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ABSTRACT

Online trackers are invasive as they track our digital footprints,

many of which are sensitive in nature, and when aggregated over

time, they can help infer intricate details about our lifestyles and

habits. Although much research has been conducted to understand

the e�ectiveness of existing countermeasures for the desktop plat-

form, little is known about how mobile browsers have evolved

to handle online trackers. With mobile devices now generating

more web tra�c than their desktop counterparts, we �ll this re-

search gap through a large-scale comparative analysis of mobile

web browsers. We crawl 10K valid websites from the Tranco list on

real mobile devices. Our data collection process covers both popu-

lar generic browsers (e.g., Chrome, Firefox, and Safari) as well as

privacy-focused browsers (e.g., Brave, Duck Duck Go, and Firefox-

Focus). We use dynamic analysis of runtime execution traces and

static analysis of source codes to highlight the tracking behavior of

invasive �ngerprinters. We also �nd evidence of tailored content

being served to di�erent browsers. In particular, we note that Fire-

fox Focus sees altered script code, whereas Brave and Duck Duck

Go have highly similar content. To test the privacy protection of

browsers, we measure the responses of each browser in blocking

trackers and advertisers and note the strengths and weaknesses of

privacy browsers. To establish ground truth, we use well-known

block lists, including EasyList, EasyPrivacy, Disconnect and Who-

TracksMe and �nd that Brave generally blocks the highest number

of content that should be blocked as per these lists. Focus per-

forms better against social trackers, and Duck Duck Go restricts

third-party trackers that perform email-based tracking.

CCS CONCEPTS
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1 INTRODUCTION

We spend a signi�cant portion of our daily routine sur�ng the web.

Today, we interact with the web in almost every facet of our lives:

socializing, banking, health care, education, and entertainment. As

a result, over the years, we have seen a steady increase in online

tracking activities across websites [55]. With the rapid adoption

of smartphones, mobile devices as of 2016 have started generating

more web tra�c than their desktop counterparts [36, 46]. This

has also prompted the development of new mobile-friendly web

browsers as well as privacy-focused versions.

While numerous empirical studies have been conducted to un-

derstand the prevalence of online tracking in the wild [33, 34, 42,

43, 47, 55, 60], most of such analysis has been done in the con-

text of a desktop browser. Furthermore, app-based mobile tracking

has received some attention [62, 64], but not much research has

been done to analyze and compare mobile browsers, especially

privacy-focused mobile browsers.

However, the mobile platform presents multiple distinct char-

acteristics compared to the desktop platform. For example, mobile

platforms enable additional avenues to track users due to the pres-

ence of several embedded sensors that are directly accessible to

JavaScript programs, often accessible without any user permission.

Das et al. [40] have shown that scripts in the wild have started ex-

ploiting motion sensors to create unique device �ngerprints. More-

over, the content served to mobile browsers can di�er greatly from

those served on their desktop counterparts. Yang et al. [66] show-

cased that almost 26% of the Alexa top one million websites serve

mobile-speci�c pages with signi�cant structural di�erences from

their desktop counterparts.

In order to close the gap and better understand how popular

mobile browsers fare against each other in terms of their e�ec-

tiveness against online tracking, we present a large-scale study

on both popular mobile browsers (e.g., Google Chrome, Firefox,

and Safari) as well as privacy-focused browsers (e.g., Brave, Duck

Duck Go, Firefox-Focus). The listed mobile browsers were cho-

sen based on their popularity on the platforms’ application stores

[26]. We use data-driven analysis to understand the implications

of browser choice for a user and answer the following research

questions — RQ1: What are the major di�erences in the web

tra�c generated for di�erent mobile browsers? We �rst analyze

the distribution of di�erent types of content encountered across

di�erent mobile browsers. Given cookies are an important mode of

stateful tracking, we next analyze the distribution of cookies per

website. To see the di�erences in API usage, we also look at the

counts of web APIs and property accesses made by each browser.

We divide the APIs and property accesses into general categories to

better summarize the observed web-behavior. Leveraging the exe-

cution trace of scripts that we record in our measurement, we then

observe how many times each class of API was called in a browser.
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Our analysis helps us understand the major di�erences that arose

in our crawls. RQ2: How e�ective are mobile browsers in block-

ing privacy-intrusive web content? We use popular blocking

lists to provide a comparative analysis of how mobile browsers

are blocking di�erent web content. We assume that the closer a

browser emulates the ad and tracker blocking list, the higher its

e�cacy is in terms of privacy protection. The goal is to evaluate

the e�ectiveness of di�erent privacy-focused mobile browsers in

terms of how well they block well-known tracking content. We

measure the should-be-blocked domains and observe the extent of

tracking as seen in each browser.RQ3:Do invasive �ngerprinters

discriminate against users based on the browser they use? We

de�ne invasive �ngerprinters as scripts that use non-traditional �n-

gerprinting heuristics to target browsers. Using dynamic analysis,

we apply state-of-the-art heuristics to �rst identify such opportunis-

tic �ngerprinters and then observe their behavior across browsers.

Next, we reveal the number of websites that were targeted by such

scripts across each browser. Then we explain why certain browsers

may guard better against such tracking mechanisms. We also use

static analysis to measure content-level di�erences that may arise

as script authors may deterministically serve altered versions of

the code to users based on their browser choice.

To answer these research questions, we �rst collect data using

real Android and iPhone devices. Next, we collected data from six

popular mobile browsers, including three privacy-focused browsers.

To ensure fair comparison across all the browsers, we successfully

load the same 10K websites from the Tranco 1-million websites [54]

across all browsers. Using mitmproxy as our HTTP proxy, we also

inject scripts to track the runtime access to well-known privacy-

invasive web APIs and DOM properties. This enables us to dynam-

ically analyze web behavior encountered across di�erent mobile

browsers.We also perform static analysis on the common JavaScript

codes encountered across all browsers to highlight di�erential be-

havior across di�erent mobile browsers. Lastly, we replicate our

analyses across two datasets, collected at two di�erent timestamps,

to showcase the consistency of our �ndings.

In this paper, we make the following contributions:

• We perform a large-scale comparative analysis of mobile

web browsers by crawling the Tranco 10K+ websites using

six popular mobile browsers: Chrome, Firefox, Firefox Fo-

cus, Duck Duck Go, and Brave. We develop an automated

crawling system using real smartphones to collect the neces-

sary data, including source codes and execution traces of the

scripts. We have publicly released our code and dataset. 1

• We conduct a di�erential analysis to compare and contrast

the tra�c-level characteristics, as well as the contents served

to di�erent browsers. In addition, we observe the distribution

of �rst and third-party requests and cookies set among the

browsers. We also analyze the di�erent APIs accessed across

the six mobile browsers.

• For di�erent privacy-focused browsers, we analyze the e�ec-

tiveness of blocking unwanted web content using popular

blocking lists, including EasyList, EasyPrivacy, Disconnect,

and WhoTracksMe. Our results show that Brave generally

1https://github.ncsu.edu/azafar2/mobile_browser_privacy_analysis.git

outperforms other browsers in terms of protecting privacy-

invasive content.

• Lastly, we perform static and dynamic analysis using source

code and execution traces of the code to observe any di�er-

ential treatment by the scripts and websites on the browsers.

The remainder of the paper is organized as follows. Section 2

describes the related work. Section 3 discusses our data collection

methodology. Section 4 investigates the content-wise di�erences

that arise when di�erent browsers visit a particular website. Sec-

tion 5 evaluates the e�ectiveness of the mobile browsers against

well-known �lter lists. Section 6 investigates the di�erential treat-

ment by the browsers’ scripts and websites. Section 8 summarizes

the �ndings and lists the limitations of our approach. We conclude

in Section 9.

2 RELATEDWORKS

Online tracking imposes privacy risks for online users. In this sec-

tion, we will review the literature involving di�erent web tracking

techniques across online services. We will also review di�erent

state-of-the-art defense strategies and measurement studies.

WebTracking Techniques. Online tracking enables various track-

ers to collect users’ browsing activities for di�erent types of behav-

ioral analysis, targeted advertisements, and surveillance [52, 63, 65].

Traditional web tracking or stateful tracking uses HTTP cookies

as a dominant technique and also other conventional mechanisms,

e.g., HTML5 storage [44], Flash cookies [35], Etags [33]. On the

other hand, advanced stateless tracking techniques such as browser

or device �ngerprinting are used for identifying users with a speci�c

browser state [49, 53, 60].

WebTrackingMeasurement. Many empirical studies have looked

at understanding the current trends of web tracking, speci�cally

for desktop-based tracking. Krishnamurthy et al. [52] presented a

longitudinal measurement study of web tracking, examining the

prevalence of third-party trackers on the web. Mayer et al. [58]

provide an analysis regarding the online-tracking strategies fol-

lowed by di�erent parties. To measure third-party tracking, they

also introduce a web measurement platform, ForthParty [57]. Other

studies have also identi�ed new �ngerprinting scripts and analyzed

the prevalence of such web tracking techniques in the wild (e.g.,

FPDetective [34] and OpenWPM [43]). Other studies have shown

that at least one third-party tracker monitors 46% of the 10k most

popular websites (Alexa ranking), and one-third of the third-party

requests are sent to tracker [37, 56]. Through an extensive study

on Internet archive data from 1996 to 2016, Lerner et al. [55] sug-

gested that web tracking has become more sophisticated and needs

more attention. Studies have also proposed models for measuring

browser �ngerprinting based on certain characteristics of browser

attributes which have been classi�ed according to their prominence

and volatility [49].

Mobile Web Tracking. Mobile web browsing has steadily grown

since 2009, especially as mobile device usage overtook desktop

and increasing availability of mobile-friendly websites [46]. Al-

though mobile is now generating more web tra�c than its desktop

counterpart and incurs more sensitive information, little is known

about web-tracking in mobile environment [45]. Yang et al. [66]
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localStorage, indexedDB) and instead introduce its own partition

storage mechanism called Ephemeral Third-party Site Storage [23].

Finding 2: Due to aggressive third-party API blocking and

�ngerprint randomization, Brave sees the lowest number of

API accesses across all categories.

5 EFFECTIVENESS IN BLOCKING
PRIVACY-INVASIVE CONTENTS

In this section, we investigate the following research question.

RQ2: How e�ective are mobile browsers in blocking privacy-

intrusive web content? From a user’s perspective, a comparative

analysis of such blocking behavior is important, especially as mobile

devices have limited computing resources that can lead to existing

countermeasures being optimized di�erently on mobile platforms

compared to desktop platforms. To perform a comparative analysis,

we compare how well our selected browsers emulate well-known

anti-advertising and anti-tracking �lter lists. If a browser’s blocking

mechanism closely emulates popular blocklists, it indicates a strong

propensity towards privacy-protecting functionality.

In order to capture the e�ectiveness of the browsers, we choose

well-known curated block lists like EasyList [11], EasyPrivacy [12],

Disconnect [9], and WhoTracksMe [18]. These are popular anti-

advertising and anti-tracking �lter lists, and we will use them to

assess the e�ectiveness of privacy-focused browsers. Being crowd-

sourced and established in the privacy community, we considered

these lists as the ground truth and de�ned them as baseline lists

throughout the paper. The EasyList speci�es the rules for blocking

ads, whereas EasyPrivacy de�nes the rules for blocking trackers.

Both lists perform pre�x matching at the request level (i.e., URL).

The tracker list for Disconnect and WhoTracksMe contains domain

names with additional information like domain owner and domain

category. Both of these lists perform blocking at the domain level.

In order to capture the e�ectiveness of the browser under these

baseline blocklists, we analyze if a request seen while using a given

browser should have been blocked or not (we term such requests

as should-be-blocked).

For the remainder of the paper, we classify each request as ei-

ther should-be-blocked or allowed (i.e., not matching any �ltering

rule). To identify should-be-blocked or allowed requests, we have

followed di�erent techniques for di�erent baseline lists. For Ea-

syList and EasyPrivacy, we extended AdblockPlusFilterParser [1],

which checks each request with a corresponding �lter list through

regular expression matching. From all the intercepted requests, we

examine each request with the corresponding URL, referrer domain,

content type, and third-party options to determine if the request

should be considered as should-be-blocked or allowed. The same

approach was used for Disconnect and WhoTracksMe. However,

since both of these blocklists use domain-level blocking, we fetched

the domain name from each request URL (eTLD+1) and matched it

against the domain list provided by Disconnect and WhoTracksMe.

If any matches were found, we consider it as should-be-blocked;

otherwise, we label it as allowed. In addition, if the request URL

and referrer contain the same domain, we considered it as allowed

as it would not be a third-party request.

Table 3: Proportion of should-be-blocked requests across dif-

ferent mobile browsers.

Browsers EasyList EasyPrivacy

Chrome 14.7% 17.0%

Firefox 11.3% 14.9%

Safari 10.8% 14.8%

Brave 0.13% 0.56%

Focus 2.16% 7.86%

DDG 1.24% 4.21%

5.1 EasyList Filters

Easylist provides a suite of privacy �ltration lists, each with its

own functionality. The two most generic of these are EasyList and

EasyPrivacy. We inspected all the observed requests to identify how

e�ectively the browsers, especially the privacy-focused ones, have

blocked requests from trackers or advertisers. To show contrast,

we also show percentages of should-be-blocked requests from the

generic browsers.

Table 3 summarizes the proportions of should-be-blocked re-

quests. Generic browsers, especially Chrome, share the highest

proportion of trackers and advertisers in our dataset. Safari was

slightly better at blocking advertisers than Firefox and Chrome.

Among all the browsers, Brave performs most closely to either

of the lists as it uses these lists on top of its own heuristics to

block requests [8]. However, despite using the list, it seems that

Brave still allows some requests that should actually be blocked

as per these lists. We investigate this further by analyzing the

top third-party domains that Brave allows. These include amazon-

adsystem.com, doubleclick.net, googlesyndication.com and adnxs.com

and facebook.net. These domains belong to the Advertising and

Analytics categories, according to Disconnect. It is possible that

Brave’s own heuristics makes some exceptions for these domains to

uphold the website’s functionality. For example, facebook.net issues

a script called fbevents.js that is used to initialize and observe pixels

to help websites gauge users’ actions on their site. EasyPrivacy

blocks this by default. However, Brave has made an exception for

this rule for certain websites like theonion.com, jacksonville.com but

not others.

Focus and Duck Duck Go, the other privacy-focused browsers,

also generally performed well by blocking most of the should-be-

blocked requests. In the case of Focus, the EasyPrivacy should-be-

blocked percentage (7.86%) was slightly higher as it allowed script

requests from services like googletagmanager.com. For both Focus

and Duck Duck Go, boost-next.co.jp was one of the top services

that should have been blocked (according to EasyList) but was not,

whereas, in Brave, it was entirely blocked. boost-next.co.jp is an

online marketing service that collects user information and stores

persistent cookies [21]. Similarly, another tracker from Microsoft

named bat.bing.com/bat.js is also classi�ed as a tracker by EasyPri-

vacy. However, both Focus and Duck Duck Go had 3,983 and 1,131

(respectively) instances of this tracker not blocked. In comparison,

Brave restricted the execution of this tracker to only 21 instances.

Recently, Duck Duck Go o�ered an o�cial explanation for allowing

the presence of the tracker on its platform. Duck Duck Go stated

that it could not block this tracker due to a policy requirement

8
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Finding 3: Brave outperforms Focus and Duck Duck Go by

blocking most services and vendors classi�ed as trackers by

blocking lists, including top domains such as googletagman-

ager.com and bing.com. However, we observe that Focus blocks

the highest number of social trackers, whereas Duck Duck Go

leads in restricting email-based tracking.

6 BROWSER-SPECIFIC SCRIPT ANALYSIS

Each browser supports its own suite of features and functions that

can be used to interact with the website. Often at times, some func-

tions may be available in one browser but not in another [2]. These

APIs are critical for the browser vendor as they provide essential

information that services can use to customize the user experi-

ence. For instance, declaring the number of logical cores through

navigator.hardwareConcurrency can allow websites to optimize

website functionality by displaying light-weight versions of the site

for low-end devices [27]. However, opportunistic �ngerprinters can

also use these methods to pro�le users in invasive ways. Moreover,

since each browser may expose a slightly di�erent �ngerprinting

surface based on JavaScript engine or vendor-enforced con�gura-

tions, trackers may use slightly di�erent �ngerprinting techniques

for each browser.

In this section, we look to answer the following research ques-

tion, RQ3: Do trackers discriminate against users based on the

browser they use? To answer this question, we �rst detect invasive

�ngerprinters by utilizing the runtime APIs they access. We update

and apply the heuristics provided by Englehardt et al. [43] (to ac-

count for changes made to the modern browser API stack) to detect

the prevalence of �ngerprinters across di�erent privacy-focused

browsers. Lastly, we apply static analysis on source codes and study

the deviations in function calls and property accesses to answer

whether trackers serve di�erent versions of the same script based

on what browsers a user uses.

6.1 Dynamic Analysis

WhoTracksMe [17] de�nes invasive �ngerprinting as a technique

that utilizes �ngerprinting routines based on APIs to gather unique

information about a device for which those APIs were not intended

to be used. We use this de�nition to categorize opportunistic �nger-

printers in our dataset. In order to �nd suitable heuristics that can

be applied to identifying �ngerprinters, we leverage the routines

introduced by Englehardt [43]. These routines look for indicators of

�ngerprinters. For example, font �ngerprinting is a popular track-

ing technique that creates a canvas object on the user’s screen (most

of the time, it is invisible, so the user is unaware) and then renders

all possible fonts in its super list. When the user’s device does not

support a font, the default value is returned, which is how the �n-

gerprinter knows that the font is unavailable. This font pro�ling

results in a highly unique user trace as font selection is custom to

each user.

Apart from font �ngerprinting, other routines include WebRTC,

Audio, and Canvas Fingerprinting. We use these routines to classify

invasive third-party trackers. Table 5 summarizes the count of

websites and each of the heuristics that matched. We note that

Brave had the lowest number of websites where Audio, WebRTC,

Table 5: Number of Tranco websites where potential trackers

were found conducting the following �ngerprinting routines.

Bold numbers indicates the corresponding value is the lowest

across all browsers. The “Overall” column records the total

number of websites where at least one of the �ngerprinting

activity was observed.

Browsers Audio WebRTC Canvas Canvas Font Overall

Chrome 344 117 960 82 1027

Firefox 398 114 1089 512 1527

Safari 379 84 1007 526 1442

Focus 382 115 1042 142 1147

Brave 132 56 492 98 520

DDG 244 100 776 98 827

and Canvas �ngerprinting occurred. This is due to the extensive

third-party blocking of Brave and �ngerprint randomization of API

routines.

Interestingly, Focus had a high number of websites where inva-

sive �ngerprinting occurred. For instance, on 1,042 websites visited

by Focus, scripts were found to be using Canvas Fingerprinting.

This performance was on par with Safari and Firefox, which also

experienced a similar number of �ngerprinters. To explore this fur-

ther, we look at the scripts responsible for Canvas Fingerprinting

in Focus. We notice that top vendors that perform Canvas in Focus

belong to salesforce.com and hcaptcha.com. Both of these domains

serve trackers that are blocked by the EasyPrivacy list.

Also, surprisingly, Chrome had the lowest number of websites

where Canvas Font �ngerprinting was observed. One possible rea-

son for it could be that Canvas Font �ngerprinting is a relatively

expensive process where a script checks the availability of fonts by

iteratively calling Canvas graphic operations. Since Chrome, as a

generic browser, has an unrestricted �ngerprinting surface, third-

party vendors might be using other �ngerprint pro�ling techniques

that incur less cost. We also observe that roughly 10% and 15% of

websites loaded in Chrome and Firefox, respectively, experience

�ngerprinting activity. Our reported numbers are on par with the

previous works that have studied �ngerprinting on the web [38, 50].

6.2 Static Analysis

Privacy-intrusive scripts may target users based on their browsers.

The di�erences may arise due to a script’s dynamic routines inside

the browser. However, it may also arise because of di�erences in

the script’s content served to users of di�erent browsers. In this

section, we use static analysis to discover content-wise di�erences

in the scripts loaded inside di�erent privacy-focused browsers. We

aim to discover how script authors may serve di�erent codes based

on browser type.

The proposed static analysis provides important information

regarding the code structure. Speci�cally, it describes the func-

tion calls, variable declarations, and property accesses. We �rst

aggregate scripts that were served across all three privacy-focused

browsers to �nd variant behaviors among scripts. For fairness and

ecological validity, we condition that a script may only be selected

if it was seen in each browser when visiting the same website. For

instance, while visiting a website X, a script Y was served in each

privacy-focused browser; we call it a "common script". Moreover,

10
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we match the complete script �lename to avoid false positives (i.e.,

di�erent scripts coming from the same vendor). An example of a

script �lename is: https://cdn.pdst.fm/ping.min.js.

There are 298,541 such common JavaScript programs in our

dataset. It is noteworthy that the actual common script number

may be higher, but it is hard to de�ne an identi�er (apart from the

full script �lename) that can be used to �nd commonality without

introducing false positives. This is because script �lenames may

contain variable �lenames where the last segment of the name (e.g.,

ping.min.js) may be similar. Therefore, we do not consider such

scripts common.

To perform a di�erential analysis of the content of the served

JavaScript programs, we consider common scripts with dissimilar

content. Such scripts will henceforth be called "dissimilar" scripts.

To �nd these, we convert the raw source code of common scripts

into Abstract Syntax Tree (AST) representation. ASTs are tree-like

structures, with each node representing a construction within the

source code. Conversion to ASTs is important as it allows us to

ignore whitespaces and variable name changes. Then, we compare

the hashes of ASTs of common scripts and aggregate �les with

di�erent hashes. This aggregation results in a set of dissimilar

common scripts. In our dataset, we are able to �nd 5,729 such

scripts in Brave, Focus, and Duck Duck Go.

Next, to identify content di�erences in these scripts, we leverage

the list of important static code features from the work of Umar

et al. [50]. These features are based on various code constructions

like member expressions (e.g., navigator and math object call), liter-

als, and variable declarations. We determine the presence of these

important features in the common scripts. Intuitively, if the same

script is being served across multiple platforms, it should have a

similar feature presence. If not, this means that script vendors are

deterministically serving changed scripts to di�erent users.

Finally, we perform Agglomerative Clustering [19] on the dissim-

ilar scripts based on the presence of these feature sets. Speci�cally,

if a feature is present in a script, the indicator for that feature is

turned on. Agglomerative Clustering is a bottom-up approach that

starts with individual clusters and then determines the minimum

distance required to merge with each other. All clusters meet at the

root. For our experiment, we use ‘Euclidean Distance’ as the criteria

for merging as it suits our simplistic input (feature presence). We

note that the �rst cluster is formed between Brave and Duck Duck

Go. The euclidean distance between Brave and Duck Duck Go is

63.3, whereas the euclidean distance between Brave or Duck Duck

Go and Focus is 1,151. This suggests that Brave and Duck Duck Go

users are likely to experience near-identical scripts. We also look

at the count of feature indicators among the 5,729 common scripts

and observe that Focus had 24 more addEventListener routines,

27 more navigator property access, and 82 more sessionStorage

access points than Brave and Duck Duck Go.

Finding 4: Script vendors may provide altered versions of

JavaScript code to users based on their browser choice. Out

of the privacy-focused browsers, Focus witnessed the most

number of altered scripts. Duck Duck Go, and Brave had

highly similar contents among the common script �les.

7 TEMPORAL VALIDATION

Contents served on websites often change. Such changes can arise

as some vendors might update their scripts and content sources

routinely. Moreover, the dynamic nature of content-loading means

some domains may load a di�erent set of scripts at di�erent snap-

shots. To ensure that our conclusions and �ndings in this mea-

surement study were not attributed to the timespan in which we

gathered the data, we conducted a separate round of web crawl

to validate the results. It should be noted that the �rst round of

crawl took place in June 2022, and the second round of crawl took

place in July 2022. This section aims to validate the consistency of

our results in the earlier sections. We brie�y replicate some of the

key analyses discussed earlier and show that our conclusions are

consistent regardless of the dynamics of web content. The �gures

and table we share in this section will hence be based on the data

from the second round.

General Content Distribution. We start our validation by look-

ing across the various content types loaded in the browsers in our

two rounds of measurements. Figure 6a highlights the counts of

content types that were loaded in the second round of crawl. We

compare it with the counts of contents in the �rst round, as shown

in Figure 2. We observe that there is no major change in the counts

of these contents across the two crawls. To further validate this, we

perform statistical testing on the content data from the two crawls.

We select Mann-Whitney-U test [28] with a signi�cance level of

0.05 (i.e., Ă = 0.05). We specify our hypothesis as the following:

there is no signi�cant di�erence between the distribution of content

types across the two crawls. We perform these tests on the samples

of each browser across both crawls and �nd that the Ħ − ĬėĢīě > Ă

(i.e., we can not reject the null hypothesis), meaning there was no

statistically signi�cant di�erence across the distribution of contents

across the two crawls.

API Usage Pattern. While we record content and request/re-

sponse headers using MitmProxy directly, the dynamic execution

trace is recorded using a script-injection method. We recompute the

API usage pattern from the second round dataset to ensure that the

dynamic traces are consistent. Based on our earlier measurements,

we concluded that in addition to blocking invasive �ngerprinters,

Brave restricts access to its �ngerprinting surface to third parties.

Figure 6b reinforces these conclusions as Brave again has the low-

est counts across most categories of APIs. To validate that the

distributions of values across crawls are not signi�cantly di�erent,

we use Mann-Whittney-U test with a signi�cance level of 0.05 (i.e.,

Ă = 0.05). This test is suitable as it makes no underlying assumption

about the distribution of the samples. We state our null hypoth-

esis as the following: there is no signi�cant di�erence between

the distribution of API usage across the two crawls. We perform

these tests on the samples of each browser across both crawls and

�nd that the Ħ − ĬėĢīě > Ă , meaning there was no statistically

signi�cant di�erence across the distribution of API usage across

the two crawls. Figures 4 and 6b highlight similar distributions.

Should-be-blocked Requests. We use the EasyList and EasyPri-

vacy lists to compute the should-be-blocked requests. These lists are

more comprehensive as they enforce request-level blocking. Table 6

highlights the percentages of should-be-blocked requests using the

11
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scripts. We discover that Brave and Duck Duck Go generally limit

their �ngerprinting surface, thereby reducing information leaks to

these �ngerprinters. We con�rm this by statically analyzing the

functions and property accesses of common scripts whose content

is dissimilar among privacy browsers. We note that Focus served

the most altered script content as compared to Brave and Duck

Duck Go. We also show evidence of tailored scripts and claim that

third-party vendors may serve altered scripts to users based on

browser choice. To ensure that our data samples are not a function

of the timespan in which the measurement study is conducted, we

perform another round of web measurement on these browsers and

obtain similar distributions of content and API uses temporally.

Recommendations. We also provide some recommendations

for privacy-focused browser vendors and their users to ensure no

gaps are left to protect users’ private data. We recommend that

browser vendors leverage multiple blocklists to block ads and track-

ers that are commonly known. Vendors can also periodically send

privacy checkup nudges to keep users informed about the latest

privacy-enhancing features in the browser settings. Vendors should

also be completely transparent about data-sharing relationships

with other entities. For instance, Firefox Focus stores user data

and shares it with the user’s default search provider [25]. Users

should be informed about such partnerships when they install the

application. Lastly, many browsers, including generic ones, have

implemented privacy features that are not enabled by default (for

instance, Chrome allows blocking third-party cookies, but it is not

enabled by default). These features should be enabled by default

or, at the very least, be shown as an option to the user when they

install the browser on their phones for the �rst time.

Limitations. We discuss some of the limitations of our measure-

ment study. First, since the overarching goal of this paper is to study

the interaction of browsers with trackers and advertisers, we ensure

we have both static code source and runtime dynamic execution

trace. However, to populate feature sets that complement static and

dynamic analysis, we have to know beforehand which features we

will look for in both the source code and the dynamic trace. As a re-

sult, we prepare an excessively rich feature list; however, it is by no

means exhaustive and is subject to continuous improvement. Sec-

ond, we perform dissimilarity analysis on invasive scripts by �nding

the common scripts that appeared in each privacy browser. While

the script �lename matching ensures we have no false positives, it

can also result in false negatives. This results in a lower-bound num-

ber of common scripts for which we believe the actual number may

be higher and can result in more interesting insights about deviant

content among invasive �ngerprinters. Third, we acknowledge that

third parties can also set �rst-party cookies for web tracking, as

demonstrated by [39]. We would need to instrument each browser

and perform taint analysis on data types to track such events to

determine if third parties were setting �rst-party cookies. How-

ever, since all of our tested mobile browsers are proprietary, such

instrumentation is practically impossible. Furthermore, the smart-

phones used in this study were connected to the same lab network.

Thus, from an external party, they might all see the same IP address

making the requests. This can potentially lead to serving content

based on tracking IP addresses. However, we crawled the same web

page from smartphones in parallel to reduce the impact of generat-

ing drastically di�erent content. Lastly, we do not consider inline

JavaScript code (scripts embedded in a script tag within the main

document page of a website) for dissimilarity analysis. Part of the

reason for it is that while privacy browsers act hard on third-party

trackers, they have minimal claimed protection against �rst-party

content. However, analyzing the inline scripts for deviant content

may also reveal interesting insights into �rst-party discrimination

of users based on browsers.

9 CONCLUSION

In this paper, we present, to our knowledge, the �rst empirical

measurement study to understand varying privacy protections of-

fered by mainstream and privacy-focused mobile browsers. These

browsers belong to the iOS and Android platforms and are selected

based on their adoption rates. We compare the privacy-preserving

behaviors of these browsers in terms of requested contents, used

functions, and APIs. Further, we evaluate how closely privacy-

focused browsers emulate known blocklists in blocking known

trackers and ads. Through dynamic and static analysis, we also

discover that di�erent versions of scripts may be served determin-

istically based on the type of mobile browser. These selections may

have privacy implications for users as some of the scripts contained

invasive �ngerprinting routines.
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