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ABSTRACT

Online trackers are invasive as they track our digital footprints,
many of which are sensitive in nature, and when aggregated over
time, they can help infer intricate details about our lifestyles and
habits. Although much research has been conducted to understand
the effectiveness of existing countermeasures for the desktop plat-
form, little is known about how mobile browsers have evolved
to handle online trackers. With mobile devices now generating
more web traffic than their desktop counterparts, we fill this re-
search gap through a large-scale comparative analysis of mobile
web browsers. We crawl 10K valid websites from the Tranco list on
real mobile devices. Our data collection process covers both popu-
lar generic browsers (e.g., Chrome, Firefox, and Safari) as well as
privacy-focused browsers (e.g., Brave, Duck Duck Go, and Firefox-
Focus). We use dynamic analysis of runtime execution traces and
static analysis of source codes to highlight the tracking behavior of
invasive fingerprinters. We also find evidence of tailored content
being served to different browsers. In particular, we note that Fire-
fox Focus sees altered script code, whereas Brave and Duck Duck
Go have highly similar content. To test the privacy protection of
browsers, we measure the responses of each browser in blocking
trackers and advertisers and note the strengths and weaknesses of
privacy browsers. To establish ground truth, we use well-known
block lists, including EasyList, EasyPrivacy, Disconnect and Who-
TracksMe and find that Brave generally blocks the highest number
of content that should be blocked as per these lists. Focus per-
forms better against social trackers, and Duck Duck Go restricts
third-party trackers that perform email-based tracking.
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1 INTRODUCTION

We spend a significant portion of our daily routine surfing the web.
Today, we interact with the web in almost every facet of our lives:
socializing, banking, health care, education, and entertainment. As
a result, over the years, we have seen a steady increase in online
tracking activities across websites [55]. With the rapid adoption
of smartphones, mobile devices as of 2016 have started generating
more web traffic than their desktop counterparts [36, 46]. This
has also prompted the development of new mobile-friendly web
browsers as well as privacy-focused versions.

While numerous empirical studies have been conducted to un-
derstand the prevalence of online tracking in the wild [33, 34, 42,
43, 47, 55, 60], most of such analysis has been done in the con-
text of a desktop browser. Furthermore, app-based mobile tracking
has received some attention [62, 64], but not much research has
been done to analyze and compare mobile browsers, especially
privacy-focused mobile browsers.

However, the mobile platform presents multiple distinct char-
acteristics compared to the desktop platform. For example, mobile
platforms enable additional avenues to track users due to the pres-
ence of several embedded sensors that are directly accessible to
JavaScript programs, often accessible without any user permission.
Das et al. [40] have shown that scripts in the wild have started ex-
ploiting motion sensors to create unique device fingerprints. More-
over, the content served to mobile browsers can differ greatly from
those served on their desktop counterparts. Yang et al. [66] show-
cased that almost 26% of the Alexa top one million websites serve
mobile-specific pages with significant structural differences from
their desktop counterparts.

In order to close the gap and better understand how popular
mobile browsers fare against each other in terms of their effec-
tiveness against online tracking, we present a large-scale study
on both popular mobile browsers (e.g., Google Chrome, Firefox,
and Safari) as well as privacy-focused browsers (e.g., Brave, Duck
Duck Go, Firefox-Focus). The listed mobile browsers were cho-
sen based on their popularity on the platforms’ application stores
[26]. We use data-driven analysis to understand the implications
of browser choice for a user and answer the following research
questions — RQ1: What are the major differences in the web
traffic generated for different mobile browsers? We first analyze
the distribution of different types of content encountered across
different mobile browsers. Given cookies are an important mode of
stateful tracking, we next analyze the distribution of cookies per
website. To see the differences in API usage, we also look at the
counts of web APIs and property accesses made by each browser.
We divide the APIs and property accesses into general categories to
better summarize the observed web-behavior. Leveraging the exe-
cution trace of scripts that we record in our measurement, we then
observe how many times each class of API was called in a browser.
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Our analysis helps us understand the major differences that arose
in our crawls. RQ2: How effective are mobile browsers in block-
ing privacy-intrusive web content? We use popular blocking
lists to provide a comparative analysis of how mobile browsers
are blocking different web content. We assume that the closer a
browser emulates the ad and tracker blocking list, the higher its
efficacy is in terms of privacy protection. The goal is to evaluate
the effectiveness of different privacy-focused mobile browsers in
terms of how well they block well-known tracking content. We
measure the should-be-blocked domains and observe the extent of
tracking as seen in each browser. RQ3: Do invasive fingerprinters
discriminate against users based on the browser they use? We
define invasive fingerprinters as scripts that use non-traditional fin-
gerprinting heuristics to target browsers. Using dynamic analysis,
we apply state-of-the-art heuristics to first identify such opportunis-
tic fingerprinters and then observe their behavior across browsers.
Next, we reveal the number of websites that were targeted by such
scripts across each browser. Then we explain why certain browsers
may guard better against such tracking mechanisms. We also use
static analysis to measure content-level differences that may arise
as script authors may deterministically serve altered versions of
the code to users based on their browser choice.

To answer these research questions, we first collect data using
real Android and iPhone devices. Next, we collected data from six
popular mobile browsers, including three privacy-focused browsers.
To ensure fair comparison across all the browsers, we successfully
load the same 10K websites from the Tranco 1-million websites [54]
across all browsers. Using mitmproxy as our HTTP proxy, we also
inject scripts to track the runtime access to well-known privacy-
invasive web APIs and DOM properties. This enables us to dynam-
ically analyze web behavior encountered across different mobile
browsers. We also perform static analysis on the common JavaScript
codes encountered across all browsers to highlight differential be-
havior across different mobile browsers. Lastly, we replicate our
analyses across two datasets, collected at two different timestamps,
to showcase the consistency of our findings.

In this paper, we make the following contributions:

e We perform a large-scale comparative analysis of mobile
web browsers by crawling the Tranco 10K+ websites using
six popular mobile browsers: Chrome, Firefox, Firefox Fo-
cus, Duck Duck Go, and Brave. We develop an automated
crawling system using real smartphones to collect the neces-
sary data, including source codes and execution traces of the
scripts. We have publicly released our code and dataset. !

e We conduct a differential analysis to compare and contrast
the traffic-level characteristics, as well as the contents served
to different browsers. In addition, we observe the distribution
of first and third-party requests and cookies set among the
browsers. We also analyze the different APIs accessed across
the six mobile browsers.

e For different privacy-focused browsers, we analyze the effec-
tiveness of blocking unwanted web content using popular
blocking lists, including EasyList, EasyPrivacy, Disconnect,
and WhoTracksMe. Our results show that Brave generally
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outperforms other browsers in terms of protecting privacy-
invasive content.

e Lastly, we perform static and dynamic analysis using source
code and execution traces of the code to observe any differ-
ential treatment by the scripts and websites on the browsers.

The remainder of the paper is organized as follows. Section 2
describes the related work. Section 3 discusses our data collection
methodology. Section 4 investigates the content-wise differences
that arise when different browsers visit a particular website. Sec-
tion 5 evaluates the effectiveness of the mobile browsers against
well-known filter lists. Section 6 investigates the differential treat-
ment by the browsers’ scripts and websites. Section 8 summarizes
the findings and lists the limitations of our approach. We conclude
in Section 9.

2 RELATED WORKS

Online tracking imposes privacy risks for online users. In this sec-
tion, we will review the literature involving different web tracking
techniques across online services. We will also review different
state-of-the-art defense strategies and measurement studies.

Web Tracking Techniques. Online tracking enables various track-
ers to collect users’ browsing activities for different types of behav-
ioral analysis, targeted advertisements, and surveillance [52, 63, 65].

Traditional web tracking or stateful tracking uses HTTP cookies
as a dominant technique and also other conventional mechanisms,
e.g., HTMLS5 storage [44], Flash cookies [35], Etags [33]. On the
other hand, advanced stateless tracking techniques such as browser
or device fingerprinting are used for identifying users with a specific
browser state [49, 53, 60].

Web Tracking Measurement. Many empirical studies have looked
at understanding the current trends of web tracking, specifically
for desktop-based tracking. Krishnamurthy et al. [52] presented a
longitudinal measurement study of web tracking, examining the
prevalence of third-party trackers on the web. Mayer et al. [58]
provide an analysis regarding the online-tracking strategies fol-
lowed by different parties. To measure third-party tracking, they
also introduce a web measurement platform, ForthParty [57]. Other
studies have also identified new fingerprinting scripts and analyzed
the prevalence of such web tracking techniques in the wild (e.g.,
FPDetective [34] and OpenWPM [43]). Other studies have shown
that at least one third-party tracker monitors 46% of the 10k most
popular websites (Alexa ranking), and one-third of the third-party
requests are sent to tracker [37, 56]. Through an extensive study
on Internet archive data from 1996 to 2016, Lerner et al. [55] sug-
gested that web tracking has become more sophisticated and needs
more attention. Studies have also proposed models for measuring
browser fingerprinting based on certain characteristics of browser
attributes which have been classified according to their prominence
and volatility [49].

Mobile Web Tracking. Mobile web browsing has steadily grown
since 2009, especially as mobile device usage overtook desktop
and increasing availability of mobile-friendly websites [46]. Al-
though mobile is now generating more web traffic than its desktop
counterpart and incurs more sensitive information, little is known
about web-tracking in mobile environment [45]. Yang et al. [66]
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have compared the mobile and desktop versions of 23,310 websites.
They found that mobile tracking has unique characteristics due to
mobile-specific trackers and is increasingly becoming prevalent
as its desktop counterpart. A similar outcome was demonstrated
by Das et al. [40]. Kondracki et al. [51] have shown the possible
privacy and security threats of Android’s data-saving browsers. Re-
searchers have also studied the security and privacy risk in terms of
in-app advertisement for both paid and free applications on mobile
devices [48, 61, 64]. In addition, mobile browsers can potentially
access hardware typically unavailable on desktops, like motion sen-
sors, which can be used for tracking. Cassel et al. [38] performed a
web measurement study comparing desktop browsers with their
mobile variants to highlight these different tracking mechanisms.
Our study is different from their work in that we specifically com-
pare the strengths and weaknesses of generic and privacy browsers
among each other on the same platform (i.e., mobile platform).

Distinction with Prior Work. In this paper, we perform a compar-
ative study on mobile browsers — covering both popular browsers
(e.g., Chrome, Firefox, and Safari) and privacy-focused browsers
(e.g., Brave, Duck Duck Go, Firefox Focus). Through our analysis,
we shed light on how different contents are filtered across different
browsers and how different third-party domains serve discrimina-
tive scripts based on the type of browser requesting such scripts.

3 DATA COLLECTION AND PRE-PROCESSING

In this section, we describe our data collection setup and the differ-
ent datasets we analyze in the rest of the paper.

Data Collection Setup. Our data collection setup consists of five
Android mobile devices (Google Pixel 4a), one iPhone 11, and a
desktop machine. Using the Android Debug Bridge (adb) [6], we
automated the crawling process on the Android mobile device for
a specific browser. The crawling script opens a browsing app on
the mobile device and visits top-ranked sites listed by Tranco [54].
We use Appium [20] for iPhone automation and hook the client
to the Safari web agent. The traffic data is sent to a proxy server
that is hosted on a remote machine. We instantiate mitmproxy [16]
server to intercept HTTP requests and log details, including the
request URL, referrer, content type, content length, and response
code. To capture dynamic runtime execution, we use the approach
defined by OmniCrawl [38] and inject a script at the head of the
website document file that logs execution of API calls along with
script name and character offset within that script where the call
was made. The web crawling script runs from a desktop, to which
all the mobile devices are connected.? To handle HTTPS traffic,
we installed mitmproxy CA certificate on the phone to bypass SSL
pinning. The timeout period was set to 30 seconds for each site,
and for any page-load failure, we made two retry attempts with a
delay of 5 seconds between consecutive attempts. After each site
visit, we cleared all data (e.g., cookies) associated with the browser
app. Figure 1 highlights our data collection setup.

Data Sets. We collected data using six different browsers: Fire-
fox, Chrome, Safari, Firefox-Focus [13], Brave [8], and Duck Duck
Go [10]. Our datasets, therefore, not only contain data from general

ZBoth the mobile devices and the desktop machine were connected to the same WiFi
network.
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Figure 1: Data collection setup. We collect data using six
different browsers on real-world mobile devices. We use
mitmproxy to intercept HTTP requests and log details, includ-
ing the request URL, referrer, content type, content length,
and response code.

browsers like Chrome, Safari, and Firefox but also privacy-focused
browsers like Brave, Firefox-Focus, and Duck Duck Go. The follow-
ing browser versions were used throughout the study: Chrome (83),
Firefox (96), Firefox Focus (95), Safari (15.4.1), Brave (1.34), Duck
Duck Go (5.107). While many of the browsers use the same render-
ing engine like Blink [7] or Gecko [14] under the hood, the way
each browser implements its tracker and ad-blocking techniques
is different and, at times, proprietary. Past works have also used
user-emulating web surfing tools like OpenWPM [15] to crawl web-
sites. However, Demir et al. [41] have demonstrated that changing
the environment of the web agent can induce variability in the
web interactions encountered. This results in non-representative
data sets that fail to capture organic user behavior. Hence, it is
critical to obtain data using real browsers for ecological validity
when comparing the effectiveness of different browsers [38].
Moreover, website contents typically change over time; we, there-
fore, collect two rounds of data approximately one month apart (the
first round collected in June 2022 and the second in July 2022). We
launched all browser crawls simultaneously to reduce the impact
of variable content distribution due to dynamic content loading.

Data Preprocessing. While crawling the websites, we collected all
the additional requests made through the browsers. In some cases,
our automated script for visiting websites failed to successfully load
the websites even in two attempts because of request timeout or
network issues. So to conduct a fair differential analysis among the
browsers, we only examined the sites successfully loaded across all
six browsers. Many non-public-facing domains, such as CDNs and
DNS (e.g., akadns.net), are present in the Tranco List. A user cannot
trivially crawl these domains. Therefore, we adopted a slightly
different approach to gathering data to mitigate the high failure rate
when visiting the top 10K websites and ensure a fair comparison
across all six browsers. We continue loading websites using the
Tranco top one-million list until we successfully load the same 10K
websites across all six browsers. This way, we populate 10K website
visits in both rounds of web crawling.
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Given that we use mitmproxy to capture HTTP traffic, we filter
out any requests unrelated to a website visit, e.g., any browser-
specific traffic that appears when it is opened. For example, Firefox
downloads the latest blocking list when it is first loaded. To ascertain
which requests are browser-specific, we find the intersection of
web requests that persistently appear across 100 randomly selected
website visits. We then manually validate these requests and mark
them as browser-specific. Then, as a final step, we purge all such
requests from our measurement studies to minimize the systematic
noise in our data.

4 COMPARISON OF WEB TRAFFIC

In this section, we investigate the first research question, RQ1: What
are the major differences in the web traffic generated for dif-
ferent mobile browsers? To answer this, we compare the traf-
fic contents generated using different mobile browsers. This in-
cludes analyzing content types and their sources. We also analyze

first and third-party content requests and cookies set. Lastly, we

look at privacy-invasive web APIs accessed across different mobile

browsers. Overall, this section provides a general comparison of
privacy-intrusive web behavior across generic and privacy-focused

browsers.

4.1 Differences in Web Requests

Content Types. The first difference in web traffic we observe is
the type of content that is loaded into each mobile browser. We
use the ’Content-Type’ field in the response header to determine
the requested content type. Figure 2 shows the distribution of con-
tents served across all the browsers. We note that generally, Images
were the most requested content, followed by FavaScript and JSON
files, respectively. Note that one popular tracking technology in-
cludes injecting 1-by-1 pixels in websites [67]. As expected, we
also see that generic browsers encounter higher counts of content
requests than privacy-focused browsers in each content category
generally. For example, Brave had 58% lower content requests than
Chrome on average. This is consistent with the overall policy of
mainstream browsers to restrict minimal content requests to maxi-
mize user experience. On the other hand, among privacy-focused
mobile browsers, Focus had the highest number of content requests
on average (26.5% and 7% higher than Brave and Duck Duck Go,
respectively).

First-party vs. Third-party. To understand the first and third-
party web interactions, we note the count of such requests across
browsers and summarize the total count in Table 1. We note that
Duck Duck Go had slightly higher first-party request counts. Of
the 10K websites visited, Duck Duck Go had the highest first-party
request count in 7,189 websites compared to other browsers. To
ensure this behavior is not coincidental, we also compare the first-
party requests encountered in our second round of data collection
that took pla ce one month after the first round. In the second
round of web crawl, Duck Duck Go again experienced the high-
est inflow of first-party requests in 7,110 websites. As a privacy-
focused browser, Duck Duck Go was exhibiting anomalous behavior
by allowing a higher influx of requests. Upon further investiga-
tion, we discovered that this had to do with how Duck Duck Go
fetched some contents (e.g., favicon) on certain domains. In cases
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Figure 2: Difference in content-type distribution across dif-
ferent mobile browsers.

Table 1: Encountered request count and request type differ-
ences across different mobile browsers.

Browsers ’ First Party | Third Party

Chrome 428,439 1,111,846
Firefox 407,938 955,042
Safari 441,365 855,980
Brave 395,664 301,745
Focus 384,974 497,823
DDG 466,187 352,725
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Figure 3: Box Plot for the distribution of first and third-party
cookies that were set across different mobile browsers.

where a visiting domain does not provide its own favicon. ico and
apple-touch-icon.png, Duck Duck Go will retrieve the file from
its own server. However, this will enlist requests for such content
under first-party bound requests. This abnormal behavior was later
reported as a bug [22].

Cookies. Cookies are critical to user experiences and are exten-
sively used by websites for bookkeeping and managing user interac-
tion with the services it hosts. However, they are also used as a form
of stateful tracking. We look at the number of first and third-party
cookies that were set across each of the browsers. We then observe
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Table 2: Top five third-party domains that set the highest number of cookies.

Brave Duck Duck Go Firefox-Focus

Chrome

Firefox Safari

(facebook.net, 785) (cookielaw.org, 621)
(cookielaw.org, 624)  (youtube.com , 593)
(youtube.com, 576))  (google.com , 506)
(adobedtm.com, 331) (adobedtm.com, 354) (youtube.com, 681)
(google.com, 320) (bing.com, 293) (tiktok.com , 371)

(googletagmanager.com, 3302)
(bing.com, 1043)

(google-analytics.com, 5315)

(doubleclick.net, 4429)

(cookielaw.org, 756) (googletagmanager.com, 3515)  (googletagmanager.com, 3480) (googletagmanager.com, 3520)
(facebook.com , 3153)

(adnxs.com, 2467)

(google-analytics.com, 5356)
(doubleclick.net, 4400)

(google-analytics.com, 5244)
(doubleclick.net, 4327)

(facebook.com, 3088)
(facebook.com, 2281)

(facebook.com, 3159)
(facebook.net, 2349)

the top services that set the highest number of third-party cookies
in each browser.

We use two approaches to determine the cookies set in the crawl.
First, we look for the ‘Set-Cookie’ field in the response header.
Secondly, we use execution traces of JavaScript files and look for
document. cookie function calls that had set the cookies. To distin-
guish between first and third-party cookies, we match the eTLD+1
(effective top-level domain+1) of the request with the website do-
main visited. Figure 3 shows the distribution of the cookies. The
distributions of first-party cookies reveal that Duck Duck Go had
set the highest number of first-party cookies. This conclusion is
consistent with the analysis of general first-party requests.

We also observe the top third-party domains that set cookies
across each browser. This information is summarized in Table 2.
We see a higher number of cookies set among generic browsers.
Interestingly, all three generic browsers share the same top four do-
mains that set the highest number of cookies. The top three of these
domains (google-analytics.com,doubleclick.net and googletagman-
ager.com) are owned by Google. We also note that googletagman-
ager.com was allowed to set cookies in Focus in the same fashion as
in the generic browsers. This is because while Focus blocks google-
analytics.com by default, it only blocks googletagmanager.com when
its privacy settings are set to strict mode.

Statistical Tests. We performed the Mann-Whitney-U test with
a significance level of 0.05 (i.e., @ = 0.05). Our null hypothesis
is: there is no significant difference between the distribution of
requests among all pairs of browsers. We found that the p —value <
0.05, implying the null hypothesis was rejected. We performed the
same test for content types and third-party requests and similarly
observed significant differences in their distribution among mobile
browsers. Such differences arise because each browser has its own
mechanism for blocking content.

Finding 1: While generic browsers saw higher numbers of
third-party content compared to privacy-focused browsers, for
Duck Duck Go, a privacy-focused browser, we saw the highest
number of first-party content (including cookies) across most
of the websites crawled.

4.2 APIUsage

Browsers expose web APIs that are typically used with JavaScript
to enable modern web applications. Among the myriad of such
interfaces and web objects, certain APIs have been annotated as

privacy-invasive across both desktop, and mobile platforms [38, 66].

In this section, we analyze to what extent privacy-invasive APIs are
accessed by websites and scripts across different mobile browsers.
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Figure 4: Counts of API usage across different mobile
browsers.

The variations in API access can arise as different browsers may
adopt different access control policies, e.g., blocking access at the
request level for certain APIs [50].

To understand this better, we organize API calls into relevant
categories. We adopt and modify the API to category mapping
described by Cassel et al. [38], where we group the APIs into a
higher-level functional context. We modify the mapping by updat-
ing the API stack, which forms different categories. For example, we
add 17 more indicators for ‘Automation’ category that include new
indicators for automation libraries like Selenium [32], Phantom
[30], and nightmare]S [29]. Similarly, we add BaseAudioContext
object under Audio. These small modifications ensure we properly
represent each category from our dataset.

Figure 4 shows the resulting API access pattern. We observe that
Focus encounters higher API accesses among all privacy-focused
browsers across most categories. For instance, Configuration API ac-
cesses (that includes navigator.userAgent, navigator.maxTouch-
Points, navigator.languages) is 30% higher in Focus than in
Brave. These APIs provide useful information to websites but can
also be used by fingerprinters to profile user devices by recording
their device configurations and language preferences. One possible
reason why these API accesses might be lower in Brave is that
Brave adopts a very aggressive approach to avoiding fingerprint-
ing by randomizing browser properties [24] or blocking such calls
altogether, which is why many third-party trackers do not rely on
such API calls.

We also find that Brave sees the lowest number of access to
Storage APIs among the privacy-focused browsers (16.3% and 14%
lower than Focus and Duck Duck Go, respectively). Brave claims to
completely block all third-party application storage (e.g., cookies,
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localStorage, indexedDB) and instead introduce its own partition
storage mechanism called Ephemeral Third-party Site Storage [23].

Finding 2: Due to aggressive third-party API blocking and
fingerprint randomization, Brave sees the lowest number of
API accesses across all categories.

5 EFFECTIVENESS IN BLOCKING
PRIVACY-INVASIVE CONTENTS

In this section, we investigate the following research question.
RQ2: How effective are mobile browsers in blocking privacy-
intrusive web content? From a user’s perspective, a comparative
analysis of such blocking behavior is important, especially as mobile
devices have limited computing resources that can lead to existing
countermeasures being optimized differently on mobile platforms
compared to desktop platforms. To perform a comparative analysis,
we compare how well our selected browsers emulate well-known
anti-advertising and anti-tracking filter lists. If a browser’s blocking
mechanism closely emulates popular blocklists, it indicates a strong
propensity towards privacy-protecting functionality.

In order to capture the effectiveness of the browsers, we choose
well-known curated block lists like EasyList [11], EasyPrivacy [12],
Disconnect [9], and WhoTracksMe [18]. These are popular anti-
advertising and anti-tracking filter lists, and we will use them to
assess the effectiveness of privacy-focused browsers. Being crowd-
sourced and established in the privacy community, we considered
these lists as the ground truth and defined them as baseline lists
throughout the paper. The EasyList specifies the rules for blocking
ads, whereas EasyPrivacy defines the rules for blocking trackers.
Both lists perform prefix matching at the request level (i.e., URL).
The tracker list for Disconnect and WhoTracksMe contains domain
names with additional information like domain owner and domain
category. Both of these lists perform blocking at the domain level.
In order to capture the effectiveness of the browser under these
baseline blocklists, we analyze if a request seen while using a given
browser should have been blocked or not (we term such requests
as should-be-blocked).

For the remainder of the paper, we classify each request as ei-
ther should-be-blocked or allowed (i.e., not matching any filtering
rule). To identify should-be-blocked or allowed requests, we have
followed different techniques for different baseline lists. For Ea-
syList and EasyPrivacy, we extended AdblockPlusFilterParser [1],
which checks each request with a corresponding filter list through
regular expression matching. From all the intercepted requests, we
examine each request with the corresponding URL, referrer domain,
content type, and third-party options to determine if the request
should be considered as should-be-blocked or allowed. The same
approach was used for Disconnect and WhoTracksMe. However,
since both of these blocklists use domain-level blocking, we fetched
the domain name from each request URL (¢€TLD+1) and matched it
against the domain list provided by Disconnect and WhoTracksMe.
If any matches were found, we consider it as should-be-blocked,;
otherwise, we label it as allowed. In addition, if the request URL
and referrer contain the same domain, we considered it as allowed
as it would not be a third-party request.
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Table 3: Proportion of should-be-blocked requests across dif-
ferent mobile browsers.

Browsers ‘ EasyList | EasyPrivacy

Chrome 14.7% 17.0%
Firefox 11.3% 14.9%
Safari 10.8% 14.8%
Brave 0.13% 0.56%
Focus 2.16% 7.86%
DDG 1.24% 4.21%

5.1 EasyList Filters

Easylist provides a suite of privacy filtration lists, each with its
own functionality. The two most generic of these are EasyList and
EasyPrivacy. We inspected all the observed requests to identify how
effectively the browsers, especially the privacy-focused ones, have
blocked requests from trackers or advertisers. To show contrast,
we also show percentages of should-be-blocked requests from the
generic browsers.

Table 3 summarizes the proportions of should-be-blocked re-
quests. Generic browsers, especially Chrome, share the highest
proportion of trackers and advertisers in our dataset. Safari was
slightly better at blocking advertisers than Firefox and Chrome.
Among all the browsers, Brave performs most closely to either
of the lists as it uses these lists on top of its own heuristics to
block requests [8]. However, despite using the list, it seems that
Brave still allows some requests that should actually be blocked
as per these lists. We investigate this further by analyzing the
top third-party domains that Brave allows. These include amazon-
adsystem.com, doubleclick.net, googlesyndication.com and adnxs.com
and facebook.net. These domains belong to the Advertising and
Analytics categories, according to Disconnect. It is possible that
Brave’s own heuristics makes some exceptions for these domains to
uphold the website’s functionality. For example, facebook.net issues
a script called fbevents.js that is used to initialize and observe pixels
to help websites gauge users’ actions on their site. EasyPrivacy
blocks this by default. However, Brave has made an exception for
this rule for certain websites like theonion.com, jacksonville.com but
not others.

Focus and Duck Duck Go, the other privacy-focused browsers,
also generally performed well by blocking most of the should-be-
blocked requests. In the case of Focus, the EasyPrivacy should-be-
blocked percentage (7.86%) was slightly higher as it allowed script
requests from services like googletagmanager.com. For both Focus
and Duck Duck Go, boost-next.co.jp was one of the top services
that should have been blocked (according to EasyList) but was not,
whereas, in Brave, it was entirely blocked. boost-next.co.jp is an
online marketing service that collects user information and stores
persistent cookies [21]. Similarly, another tracker from Microsoft
named bat.bing.com/bat.js is also classified as a tracker by EasyPri-
vacy. However, both Focus and Duck Duck Go had 3,983 and 1,131
(respectively) instances of this tracker not blocked. In comparison,
Brave restricted the execution of this tracker to only 21 instances.
Recently, Duck Duck Go offered an official explanation for allowing
the presence of the tracker on its platform. Duck Duck Go stated
that it could not block this tracker due to a policy requirement
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Table 4: Categories of scripts identified by Disconnect. Bold numbers indicate lowest counts in that category across all browsers.

1 I i Email
Browser  Email . Gene?a . Disconnect Content Social Analytics Advertising . nvasive matl
Fingerprinting Fingerprinting  Aggressive
Chrome 119,208 215,002 157,087 143,961 359,649 54,282 14,305 9,098 3,151
Firefox 91,745 161,982 136,927 128,718 45,835 12,143 187,710 7,516 2,530
Safari 90,456 161,706 147,268 124,526 10,045 46,287 145,937 8,902 3,226
Brave 5,273 9,795 58,166 8,125 683 1,251 3,212 804 1,433
Focus 74,758 2,732 9,341 1,329 4,502 661 1,929 594 978
DDG 73,269 5,700 14,837 757 3,064 5,709 1,524 1,851 964
related to the use of Bing as a source for its private search results.
However, Duck Duck Go later revoked the agreement and agreed — IE::;‘)'T
to indiscriminately block trackers and advertisers from Microsoft, 150000 m Safari
Facebook, Google, etc. [4]. i) B Brave
£ 100000 1 Focus
5 DDG
&)
5.2 Disconnect
We match all scripts recorded in our dataset against the services

listed in Disconnect. In case of a hit, we assign the vendor of that
script the category that is specified in Disconnect. Table 4 highlights
these categories and the number of script requests that fell under
those categories. We see that generic browsers were more accepting
of vendors that perform fingerprinting, email-based tracking, ana-
lytics, and online advertising. Chrome had the highest exposure to
such vendors as it does not block analytics and cross-site trackers by
default. Generally, privacy-focused browsers take a more complex
approach to blocking invasive content. For example, Brave utilizes
its own heuristics, apart from using EasyList and EasyPrivacy, to
block ads and trackers to limit the number of fingerprinting trackers
[5]. Similarly, Duck Duck Go, which specializes in email protection
[3], allowed the least number of Email and Advertising vendors.
However, despite its claimed mission of not allowing itself or third-
party vendors to collect user information, Duck Duck Go allowed
the most number of Analytic trackers among all the privacy-focused
browsers. We also note that Brave allowed a high number (9,795) of
general fingerprinting script requests. It is important to note that
Disconnect [9] distinguishes between general fingerprinting and
invasive fingerprinting as the former only utilizes property and
function accesses to collect information about users in unintended
ways, whereas the latter category utilizes sophisticated fingerprint-
ing techniques such as Audio and WebGL fingerprinting to profile
user device in ways for which the APIs were not designed to be
used. We experimentally confirm that the higher number of scripts
in the Fingerprinting General category is attributed to first-party
scripts, which generally perform important profiling of user devices
for website customization and functionality adjustment. However,
Focus recorded the lowest numbers in Invasive Fingerprinting and
Analytics categories among all the privacy-focused browsers. This
is because Focus uses the Disconnect list for privacy enhancement
[59].

5.3 WhoTracksMe

Adguard maintains a tracking list that identifies trackers and adver-
tisers and divides them into different categories, such as Advertising
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Figure 5: Counts of requests that were flagged by Who-
TracksMe. Associated with these counts are the categories of
vendors as defined by the list.

or Site Analytics. Figure 5 shows the distribution of script-based
requests that were labeled using the WhoTracksMe list.

Among the generic browsers, we observe that Chrome had higher
exposure to advertisers than Firefox and Safari. This is because
of Firefox’s Enhanced Privacy Protection [59] and Safari’s Intel-
ligent Tracking Prevention (ITP) [31] that is enabled by default.
Both of these technologies claim to balance privacy and perfor-
mance by blocking cross-site trackers and invasive advertisers
while maintaining website functionality. Interestingly, Brave re-
stricted the highest number of scripts associated with tracking. For
example, it blocks 47% and 40% more Site Analytic trackers than
Focus and Duck Duck Go, respectively. Similarly, Brave blocked
51.2% and 44% more Advertising scripts than Focus and Duck Duck
Go, respectively. However, Focus appeared to block social trackers
more aggressively than Brave. For instance, Brave allowed face-
book.net/fbevents.js on 1,008 instances, whereas this tracker did
not occur at all for both Focus and Duck Duck Go. Through these
experiments, we discover the strengths and weaknesses of different
privacy-focused browsers. Using blocking lists as ground truth, we
were able to classify scripts into relevant categories and observed
the efficacy of privacy-focused browsers in blocking or allowing
privacy-infringing content.
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Finding 3: Brave outperforms Focus and Duck Duck Go by
blocking most services and vendors classified as trackers by
blocking lists, including top domains such as googletagman-
ager.com and bing.com. However, we observe that Focus blocks
the highest number of social trackers, whereas Duck Duck Go
leads in restricting email-based tracking.

6 BROWSER-SPECIFIC SCRIPT ANALYSIS

Each browser supports its own suite of features and functions that
can be used to interact with the website. Often at times, some func-
tions may be available in one browser but not in another [2]. These
APIs are critical for the browser vendor as they provide essential
information that services can use to customize the user experi-
ence. For instance, declaring the number of logical cores through
navigator.hardwareConcurrency can allow websites to optimize
website functionality by displaying light-weight versions of the site
for low-end devices [27]. However, opportunistic fingerprinters can
also use these methods to profile users in invasive ways. Moreover,
since each browser may expose a slightly different fingerprinting
surface based on JavaScript engine or vendor-enforced configura-
tions, trackers may use slightly different fingerprinting techniques
for each browser.

In this section, we look to answer the following research ques-
tion, RQ3: Do trackers discriminate against users based on the
browser they use? To answer this question, we first detect invasive
fingerprinters by utilizing the runtime APIs they access. We update
and apply the heuristics provided by Englehardt et al. [43] (to ac-
count for changes made to the modern browser API stack) to detect
the prevalence of fingerprinters across different privacy-focused
browsers. Lastly, we apply static analysis on source codes and study
the deviations in function calls and property accesses to answer
whether trackers serve different versions of the same script based
on what browsers a user uses.

6.1 Dynamic Analysis

WhoTracksMe [17] defines invasive fingerprinting as a technique
that utilizes fingerprinting routines based on APIs to gather unique
information about a device for which those APIs were not intended
to be used. We use this definition to categorize opportunistic finger-
printers in our dataset. In order to find suitable heuristics that can
be applied to identifying fingerprinters, we leverage the routines
introduced by Englehardt [43]. These routines look for indicators of
fingerprinters. For example, font fingerprinting is a popular track-
ing technique that creates a canvas object on the user’s screen (most
of the time, it is invisible, so the user is unaware) and then renders
all possible fonts in its super list. When the user’s device does not
support a font, the default value is returned, which is how the fin-
gerprinter knows that the font is unavailable. This font profiling
results in a highly unique user trace as font selection is custom to
each user.

Apart from font fingerprinting, other routines include WebRTC,
Audio, and Canvas Fingerprinting. We use these routines to classify
invasive third-party trackers. Table 5 summarizes the count of
websites and each of the heuristics that matched. We note that
Brave had the lowest number of websites where Audio, WebRTC,
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Table 5: Number of Tranco websites where potential trackers
were found conducting the following fingerprinting routines.
Bold numbers indicates the corresponding value is the lowest
across all browsers. The “Overall” column records the total
number of websites where at least one of the fingerprinting
activity was observed.

Browsers Audio WebRTC Canvas Canvas Font Overall
Chrome 344 117 960 82 1027
Firefox 398 114 1089 512 1527
Safari 379 84 1007 526 1442
Focus 382 115 1042 142 1147
Brave 132 56 492 98 520
DDG 244 100 776 98 827

and Canvas fingerprinting occurred. This is due to the extensive
third-party blocking of Brave and fingerprint randomization of API
routines.

Interestingly, Focus had a high number of websites where inva-
sive fingerprinting occurred. For instance, on 1,042 websites visited
by Focus, scripts were found to be using Canvas Fingerprinting.
This performance was on par with Safari and Firefox, which also
experienced a similar number of fingerprinters. To explore this fur-
ther, we look at the scripts responsible for Canvas Fingerprinting
in Focus. We notice that top vendors that perform Canvas in Focus
belong to salesforce.com and hcaptcha.com. Both of these domains
serve trackers that are blocked by the EasyPrivacy list.

Also, surprisingly, Chrome had the lowest number of websites
where Canvas Font fingerprinting was observed. One possible rea-
son for it could be that Canvas Font fingerprinting is a relatively
expensive process where a script checks the availability of fonts by
iteratively calling Canvas graphic operations. Since Chrome, as a
generic browser, has an unrestricted fingerprinting surface, third-
party vendors might be using other fingerprint profiling techniques
that incur less cost. We also observe that roughly 10% and 15% of
websites loaded in Chrome and Firefox, respectively, experience
fingerprinting activity. Our reported numbers are on par with the
previous works that have studied fingerprinting on the web [38, 50].

6.2 Static Analysis

Privacy-intrusive scripts may target users based on their browsers.
The differences may arise due to a script’s dynamic routines inside
the browser. However, it may also arise because of differences in
the script’s content served to users of different browsers. In this
section, we use static analysis to discover content-wise differences
in the scripts loaded inside different privacy-focused browsers. We
aim to discover how script authors may serve different codes based
on browser type.

The proposed static analysis provides important information
regarding the code structure. Specifically, it describes the func-
tion calls, variable declarations, and property accesses. We first
aggregate scripts that were served across all three privacy-focused
browsers to find variant behaviors among scripts. For fairness and
ecological validity, we condition that a script may only be selected
if it was seen in each browser when visiting the same website. For
instance, while visiting a website X, a script Y was served in each
privacy-focused browser; we call it a "common script". Moreover,
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we match the complete script filename to avoid false positives (i.e.,
different scripts coming from the same vendor). An example of a
script filename is: https://cdn.pdst.fm/ping.min.js.

There are 298,541 such common JavaScript programs in our
dataset. It is noteworthy that the actual common script number
may be higher, but it is hard to define an identifier (apart from the
full script filename) that can be used to find commonality without
introducing false positives. This is because script filenames may
contain variable filenames where the last segment of the name (e.g.,
ping.min.js) may be similar. Therefore, we do not consider such
scripts common.

To perform a differential analysis of the content of the served
JavaScript programs, we consider common scripts with dissimilar
content. Such scripts will henceforth be called "dissimilar” scripts.
To find these, we convert the raw source code of common scripts
into Abstract Syntax Tree (AST) representation. ASTs are tree-like
structures, with each node representing a construction within the
source code. Conversion to ASTs is important as it allows us to
ignore whitespaces and variable name changes. Then, we compare
the hashes of ASTs of common scripts and aggregate files with
different hashes. This aggregation results in a set of dissimilar
common scripts. In our dataset, we are able to find 5,729 such
scripts in Brave, Focus, and Duck Duck Go.

Next, to identify content differences in these scripts, we leverage
the list of important static code features from the work of Umar
et al. [50]. These features are based on various code constructions
like member expressions (e.g., navigator and math object call), liter-
als, and variable declarations. We determine the presence of these
important features in the common scripts. Intuitively, if the same
script is being served across multiple platforms, it should have a
similar feature presence. If not, this means that script vendors are
deterministically serving changed scripts to different users.

Finally, we perform Agglomerative Clustering [19] on the dissim-
ilar scripts based on the presence of these feature sets. Specifically,
if a feature is present in a script, the indicator for that feature is
turned on. Agglomerative Clustering is a bottom-up approach that
starts with individual clusters and then determines the minimum
distance required to merge with each other. All clusters meet at the
root. For our experiment, we use ‘Euclidean Distance’ as the criteria
for merging as it suits our simplistic input (feature presence). We
note that the first cluster is formed between Brave and Duck Duck
Go. The euclidean distance between Brave and Duck Duck Go is
63.3, whereas the euclidean distance between Brave or Duck Duck
Go and Focus is 1,151. This suggests that Brave and Duck Duck Go
users are likely to experience near-identical scripts. We also look
at the count of feature indicators among the 5,729 common scripts
and observe that Focus had 24 more addEventListener routines,
27 more navigator property access, and 82 more sessionStorage
access points than Brave and Duck Duck Go.

Finding 4: Script vendors may provide altered versions of
FJavaScript code to users based on their browser choice. Out
of the privacy-focused browsers, Focus witnessed the most
number of altered scripts. Duck Duck Go, and Brave had
highly similar contents among the common script files.
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7 TEMPORAL VALIDATION

Contents served on websites often change. Such changes can arise
as some vendors might update their scripts and content sources
routinely. Moreover, the dynamic nature of content-loading means
some domains may load a different set of scripts at different snap-
shots. To ensure that our conclusions and findings in this mea-
surement study were not attributed to the timespan in which we
gathered the data, we conducted a separate round of web crawl
to validate the results. It should be noted that the first round of
crawl took place in June 2022, and the second round of crawl took
place in July 2022. This section aims to validate the consistency of
our results in the earlier sections. We briefly replicate some of the
key analyses discussed earlier and show that our conclusions are
consistent regardless of the dynamics of web content. The figures
and table we share in this section will hence be based on the data
from the second round.

General Content Distribution. We start our validation by look-
ing across the various content types loaded in the browsers in our
two rounds of measurements. Figure 6a highlights the counts of
content types that were loaded in the second round of crawl. We
compare it with the counts of contents in the first round, as shown
in Figure 2. We observe that there is no major change in the counts
of these contents across the two crawls. To further validate this, we
perform statistical testing on the content data from the two crawls.
We select Mann-Whitney-U test [28] with a significance level of
0.05 (i.e., @ = 0.05). We specify our hypothesis as the following:
there is no significant difference between the distribution of content
types across the two crawls. We perform these tests on the samples
of each browser across both crawls and find that the p — value > «
(i.e., we can not reject the null hypothesis), meaning there was no
statistically significant difference across the distribution of contents
across the two crawls.

API Usage Pattern. While we record content and request/re-
sponse headers using MitmProxy directly, the dynamic execution
trace is recorded using a script-injection method. We recompute the
API usage pattern from the second round dataset to ensure that the
dynamic traces are consistent. Based on our earlier measurements,
we concluded that in addition to blocking invasive fingerprinters,
Brave restricts access to its fingerprinting surface to third parties.
Figure 6b reinforces these conclusions as Brave again has the low-
est counts across most categories of APIs. To validate that the
distributions of values across crawls are not significantly different,
we use Mann-Whittney-U test with a significance level of 0.05 (i.e.,
a = 0.05). This test is suitable as it makes no underlying assumption
about the distribution of the samples. We state our null hypoth-
esis as the following: there is no significant difference between
the distribution of API usage across the two crawls. We perform
these tests on the samples of each browser across both crawls and
find that the p — value > «, meaning there was no statistically
significant difference across the distribution of API usage across
the two crawls. Figures 4 and 6b highlight similar distributions.

Should-be-blocked Requests. We use the EasyList and EasyPri-
vacy lists to compute the should-be-blocked requests. These lists are
more comprehensive as they enforce request-level blocking. Table 6
highlights the percentages of should-be-blocked requests using the
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Figure 6: Distribution of Content Type and API’s in the sec-
ond measurement round.

Table 6: Proportion of requests that should-be-blocked in
round 2. The change over round 1 is shown in parenthesis.

Browsers | EasyList (A) | EasyPrivacy (A)
Chrome 14.2% (0.5% |) | 17.18% (0.18% 1)
Firefox | 11.07%(0.23% |) |  15.0% (0.1% 1)
Safari 10.4% (0.4% ) 14.9% (0.1% 1)
Brave 0.04% (0.09% |) | 0.44% (0.12% |)
Focus 2.00% (0.16% |) | 7.88% (0.02% 1)
DDG 1.13% (0.11% |) | 4.03% (0.18% )

data from the second round. The numbers are comparable to the
numbers found in the first round (shown in Table 3). We see that
the maximum difference in change ranges from 0.02% to 0.23%. To
statistically validate the distributions of should-be-blocked requests
that appeared across the two rounds of crawls across the browsers,
we again perform Mann-Whittney-U test. We select a significance
level of 0.05 (i.e., @ = 0.05). We find that the p — value > a for both
block lists, meaning there was no statistically significant difference
across the distribution of should-be-blocked requests across the
two crawls.

Finding 5: Content distributions and dynamic runtime logs
of APIs used by different browsers are consistent temporally.
Our findings from earlier sections can be confirmed as each
browsers web interaction remains unchanged across the two
crawls.
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8 DISCUSSION

Browser vendors are rallying around a pro-privacy narrative and
are introducing new technologies routinely to offer better privacy
protection against advertisers and trackers. These technologies
often balance protecting user information and maintaining a con-
sistent and smooth web user experience. Among generic browsers,
the goal is to maximize user experience while mitigating track-
ing exposures. For privacy-focused browsers, vendors may take a
harder stand at thwarting tracking practices to protect user data.
We know that vendors like Brave may even take unconventional
approaches like API randomization or complete restriction. How-
ever, tracking companies have been known to use sophisticated
tracking and user profiling techniques to thwart countermeasure
techniques.

The objective of this study is to evaluate the privacy-protection
capabilities of mobile devices. We use browsers from two major plat-
forms (Android and iOS), including three privacy-focused browsers.
We use real browsers to uphold ecological validity and use measure-
ments from two separate rounds to ensure results are consistent.
In this study, we look at the question of privacy protection from
various vantage points and ask what general differences in web
content are seen across browsers. We provide an overview of gen-
eral differences in web traffic experienced by each browser using
header files, content sources, and dynamic execution traces. We
also ask how privacy browsers respond to third parties known to
be trackers and advertisers by well-known block lists. These lists
include EasyList, EasyPrivacy, Disconnect, and WhoTracksMe. We
carefully choose these block lists based on their adoption among the
privacy-conscious community that routinely maintains them. Thus,
our analysis uses reliable community-sourced data to evaluate the
effective performance of each browser. We note that Chrome expe-
riences the most content among generic browsers that may harm
user privacy in general. This is because, at default settings, Chrome
offers minimal protection against cross-site tracking and third-party
cookie tracking. The other two mainstream browsers, Firefox and
Safari, have recently implemented some basic privacy enhance-
ment technologies, such as Firefox’s Enhanced Tracking Protection
[59] and Safari’s Intelligent Tracking Prevention (ITP) [31]. On the
other hand, privacy-focused browsers implement more complex
countermeasures and block any content classified as trackers. Each
browser’s approaches to information protection are different and
result in unique strengths and weaknesses for the browsers. For
example, Brave blocks many third-party domains classified as ad-
vertisers by EasyList and trackers by EasyPrivacy. Duck Duck Go
performs especially well against third-party email trackers. Focus,
on the other hand, blocks the highest number of requests from
social trackers. It should be noted that while these privacy-focused
mobile browsers implement these blocklists at various levels of pri-
vacy protection, these may not be wholly applied, as some browser
vendors may have data-sharing agreements with some companies.
We saw this with Duck Duck Go shared data with Bing [4].

Lastly, we define invasive fingerprinters and use state-of-the-art
approaches to identify them in our dataset. We profile the behavior
of such opportunistic fingerprinters using dynamic and static analy-
sis of runtime execution logs and source codes, respectively. We ask
whether certain browsers are more susceptible to tracking by such
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scripts. We discover that Brave and Duck Duck Go generally limit
their fingerprinting surface, thereby reducing information leaks to
these fingerprinters. We confirm this by statically analyzing the
functions and property accesses of common scripts whose content
is dissimilar among privacy browsers. We note that Focus served
the most altered script content as compared to Brave and Duck
Duck Go. We also show evidence of tailored scripts and claim that
third-party vendors may serve altered scripts to users based on
browser choice. To ensure that our data samples are not a function
of the timespan in which the measurement study is conducted, we
perform another round of web measurement on these browsers and
obtain similar distributions of content and API uses temporally.

Recommendations. We also provide some recommendations
for privacy-focused browser vendors and their users to ensure no
gaps are left to protect users’ private data. We recommend that
browser vendors leverage multiple blocklists to block ads and track-
ers that are commonly known. Vendors can also periodically send
privacy checkup nudges to keep users informed about the latest
privacy-enhancing features in the browser settings. Vendors should
also be completely transparent about data-sharing relationships
with other entities. For instance, Firefox Focus stores user data
and shares it with the user’s default search provider [25]. Users
should be informed about such partnerships when they install the
application. Lastly, many browsers, including generic ones, have
implemented privacy features that are not enabled by default (for
instance, Chrome allows blocking third-party cookies, but it is not
enabled by default). These features should be enabled by default
or, at the very least, be shown as an option to the user when they
install the browser on their phones for the first time.

Limitations. We discuss some of the limitations of our measure-
ment study. First, since the overarching goal of this paper is to study
the interaction of browsers with trackers and advertisers, we ensure
we have both static code source and runtime dynamic execution
trace. However, to populate feature sets that complement static and
dynamic analysis, we have to know beforehand which features we
will look for in both the source code and the dynamic trace. As a re-
sult, we prepare an excessively rich feature list; however, it is by no
means exhaustive and is subject to continuous improvement. Sec-
ond, we perform dissimilarity analysis on invasive scripts by finding
the common scripts that appeared in each privacy browser. While
the script filename matching ensures we have no false positives, it
can also result in false negatives. This results in a lower-bound num-
ber of common scripts for which we believe the actual number may
be higher and can result in more interesting insights about deviant
content among invasive fingerprinters. Third, we acknowledge that
third parties can also set first-party cookies for web tracking, as
demonstrated by [39]. We would need to instrument each browser
and perform taint analysis on data types to track such events to
determine if third parties were setting first-party cookies. How-
ever, since all of our tested mobile browsers are proprietary, such
instrumentation is practically impossible. Furthermore, the smart-
phones used in this study were connected to the same lab network.
Thus, from an external party, they might all see the same IP address
making the requests. This can potentially lead to serving content
based on tracking IP addresses. However, we crawled the same web
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page from smartphones in parallel to reduce the impact of generat-
ing drastically different content. Lastly, we do not consider inline
JavaScript code (scripts embedded in a script tag within the main
document page of a website) for dissimilarity analysis. Part of the
reason for it is that while privacy browsers act hard on third-party
trackers, they have minimal claimed protection against first-party
content. However, analyzing the inline scripts for deviant content
may also reveal interesting insights into first-party discrimination
of users based on browsers.

9 CONCLUSION

In this paper, we present, to our knowledge, the first empirical
measurement study to understand varying privacy protections of-
fered by mainstream and privacy-focused mobile browsers. These
browsers belong to the iOS and Android platforms and are selected
based on their adoption rates. We compare the privacy-preserving
behaviors of these browsers in terms of requested contents, used
functions, and APIs. Further, we evaluate how closely privacy-
focused browsers emulate known blocklists in blocking known
trackers and ads. Through dynamic and static analysis, we also
discover that different versions of scripts may be served determin-
istically based on the type of mobile browser. These selections may
have privacy implications for users as some of the scripts contained
invasive fingerprinting routines.
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