) at the transformed

inputs ψ(x1), . . . , ψ(xn). ��
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