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Gaussian processes (GPs) are popular models for functions, time series, and spatial
fields, but direct application of GPs is computationally infeasible for large datasets. We
propose a multi-scale Vecchia (MSV) approximation of GPs for modeling and analysis
of multi-scale phenomena, which are ubiquitous in geophysical and other applications.
In the MSV approach, increasingly large sets of variables capture increasingly small
scales of spatial variation, to obtain an accurate approximation of the spatial dependence
from very large to very fine scales. For a given set of observations, the MSV approach
decomposes the data into different scales, which can be visualized to obtain insights into
the underlying processes. We explore properties of the MSV approximation and propose
an algorithm for automatic choice of the tuning parameters. We provide comparisons
to existing approaches based on simulated data and using satellite measurements of
land-surface temperature.

Key Words: Covariance approximation; Computational complexity; Large datasets;
Sparsity; Spatial statistics.

1. INTRODUCTION

Gaussian processes (GPs) are commonly used as function priors inmany application areas
such as geospatial analysis (e.g., Banerjee et al. 2004; Cressie andWikle 2011) and machine
learning (e.g., Rasmussen and Williams 2006). GPs are popular because they are flexible,
interpretable, and naturally result in probabilistic uncertainty quantification. However, direct
application of GPs is too computationally expensive for many modern datasets of interest,
as the cost is cubic in the number of data points. Many GP approximations or simplifying
assumptions have been proposed, some relying on sparsity (Furrer et al. 2006; Kaufman
et al. 2008; Du et al. 2009; Lindgren et al. 2011), some relying on low-rank structure (e.g.,
Higdon 1998; Wikle and Cressie 1999; Quiñonero-Candela and Rasmussen 2005; Banerjee
et al. 2008; Cressie and Johannesson 2008; Katzfuss and Cressie 2011), and some on a
combination of the two (e.g., Snelson and Ghahramani 2007; Sang et al. 2011).
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We focus on approximations for a large number of observations of a multi-scale GP,
which is defined here as a GP whose covariance function is a sum of covariance functions
at different scales, or equivalently, as a sum of independent GPs at different scales. Multi-
scale processes are ubiquitous in many geophysical and other applications. For example,
environmental processes are often subject to diurnal, seasonal, and multi-year cycles over
time (Kim et al. 2007); the atmosphere is affected bymicro-scale systems such as clouds and
thunderstorms, but also by extratropical cyclones that act onmuch larger scales (Cotton et al.
2010); and for soil moisture, short-range dependence is governed by surface characteristics
such as soil texture, vegetation, and topography, while long-range dependence is due to
precipitation (Skøien et al. 2003). GPs whose covariance functions are sums of kernels at
different scales are also often used in GP emulation (e.g., Ba and Joseph 2012), astronomy
(e.g., Sobolewska et al. 2014), and machine learning (e.g., Rasmussen and Williams 2006;
Wilson and Adams 2013; Wilson et al. 2014). Further applications can be found in Ferreira
and Lee (2007), for example.

Most of the GP approximations described above can be applied to multi-scale GPs,
by simply considering the marginal distribution of the data, which implicitly collapses
the processes or covariance functions at different scales into one. While its name might
imply differently, this marginal approach is also the one considered in the multi-resolution
approximation (Katzfuss 2017; Katzfuss andGong 2020). In contrast, wewill show here that
it can be highly advantageous to exploit the multi-scale structure explicitly and to specify a
suitable approximation for each scale.

Multi-scale approaches from engineering often do not result in consistent joint statis-
tical models, and they usually focus on the development of coarser representations of the
phenomenon of interest in order to obtain fast computational algorithms (e.g., Saquib et al.
1996; Comer and Delp 1999). In statistics, most existing multi-scale approaches use tree-
structured models, and work on data collected at different scales. For example, Zhu et al.
(2004) develop a multi-scale spatial model for soil data collected at varying resolutions and
accuracies, and they define the neighborhood structure using a parent-child relationship in
a multi-scale tree structure. Huang et al. (2002) propose a multi-resolution autoregressive
tree-structured model for fast and resolution-consistent statistical prediction for satellite
data measured at different resolutions. Similar tree-structured approaches can be found in
Gotway and Young (2002) and Tzeng et al. (2005). There also exist some literature on
multi-scale time-series models (Ferreira et al. 2006). These models couple standard linear
models at different time scales via stochastic links across scales. Ferreira and Lee (2007)
give an overview of these multi-scale models.

We propose here a multi-scale Vecchia (MSV) approximation for multi-scale GPs
observed at point level, which essentially combines suitable Vecchia approximations at
each of the different scales. The Vecchia approximation, originally proposed for the data
vector directly (i.e., for a single level) in Vecchia (1988), replaces the high-dimensional
joint distribution of the entire data vector with a product of univariate conditional distribu-
tions, in which each conditional distribution only conditions on a small subset of previous
observations in some ordering. This can lead to tremendous computational savings if each
conditioning set is small, which can be assumed if the so-called screening effect holds.
For certain covariance functions, the prediction at a particular location only depends on
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nearby observations, which is known as the screening effect. However, the screening effect
is relatively weak when observations include a nugget or noise term. Katzfuss and Guinness
(2021) and Katzfuss et al. (2020a) proposed a general Vecchia approach that treated the
noise term separately from the continuous covariance component, and thus showed that the
screening effect can largely be restored and the conditioning sets can be small.

OurMSVapproach essentially extends the general-Vecchia idea tomultiple levels: at each
level, a suitable Vecchia approximation is found for the process acting at the corresponding
scale. Roughly speaking, smooth large-scale processes can be approximated well using
low-rank approaches, while non-smooth fine-scale processes often exhibit strong screening
effects and thus can be approximated well using small conditioning sets. In this context, a
nugget or noise term is the ultimate fine-scale process, which is independent over space and
thus does not require any conditioning. As shown by Katzfuss and Guinness (2021), all of
these different approximations are merely special cases of the Vecchia approach and thus
can be combined into the MSV here.

We describe how to efficiently conduct inference using the MSV, and we provide an
algorithm for automatic choice of the number of knot variables and the conditioning set size
at each level. This algorithm is also applicable and useful for one-level (Vecchia 1988) or
two-level (Katzfuss and Guinness 2021) Vecchia approximations. Our approach also leads
to nice decompositions and visualizations of the different scales, which can be highly useful
in many scientific contexts. We generally assume the covariance functions at the different
levels (and the number of levels) to be known (e.g., from expert knowledge, or by using
existing algorithms), and focus on accurate approximation of the resulting spatial depen-
dence; however, we also provide a computationally cheap approximation to the integrated
likelihood, which can be employed for parameter inference.

The remainder of this article is organized as follows. Section 2 introduces the multi-scale
Vecchia approximation and an algorithm for automatic choice of the tuning parameters. In
Sect. 3, we conduct numerical studies and comparisons to existing approaches. Section 4
provides an application of MSV to satellite measurements of land-surface temperature. We
conclude in Sect. 5. The appendix contains further derivations and proofs.

2. METHODOLOGY

2.1. A MULTI-SCALE GAUSSIAN PROCESS

Consider a Gaussian process (GP) z(·) ∼ G P(0, C) with covariance function C on a
domain or spatial regionD ⊂ R

d . Assume that z(·) is a multi-scale process in the sense that

z(·) = ∑L
�=1 y(�)(·), where the processes at the individual levels, y(�)(·) ind.∼ G P(0, C (�)),

� = 1, . . . , L , are ordered from large scales to fine scales. We think of the scale of a process
here in terms of the effective range of its covariance function (i.e., the distance beyondwhich
the correlation drops below a small threshold, such as 0.05), and we assume throughout that
y(L)(·) is Gaussian white noise. For example, in spatial statistics, z(·) is often modeled as
the sum of a large-scale, fine-scale, and nugget or noise component. A simple toy example
is shown in Fig. 1.



J. Zhang, M. Katzfuss

Due to the independence assumption of the different processes, the covariance of z(·) is

C(si , s j ) =
L∑

�=1

C (�)(si , s j ), si , s j ∈ D. (1)

Assume we have n observations z = (z1, . . . , zn)� of z(·), such that zi = z(si ). In
general, inference involving n observations of a GP requires O(n2) memory and O(n3)

time. This is computationally infeasible when n is in the tens of thousands or more, and so
for many datasets of interest, GP approximations are necessary.

2.2. MULTI-SCALE VECCHIA APPROXIMATION

To obtain a fast approximation of the GP z(·), one could simply apply an existing GP
approximation to z(·) directly, using the “collapsed” covariance function C in (1). However,
the main idea of our multi-scale Vecchia (MSV) approximation is that it can often be highly
beneficial to consider each covariance C (�) separately, and tailor an approximation specifi-
cally to each of the L levels. Simply speaking, smooth large-scale components can often be
approximated well by a low-rank process relying on a small number of anchoring points or
knots, and non-smooth fine-scale components often exhibit strong screening or conditional-
independence properties (see Sect. 2.3 for more details), while neither approximation might
work well for the sum of the two components.

To specify the MSV, define y(�) = (y(�)(s1), . . . , y(�)(sn))� = (y(�)
1 , . . . , y(�)

n )� for
each level � = 1, . . . , L − 1. The vector of anchoring points or knots at level �, denoted
by y� = (y(�)

1 , . . . , y(�)
n�

)�, is assumed to consist of the latent process evaluated at the
first n� observation locations in the chosen ordering. Stack all variables into a vector x =
(y�

1 , y�
2 , . . . , y�

L−1, z
�)�.

The exact distribution of the observation vector z is given by f (z) = ∫
f (x)dy1:L−1,

where

f (x) = (∏L−1
�=1

∏n�

i=1 f (y(�)
i |y(�)

1 , . . . , y(�)
i−1)

)(∏n
i=1 f (zi |y1, . . . , yL−1, z1, . . . , zi−1)

)
.

When i = 1, the conditioning set of y(�)
i is empty, and the conditioning set of z1 does

not include any other z j . Our MSV approximation is essentially a Vecchia approximation
applied to the distribution f (x),

f̂ (x) =
( L−1∏

�=1

n�∏

i=1

f (y(�)
i |Ny(�)

i
)
)( n∏

i=1

f (zi |Nzi )
)
,

where for each y(�)
i the full conditioning set y(�)

1 , . . . , y(�)
i−1 is replaced by a subset Ny(�)

i
,

which denotes the nearest min{m�, i − 1} variables in space to variable y(�)
i among the

previously ordered knot variables {y(�)
1 , . . . , y(�)

n�
}. For each zi the full conditioning set is

replaced by a subset Nzi = {N (1)
zi , . . . , N (L−1)

zi }, where N (�)
zi = {y(�)

i } for i ≤ n�, and
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N (�)
zi consists of the nearest m� variables in space to variable zi among the knot variables

{y(�)
1 , . . . , y(�)

n�
} for i > n�.

Thus, to specify anMSV approximation, first an ordering of the locationsmust be chosen,
resulting in s1, . . . , sn . Then, for each level � = 1, . . . , L − 1, based on having selected n�

and m�, the Vecchia conditioning set for each variable consists of the nearest m� previously
orderedvariables among then� knots (i.e., the variables corresponding to thefirstn� locations
in the ordering). For the data level z, the Vecchia conditioning set for each variable consists
of the nearest m� variables among the n� knots, � = 1, . . . , L − 1.

2.3. EXAMPLES OF COVARIANCE APPROXIMATIONS

Many types of covariances can be approximated very well using special cases of the
Vecchia approximation. We give some examples here, mostly with isotropic covariance
functions, which are specified as functions of the distance r = ‖si − s j‖ between two
locations. However, our approach does not require isotropy.

Polynomial Consider a polynomial y(�)(s) = p(s)�β as a function of location s with
p coefficients β ∼ Np(0,�β), which is often used to capture a large-scale trend term
in spatial applications. Such a polynomial can be approximated exactly using a Vecchia
approximation with n� = m� = p (see Proposition 1 in Appendix C). For example, in
two-dimensional space, we might set p(s) = (1, s1, s2, s21 , s22 , s1s2)� for s = (s1, s2)� and
thus p = 6.

Squared exponential The squared exponential covariance function, C (�)(r) ∝ exp
(−r2/λ2), leads to covariance matrices with exponentially decaying spectrum. Thus, the
resulting covariance matrices are approximately low-rank. A process of rank n� can be
approximated using Vecchia with a coarse grid of n� knots over D, and by conditioning on
all previous variables in the knot set (i.e., m� = n�).

Exponential Covariance matrices based on the exponential covariance, C (�)(r) ∝
exp(−r/λ), have a slowly decaying spectrum, and so a good approximation requires the
knot set to be essentially equal to the set of observed locations (i.e., n� ≈ n). However,
the precision matrix (i.e., the inverse of the covariance matrix) is typically approximately
sparse, meaning that a strong screening effect holds. In the context of a Vecchia approxima-
tion, this allows us to choose the conditioning set to consist of only a small number m� of
nearby locations. For example, in one dimension one can achieve an exact approximation by
ordering locations from left to right and only conditioning on the m� = 1 previous variable.

Matérn The Matérn class of covariance functions has a smoothness parameter ν, with
realizations being k times differentiable if ν > k. It includes the exponential (ν = 0.5)
and squared exponential (ν = ∞) covariance as special cases on (almost) opposite ends
of the smoothness spectrum. For covariance functions in between these extreme cases, we
generally need fewer and fewer knots but (relatively) larger and larger conditioning sets
(i.e., smaller n� but larger m�/n�) as ν increases.
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Nugget Aspatially independent noise term, also called a nugget, is the ultimate fine-scale
process with covariance function C (�)(r) ∝ 1[r=0]. Due to the independence, the knot set
has to be equal to the observed locations (i.e., n� = n), but Vecchia is exact even if m� = 0.

2.4. INFERENCE

2.4.1. Matrices Needed for Inference

Similarly to Proposition 1 in Katzfuss and Guinness (2021), we can write the MSV as

f̂ (x) =
L−1∏

�=1

( n�∏

i=1

N
(

y(�)
i |B(�)

i Ny(�)
i

, D(�)
i

) )( n∏

i=1

N (zi |B(L)
i Nzi , D(L)

i )

)

= Nn+∑L−1
�=1 n�

(x|0, Ĉ),

where Ĉ−1 = UU�, Cov(y(�)
i , y(�)

j ) = C (�)(si , s j ), and for � = 1, 2, . . . , L − 1,

B(�)
i = Cov(y(�)

i , Ny(�)
i

) Cov(Ny(�)
i

, Ny(�)
i

)−1,

D(�)
i = Cov(y(�)

i , y(�)
i ) − B(�)

i Cov(Ny(�)
i

, y(�)
i ), (2)

and for � = L ,

B(L)
i = Cov

(
zi , Nzi

)
Cov

(
Nzi , Nzi

)−1
,

D(L)
i = Cov (zi , zi ) − B(L)

i Cov
(
Nzi , zi

)
. (3)

The sparse upper-triangular matrix U can be specified based on the B(�)
i and D(�)

i as
detailed in Appendix A.

2.4.2. Likelihood

Similarly to Katzfuss and Guinness (2021), the likelihood f̂ (z) = ∫
f̂ (x)dy1:L−1 can

be computed based on U as

−2 log f̂ (z) = ∑L
�=1

∑n�

i=1 log D(�)
i + 2

∑∑L−1
�=1 n�

i=1 logVi i + z̃�z̃
−(V−1Uy z̃)�(V−1Uy z̃) + n log(2π), (4)

where V = chol(W) is the upper triangular Cholesky factor ofW:=UyU�
y , z̃ := U�

z z, and
Uy andUz are thematrices consisting only of the rows ofU corresponding to (y1, . . . , yL−1)

and z, respectively.
This expressionof theMSV likelihood canbe evaluated cheaply.Thus,whilewegenerally

assume model parameters (e.g., in the covariance functions C (�)) to be fixed here, the MSV
likelihood in (4) allows us to carry out frequentist and Bayesian inference on unknown
model parameters. Note that there might be identifiability issues when the number of levels
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L is large. To avoid this, the parameter spaces are often restricted, sometimes through
prior distributions, to ensure identifiability, with lower levels accounting for longer-range
dependence (e.g., Ba and Joseph 2012).

2.4.3. Prediction

For prediction at observed and unobserved locations, we first consider the posterior
distribution of y1:L−1 = (y�

1 , y�
2 , . . . , y�

L−1)
� given z. In an adaptation of the results in

Katzfuss et al. (2020a), we have

y1:L−1|z ∼ N (μ,W−1),

where μ = −(V�)−1V−1Uy z̃ and W = UyU�
y can be computed cheaply based on U and

V.
Now consider linear combinations of the form Hy1:L−1. For example, we might be

interested in inference on each scale y� = H�y1:L−1, where H� is a submatrix of the
identity, for � = 1, . . . , L − 1. Similar to Katzfuss et al. (2020a, Sect. 3.3), we have

Hy1:L−1|z ∼ N (Hμ,�H),

where the covariance matrix can be computed as �H = (V−1H�)�(V−1H�), and its
diagonal elements can be computed as diag(var(Hy1:L−1|z)) = ((V−1H�)◦(V−1H�))�1,
where ◦ denotes element-wise multiplication and 1 is a vector of ones.

For prediction of y(�)(·) at any unobserved location s0 based on observed location set S�,
we show in Appendix B that

E(y(�)(s0)|z) = C (�)(s0,S�)U(�)U(�)�H�μ (5)

and

var(y(�)(s0)|z) = C (�)(s0, s0) − c�(s0)�c�(s0) + c̃�(s0)�c̃�(s0), (6)

where c�(s0) = U(�)�C (�)(S�, s0), c̃�(s0) = V−1H�
� U

(�)c�(s0), and U(�) is the block of
U corresponding to knot variables at level �. These posterior distributions are illustrated in
Fig. 1.

2.5. AUTOMATIC CHOICE OF KNOTS AND CONDITIONING SETS

To specify the MSV for a given dataset, for each level we need to determine the knot
and conditioning sets, based on an ordering of the locations. To simplify this problem,
assume that the locations {s1, . . . , sn} are ordered using a maximum–minimum distance
(maxmin) ordering (Guinness 2018; Schäfer et al. 2017) and that the variables in each
y(�) = (y(�)(s1), . . . , y(�)(sn))� = (y(�)

1 , . . . , y(�)
n )� are ordered accordingly. The maxmin

ordering sequentially selects eachvariable in the ordering tomaximize theminimumdistance
to all previously ordered variables, and thus attempts to spread out the first k locations in
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Figure 1. A simple toy
example of a observations z of a
multi-scale process obtained as
the sum of components (colored
dots and lines) with b squared
exponential, c exponential, and d
nugget covariance, respectively,
on a one-dimensional domain
D = [0, 10]. Posterior means
(black solid lines) and 95%
intervals (black dashed lines) for
levels 1 and 2 were obtained
using MSV as discussed in
Sect. 2.4.3. Knot sets and
conditioning set sizes were
computed using Algorithms 1
and 2 and led to a virtually exact
approximation, so that the
approximate posterior
summaries are basically
identical to those obtained using
the exact GP .

(a) Observations z

(b) y(1)(·); n1 = m1 = 12

(c) y(2)(·); m2 = 1

(d) y(3)(·)

the ordering as much as possible, for any k. As described in Sect. 2.2, we specify the knot
variables y� = (y(�)

1 , . . . , y(�)
n�

)� as the first n� variables in this ordering. The conditioning
vector Ny(�)

i
consists of the nearest m� variables in space to variable y(�)

i among previously

ordered variables in y�.
Given these constraints,we only need to choose n� andm� for each level � = 1, . . . , L−1.

If we simply set n� = m� = n, the approximation will be exact, but this choice leads
to computational infeasibility when n is large. Hence, we propose to pick the smallest
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(a) KL(f(y(�))||f̂(y(�))) (b) n
i=1 log(D(�)

i ) (c) i∈T log(D(�)
i )

Figure 2. For the KL divergence and two computationally cheaper alternative quantities, differences for subse-
quent values of the size m� of the conditioning sets, for a Matérn covariance function with range 1 and different
smoothness values ν. Numerically, we show that convergence of KL divergence as a function of m� is equivalent
to convergence of the sum of all log conditional variances, which in turn is closely approximated by the sum of
log conditional variances for the last t = 20 locations in maxmin ordering .

n� and m� at each level such that the improvement in accuracy by increasing n� and m�

further is negligible. We consider the Kullback–Leibler (KL) divergence between the exact
and approximate distribution as a measure of accuracy. Explicit computation of the KL
divergence requiresO(n3) time and is hence impractical for large n, but it turns out that we
do not have to calculate it explicitly to implement our desired algorithm.

Theorem 1. For each level � = 1, . . . , L − 1, the KL divergence between the true
distribution f (y(�)) and a Vecchia approximation f̂ (y(�)) is given by

K L
(

f (y(�))|| f̂ (y(�))
)

= 1

2

n∑

i=1

log(D(�)
i ) − c( f (y(�)))

where D(�)
i = V ar(y(�)

i |Ny(�)
i

) is the conditional variance given in (2), and c( f (y(�)))

depends on the exact distribution f (y(�)) but is constant with respect to m�, n�.

The proof can be found in Appendix C. Thus, minimizing (as a function of n� and m�) this
KL divergence at each level l = 1, . . . , L − 1 is equivalent to minimizing the sum of (or
each of) the log(D(�)

i ) over all variables or locations. In practice, to achieve further speed-
ups for large datasets, we minimize the conditional variances for a systematically chosen
subset of locations, specifically the last t locations in the maxmin ordering, with indices
T = {n − t + 1, . . . , n}. Figure 2 illustrates this can be a valid approach.

The resulting proposed procedure for automatically choosing the tuning parameters n�

and m� is described in Algorithm 2, which relies on Algorithm 1 for choosing m� for a fixed
n�. Note that Algorithm 2 can be run in parallel for each � = 1, 2, . . . , L − 1.

In Algorithm 1, for given n�, we choosem� based on

∣
∣
∣
∣
log D(�)

j (m�+1)−log D(�)
j (m�)

log D(�)
j (m�)

∣
∣
∣
∣, which is

the relative difference of the logarithmof conditional variance D(�)
j for j ∈ T . In practice,we

choose the size of T as min{1000, n}. Note that, especially for large m�, Cov(y
N (�)

j
, y

N (�)
j

)

can become numerically singular, in which case we have D(�)
j = NA. But this would also
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Algorithm 1 chooseM: Automatic choice of m� for given n�

1: Input: Covariance C(�), tolerance ε > 0, maximum conditioning set size mmax, knot set size n�

2: for m� = 1, 2, . . . ,min(mmax, n�) do
3: Compute D(�)

j (m�) = var(y(�)
j |y

N (�)
j

) using n�, m� for all j ∈ T

4: if ∀ j ∈ T,

∣
∣
∣
∣
∣

log D(�)
j (m�+1)−log D(�)

j (m�)

log D(�)
j (m�)

∣
∣
∣
∣
∣
< ε or D(�)

j (m� + 1) = NA then

5: Break
6: end if
7: end for
8: return m� and corresponding D(�)

j∈T

Algorithm 2 Automatic choice of n� and m�

1: Input: C(�), n, ε, mmax, T . Default: mmax = 30
2: n� = 0,stepsize = 1,MinSum = ∞
3: while n� ≤ n do
4: n� = n� + stepsize

5: [m�, D(�)
j∈T ] = chooseM (C(�), ε, mmax, n�) (Algorithm 1)

6: if lastD(�)
j exists and ∀ j ∈ T,

∣
∣
∣
∣
∣

log D(�)
j −loglastD(�)

j

loglastD(�)
j

∣
∣
∣
∣
∣
< ε or D(�)

j = NA then

7: Break
8: end if
9: if

∑
j∈T D(�)

j < MinSum then

10: MinSum = ∑
j∈T D(�)

j
11: best_m� = m�

12: best_n� = n�

13: end if
14: lastD(�)

j∈T = D(�)
j∈T

15: stepsize = 2 ∗ stepsize
16: end while
17: return best_n�, and best_m�

imply that enlarging the conditioning set does not result in any improvement in the condi-
tional variance, and so the algorithm will stop. Similarly, we also terminate the algorithm if
D(�)

j is extremely small (smaller than some specified threshold ε).

In Algorithm 2, we start with n� = 1, and compute D(�)
j∈T using Algorithm 1. To speed up

the algorithm, we double the step size of n� and compute the corresponding D(�)
j∈T at each

iteration until n� reaches the data size n or the relative difference of logarithm of conditional
variance for each location in T converges.

We illustrate Algorithms 1 and 2 for a Matérn covariance in Fig. 3. We also applied
Algorithm 2 to the toy example of n = 100 simulated observations in Fig. 1, for which a
virtually exact approximation was obtained for n1 = m1 = 12, n2 = n = 100, and m2 = 1.

When optimizing the MSV likelihood in (4) with respect to unknown covariance param-
eters using an iterative procedure, we recommend not carrying out Algorithm 2 at every
iteration, to lower the computational cost. Instead, Algorithm 2 could be carried out only
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(a) Algorithms 1 (given n1 = 63) (b) Algorithm 2

Figure 3. Illustration of Algorithms 1 and 2 for a Matérn covariance with effective range 1, variance 1 and
smoothness 3.5 on a two-dimensional domain D = [0, 1]2 with sample size 900. For illustration purposes, we
show the relative difference of logD at three locations, and include the maxima over all locations in the last t
locations in the maxmin ordering. a Shows that given n1 = 63, the relative difference of log conditional variances
converges at m1 = 20. b Shows that the relative difference of log conditional variances converges at n1 = 148,
which in turn results in a corresponding m1 = 21 .

based on the initial and final values parameter values, or at increasing intervals during the
parameter optimization (e.g., at iterations 2, 4, 8, 16, …).

2.6. SPARSITY AND COMPUTATIONAL COMPLEXITY

The matrix U is upper triangular and sparse. The columns of U corresponding to y� =
(y(�)

1 , . . . , y(�)
n�

)� have at most m� nonzero off-diagonal entries per column, and so they
can be computed in O(n�m3

�) time. Each zi may condition on m� variables at each level

� = 1, . . . , L − 1, but the levels are independent, and so the matrix Cov(Nzi , Nzi ) in B(L)
i

in (3) is block-diagonal. Hence, computing the columns of U corresponding to z takes at
mostO(n

∑L−1
�=1 m3

�) time; however, the actual computing time can be much lower, because

for any i ≤ n�, we can simply use N (�)
zi = {y(�)

i }.
Thus, U is highly sparse and can be calculated quickly. This often also results in a

sparse Cholesky factor V of UU�, based on the use of ordering algorithms such as approx-
imate minimum degree. In addition, in-fill can be avoided completely through the use of
an incomplete Cholesky algorithm, often without introducing significant additional error
(Schäfer et al. 2020).

The complexity of each iteration in Algorithm 1 isO(tm3
�), and so the overall complexity

of Algorithm 1 isO(tm4
�), which is Line 5 in Algorithm 2. Because the step size is doubled

at each iteration (Line 15), the overall complexity of Algorithm 2 is O(tm4
� log n).

3. NUMERICAL COMPARISON

We considered simulated data fromGaussian processes with L = 3 levels with aMatérn,
exponential, and nugget covariance, respectively. We compared the following approaches:
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Figure 4. Comparison of KL
divergence (on a log scale)
against computational
complexity for simulated data on
a one-dimensional domain
D = [0, 10] with n = 900 from
a 3-level GP with Matérn
(smoothness 2.5, variance 1 and
effective range 5), exponential
(variance 0.32 and effective
range 2.996), and nugget (0.12)
covariance .

Standard: The original Vecchia approximation (Vecchia 1988), which from our perspec-
tive is a 1-level Vecchia approximation that is applied directly to the covariance
function of the data, obtained by collapsing all levels into one as in (1).

Latent: The latent Vecchia approach (e.g., Datta et al. 2016; Katzfuss andGuinness 2021)
can be viewed as a 2-level Vecchia approximation, for which the second level
must be Gaussian white noise, C̃ (2) = C (L), and so all other levels in our model
are collapsed into one, C̃ (1) = ∑L−1

�=1 C (�).

MSV: The multi-scale Vecchia approximation proposed in previous sections, here with
L = 3 levels.

As all approaches can be highly accurate but also slow for large conditioning-set sizes,
we compared the KL divergence to the true distribution as a function of computational
complexity, which was taken to be nm3, n(m3 + 1), and n

∑L−1
�=1 m3

� for Standard, Latent,
and MSV, respectively. Standard and Latent only use a single conditioning-set size m; for
MSV, we ran Algorithm 2 for various ε values, and then computed the complexity and KL
divergence based on the resulting values of n� and m�.

Figure 4 shows a comparison on a one-dimensional domain with a relatively small data
size of n = 900, which allowed us to compute the exact KL divergence. MSV clearly
outperformed the other approaches, except for the very-low-complexity setting.

Then, we considered larger datasets of size n = 6,400 on a two-dimensional domain.
One simulated dataset is illustrated in Fig. 5. Figure 6 shows comparisons in terms of
KL divergence; to avoid the high computational cost of repeatedly calculating the exact
KL divergence, we approximated it by subtracting each method’s loglikelihood from the
loglikelihood for MSV with the largest possible conditioning sets.

MSV was again more accurate than Latent for a given computational complexity, and
both methods strongly outperformed Standard Vecchia.

The focus of our paper is on approximating a given covariance structure, including a given
number of levels L , and hence, this is what we examined in our simulation study. MSV can
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(a) Observations z (b) y(1) (c) y(2) (d) y(3)

Figure 5. 2Dexample of a observations zof a three-scale process basedon componentswithbMatérn (smoothness
2.5, variance 1 and effective range 5), c exponential (variance 0.32 and effective range 3), and d nugget(0.12)
covariance, respectively, on a two-dimensional domain D = [0, 10]2 .

(a) Matérn effective range λ1 = 5 (b) Matérn effective range λ1 = 8

Figure 6. Comparison of KL divergence (on a log scale) against computational complexity for simulated data
on a two-dimensional domain D = [0, 10]2 with n = 6,400 from a 3-level GP with Matérn (smoothness 2.5,
variance 1, and effective range 5 in (a) and 8 in (b)), exponential (variance 0.32 and effective range 2.996), and
nugget (0.12) covariance .

have any number of levels L ≥ 1. While we considered L = 3 in our numerical examples,
this is not necessary. If, for example, in practice the data were generated using L = 2 levels,
MSVwould ideally also use L = 2 and be equivalent to Latent; if we artificially forcedMSV
to use L = 3, the results would depend completely on how the “wrong” additional level was
specified (i.e., how strong the model misspecification is), and less on how accurately the
MSV is approximating this misspecified model. In this paper, we do not address the issue
of model misspecification, and we instead focus on the setting of approximating a known
multi-level covariance.

4. APPLICATION

We applied the MSV method to 148,309 satellite measurements of daytime land-surface
temperatures from Heaton et al. (2019). The observations are Level-3 data obtained by the
Terra instrument onboard theMODIS satellite on August 4, 2016, over a latitudinal range of
34.29519 to 37.06811, and a longitude range from -95.91153 to -91.28381. According to the
split in Heaton et al. (2019), the training dataset has 105,569 observations, and the testing
dataset has 42,740 observations. We considered the centered data obtained by subtracting
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(a) training data (b) testing data (c) full data

Figure 7. Centered daytime land surface temperature data measured by the Terra instrument onboard the MODIS
satellite on August 4, 2016 .

Figure 8. Illustration of the first
two levels of the new estimated
3-level covariance function as a
function of distance. The
original exponential covariance
(black curve) was estimated in
Heaton et al. (2019), with an
estimated variance of 16.40771
and a range of 4/3 .

an overall (constant) mean, which are shown in Fig. 7. For these centered data, we assumed
a 3-level Gaussian process model with mean zero and with Matérn, exponential, and nugget
covariance, with six unknown parameters. As in Heaton et al. (2019), these six parameters
were estimated (jointly) based on a subsample of size 2,500 using the exact GP, resulting
in the following parameter estimates: for the Matérn level, variance 19.8656, range 0.3573,
smoothness 4.9894; for the exponential level, variance 2.6772, range 0.0665; and nugget
variance 0.6917. The resulting covariance function is illustrated in Fig. 8.

For the full training dataset, we used Algorithm 2, with mmax = 30, ε = 0.001, and
T = 1,000 (i.e., the last 1000 locations in the maxmin ordering). The algorithm selected
m1 = 13, n1 = 16,383 for level 1 (Matérn), and m2 = 23, n2 = n = 105,569 for
level 2 (exponential covariance). Given these knots and conditioning sets, we computed
the posterior predictive distribution using MSV. To give a rough idea of computing time, it
took around eight minutes to compute point predictions at the 42,740 test locations (Intel
Core i7-7700K, 4.2GHz, 32GB RAM). Note that both training data and testing data were
noisy observations, with the true underlying process unknown. Hence, MSV predictions
were obtained at both training locations and testing locations.

The prediction results are shown in Fig. 9.We can see that the first level (Fig. 9a) captures
the large-scale spatial dependence, and the second level (Fig. 9b) captures smaller-scale
spatial dependence. The overall predicted values (i.e., level 1 plus level 2) given in Fig. 9c
are very close to the full original observations in Fig. 7c.
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(a) prediction at level 1 (b) prediction at level 2 (c) prediction level 1 + level 2

Figure 9. MSV predictions for MODIS temperature data .

Table 1. Comparison of prediction accuracy scores for MSV and the best-performing existing methods from
Heaton et al. (2019) on the MODIS temperature data

Method MAE RMSE INT CVG

MSV 1.11 1.42 7.32 0.88
FRK 1.96 2.44 14.08 0.79
Gapfill 1.33 1.86 34.78 0.36
LatticeKrig 1.22 1.68 7.55 0.96
LAGP 1.65 2.08 10.81 0.83
Metakriging 2.08 2.50 10.77 0.89
MRA 1.33 1.85 8.00 0.92
NNGP 1.21 1.64 7.57 0.95
Partition 1.41 1.80 10.49 0.86
Pred.Proc. 2.15 2.64 15.51 0.83
SPDE 1.10 1.53 8.85 0.97
Tapering 1.87 2.45 10.31 0.93
Periodic Embedding 1.29 1.79 7.44 0.93

The smaller of MAE, RMSE, INT, the better; the closer of CVG to 0.95, the better

As the dataset considered here is the same one used for the comparison study of many
recent methods for large spatial data in Heaton et al. (2019), we also compared the MSV
prediction accuracy on the test data to the accuracy of existing methods reported in Heaton
et al. (2019). We considered the mean absolute error (MAE), the root mean squared error
(RMSE), and the interval score (INT, e.g., Gneiting and Katzfuss 2014) and prediction
interval coverage (CVG, i.e., the proportion of intervals containing the test value) for 95%
prediction intervals. The results, shown in Table 1, indicate that the multi-level approach
(MSV) was highly competitive with the leading existing methods in Heaton et al. (2019).

5. CONCLUSIONS

We proposed a multi-scale Vecchia (MSV) approximation of Gaussian processes for
modeling multi-scale phenomena. Our MSV method can tailor suitable Vecchia approx-
imations to the processes acting at different scales. Increasingly large sets of variables
capture increasingly small scales of spatial variation, to obtain an accurate approximation
of the spatial dependence from very large to very fine scales. We conducted inference using
the MSV method, explored approximation properties, and provided an algorithm for auto-
matic choice of the number of knot variables and the conditioning set size at each level. We
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compared our method to existing variants of the Vecchia approximation using simulated
data. In an application to MODIS daytime land-surface temperature data, our multi-scale
method exhibited highly competitive performance relative to a large set of existing methods
for large spatial data in Heaton et al. (2019). Our approach also leads to nice visualizations
of different scales, which can be highly useful in many scientific contexts.

Our algorithm for determining tuning parameters for the Vecchia approximations at
different levels or scales is also applicable and useful for single-level (Vecchia 1988) or two-
level (Katzfuss and Guinness 2021) Vecchia approximations. It is also possible to consider
hybrids betweenMSVand, say, single-levelVecchia, by including nearby previously ordered
z j in the conditioning set of zi . While we have assumed here for simplicity that the data
are obtained as an unweighted sum of the latent processes at different scales, extending
our methodology to observations that are modeled as (different) linear combinations of the
individual scales (including some with zero weight) is straightforward. Our method could
also be combined with compositional kernel search (Duvenaud et al. 2013), which expresses
the covariance function or kernel of a GP as a sum of kernels, which are obtained using a
greedy search over sums and products of a number of base kernels.
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A. COMPUTING U

Extending the derivations in Section 2.4.1, the sparse upper triangular matrix U can be
specified by the following rules:
(1) For each � = 1, 2, ..., L − 1, denote U(�) as the block of U corresponding to level � with
size n� × n�. For each i = 1, 2, ..., n�,

U(�)
i i = (D(�)

i )−1/2.

For the conditioning set of y(�)
i , suppose the s-th element in its conditioning set is y(�)

i ′ , then

U(�)

i ′i = −{B(�)
i }s(D(�)

i )−1/2,

where {B(�)
i }s is the s-th element of B(�)

i .
(2) For the data level L , first denote an n × n diagonal matrix by

U(L)(L) = diag
(
(D(L)

1 )−1/2, (D(L)
2 )−1/2, ..., (D(L)

n )−1/2
)

.
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Next, for � = 1, 2, ..., L −1, denote an n�×n matrixU(L)(�) as the block ofU corresponding
to {N (�)

zi , i = 1, 2, ..., n}. Then, for each i , suppose the s-th element in N (�)
zi is y(�)

i ′ , then

U(L)(�)

i ′i = −{B(L)
i }s(D(L)

i )−1/2.

(3) Finally, the matrix U is

U =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

U(1) U(L)(1)

U(2) U(L)(2)

. . .
...

U(L−1) U(L)(L−1)

U(L)(L)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

All unmentioned entries in U are 0.

B. PREDICTION AT UNOBSERVED LOCATIONS

For simplicity in the proof, denote S as the locations corresponding to the knot set at

level �. First, we show
(
C (�)(S,S)

)−1 = U(�)U(�)�. When � = 1, denote U =
(
U1 U2

0 U3

)

,

where U1 = U(1) is the block of U corresponding to knot variables at level 1. Then,

Ĉ−1 = UU� =
(
U1 U2

0 U3

) (
U�
1 0

U�
2 U�

3

)

=
(
U1U�

1 + U2U�
2 U2U�

3
U3U�

2 U3U�
3

)

.

Since we can also write Ĉ−1 as Ĉ−1 =
(

C (1)(S,S) A
A� B

)−1

=
(

E F
F� G

)

, by the property

of matrix inverse in block form, C (1)(S,S)−1 = E − FG−1F�. Thus we have

C (1)(S,S)−1 = U1U�
1 + U2U�

2 − U2U�
3 (U3U�

3 )−1U3U�
2 = U1U�

1 = U(1)U(1)�.

For any � > 1, similar results hold: C (�)(S,S)−1 = U(�)U(�)�.

UsingAlgorithm 2 and achieving a KL divergence of (almost) zero, theMSV approximation
based on the knot set y� at level � is (almost) exact, and so we assume that all information
about the process at level � is captured by knot set y�. Then, the posterior mean in (5) at an
unobserved location s0 can be computed as

E(y(�)(s0)|z) =E
(

E(y(�)(s0)|y�, z)|z
)

= E
(

E(y(�)(s0)|y�)|z
)

=C (�)(s0,S)
(

C (�)(S,S)
)−1

E(y�|z)
=C (�)(s0,S)U(�)U(�)�H�μ.
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The posterior variance in (6) can be computed as

var(y(�)(s0)|z)
=E

(
var(y(�)(s0)|y�, z)|z

)
+ var

(
E(y(�)(s0)|y�, z)|z

)

=E
(
var(y(�)(s0)|y�)|z

)
+ var

(
E(y(�)(s0)|y�)|z

)

=E

(

C (�)(s0, s0) − C (�)(s0,S)
(

C (�)(S,S)
)−1

C (�)(S, s0)|z
)

+ var

(

C (�)(s0,S)
(

C (�)(S,S)
)−1

y�|z
)

= C (�)(s0, s0) − C (�)(s0,S)
(

C (�)(S,S)
)−1

C (�)(S, s0)

+ C (�)(s0,S)
(

C (�)(S,S)
)−1

var(y�|z)
(

C (�)(S,S)
)−1

C (�)(s0,S)�

= C (�)(s0, s0) − C (�)(s0,S)U(�)U(�)�C (�)(S, s0)

+ C (�)(s0,S)U(�)U(�)��H�
U(�)U(�)�C (�)(s0,S)�. (7)

The posterior predictive variance for the entire latent process is

var(y(1)(s0) + y(2)(s0)|z)
= E

(
var

(
y(1)(s0) + y(2)(s0)|y1, y2, z

)
|z

)
+ var

(
E

(
y(1)(s0) + y(2)(s0)|y1, y2, z

)
|z

)

= E
(
var

(
y(1)(s0) + y(2)(s0)|y1, y2

)
|z

)
+ var

(
E

(
y(1)(s0) + y(2)(s0)|y1, y2

)
|z

)

= E
((

var(y(1)(s0)|y1) + var(y(2)(s0)|y2)
)

|z
)

+ var
((

E(y(1)(s0)|y1) + E(y(2)(s0)|y2)
)

|z
)

= E
(
var(y(1)(s0)|y1)|z

)
+ E

(
var(y(2)(s0)|y2)|z

)

+ var

(

C (1)(s0,S1)
(

C (1)(S1,S1)
)−1

y1 + C (2)(s0,S2)
(

C (2)(S2,S2)
)−1

y2|z
)

The first two terms can be computed similar to (7). The last term is a linear combination
of y1:L−1, and so it can be calculated by var(Hy1:L−1|z) = (V−1H�)�(V−1H�).

C. PROOFS

Proposition 1. For a polynomial y(�)(s) = p(s)�β as a function of spatial location s
with p coefficients β ∼ Np(0,�β), the corresponding covariance function C (�)(si , s j ) =
p(si )

��βp(s j ) can be captured exactly by setting the knot and conditioning set to be any
distinct p locations.

Proof of Proposition 1. Denote any p distinct locations as {s1, s2, ..., sp}. For poly-
nomial y(s) = p(s)�β with β ∼ Np(0,�β), the system of equations {p(s1)�β =
y(s1),p(s2)�β = y(s2), ...,p(sp)

�β = y(sp),p(s)�β = y(s)} is equivalent to the
system of equations {p(s1)�β = y(s1),p(s2)�β = y(s2), ...,p(sp)

�β = y(sp)}, thus
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P
(
y(s)|y(s1), y(s2), ..., y(sp)

) = 1. Then, the exact distribution for y = (y(s1), y(s2),
..., y(sn)) can be written as

f (y) =
n∏

i=1

f (y(si )|y(shi ))

= f (y(s1)) f (y(s2)|y(s1)) f (y(s3)|y(s1), y(s2)) · · · f (y(sp)|y(s1), y(s2), ..., y(sp−1))·
n∏

i=p+1

f (y(si )|y(s1), y(s2), ..., y(sp)),

which equals f̂ (y) in Vecchia by setting the knot and conditioning set to be {s1, s2, ..., sp}.
Thus, the covariance can be captured exactly. ��

Proof of Theorem 1. The following proof is related to Guinness (2018, Thm. 1).
Suppose the true covariance is �0 and the approximated covariance is �̂. At each
level �, the KL divergence between the two normal distributions can be written as

K L
(

f (y(�))|| f̂ (y(�))
)

= 1
2 E

(
−(y(�))��−1

0 y(�)
)

+ 1
2 E

(
(y(�))��̂−1y(�)

)
+ 1

2 log
|�̂|
|�0| .

Since �0 is the true covariance, the first term E
(
−(y(�))��−1

0 y(�)
)

= −n. Based on

MSV, we have log|�̂| = ∑n
i=1 log D(�)

i . Suppose L0 is the Cholesky factor of �0, then

E
(
(y(�))��̂−1y(�)

)
= tr(UU T �0) = ∑

i, j (LT
0 U )2i j = n. Thus, the KL divergence

can be written as K L
(

f (y(�))|| f̂ (y(�))
)

= 1
2

(
−n + n + ∑n

i=1 log D(�)
i − log|�0|

)
=

1
2

∑n
i=1 log D(�)

i − constant . ��
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