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Abstract
This paper develops a new coupled enriched Galerkin (EG) scheme for Biot’s poroelasticity
model based on the displacement-pressure formulation. The aim of this work is to provide
a stable and robust numerical method for a wide range of physical and numerical param-
eters. The finite-dimensional solution spaces are enriched linear Lagrange spaces, and the
inf-sup condition between the two spaces is achieved by adding a stabilization term. The
resulting coupled EG method is locally conservative and provides stable solutions without
spurious oscillations or overshoots/undershoots. The well-posedness and optimal a priori
error estimates are established. Numerical results in various scenarios are provided.

Keywords Biot · Poroelasticity · Enriched Galerkin · Locking-free · Local mass
conservation

Mathematics Subject Classification 65M60 · 74F10

1 Introduction

The deformation of a solid porous material caused by the change of fluid pressure inside the
material may cause the change in permeability and porosity of the porous material, which
in turn affects the fluid pressure. These coupled processes between the fluid flow and solid
deformation are commonly modeled by Biot’s system of poroelasticity equations [5, 6].
Biot’s system consists of two partial differential equations, describing the conservation of
momentum for the solidmechanics and the conservation ofmass for the fluid flow. Thismodel
has been employed to model various applications in science and engineering fields, including
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groundwater contamination, fossil fuel production, earthquakemechanics, geothermal energy
harvest, and biomedical engineering.

While various numerical methods (e.g., finite difference [4, 26, 27] and finite volume [15,
31, 38] methods) have been employed to solve Biot’s equations, the most popular methods
fall into the category of general finite element methods (FEMs) [12, 17–19, 21, 25, 28, 43–
46]. In particular, it is a common practice to couple different types of FEMs tailored for
each subproblem, mechanics or flow, to satisfy the underlying physical law or to overcome
the known numerical difficulties associated with each governing equation. Some examples
include the coupling of continuous Galerkin (CG) and mixed finite element method (MFEM)
[33, 44, 46], discontinuous Galerkin (DG) and MFEM [34], MFEM and MFEM [2, 3, 45],
and CG and enriched Galerkin (EG) method [12, 19].

There are several numerical challenges when solving poroelasticity problems. First of
all, regardless of what combination of numerical methods is used, the choice of the finite-
dimensional solution spaces cannot be made independently of one another. As is well-known
for mixed finite element methods, the solution spaces should be inf-sup stable [7, 9]. The
violation of this stability condition in the poroelasticity modeling may result in spurious
pressure oscillations, known as pressure locking, for a certain range ofmaterial and numerical
parameters [8, 35, 36, 46]. Overcoming pressure locking has been a subject of extensive
research in the past couple of decades [14, 24, 29, 34, 42, 45, 46].

However, the lack of the inf-sup condition is not the only cause of pressure oscillations in
poroelasticity simulations. In other words, the inf-sup stability does not necessarily guarantee
oscillation-free pressure solutions, in particular, near material interfaces with high contrast
permeability values. A good example of an inf-sup stable element that presents pressure
oscillations in heterogeneous media is the Taylor-Hood element [28, 41]. Indeed, these oscil-
lations (overshoots/undershoots) are related to the lack of local mass conservation in the
numerical method. Therefore, they should be distinguished from the pressure locking phe-
nomenon. The aim of this research is to provide a numerical method that is free of both types
of pressure oscillations.

In this present work, we propose a coupled EG method for solving the Biot model, where
we solve both the mechanics and flow problems using EG methods. The EG method is a
new class of FEMs that combines the advantages of the two most extensively studied FEMs:
CG and DG methods. The EG solution space is obtained by enriching a CG space with a
minimal set of suitable discontinuous functions to achieve somedesired properties that theCG
method lacks, for example, local mass conservation. On the other hand, the non-conformity
of the solution space is accounted for by using a DG-like weak formulation. Therefore, the
computational cost for the EG method is much lower than the DG method due to the fewer
degrees of freedom (DOFs) and a simpler sparse linear system. Moreover, one can utilize
existing CG and DG codes to implement the EG method with some slight modifications.

In our new coupled EG method, we employ the linear CG space enriched by piecewise
constants for the pressure solution. This EG space was employed in [20, 22, 23, 39] to
study coupled flow and transport problems in porous media. The resulting EG method for
the flow equation provides local mass conservation and yields solutions with no spurious
oscillations, which would normally be present if the CG method was used, in heterogeneous
porous media. For the displacement space, we enrich the linear vector-valued CG space
with an enrichment space spanned by one local linear basis function per element. This EG
space was utilized by the authors in [47, 48] for simulating nearly incompressible elastic
materials and incompressible Stokes flow. On the other hand, the temporal discretization is
done using the backward Euler method for simple analysis. Another important aspect of our
EG method is the presence of a stabilization term, which plays an essential role in achieving
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the inf-sup condition and provide oscillation-free solutions. We prove the well-posedness
and optimal a priori error estimates for the new method. Also, we demonstrate through
several numerical experiments that our coupled EG method yields oscillation-free solutions
for problems in various scenarios, where we would normally observe pressure locking or
overshoots/undershoots when solved by CG methods. Recently, a five-field MFEM for the
Biot model that enjoys similar properties to ours was presented in [2]. Though their original
method requires the solution of a much larger linear system than ours, the method can be
reduced to a cheap (P0-P0) pressure-displacement system, whose reduction process involves
the solution of local problems.

The outline of the rest of the paper is as follows. We start with presenting the governing
equations in Sect. 2 and introducing some useful notations in Sect. 3. Then, we define our
EG method and show its mass conservation property in Sects. 4 and 5, respectively. The
next two sections, Sects. 6 and 7, are dedicated to prove the well-posedness and optimal a
priori error estimates. Finally, in Sect. 8, we present the numerical results of our numerical
experiments.

2 Governing Equations

Let Ω be a bounded, connected, Lipschitz domain in Rd , d = 2, 3, and let I = (0, T f ] with
T f > 0. Also, let u be the displacement of the solid phase and p be the fluid pressure. Then,
the governing equations are

−∇ · (σ (u) − α pI) = f in Ω × I, (1a)

∂

∂t
(c0 p + α∇ · u) − ∇ · (K∇ p) = g in Ω × I, (1b)

where f is the body force and g is the volumetric source/sink term.Also,σ is the standard stress
tensor from linear elasticity, satisfying the constitutive equation σ (u) = 2με(u)+λ(∇ ·u)I,
where ε(u) = 1

2 [∇u+ (∇u)T ] is the strain tensor, I is the d × d identity tensor, and μ, λ are
the Lamé constants. The Lamé constants are assumed to be in the range [μ0, μ1] × [0,∞)

for some 0 < μ0 < μ1 < ∞. Then, the total stress tensor is given by σ̃ = σ − α pI, where
α is the Biot-Willis constant. The momentum balance for the fluid is interpreted as the Darcy
law for the volumetric fluid flux: q = −K∇ p. We ignore the gravity effect here for a simple
presentation of the numerical method. However, it is straightforward to include the gravity
term in the numerical formulation. The permeability tensor, K ∈ R

d×d , is a symmetric and
uniformly positive definite tensor satisfying the following assumption: there exist positive
constants kmin and kmax such that for any x ∈ Ω ,

kminξ
T ξ ≤ ξ TK(x)ξ ≤ kmaxξ

T ξ , ∀ξ ∈ R
d .

The fluid content, η, can be written as η = c0 p+α∇ ·u, where c0 is the constrained specific
storage coefficient. The mass conservation states that ηt = −∇ · q + g.

To complete the system (1), we have to prescribe suitable boundary and initial conditions.
To this end, we introduce two pairs of partitions of the boundary ofΩ , {Γp, Γ f } and {Γd , Γt },
such that ∂Ω = Γp ∪ Γ f and ∂Ω = Γd ∪ Γt . In this paper, we assume that |Γp| > 0 and
|Γd | > 0. Then, we prescribe the following mixed boundary conditions:

p = pD on Γp, (K∇ p) · n = qN on Γ f , u = uD on Γd , σ̃n = tN on Γt , (2)
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where n is the outward unit normal vector. We also have the following initial conditions:

p(·, 0) = p0 and u(·, 0) = u0 in Ω (3)

such that

p0 = pD(·, 0) on Γp and u0 = uD(·, 0) on Γd .

The existence, uniqueness, and regularity theory of the solution of the governing equations
(1) is developed in [37].

3 Notation and Preliminaries

In this section, we introduce some notations and preliminaries that will be useful throughout
the rest of the paper. We adopt standard notations for Sobolev spaces Hs(E) [1] and their
associated inner products (·, ·)E , norms ‖ · ‖s,E , and seminorms | · |s,E on a subdomain
E ⊆ R

d . We extend these definitions and notations naturally to vector functions ζ : E → R
d

and tensor functions τ : E → R
d×d . When s = 0, Hs(E) coincides with L2(E). In this

case, the inner product will be denoted by (·, ·)E . For simplicity, the subscript E will be
dropped if E = Ω . For vector functions v,w ∈ [L2(E)]d , the notation (v,w)E denotes
the integral of their dot product over E , and for tensor functions τ ,ω ∈ [L2(E)]d×d , the
same notation denotes the integral of the Frobenius inner product τ : ω := tr(τ Tω). If
E ⊆ R

d−1, then the innder product will be denoted by 〈·, ·〉E . For any subset Γ ⊆ ∂Ω ,
Hs
0,Γ (Ω) = {w ∈ Hs(Ω) | w = 0 on Γ }.
Let Th be a shape-regular triangulation by a family of partitions of Ω into elements K ,

where K is a triangle when d = 2 and a tetrahedron when d = 3. We denote by hK the
diameter of K and we set h = maxK∈Th hK . Also, we denote by Eh the set of all edges (or
faces) and by E I

h the collection of all interior edges (faces), respectively. For any e ∈ E I
h ,

there are two neighboring elements K+ and K− such that e = ∂K+ ∩ ∂K−. We associate
one unit normal vector ne with e, which is assumed to be oriented from K+ to K−. If
e ∈ Eb

h := Eh \ E I
h , then ne is taken to be the outward unit normal vector to ∂Ω .

The development of an EG method requires broken Sobolev spaces, which depend on the
partition of the domain. The broken Sobolev space Hs(Th) for any real number s is defined by
Hs(Th) = {v ∈ L2(Ω) | v|K ∈ Hs(K ) ∀K ∈ Th }, equipped with the broken inner product
(w, q)Th = ∑

K∈Th
(w, q)K and a broken Sobolev norm ‖w‖Hs (Th) =

(∑
K∈Th

‖w‖s,K
) 1

2
.

Similarly, L2(Eh) refers to the set of functions whose traces on the elements of Eh are square-
integrable. This space is equipped with the broken inner product (w, q)Eh = ∑

e∈Eh 〈w, q〉e
and a brokenSobolev norm ‖w‖Hs (Eh) =

(∑
e∈Eh ‖w‖s,e

) 1
2
.These definitions and notations

can be naturally extended to vector and tensor functions.
For ζ ∈ [H1(Th)]d , the trace of ζ along ∂K for any element K is well defined. If e ∈ E I

h
is shared by two elements K+ and K−, there are two traces of ζ on e, which will be denoted
by ζ±, respectively. Now, we introduce the so-called average and jump operators, {·} and
[[·]], respectively, as follows:

⎧
⎨

⎩

{ζ } := 1

2

(
ζ+ + ζ−)

and [[ζ ]] := (
ζ+ − ζ−)

if e ∈ E I
h ,

{ζ } = [[ζ ]] := ζ if e ∈ Eb
h .

We use the same definitions and notation for vector and tensor functions.
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Lastly, we recall important trace inequalities that will be frequently used in the analysis
of our EG method. Let |K | denote the area of K in two dimensions and the volume of K in
three dimensions. Similarly, |e| denotes the length of e in two dimensions and the area of e
in three dimensions. Then, there is a constant Ct independent of hK and v such that for any
v ∈ Hs(K ), s ≥ 1,

‖v‖0,e ≤ Ct |e|1/2|K |−1/2(‖v‖0,K + hK ‖∇v‖0,K ) ∀e ⊂ ∂K . (4)

If v ∈ Pk(K ), where Pk(K ) is the space of polynomials of total degree at most k, then the
trace inequality becomes

‖v‖0,e ≤ C̃t |e|1/2|K |−1/2‖v‖0,K ∀e ⊂ ∂K , (5)

where C̃t is independent of hK and v but depends on the polynomial degree k. We note that
analogous inequalities to (4) and (5) hold for vector and tensor functions.

4 Variational Formulation and Enriched Galerkin Method

In this section, we derive a variational formulation for the model problem (1) and propose
a fully-discrete EG method. In order to derive a variational problem, we multiply (1a) and
(1b) by v ∈ [H1

0,Γd
(Ω)]d and w ∈ H1

0,Γp
(Ω), respectively, and integrate by parts. Then,

the resulting variational formulation reads as follows: At every t ∈ (0, T f ], find (u, p) ∈
[H1(Ω)]d × H1(Ω) such that u = uD on Γd and p = pD on Γp and satisfy

au(u, v) − α(p,∇ · v) = (f, v) + (tN , v)Γt ∀v ∈ [H1
0,Γd

(Ω)]d , (6a)

c0(pt , w) + α(∇ · ut , w) + ap(p, w) = (g, w) + (qN , w)Γ f ∀w ∈ H1
0,Γp

(Ω), (6b)

where the bilinear forms au(u, v) and ap(p, w) are defined by

au(u, v) = 2μ(ε(u), ε(v)) + λ(∇ · u,∇ · v) ∀u, v ∈ [H1(Ω)]d
ap(p, w) = (K∇ p,∇w) ∀p, w ∈ H1(Ω).

It is trivial to see that au(·, ·) is symmetric and continuous. Given that |Γd | > 0, the second
Korn’s inequality holds on [H1

0,Γd
(Ω)]d [30]. In other words, there existsC = C(Ω, Γd) > 0

such that

‖v‖1 ≤ C‖ε(v)‖0, ∀v ∈ [H1
0,Γd

(Ω)]d . (7)

Therefore, au(·, ·) is coercive on [H1
0,Γd

(Ω)]d .
For the spatial discretization of the weak form (6), let us introduce our EG finite element

spaces for the displacement and pressure on a shape-regular mesh Th . Let Ch be the standard
linear CG finite element space and Ch = (Ch)d ⊂ [H1(Ω)]d be the vector-valued linear CG
space. Also, let

Du
h =

{
ψ ∈ [L2(Ω)]d | ψ |K = cK (x − xK ), cK ∈ R ∀K ∈ Th

}
,

where x = [x1, · · · , xd ]T and xK is the position vector of the center of K ∈ Th , that is,
(x − xK , 1)K = 0. Then, the EG finite element space for the displacement is defined as

Vh := Ch ⊕ Du
h ,
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where the direct sum can be established because Ch ∩ Du
h = {v | v ≡ 0 on Ω}. For the

pressure space, first let

D p
h = {

ψ ∈ L2(Ω) | ψ |K ∈ P0(K ) ∀K ∈ Th
}
.

Then, the space for the pressure is defined as

Wh := Ch + D p
h .

Note thatWh is not a direct sum unlikeVh. Also, bothVh andWh require only one additional
local degree of freedomper element compared to the linearCG spacesCh and Ch , respectively,
regardless of the dimension d .

To discretize (6) in time, we employ the backward Euler method for simplicity. However,
higher-order time-stepping methods can be also considered in practice to achieve the same
convergence orders in space and time. For a positive integer N , Δt = T f /N is the time step
and tn = nΔt . For any known function φ(t), the function value at time tn is denoted by φn .
That is, φn = φ(tn). In our EG method, (unh, p

n
h ) is an approximation of (un, pn), where

n = 0, . . . , N .
Finally, our fully-discrete coupled EG method reads as follows: At the initial time t = 0,

we take

u0h = Πu
h u

0 and p0h = Π
p
h p0, (8)

where the interpolation operators Πu
h and Π

p
h are introduced in Sect. 6. Then, given

(unh, p
n
h ) ∈ Vh × Wh with 0 ≤ n ≤ N − 1, find (un+1

h , pn+1
h ) ∈ Vh × Wh such that

auh (un+1
h , v) − bh(v, pn+1

h ) = guh (tn+1; v) ∀v ∈ Vh, (9a)

ch

(
pn+1
h − pnh

Δt
, w

)

+ bh

(
un+1
h − unh

Δt
, w

)

+ aph (pn+1
h , w) = gph (tn+1;w) ∀w ∈ Wh , (9b)

where

auh (v,w) := 2μ(ε(v), ε(w))Th + λ(∇ · v,∇ · w)Th − 〈{σ (v)ne} , [[w]]〉E I
h∪Γd

+ θu〈[[v]] , {σ (w)ne}〉E I
h∪Γd

+ βu 〈
h−1
e [[v]] , [[w]]

〉
e∈E I

h∪Γd
,

ap
h (q, w) := (K∇q,∇w)Th − 〈{K∇q · ne} , [[w]]〉E I

h∪Γp
+ θ p〈{K∇w · ne} , [[q]]〉E I

h∪Γp

+ β p 〈
h−1
e [[q]] , [[w]]

〉
E I
h∪Γp

,

bh(v, w) := α(∇ · v, w)Th − α〈{w} , [[v]] · ne〉E I
h∪Γd

,

ch(q, w) := c0(q, w)Th + γ ph2(∇q,∇w)Th ,

guh (t; v) := (f(t), v)Th + 〈tN (t), v〉Γt + θu〈uD(t), σ (v)ne〉Γd + βu 〈
h−1
e uD(t), v

〉
Γd

,

gp
h (t;w) := (g(t), w)Th + 〈qN (t), w〉Γ f − α〈w, (uD)t (t) · ne〉Γd

+ θ p〈K∇w · ne, pD(t)〉Γp + β p 〈
h−1
e pD(t), w

〉
Γp

.

Here, he = |e| 1
d−1 and βu, β p are penalty parameters, which are assumed to be positive

constants, and γ p > 0 is a stabilization parameter. Also, θu and θ p are symmetrization
parameters and chosen from {−1, 0, 1}. These three parameters lead to a symmetric interior
penalty Galerkin (SIPG)method, an incomplete interior penalty Galerkin (IIPG)method, and
a non-symmetric interior penalty Galerkin (NIPG) method, respectively. There are 9 possible
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combinations of θu and θ p . However, in this paper, we consider only (θu, θ p) = (−1,−1),
that is, the SIPG method.

Remark 1 The bilinear form ch

(
pn+1
h −pnh

Δt , w

)

in the flow problem (9b) includes a stabiliza-

tion term

γ ph2
(

∇
(
pn+1
h − pnh

Δt

)

,∇w

)

Th

, (10)

which is employed to satisfy the (weak) inf-sup stability condition. This same stabiliza-
tion term was utilized for the Stokes problem [10] and poromechanics [11, 40] to stabilize
the pressure oscillations. This term has been known as the fluid pressure Laplacian (FPL)
stabilization term.

5 Local Mass Conservation

One of the interesting properties of our coupled EG method is the conservation of mass on
each mesh element. Let q = −K∇ p. Then, the integration of the mass conservation Eq. (1b)
on K ∈ Th with ∂K ∩ ∂Ω = ∅ yields

〈q · nK , 1〉∂K = (g − c0 pt − α∇ · ut , 1)K = (g − c0 pt , 1)K − 〈αut · nK , 1〉∂K , (11)

where nK is the outward unit normal vector to ∂K . To see that our coupled EG method can
mimic this identity, let us fix an interior mesh element K and take w = 1 on K and w = 0
elsewhere in (9b). Then, using the fact that ∇w = 0, we get

c0

(
pn+1
h − pnh

Δt
, 1

)

K

+ α

(

∇ ·
(
un+1
h − unh

Δt

)

, 1

)

K

− α

〈
1

2
,

[[(
un+1
h − unh

Δt

)

· ne
]]〉

∂K

−〈
{
K∇ pn+1

h · nK

}
, 1〉∂K + β p

〈
h−1
e

[[
pn+1
h

]]
, 1

〉

∂K
= (gn+1, 1)K .

Applying the divergence theorem to the second term and combining it with the third term
above, we arrive at

−〈
{
K∇ pn+1

h · nK

}
, 1〉∂K + β p

〈
h−1
e

[[
pn+1
h

]]
, 1

〉

∂K

= (gn+1, 1)K − c0

(
pn+1
h − pnh

Δt
, 1

)

K

− α

〈{(
un+1
h − unh

Δt

)

· nK

}

, 1

〉

∂K

.

Hence, if we define our numerical (normal) flux qn+1
h on ∂K by

qn+1
h · nK = −

{
K∇ pn+1

h · nK

}
+ β ph−1

e

[[
pn+1
h

]]
,

we have the following local mass conservation, which is a discrete counterpart of (11):

〈
qn+1
h · nK , 1

〉

∂K
= (gn+1, 1)K − c0

(
pn+1
h − pnh

Δt
, 1

)

K

− α

〈{(
un+1
h − unh

Δt

)

· nK

}

, 1

〉

∂K

.

Note that this localmass conservation is achieved independently of the stabilization parameter
γ p .
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6 Existence and Uniqueness

This sections considers the existence and uniqueness of the solution of the fully-discrete
problem (9) at each discrete time tn, n = 1, · · · , N . Let us introduce the following energy
norms in the EG finite element spaces Vh and Wh :

‖v‖V =
(
‖ε(v)‖20 + βu‖h−1/2

e [[v]] ‖2L2(Eh)

) 1
2 ∀v ∈ Vh,

‖w‖W =
(
‖∇w‖20 + β p‖h−1/2

e [[w]] ‖2L2(Eh )

) 1
2 ∀w ∈ Wh,

and a semi-norm

|w|∗ = √
γ ph‖∇w‖L2(Th)

∀w ∈ Wh .

The following lemmas show the continuity of the bilinear forms auh (·, ·), ap
h (·, ·),bh(·, ·),

and ch(·, ·).
Lemma 1 There exists a constant Cau > 0 independent of h such that

auh (v,w) ≤ Cau‖v‖V‖w‖V ∀(v,w) ∈ [H1(Th)]d × [H1(Th)]d . (12)

Proof The result is obtained by using the Cauchy–Schwarz and Young’s inequalities, the
trace inequality (5), and the fact that ‖∇ · v‖0,K= ‖tr(ε(v))‖0,K ≤ √

d‖ε(v)‖0,K on each
K ∈ Th . ��
Lemma 2 There exists a constant Cap > 0 independent of h such that

ap
h (q, w) ≤ Cap‖q‖W‖w‖W ∀(q, w) ∈ H1(Th) × H1(Th). (13)

Lemma 3 There exists a constant Cb > 0 independent of h such that

bh(v, w) ≤ Cb‖v‖V‖w‖0 ∀(v, w) ∈ [H1(Th)]d × L2(Ω). (14)

Moreover, There exists a constant Cb̃ > 0 independent of h such that

bh(v, w) ≤ Cb̃‖v‖0‖w‖W ∀(v, w) ∈ [H1(Ω)]d × H1(Th). (15)

Proof It is straightforward to show the continuity inequality in (14) using the Cauchy–
Schwarz and trace inequalities. To prove (15), we first recall the following identity

(∇ · v, w)Th = 〈[[v]] · ne, {w}〉Eh + 〈{v} · ne, [[w]]〉E I
h

−(v,∇w)Th ∀(v, w) ∈ [H1(Th)]d × H1(Th)

and that the average and jump operators are the same on the boundary edges. Then,

bh(v, w) = α(∇ · v, w)Th − α〈{w} , [[v]] · ne〉E I
h∪Γd

= −α(v,∇w)Th + α〈[[w]] , {v} · ne〉E I
h∪Γt

.

Therefore, we obtain the result by using the Cauchy–Schwarz and Young’s inequalities and
the trace inequality (5). ��

We also have the following coercivity results for the bilinear forms auh (·, ·) and ap
h (·, ·),

which are found in [48] and [20], respectively.
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Lemma 4 (Coercivity of auh ) Assuming βu is sufficiently large, there exists a constant κu > 0
such that

auh (v, v) ≥ κu‖v‖2V ∀v ∈ Vh. (16)

Lemma 5 (Coercivity of ap
h ) Assuming β p is sufficiently large, there exists a constant κp > 0

such that

ap
h (w,w) ≥ κp‖w‖2W ∀w ∈ Wh . (17)

Another key ingredient for the proof of the existence and uniqueness of the solution is
the (weak) discrete inf-sup condition. This condition is particularly important to prove the
locking-free property of our method even when c0 = 0 and K and Δt are small. To this
end, consider two interpolation operators Πu

h : [H1(Ω)]d → Vh and Π
p
h : H1(Ω) → Wh

defined in [48, Section 4] and [20], respectively. Here, we only state their useful properties
and error estimates.

Lemma 6 There exists an interpolation operator Πu
h : [H1(Ω)]d → Vh that satisfies

(∇ · (v − Πu
h v), 1)K = 0 ∀K ∈ Th, (18a)

|v − Πu
h v| j ≤ Chm− j |v|m, 0 ≤ j ≤ m ≤ 2 ∀v ∈ [H2(Ω)]d , (18b)

|∇ · (v − Πu
h v)| j ≤ Ch1− j |∇ · v|1 ∀v ∈ [H2(Ω)]d , (18c)

‖Πu
h v‖V ≤ C‖v‖1 ∀v ∈ [H1

0,Γd
(Ω)]d , (18d)

‖v − Πu
h v‖V ≤ Chm−1‖v‖m, 1 ≤ m ≤ 2 ∀v ∈ [H2(Ω)]d , (18e)

where C > 0 is a generic constant independent of h.

Lemma 7 There exists an interpolation operator Π
p
h : H1(Ω) → Wh that satisfies

(w − Π
p
h w, 1)K = 0 ∀K ∈ Th, (19a)

|w − Π
p
h w| j ≤ Chm− j |w|m, 0 ≤ j ≤ m ≤ 2 ∀w ∈ H2(Ω). (19b)

Lemma 8 (Inf-sup condition) Provided thatβu > 0 is sufficiently large, there exists a positive
constant C∗ > 0 such that

C∗‖w‖0 ≤ sup
v∈Vh\{0}

bh(v, w)

‖v‖V + |w|∗ ∀w ∈ Wh . (20)

Proof For any nonzero w ∈ Wh , w has a decomposition w = wc + wd ∈ Ch + D p
h . Also,

there exists ṽ ∈ [H1
0,Γd

(Ω)]d [13] such that

∇ · ṽ = w, and ‖ṽ‖1 ≤ C‖w‖0. (21)

Let Ph : H1(Th) → D p
h be the local L2-projection onto the piecewise constant space. Then,

we have

‖q − Phq‖0,K ≤ ChK ‖∇q‖0,K ≤ Ch‖∇q‖0,K ∀q ∈ H1(Th).
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Then, using the Cauchy–Schwarz and Young’s inequalities, trace inequality in (5), the prop-
erties of Πu

h in (18a) and (18d), and (21), we have

α‖w‖20 = α(wc + wd ,∇ · ṽ)Th

= α(wc,∇ · ṽ)Th + α(wd ,∇ · Πu
h ṽ)Th

= α(w,∇ · Πu
h ṽ)Th + α(wc,∇ · (ṽ − Πu

h ṽ))Th

= bh(Πu
h ṽ, w) + α〈{w} ,

[[
Πu

h ṽ
]] · ne〉E I

h∪Γd
+ α(wc − Phwc,∇ · (ṽ − Πu

h ṽ))Th

= bh(Πu
h ṽ, w) + α〈{w}ne,

[[
Πu

h ṽ
]]〉E I

h∪Γd
+ α(wc − Phwc,∇ · ṽ)Th

≤ bh(Πu
h ṽ, w)

‖Πu
h ṽ‖V

‖Πu
h ṽ‖V + α‖h1/2e {w}ne‖L2(E I

h∪Γd )‖h−1/2
e

[[
Πu

h ṽ
]] ‖L2(E I

h∪Γd )

+ α‖wc − Phwc‖0‖∇ · ṽ‖0

≤
(

sup
v∈Vh,v �=0

bh(v, w)

‖ṽ‖V

)

‖Πu
h ṽ‖V + C

(
α√
βu

‖w‖0‖Πu
h ṽ‖V + √

γ ph‖∇wc‖0‖ṽ‖1
)

≤ C1

(

sup
v∈Vh,v �=0

bh(v, w)

‖v‖V + |w|∗
)

‖w‖0 + C2
α√
βu

‖w‖20,

where C1 and C2 are some positive constants. Moving the second term on the right side to
the left, we arrive at

α

(

1 − C2√
βu

)

‖w‖20 ≤ C1

(

sup
v∈Vh,v �=0

bh(v, w)

‖v‖V + |w|∗
)

‖w‖0.

If βu is large enough, the coefficient on the left-hand side is positive. Therefore, the inf-sup

condition (20) follows by letting C∗ = α
C1

(
1 − C2√

βu

)
. ��

We are now ready to prove the existence and uniqueness of the solution of the new coupled
EG method (9). In particular, we will show that this result is true even in the limiting case of
c0 = 0 andKΔt → 0,which are known to contribute to the pressure locking in poroelasticity.

Lemma 9 Given (unh, p
n
h ), 0 ≤ n ≤ N − 1, there exists a unique solution (un+1

h , pn+1
h ) to

the fully-discrete coupled EG method (9).

Proof Thanks to the finite dimensionality, the existence and uniqueness of the solution are
equivalent. Therefore, it suffices to prove that the only solution to the problem (9) with
(unh, p

n
h ) = (0, 0), guh(t

n+1; v) = 0, gp
h (tn+1;w) = 0 is (un+1

h , pn+1
h ) = (0, 0). That is, we

want to show that the following system has only the homogeneous solution:

auh (u
n+1
h , v) − bh(v, p

n+1
h ) = 0 ∀v ∈ Vh, (22a)

ch(p
n+1
h , w) + bh(u

n+1
h , w) + Δtap

h (pn+1
h , w) = 0 ∀w ∈ Wh . (22b)

First, taking v = un+1
h and w = pn+1

h in the system (22) and summing the two equations,
and then using the coercivity results (16) and (17), we obtain

0 = auh
(
un+1
h ,un+1

h

)
+ Δtap

h (pn+1
h , pn+1

h ) + ch(p
n+1
h , pn+1

h )

≥ κu‖un+1
h ‖2V + κpΔt‖pn+1

h ‖2W + c0‖pn+1
h ‖20 + |pn+1

h |2∗,
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from which one can conclude that ‖un+1
h ‖2V = 0, equivalently, un+1

h = 0. On the other hand,
one can draw the same conclusion for pn+1

h if c0 �= 0 or κpΔt is strictly positive. However,
we are interested in the limiting case where c0 = 0 and κpΔt → 0. Therefore, we consider
pn+1
h separately from un+1

h as follows. In light of the inf-sup condition (20), there exists
ṽ ∈ Vh such that

(C∗‖pn+1
h ‖0 − |pn+1

h |∗)‖ṽ‖V ≤ bh(ṽ, p
n+1
h ). (23)

Without loss of generality, we can assume that ‖ṽ‖V = ‖pn+1
h ‖0. Now, plug un+1

h = 0 and

take v = C∗
2 ṽ and w = pn+1

h in (22), then sum up the resulting two equations. Then, use
(23), (17), and the Cauchy–Schwarz and Young’s inequalities to obtain

0 = C∗

2
bh

(
ṽ, pn+1

h

)
+ Δtap

h (pn+1
h , pn+1

h ) + ch(p
n+1
h , pn+1

h )

≥ C∗

2
(C∗‖pn+1

h ‖0 − |pn+1
h |∗)‖ṽ‖V + κpΔt‖pn+1

h ‖2W + c0‖pn+1
h ‖20 + |pn+1

h |2∗

≥ (C∗)2

2
‖pn+1

h ‖20 − C∗

2

(
1

C∗ |pn+1
h |2∗ + C∗

4
‖pn+1

h ‖20
)

+ κpΔt‖pn+1
h ‖2W + c0‖pn+1

h ‖20 + |pn+1
h |2∗

≥
(
3(C∗)2

8
+ c0

)

‖pn+1
h ‖20 + κpΔt‖pn+1

h ‖2W + 1

2
|pn+1

h |2∗ ≥ 3(C∗)2

8
‖pn+1

h ‖20,

from which pn+1
h = 0 follows immediately regardless of the values of c0 and κpΔt . ��

Remark 2 This existence and uniqueness proof implies that there is no spurious mode in the
pressure solution when c0,KΔt → 0. Therefore, the new coupled EG method is free of
pressure locking.

7 Convergence Analysis

In this section, we prove a priori error estimates for the SIPG version, i.e.,(θu, θ p) =
(−1,−1), of the fully-discrete problem (9). To proceed, the following regularity conditions
are assumed for optimal error estimates:

p ∈ L∞(0, T f ; H2(Ω)), u ∈ L∞(0, T f ; [H2(Ω)]d),
pt ∈ L∞(0, T f ; H1(Ω)), ut ∈ L∞(0, T f ; [H2(Ω)]d),
ptt ∈ L2(0, T f ; H1(Ω)), ut t ∈ L2(0, T f ; [H1(Ω)]d).

At any time t > 0, the errors u − uh and p − ph can be split into two parts:

u − uh = (u − Πu
h u) + (Πu

h u − uh) := ηu + ξu, (24a)

p − ph = (p − Π
p
h p) + (Π

p
h p − ph) := ηp + ξp. (24b)

Lemma 10 For φ = u or p, we have
∂ξφ

∂t
= ξφt and

∂ηφ

∂t
= ηφt .

Proof Let L be a continuous linear operator acting on continuously differentiable functions in

time. Then, L and the time derivative are a commutative pair. That is,
∂

∂t
L( f ) = L

(
∂ f

∂t

)

.
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This is particularly true for the interpolation operators L = Πu
h and Π

p
h . Hence, the results

follow from the definitions of ξφ and ηφ . ��

Lemma 11 For any scalar or vector-valued function g ∈ C2(0, T f ; H1(Ω)), we have the
following Taylor expansion:

gn+1 − gn = Δt gn+1
t +

∫ tn+1

tn
(s − tn)gtt (s) ds := Δt gn+1

t + ρg;n+1 (25)

and, on each element K ∈ Th,

‖ρg;n+1‖ j,K ≤ (Δt)
3
2 ‖gtt‖L2(tn ,tn+1;H j (K )), j = 0, 1, (26a)

‖gn+1 − gn‖ j,K ≤ Δt‖gn+1
t ‖ j,K + (Δt)

3
2 ‖gtt‖L2(tn ,tn+1;H j (K )), j = 0, 1. (26b)

The above result is particularly true for interpolation errors.

Corollary 1 Let φ = u or p. Then,

ηn+1
φ − ηnφ = Δtηn+1

φt
+ ρηφ ;n+1 (27)

and, on each element K ∈ Th,

‖ρηφ ;n+1‖ j,K ≤ (Δt)
3
2 ‖ηφt t ‖L2(tn ,tn+1;H j (K )), j = 0, 1, (28a)

‖ηn+1
φ − ηnφ‖ j,K ≤ Δt‖ηn+1

φt
‖ j,K + (Δt)

3
2 ‖ηφt t ‖L2(tn ,tn+1;H j (K )), j = 0, 1. (28b)

‖ηn+1
φ − ηnφ‖V ≤ C

(
Δt

h
‖ηn+1

φt
‖0,K + (Δt)

3
2

h
‖ηφt t ‖L2(tn ,tn+1;L2(K ))

+Δt‖ηn+1
φt

‖1,K + (Δt)
3
2 ‖ηφt t ‖L2(tn ,tn+1;H1(K ))

)
. (28c)

Due to the definitions of u0h and p0h in (8), it is trivial to see that

ξ0u = 0 and ξ0p = 0. (29)

We are now ready to derive auxiliary error estimates. We break down this derivation into
the next two lemmas.

Lemma 12 The auxiliary errors ξu and ξp satisfy the following error equations at any time
tn+1 with 0 ≤ n ≤ N − 1:

auh (ξ
n+1
u , v) − bh(v, ξn+1

p ) = −auh (η
n+1
u , v) + bh(v, ηn+1

p ), (30a)

ch

(
ξn+1
p − ξnp

Δt
, w

)

+ bh

(
ξn+1
u − ξnu

Δt
, w

)

+ ap
h (ξn+1

p , w)

= −ch

(
ηn+1
p − ηnp

Δt
, w

)

− bh

(
ηn+1
u − ηnu

Δt
, w

)

− ap
h (ηn+1

p , w)

+ c0

(
1

Δt
ρp;n+1, w

)

Th

+ bh

(
1

Δt
ρu;n+1, w

)

+ γ ph2
(∇ pn+1 − ∇ pn

Δt
,∇w

)

Th

.

(30b)
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Proof At time tn+1, multiply (1a) and (1b) by v ∈ Vh and w ∈ Wh , respectively, integrate
by parts, then use (25) to see that the true solution (u, p) satisfies the following equations:

auh (u
n+1, v) − bh(v, pn+1) = guh (t

n+1; v), (31a)

ch

(
pn+1 − pn

Δt
, w

)

+ bh

(
un+1 − un

Δt
, w

)

+ ap
h (pn+1, w)

= gp
h (tn+1;w) + c0

(
1

Δt
ρp;n+1, w

)

Th

+ bh

(
1

Δt
ρu;n+1, w

)

+ γ ph2
(∇ pn+1 − ∇ pn

Δt
,∇w

)

Th

. (31b)

Subtracting (9) from (31) and using (24) and (27), we obtain the desired error equations. ��

Lemma 13 Provided that the penalty parameters βu and β p are sufficiently large, the fol-
lowing auxiliary error estimate holds true for any c0 ≥ 0:

max
1≤m≤N

‖ξmu ‖2V + c0 max
1≤m≤N

‖ξmp ‖20 + max
1≤m≤N

|ξmp |2∗ + Δt
N∑

n=1

‖ξnp‖2W

≤ C
[
h2

(
‖u‖2L∞(0,T f ;H2(Ω))

+ ‖ut‖2L∞(0,T f ;H2(Ω))

)
+ (Δt)2‖ut t‖2L2(0,T f ;H1(Ω))

+h2
(
‖p‖2L∞(0,T f ;H2(Ω)

+ ‖pt‖2L∞(0,T f ;H1(Ω))

)
+ (Δt)2(1 + h2)‖ptt‖2L2(0,T f ;H1(Ω))

]
,

(32)

where C > 0 is a generic constant independent of h and Δt .

Proof Take v = ξn+1
u − ξnu in (30a) and w = Δtξn+1

p in (30b) and add the two resulting
equations to obtain

auh (ξ
n+1
u , ξn+1

u − ξnu ) + ch
(
ξn+1
p − ξnp , ξ

n+1
p

)
+ Δt ap

h (ξn+1
p , ξn+1

p )

= −auh (η
n+1
u , ξn+1

u − ξnu ) + bh(ξn+1
u − ξnu , ηn+1

p ) − ch
(
ηn+1
p − ηnp, ξ

n+1
p

)

− bh
(
ηn+1
u − ηnu, ξ

n+1
p

)

− Δtap
h (ηn+1

p , ξn+1
p ) + c0(ρp;n+1, ξ

n+1
p )Th + bh(ρu;n+1, ξ

n+1
p )

+ γ ph2
(
∇ pn+1 − ∇ pn,∇ξn+1

p

)

Th
. (33)

In light of the symmetry of the bilinear forms auh and ch and the inequality a(a − b) ≥
1
2 (a

2 − b2), we have

auh (ξ
n+1
u , ξn+1

u − ξnu ) ≥ 1

2
(auh (ξ

n+1
u , ξn+1

u ) − auh (ξ
n
u , ξnu )),

ch(ξn+1
p − ξnp , ξ

n+1
p ) ≥ 1

2
(ch(ξn+1

p , ξn+1
p ) − ch(ξnp , ξ

n
p)).

We bound the left-hand side of (33) from below using the above inequalities, then sum over
n from 0 to m − 1 for m ≥ 1, and further bound the left-hand side of the resulting inequality
from below by making use of the coercivity of the bilinear forms auh (·, ·) and ap

h (·, ·) in
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Lemmas 4 and 5, respectively, to obtain

κu

2
‖ξmu ‖2V + c0

2
‖ξmp ‖20 + 1

2
|ξp|2∗ + κpΔt

m−1∑

n=0

‖ξn+1
p ‖2W ≤

8∑

i=1

Ti , (34)

where

T1 = −
m−1∑

n=0

auh (η
n+1
u , ξn+1

u − ξnu ),

T2 =
m−1∑

n=0

bh(ξn+1
u − ξnu , ηn+1

p ),

T3 = −
m−1∑

n=0

ch
(
ηn+1
p − ηnp, ξ

n+1
p

)
,

T4 = −
m−1∑

n=0

bh
(
ηn+1
u − ηnu, ξ

n+1
p

)
,

T5 = −
m−1∑

n=0

Δtap
h (ηn+1

p , ξn+1
p ),

T6 =
m−1∑

n=0

c0
(
ρp;n+1, ξ

n+1
p

)

Th
,

T7 =
m−1∑

n=0

bh
(
ρu;n+1, ξ

n+1
p

)
,

T8 =
m−1∑

n=0

γ ph2
(
∇ pn+1 − ∇ pn,∇ξn+1

p

)

Th
.

To derive the desired error estimate, we need to bound Ti for i = 1, . . . , 8. In the following,
C > 0 is a generic constant independent of h and Δt , which are assumed to be less than 1.
Let us bound T1 first. Using summation by parts and (29), we first rewrite T1 as

T1 = −auh (η
m
u , ξmu ) +

m−1∑

n=0

auh (η
n+1
u − ηnu, ξ

n
u ).

Using the continuity of auh and (18e), we can easily obtain

auh (η
m
u , ξmu ) ≤ Ch‖um‖2‖ξmu ‖V .

Similarly, for any 0 ≤ n ≤ m − 1, we can show using the continuity of auh , (28c), and (18b)
that

auh (η
n+1
u − ηnu, ξ

n
u ) ≤ Cau‖ηn+1

u − ηnu‖V‖ξnu ‖V
≤ CΔt

(
h‖un+1

t ‖2 + (Δt)
1
2 ‖ut t‖L2(tn ,tn+1;H1(Ω))

)
‖ξnu ‖V .
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Now, combining the above bounds and using Young’s inequality, we get

T1 ≤ C

(

h‖um‖2‖ξmu ‖V + Δt
m−1∑

n=0

(
h‖un+1

t ‖2 + (Δt)
1
2 ‖ut t‖L2(tn ,tn+1;H1(Ω))

)
‖ξnu ‖V

)

≤ κu

8
‖ξmu ‖2V + C

(

Δt
m−1∑

n=0

‖ξnu ‖2V + h2‖um‖22

+h2Δt
m−1∑

n=0

‖un+1
t ‖22 + (Δt)2

m−1∑

n=0

‖ut t‖2L2(tn ,tn+1;H1(Ω))

)

≤ κu

8
‖ξmu ‖2V + C

(

Δt
m−1∑

n=0

‖ξnu ‖2V + h2
(
‖u‖2L∞(0,T f ;H2(Ω))

+ ‖ut‖2L∞(0,T f ;H2(Ω))

)

+(Δt)2‖ut t‖2L2(0,T f ;H1(Ω))

)
.

To bound T2, we rewrite it using summation by parts and (29) as we did for T1. Then, use
(14) and Young’s inequality to see

T2 =
m−1∑

n=0

bh(ξn+1
u − ξnu , ηn+1

p ) = bh(ξmu , ηmp ) −
m−1∑

n=0

bh(ξnu , ηn+1
p − ηnp)

≤ Cb‖ξmu ‖V‖ηmp ‖0 + Cb

m−1∑

n=0

‖ξnu ‖V‖ηn+1
p − ηnp‖0

≤ κu

8
‖ξmu ‖2V + C

(

Δt
m−1∑

n=0

‖ξnu ‖2V + ‖ηmp ‖20 + 1

Δt

m−1∑

n=0

‖ηn+1
p − ηnp‖20

)

.

Now, using (28b) and (19b), we obtain

T2 ≤ κu

8
‖ξmu ‖2V + C

(

Δt
m−1∑

n=0

‖ξnu ‖2V + h2
(
‖p‖2L∞(0,T f ;H1(Ω))

+ ‖pt‖2L∞(0,T f ;H1(Ω))

)

+(Δt)2‖ptt‖2L2(0,T f ;L2(Ω))

)
.

Bounding T3 makes use of the Cauchy–Schwarz and Young’s inequalities, (28b), and (19b):

T3 = −
m−1∑

n=0

(

c0
(
ηn+1
p − ηnp, ξ

n+1
p

)

Th
+ γ ph2

(
∇(ηn+1

p − ηnp),∇ξn+1
p

)

Th

)

≤ c0

m−1∑

n=0

‖ηn+1
p − ηnp‖0‖ξn+1

p ‖0 + γ ph2
m−1∑

n=0

‖ηn+1
p − ηnp‖H1(Th )

‖∇ξn+1
p ‖0

≤ C

(

Δt
m−1∑

n=0

c0‖ξn+1
p ‖20 + Δt

m−1∑

n=0

γ ph2‖∇ξn+1
p ‖20

+ 1

Δt

m−1∑

n=0

(
‖ηn+1

p − ηnp‖20 + γ ph2‖ηn+1
p − ηnp‖2H1(Th )

)
)

≤ C

(

Δt
m−1∑

n=0

(c0‖ξn+1
p ‖20 + |ξn+1

p |2∗) + h2‖pt‖2L∞(0,T f ;H1(Ω))
+ (Δt)2‖ptt‖2L2(0,T f ;H1(Ω))

)

.
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Next, (15) is useful when bounding T4:

T4 = −
m−1∑

n=0

bh
(
ηn+1
u − ηnu, ξ

n+1
p

)
≤ Cb̃

m−1∑

n=0

‖ηn+1
u − ηnu‖0‖ξn+1

p ‖W

≤ κp

12
Δt

m−1∑

n=0

‖ξn+1
p ‖2W + C

1

Δt

m−1∑

n=0

‖ηn+1
u − ηnu‖20

≤ κp

12
Δt

m−1∑

n=0

‖ξn+1
p ‖2W + C

(
h2‖ut‖2L∞(0,T f ;H1(Ω))

+ (Δt)2‖ut t‖2L2(0,T f ;L2(Ω))

)
.

To bound T5, we use the continuity of ap
h (·, ·) and the trace inequality to see that

T5 ≤ CapΔt
m−1∑

n=0

‖ηn+1
p ‖W‖ξn+1

p ‖W

≤ κp

12
Δt

m−1∑

n=0

‖ξn+1
p ‖2W + CΔt

m−1∑

n=0

(

‖ηn+1
p ‖2H1(Th)

+ 1

h2
‖ηn+1

p ‖20
)

≤ κp

12
Δt

m−1∑

n=0

‖ξn+1
p ‖2W + Ch2‖p‖2L∞(0,T f ;H2(Ω))

.

Bounding T6 is pretty straightforward, so we only state the result here.

T6 ≤ C

(

Δt
m−1∑

n=0

c0‖ξn+1
p ‖20 + (Δt)2‖ptt‖2L2(0,T f ;L2(Ω))

)

.

We bound T7 in the same fashion as for T4 to get

T7 ≤ κp

12
Δt

m−1∑

n=0

‖ξn+1
p ‖2W + C(Δt)2‖ut t‖2L2(0,T f ;L2(Ω))

.

Lastly, the following bound for T8 is a consequence of applying the Cauchy–Schwarz and
Young’s inequalities and using (26b).

T8 ≤ C

(

Δt
m−1∑

n=0

|ξn+1
p |2∗ + h2

(
‖pt‖2L∞(0,T f ;H1(Ω))

+ (Δt)2‖ptt‖2L2(0,T f ;H1(Ω))

)
)

.

Combining the above bounds for T1, . . . , T8 with (34) and rearranging the terms, we obtain

κu

4
‖ξmu ‖2V + c0

2
‖ξmp ‖20 + 1

2
|ξmp |2∗ + κp

4
Δt

m−1∑

n=0

‖ξn+1
p ‖W

≤ C

[

Δt
m−1∑

n=0

(
κu‖ξn+1

u ‖2V + c0‖ξn+1
p ‖20 + |ξn+1

p |2∗
)

+ h2
(
‖u‖2L∞(0,T f ;H2(Ω))

+ ‖ut‖2L∞(0,T f ;H2(Ω))

)
+ (Δt)2‖ut t‖2L2(0,T f ;H1(Ω))

+h2
(
‖p‖2L∞(0,T f ;H2(Ω))

+ ‖pt‖2L∞(0,T f ;H1(Ω))

)
+ (Δt)2(1 + h2)‖ptt‖2L2(0,T f ;H1(Ω))

]
,

where C > 0 is independent of h and Δt . As this result holds true for anym ≥ 1, the desired
auxiliary error estimate (32) follows immediately from Gronwall’s lemma. ��
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We now state the main theorem of this section.

Theorem 1 Provided that the penalty parameters βu and β p are sufficiently large, the fol-
lowing auxiliary error estimate holds true for any c0 ≥ 0:

max
1≤n≤N

‖un − unh‖2V + c0 max
1≤n≤N

‖pn − pnh‖20 + max
1≤n≤N

|pn − pnh |2∗ + Δt
N∑

n=1

‖pn − pnh‖2W (35)

≤ C
[
h2

(
‖u‖2L∞(0,T f ;H2(Ω))

+ ‖ut‖2L∞(0,T f ;H2(Ω))

)
+ (Δt)2‖ut t‖2L2(0,T f ;H1(Ω))

(36)

+h2
(
‖p‖2L∞(0,T f ;H2(Ω))

+ ‖pt‖2L∞(0,T f ;H1(Ω))

)
+ (Δt)2(1 + h2)‖ptt‖2L2(0,T f ;H1(Ω))

]
,

(37)

where C > 0 is a generic constant independent of h and Δt .

Proof The error estimate is a result of the triangle inequality, interpolation error estimates,
and the auxiliary error estimate (32). ��

8 Numerical Results

In this section, we present several numerical examples to validate our theoretical results
and to illustrate the good performance of our proposed scheme in various scenarios. As our
convergence analysis pertains to the SIPG version (θu = θ p = −1) of the method, we
report only the results of the SIPG method in this section. All numerical experiments were
performed using the finite-element and solver library HAZmath [16].

Example 1 (Convergence for a smooth solution) First, we test the proposed method against
a manufactured smooth solution to confirm the optimal convergence rates proved in Sect. 7.
In a computational domain Ω × I = (0, 1)2 × (0, 1], the exact solutions u = [u1, u2] and p
are given as follows:

u1(x, y, t) = e−t
(

sin(2π y)(−1 + cos(2πx)) + 1

μ + λ
sin(πx) sin(π y)

)

,

u2(x, y, t) = e−t
(

sin(2πx)(1 − cos(2π y)) + 1

μ + λ
sin(πx) sin(π y)

)

,

p(x, y, t) = e−t sin(πx) sin(π y).

The body force f and the source/sink g are chosen to satisfy the governing equations (1), and
Dirichlet boundary conditions are imposed for both p and u. Also, the physical parameters
are set to c0 = 0.0001, α = 1,K = 1, μ = 1, and λ = 1, and the penalty and stabilization
parameters are set to βu = 100, β p = 100, and γ p = 1.

Numerical experiments were performed on five uniform meshes. While the mesh size h
varied from 1/4 to 1/64, the time step size was kept to Δt = 0.01. The numerical errors in
the displacement and pressure were measured in appropriate norms and their convergence
rates were calculated. The summary of the results presented in Table 1 show the expected
optimal convergence rates.

It has been known that standard low-order numerical methods for poroelasticity tend to
suffer from volumetric locking in the displacement solution for a large Lamé constant λ

[46]. In order to show that our EG method is robust with respect to λ, we solved the above
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Table 1 Results of the convergence study in Example 1

h ‖u − uh‖L∞(0,T f ;H1(Th )) Rate ‖p − ph‖L2(0,T f ;H1(Th )) Rate

0.250000 5.1252 – 0.2911 –

0.125000 2.7903 0.963 0.1563 0.957

0.062500 1.4045 1.037 0.0736 1.120

0.031250 0.7007 1.026 0.0341 1.124

0.015625 0.3500 1.013 0.0165 1.055

Table 2 Results of the convergence study in Example 1 with λ = 106

h ‖u − uh‖L∞(0,T f ;H1(Th )) Rate ‖p − ph‖L2(0,T f ;H1(Th )) Rate

0.250000 7.0323 0.0000 0.5987 0.0000

0.125000 4.7932 0.6069 0.3015 1.0558

0.062500 2.5488 0.9540 0.1487 1.0521

0.031250 1.0206 1.3509 0.0722 1.0583

0.015625 0.3932 1.3917 0.0352 1.0443

problem with λ = 106 while keeping all other parameters the same. In this case, however,

we added an additional penalty term ωuλ2
〈
he

[[
∇ · un+1

h

]]
, [[∇ · w]]

〉

E I
h

with ωu = 0.001 in

the bilinear form auh . This penalty term was utilized in [48] to develop a volumetric locking-
free EG method for linear elasticity. Optimal convergence rates of the method for this large
λ value are demonstrated in Table 2. Though this (volumetric) locking-free property has
been confirmed in several other unreported numerical experiments as well, error estimates
independent of λ are yet to be derived.

Example 2 (Stabilization and eliminated pressure locking) In this example, we solve a can-
tilever bracket problem, one of the popular examples in the literature on poroelasticity [32,
33]. This example is to demonstrate that our coupled EGmethod does not suffer frompressure
locking. The spatial domain is the same as in Example 1, whereas the body force f and the
source/sink term g are set to zero in this example. The boundary conditions are summarized
in Fig. 1a. As mentioned earlier, pressure locking stems from the lack of inf-sup stability
condition for the problems with c0 = 0 and very smallK and/orΔt . Recall that the proposed
coupled EG method employs a stabilization term to ensure the inf-sup condition. Therefore,
the main purpose of this numerical example is to test the new method with and without the
stabilization term and show the effect of the stabilization term concerning pressure locking.
For both simulations, we used the following physical and numerical parameters, which tend
to cause pressure locking:

α = 0.93, c0 = 0, K = 10−9, λ = 10, μ = 10, h = 1/32, Δt = 0.001, βu = β p = 100.

On the other hand, we used γ p = 0.01 and γ p = 0 to turn on and off the stabilization
term, respectively. The pressure solutions after one time step are shown in Fig. 1b and c,
respectively. Pressure oscillations (locking) are visible in Fig. 1b, where the stabilization
term was not used. However, no oscillations are present in Fig. 1c, where the stabilization
term was used. Moreover, the magnitude of the two pressure solutions are quite different.
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Fig. 1 a Example 2 setup, b pressure solution without a stabilization term (γ p = 0), and c pressure solution
with a stabilization term (γ p = 0.01)

Fig. 2 a Example 3 setup and b comparisons of the pressure solutions from the coupled EG method and the
coupled EG-CG method after 1000 time steps

This test clearly shows the importance of the inf-sup condition to eliminate pressure locking
and that our stabilization term indeed ensures the inf-sup condition.

Example 3 (Eliminated numerical overshoots in a layered medium) The numerical experi-
ments in this example consider the significance of using a locally conservative method for
the pressure when simulating poroelasticity in a heterogeneous medium as previously inves-
tigated by others in [11, 12, 18, 19]. In the unit square (0, 1)2, the permeability K is defined
as a discontinuous function; the upper quarter of the domain (y ≥ 0.5) has the permeability
K = 10−4 and the remaining domain (y < 0.5) has K = 10−12 as shown in Fig. 2a. This
setup represents a simple layered field with high-contrastK values. The boundary conditions
are also summarized in Fig. 2a. In the conditions, n and t are the outward unit normal and
tangential vectors, respectively. The external body force and sink/source functions are taken
to be f = 0 and g = 0.

In order to show the importance of using a locally conservative method for the flow
subproblem, we compare our new EGmethod with a method that is not locally conservative.
Specifically, the method used for comparison solves the mechanical problem with the same
EGmethod as in (9a), but the flow equation is solved with a stabilized linear CGmethod with
the same FPL stabilization term as in (10). It is well-known that the linear CG method with
or without this stabilization term is not locally conservative. For both methods, the following
physical and numerical parameters are used:

c0 = 0, α = 1, λ = 1, μ = 1, Δt = 10, h = 1/32, βu = β p = 103, γ p = 0.1.
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Fig. 3 a Example 4 setup and b displacement (u2) and c pressure p solutions along the vertical line x = 0.5
after 1000 time steps

Figure 2b presents a comparison of the pressure, p, produced by the two methods at the final
timeT f = 10, 000.Even though the linearCGmethod is stabilizedusing theFPLstabilization
method, the coupled EG-CGmethod still produces unphysical overshoot near the interface of
the two material layers. On the contrary, our new coupled EGmethod produces no overshoot
in the pressure solution. These results clearly show that the stabilization technique itself is not
enough to eliminate numerical overshoots in a heterogeneous medium with a high-contrast
permeability if the method is not locally conservative.

Example 4 (A layeredmediumwith discontinuous λ andK) This example concerns a layered
medium with discontinuities in both λ in the mechanics problem andK in the flow problem.
We use the same spatial domain (0, 1)2, boundary conditions, the body force f , and the
source/sink function g as in Example 3. In the domain, both λ and K have discontinuities
along the two horizontal lines y = 0.625 and y = 0.375, and their values are shown in the
Fig. 3a. The rest of the physical and numerical parameters are as follows:

α = 1, c0 = 0, Δt = 10, h = 1/32, β p = βu = 103, γ p = 0.01.

Due to the boundary conditions, the solutions change only in the vertical direction. The cross
sectons of the displacement (u2) and pressure solutions along the vertical line x = 0.5 are
presented in Fig. 3a and b. Here, we observe no unphysical oscillations near the material
interfaces in either solution despite the large jumps in the λ and K values.

Example 5 (Poroelasticity in a randomheterogeneous permeability field) In this last example,
we consider a layered poroelastic mediumwith a randomly heterogeneous permeability field.
We take the spatial domainΩ = (0, 10)×(0, 2.5) and thefinal time T f = 100. In this domain,
the permeability values were chosen randomly from the interval [10−4, 10−1]. The layers
in the medium is due to the discontinuous Lamé constant λ as shown in Fig. 4. But, other
physical parameters c0 = 0.1, α = 1, and μ = 1 are constant throughout the entire domain.
We imposed an influx condition qN = 10−2 for the flow problem and a traction boundary
condition tN = [0,−10−7] for the mechanics problem on the top boundary. On all other
boundaries, we imposed the following conditions: qN = 0, u ·n = 0, and tN · t = 0.On the
other hand, the numerical parameters used in this simulation are h = 1/16, Δt = 1, βu =
β p = 100, and γ p = 0.01.

Figure 5 illustrates the displacement and pressure solutions after 100 time steps. The
horizontal displacement, u1, is very small in the entire domain as seen in Fig. 5a. This
was expected considering the imposed boundary conditions. On the other hand, the vertical
displacement and pressure solutions presented in Fig. 5b and c show the effect of the discon-
tinuous elastic property of the medium. However, its effect is less pronounced in the pressure
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λ = 1

λ = 104

λ = 1

λ = 104

Fig. 4 Random permeability field K and discontinuous Lamé constant λ in Example 5

(a) u1

(b) u2

(c) p

Fig. 5 Numerical solutions at time t = 100 in Example 5: a horizontal displacement (u1), b vertical displace-
ment (u2), and c pressure

solution than in u2 as the permeabilityK is a more influencing factor than the Lamé constant
λ to the flow problem. Also, we observe no unphysical oscillations in the solutions. This
example demonstrates that the coupled EG method has great potential to handle problems in
more realistic scenarios.
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21. Lee, S., Mikelić, A., Wheeler, M.F., Wick, T.: Phase-field modeling of proppant-filled fractures in a
poroelastic medium. Comput. Methods Appl. Mech. Engrg. 312, 509–541 (2016)

22. Lee, S., Wheeler, M.F.: Adaptive enriched Galerkin methods for miscible displacement problems with
entropy residual stabilization. J. Comput. Phys. 331, 19–37 (2017)

23. Lee, S., Wheeler, M.F.: Enriched Galerkin methods for two-phase flow in porous media with capillary
pressure. J. Comput. Phys. 367, 65–86 (2018)

24. Liu, R.: Discontinuous Galerkin finite element solution for poromechanics. The University of Texas at
Austin (2004)

25. Liu, R., Wheeler, M., Dawson, C., Dean, R.: On a coupled discontinuous/continuous Galerkin framework
and an adaptive penalty scheme for poroelasticity problems. Comput. Methods Appl. Mech. Engrg.
198(41–44), 3499–3510 (2009)

26. Masson, Y.J., Pride, S., Nihei, K.: Finite difference modeling of Biot’s poroelastic equations at seismic
frequencies. J. Geophys. Res. Solid Earth 111, B10305 (2006). https://doi.org/10.1029/2006JB004366

123

https://hazmathteam.github.io/hazmath/
https://doi.org/10.1029/2006JB004366


Journal of Scientific Computing            (2023) 94:26 Page 23 of 23    26 

27. Mercer, G., Barry, S.: Flow and deformation in poroelasticity-II numericalmethod.Math. Comput.Model.
30(9–10), 31–38 (1999)

28. Murad, M., Loula, A.: On stability and convergence of finite element approximations of Biot’s consoli-
dation problem. Int. J. Numer. Methods Eng. 37(4), 645–667 (1994)

29. Murad, M.A., Thomée, V., Loula, A.F.: Asymptotic behavior of semidiscrete finite-element approxima-
tions of Biot’s consolidation problem. SIAM J. Numer. Anal. 33(3), 1065–1083 (1996)

30. Nitsche, J.A.: On Korn’s second inequality. RAIRO Anal. Numér. 15(3), 237–248 (1981)
31. Nordbotten, J.: Cell-centered finite volume discretizations for deformable porous media. Int. J. Numer.

Methods Eng. 100(6), 399–418 (2014)
32. Phillips, P., Wheeler, M.: A coupling of mixed and continuous Galerkin finite element methods for

poroelasticity. I. The continuous in time case. Comput. Geosci. 11(2), 131–144 (2007)
33. Phillips, P., Wheeler, M.: A coupling of mixed and continuous Galerkin finite element methods for

poroelasticity II: the discrete-in-time case. Comput. Geosci. 11(2), 145–158 (2007)
34. Phillips, P., Wheeler, M.: A coupling of mixed and discontinuous Galerkin finite-element methods for

poroelasticity. Comput. Geosci. 12(4), 417–435 (2008)
35. Reed, M.: An investigation of numerical errors in the analysis of consolidation by finite elements. Int. J.

Numer. Anal. Methods. Geomech. 8(3), 243–257 (1984)
36. Rodrigo, C., Gaspar, F., Hu, X., Zikatanov, L.: Stability and monotonicity for some discretizations of the

Biot’s consolidation model. Comput. Methods Appl. Mech. Engrg. 298, 183–204 (2016)
37. Showalter, R.E.: Diffusion in poro-elastic media. J. Math. Anal. Appl. 251(1), 310–340 (2000)
38. Sokolova, I., Bastisya, M., Hajibeygi, H.: Multiscale finite volume method for finite-volume-based sim-

ulation of poroelasticity. J. Comput. Phys. 379, 309–324 (2019)
39. Sun, S., Liu, J.: A locally conservative finite element method based on piecewise constant enrichment of

the continuous Galerkin method. SIAM J. Sci. Comput. 31(4), 2528–2548 (2009)
40. Truty, A., Zimmermann, T.: Stabilizedmixed finite element formulations formaterially nonlinear partially

saturated two-phase media. Comput. Methods Appl. Mech. Engrg. 195(13–16), 1517–1546 (2006)
41. Vermeer, P., Verruijt, A.: An accuracy condition for consolidation by finite elements. Int. J. Numer. Anal.

Methods. Geomech. 5(1), 1–14 (1981)
42. Wan, J.: Stabilized finite element methods for coupled geomechanics and multiphase flow. Stanford

university (2003)
43. Wheeler, M., Xue, G., Yotov, I.: Coupling multipoint flux mixed finite element methods with continuous

Galerkin methods for poroelasticity. Comput. Geosci. 18(1), 57–75 (2014)
44. Yi, S.Y.: A coupling of nonconforming and mixed finite element methods for Biot’s consolidation model.

Numer. Methods Partial Differ. Equ. 29(5), 1749–1777 (2013)
45. Yi, S.Y.: Convergence analysis of a new mixed finite element method for Biot’s consolidation model.

Numer. Methods Partial Differ. Equ. 30(4), 1189–1210 (2014)
46. Yi, S.Y.: A study of two modes of locking in poroelasticity. SIAM J. Numer. Anal. 55(4), 1915–1936

(2017)
47. Yi, S.Y., Hu, X., Lee, S., Adler, J.H.: An enriched Galerkin method for the Stokes equations. Comput.

Math. Appl. 120, 115–131 (2022)
48. Yi, S.Y., Lee, S., Zikatanov, L.: Locking-free enriched Galerkin method for linear elasticity. SIAM J.

Numer. Anal. 60(1), 52–75 (2022)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Locking-Free and Locally-Conservative Enriched Galerkin Method for Poroelasticity
	Abstract
	1 Introduction
	2 Governing Equations 
	3 Notation and Preliminaries
	4 Variational Formulation and Enriched Galerkin Method
	5 Local Mass Conservation
	6 Existence and Uniqueness
	7 Convergence Analysis
	8 Numerical Results
	References




