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ABSTRACT

Compiling high-level programs to high-speed packet-processing
pipelines is a challenging combinatorial optimization problem. The
compiler must configure the pipeline’s resources to match the se-
mantics of the program’s high-level specification, while packing all
of the program’s computation into the pipeline’s limited resources.
State of the art approaches tackle individual aspects of this prob-
lem. Yet, they miss opportunities to produce globally high-quality
outcomes within reasonable compilation times.

We develop a framework to decompose the compilation problem
for such pipelines into three phases—making extensive use of solver
engines (e.g., ILP, SMT, and program synthesis) to simplify the
development of these phases. Transformation rewrites programs
to use more abundant pipeline resources, avoiding scarce ones.
Synthesis breaks complex transactional code into configurations of
pipelined compute units. Allocation maps the program’s compute
and memory to the pipeline’s hardware resources.

We prototype these ideas in a compiler, CaT, which targets (1)
the Tofino programmable switch pipeline and (2) Menshen, a cycle-
accurate simulator of a Verilog description of the RMT pipeline.
CaT can handle programs that existing compilers cannot currently
run on pipelines and generates code faster than existing compilers,
where the generated code uses fewer pipeline resources.
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» Networks — Programmable networks; In-network process-
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1 INTRODUCTION

Reconfigurable packet-processing pipelines (e.g., RMT [27]) are
emerging as important programmable platforms. They are embod-
ied in many programmable high-speed switches and network in-
terface cards (NICs) such as the Tofino [9], Trident [4], and Jericho
switches [3]; the Pensando SmartNIC [1]; and Intel IPUs [8].

Programmable pipelines are organized into multiple stages,
where each stage processes one packet in parallel, and hands it
off to the next stage (§2.1). Each stage contains memory blocks
to hold tables containing packet-matching rules and state (e.g.,
counters) maintained across packets. Header fields are extracted
from packets to match the table rules. Once the packet’s fields are
matched against a rule, the packet or state can also be updated
using an action.

P4 [12] is emerging as a popular language to program these
pipelines. P4 offers the ability to parse packets according to custom
header definitions, and specify the match types and actions on
parsed packets. A P4 action may modify packet headers and state.

The compilation problem. The networking community has de-
veloped P4 programs targeting programmable pipelines for several
research [24, 38, 47, 48] and production [6, 40, 45, 50] use cases. To
enable these use cases, a compiler must translate P4 programs to
pipeline configurations. This compiler must solve a combinatorial
optimization problem with several challenging aspects to it:

(1) Multiple resource types: There are multiple pipeline resources,
with some resources being scarce, e.g., pipeline stages, and others
being abundant, e.g., arithmetic logic units (ALUs). Some resources
must be allocated hand in hand (e.g., match memory and ALUs).
(2) Transactional guarantees: P4 actions can be annotated to have
transactional guarantees [13, 18]: executing to completion on each
packet before processing the next one. If such a transactional P4
action requires multiple pipeline stages, the compiler must be able
to split the action into multiple ALUs and stages, ensuring the
implementation respects the action’s transactional semantics [53].
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Figure 1: The workflow of the CaT compiler.
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(3) All-or-nothing fit: A program for a high-speed pipeline can either
run at the pipeline’s highest throughput (typically line rate above a
minimum packet size), or cannot run at all. Thus, it is important to
“pack” all of the P4 program into the pipeline’s limited resources.

Prior work has tackled several individual aspects of this com-
pilation problem (§2.2). Such an approach loses opportunities to
globally reduce resource usage (e.g., stages), which is necessary to
fit complex programs on a pipeline. However, it is challenging to
solve a single combinatorial optimization problem. Our goal is to
find a good decomposition of the large problem into smaller pieces,
enabling global optimization of resource usage, while keeping each
piece small enough to solve efficiently.

Our approach. In this paper, we present an end-to-end compiler,
CaT!, that unifies prior approaches and translates high-level P4
programs into a low-level representation suitable for pipelined
execution. We take inspiration from high-level synthesis (HLS)—
a technology for improving productivity of hardware design for
ASICs [16] and FPGAs [7].

Informally, HLS [29] takes as input a high-level algorithmic
description of the hardware design with no reference to clocks
or pipelining, and with limited parallelism in the description. An
HLS compiler then progressively lowers this high-level description
down to an optimized hardware implementation, pipelining the
implementation if possible, executing multiple computations in
parallel, scheduling computations in time, and converting these
computations into a register-transfer level (RTL) design.

We believe such an approach to developing compilers target-
ing packet-processing pipelines will raise the user’s level of pro-
gramming abstraction, while retaining the performance of low-
level pipeline programming. For a user developing algorithmic
programs in P4 (such as those used for in-network computation,
e.g., [38, 51, 62]), such an approach eliminates the labor of manu-
ally breaking the high-level algorithmic computation into actions
spread over many pipeline stages (§3).

The workflow of our compiler, CaT, is shown in Figure 1. It
consists of three phases. The input consists of P4 code containing
tables that match on specific headers and action code blocks that
modify packet headers and state. The action code blocks may be
written without regard to their feasibility within a single pipeline
stage. The first phase of CaT employs resource transformations that
rewrite a high-level P4 program to another semantically-equivalent
high-level P4 program; these rewrites are used to transform a com-
putation’s use of one scarce resource to its use of a relatively abun-
dant resource, and potentially reduce the number of stages as well.
The second phase performs resource synthesis to lower transactional
blocks of statements in the high-level P4 program to a lower-level

1CaT stands for Code Generation and Table Allocation.
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program suitable for hardware execution. In this step, individual
ALUs in hardware are configured to realize the programmers’ in-
tent in the transactional action blocks, while respecting the ALUs’
computational limits. The third phase performs resource allocation
to allocate the computation units corresponding to the lowered
program to physical resources such as ALUs and memory in the
pipeline. Notably, our compiler workflow works within the confines
of the widely used P4 ecosystem without requiring the development
of a new domain-specific language (DSL) for packet processing.

Our contributions. The main technical contribution of CaT’s
three-phase approach is the modularization of the large combina-
torial optimization problem of compilation into smaller problems,
whose solutions still enable a high-quality global result (§7). These
smaller problems can also be fed to solver engines, simplifying the
process of solving them. Additionally, we improve upon the state of
the art and introduce new techniques in each phase. In particular,
our resource transformations (§4) are driven by a novel guarded
dependency analysis that identifies false dependencies between com-
putations, exposing more parallelism opportunities when rewriting
programs to use more abundant resources. Our resource synthe-
sis phase (§5) uses a novel synthesis procedure that quickly finds
pipelined solutions with good-quality results for complex actions.
It separates out stateful updates from stateless updates, to decom-
pose a large program synthesis problem into smaller and more
tractable subproblems; each subproblem uses a program synthesis
engine (SKETCH) as a subroutine. Stateless code is synthesized into
a minimum-depth computation tree, i.e., with the minimum number
of stages. In comparison to prior work [34], this new synthesis algo-
rithm allows CaT to handle many large actions, in a much shorter
time, and with fewer computational resources needed for compila-
tion. Finally, our resource allocation phase (§6) uses a constraint-
based formulation that extends prior work [39] to handle complex
multi-stage transactional actions; this formulation can be fed to
either an ILP or SMT solver. Our techniques can support general P4
programs (including @atomic constructs [13]) efficiently, including
programs translated into P4 from higher-level DSLs developed for
pipeline programming [33, 34, 37, 53, 56].

Our prototype of CaT can target: (1) the Tofino pipeline, and (2)
an open-source RMT pipeline called Menshen (that was previously
implemented on an FPGA) [10, 61]. Existing commercial switches
have proprietary instruction sets that preclude the kind of low-level
resource allocation and control over ALU configurations needed
by CaT. Therefore, our backend for Tofino [9] generates low-level
P4 in lieu of machine code. To evaluate CaT in full generality, we
extend Menshen’s open-source register-transfer level (RTL) Verilog
model with additional resources for our experiments. We generate
code for the cycle-accurate simulator of Menshen, and also use it
for testing the CaT prototype. Our results (§7) show that CaT can
automatically compile programs that previously required manual
changes to be accepted by the Tofino compiler. On other challenging
benchmarks, CaT produces good quality code and does so about 3
times faster (on average) than prior work [34].
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2 BACKGROUND AND RELATED WORK
2.1 Packet-Processing Pipelines

The compiler target in this paper is a programmable packet-
processing pipeline following the Reconfigurable Match Tables
(RMT) architecture [27]. Such pipelines are present in commer-
cially available programmable switches such as the Barefoot Tofino,
Broadcom Trident, and Mellanox Spectrum, and NICs such as
the Pensando DPU. An RMT-style pipeline consists of (i) a pro-
grammable packet parser and (ii) a number of processing stages
structured around match-action computation. We describe these
components below.

A programmable parser takes in a programmer-specified header
specification, and extracts packet header fields. This set of fields
is termed the packet header vector (PHV). PHV fields can be both
read and written in each pipeline stage, termed a match-action
stage. One match-action stage extracts relevant fields from the
PHVs using a crossbar circuit. The fields are then matched against
user-inserted rules in stage-local match memory. The memory
may also contain state, i.e., values maintained on the switch and
updated by every packet, such as a packet counter. Once a packet
matches a rule, a corresponding set of actions is invoked. The
actions are implemented using Very Long Instruction Word (VLIW)
ALUs which may modify multiple PHV fields in one shot. Some
match-action tables may be skipped entirely (e.g., due to control
flow) through hardware components called gateways.

Three factors limit the available resources and expressiveness of
packet-processing pipelines. First, to support high throughput (e.g.,
6.5 Thit/s in Tofino), pipelines are clocked at high frequencies (e.g.,
1 GHz for Tofino). Thus, the pipeline must admit a new packet every
clock cycle. Hence, stateful computations (read-modify-write) must
finish in one clock cycle. Second, on-chip and stage-local memories
are limited in size, to support fast lookup. Third, constraints on
chip area and power limit the number of pipeline stages (e.g., 12
match-action stages in Tofino) and control circuitry (e.g., number
of gateways and crossbars). Such exacting hardware constraints
pose compiler challenges. Furthermore, program behavior is all-or-
nothing: a program that fits into the pipeline resources would run
at the pipeline’s clock frequency; otherwise it cannot be run. There
is no graceful degradation between these extremes.

2.2 Related Work

There has been significant interest in developing compilers and
domain-specific languages (DSLs) for packet-processing pipelines.
We categorize the existing compiler efforts based on their support
for program rewriting, code generation, and resource allocation.

DSLs for programming packet pipelines. P4 and NPL are the
most widely used languages to program packet pipelines. They
share many syntactic and semantic aspects. Several academic
projects have proposed new DSLs or extensions to P4 to remedy
many of P4’s shortcomings. For instance, microP4 [57] adds modu-
larity to P4. Lyra [33] addresses the issue of portability of programs
across multiple devices. Lyra and FlightPlan [58] address the prob-
lem of partitioning a program automatically across multiple devices.
Lucid [56] introduces an event-driven programming model for con-
trol applications in the data plane. P4All [37] extends P4 to support
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‘elastic’ data structures, whose size can grow and shrink dynami-
cally based on the availability of switch resources. Domino [53] is a
DSL that supports transactional packet processing: a programmer
specifies a block of code that is executed on each packet in isolation
from other packets. These languages can all be translated into P4,
and in this paper, we directly take P4 programs as our starting point.
Thus, our work is complementary to work on such new DSLs. One
limitation of CaT is that it does not currently handle the problem
of partitioning a network-wide program into per-device programs,
like Lyra and Flightplan. Instead, our goal is to build a high quality
compiler that inputs a P4 program for a single device and outputs a
high-quality implementation for that device.

Program rewriting. The open-source reference P4 compiler [11],
which is the foundation for most P4 compilers including the widely-
used Tofino compiler [9], employs rewrite rules to turn an input
P4 program into successively simpler P4 programs. These rewrite
rules consist of classical optimizations like common sub-expression
elimination and constant folding. Rewrite rules are also employed
by Cetus [44] and Lyra [33] to merge tables in different stages
(under certain conditions) into a single “cartesian-product” table
in a single stage, thereby saving on the number of stages. CaT
uses rewrite rules to transform uses of scarce resources (gateways,
stages) to more abundant ones (tables, memory, ALUs), in a style
similar to Cetus.

Code generation for complex actions. Domino [53] and Chip-
munk [34] tackle the problem of code generation: selecting the right
instructions (i.e., ALU opcodes) for a program action expressed in
a high-level language. These compilers have to respect the limited
capabilities of each stage’s VLIW ALUs while correctly implement-
ing state updates according to @atomic semantics for transactions
(§2.1). Domino largely uses rewrite rules and employs program
synthesis to code-generate just the stateful fragments in the ac-
tion, but minor semantic-preserving modifications to programs can
cause compilation to fail. Chipmunk addresses this drawback of
Domino by using program synthesis to exhaustively search for ALU
configurations that could implement a high-level program, but at
the expense of high compile time. Lyra [33] uses predicate blocks,
chunks of code predicated by the same path condition, to break up
algorithmic code into smaller blocks that have only inter-block (but
no intra-block) dependencies. CaT’s resource synthesis is faster
than Chipmunk’s and more reliable than Domino’s (Table 5, §7.3).
It generalizes Lyra’s predicate block approach by considering ALUs
expressed via a parameterizable grammar, such that the procedure
is independent of the operations in the program’s source code or
intermediate representation.

Resource allocation. The problem of allocating specific resources
required by a P4 program (e.g., match memory blocks, a specific
number of ALUs, etc.) can be posed as an integer linear program-
ming problem (ILP) [37, 39] or as a constraint problem [33] for
Satisfiability Modulo Theory (SMT) solvers [23]. If the constraints
of the hardware are modeled precisely, ILP-based techniques can
improve resource allocation relative to greedy heuristics for re-
source allocation. To this end, CaT’s resource allocation (§6) uses
a fine-grained constraint-based formulation that models detailed
pipeline resources and enables global optimization by considering
dependencies across tables as well as within actions.
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Table 1: CaT unifies prior work in P4 compilers (first column) to provide and improve various features (listed in other columns)
in an end-to-end flow, and does so within the context of the P4 language without needing a new DSL.

Project Program Rewriting Code Generation

Resource Allocation

Retargetability
Instruction Sets  Resource Constraints

New Language Constructs

Domino [53] Yes Rewriting, some program synthesis Atom templates Packet transactions
Chipmunk [34] Program synthesis ALU DSL Packet transactions
Lyra [33] Yes SMT SMT constraints Network-wide programs
Flightplan [58] Resource rules Resource rules Resource rules Network-wide programs
Cetus [44] Yes Table Merging, PHV Sharing SMT constraints

P4All [37] ILP ILP constraints Elastic data structures
Jose et al. [39] ILP ILP constraints

Lucid [56] Memops Memops Event-driven programming
Tofino compiler [9] Yes Yes Heuristics

CaT (this work) Yes Min-depth tree synthesis ILP/SMT ALU grammars ILP/SMT constraints P4’s atomic construct

Table 2: Detailed relationship of the 3 phases of CaT with prior work on compilers, HLS, and packet-processing pipelines.

CaT compiler phase CaT technique

Builds on prior work

Differences in CaT

Other complementary work

1: Resource transformation Rewrite rules

LLVM [43], HLS [7, 29], pdc [11]

Rewrite rules target RMT, based on novel guarded
dependency analysis

pic [11] uses platform-independent rewrites, Ce-
tus [44] merges tables

2: Resource synthesis Mapping operations to ALU pipeline

HLS operation binding [7, 29]

Stateful updates restricted to 1 stage

Lucid [56] uses syntactic rules to ensure opera-

Synthesis procedure uses SKETCH queries for program synthesis Chipmunk [34]

Target portability: via parameterizable grammars for ALUs

Preprocessing: branch removal, SSA, SCC in computation graph

const prop, expr simplification, deadcode elimi LLVM [43]

Sketch [55], Chipmunk [34]

Domino [53], SSA [30], VLIW [42]

tions map to Tofino
Novel synthesis procedure: faster, more scalable,
uses smaller queries
Generate resource graph (used in Phase 3), not
low-level ALU configs
No backward control flow (similar to Domino)
No backward control flow

3: Resource allocation Constraints for match memories

Constraints for multi-stage actions
Constraints for multiple transactions

action only
Modeling real hardware constraints in backend FPGA target

Jose et al. [39], Lyra [33]
HLS scheduling [29], Domino [53], Chipmunk [34]
Domino [53], Chipmunk [34] handle a single trans-

Menshen provides a FPGA backend target [61]

Associates match memories with corresponding
action resources (ALUS)

Uses result of Phase 2 for intra-action dependen-
cies and ALU output propagation
Enforces int ble and intra-action d
for global optimization

Extended functionality of resources in comparison
to Menshen

ie:

Tofino compiler uses heuristics

3 CAT: MOTIVATION AND OVERVIEW

Motivation. Today, P4 developers typically write down actions in
P4 programs with the assumption that each action must finish in
one stage. However, tracking the hardware-level feasibility of an
action leads to thinking at an unnecessarily low level of abstraction,
especially when developing high-speed algorithmic code. Consider
the example pseudocode (motivating example ME-1) shown in Fig-
ure 2. This function implements the SipHash algorithm, used as a
hash function to prevent collision-based flooding attacks [22]. The
developer of a P4 version of this algorithm (distinct from the authors
of this paper) started with a high-level transactional description of
the algorithm (Table 3, [62]). The developer then manually changed
it into a pipelined implementation (Table 4, [62]), because the al-
gorithm as expressed cannot be compiled by the Tofino compiler
since it cannot be finished in one stage. We believe that a good
compiler should automate this process of synthesizing pipelined
implementations from transactional specifications. Indeed, CaT
can successfully handle this example (discussed in §7.3), without
requiring an expert developer to manually pipeline their code. Fur-
thermore, beyond automatically pipelining a single transaction, a
compiler should be capable of pipelining multiple such transactions,
generating pipeline configurations for their resulting implemen-
tations, and then allocate physical resources in the pipeline for
these implementations. Finally, P4 programs can often be written
in different ways, which consume different kinds of resources; if
possible, a compiler must be able to transform uses of a scarce
resource into uses of an abundant resource, e.g., using larger tables
in lieu of more stages [44].

CaT’s approach. CaT is an end-to-end compiler for P4-16 pro-
grams that takes inspiration from high-level synthesis (HLS) [7, 16]
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ROTL(x, b) (uint32_t) ((x << b) | (x >> (32 - b)))
void siphash(uint32_t vO, uint32_t v1, uint32_t v2, uint32_t v3) {

1) vO +=v1; 1 8) V0 +=v3;
2)v1=ROTL(v1,5); | 9)v3=ROTL(v3,7);
3) v1 A= v0; 1 10) v3 A= v0;

4)v0 = ROTL(VO, 16); | 11)v2 +=v1;

5) v2 +=v3; 1 12) vl = ROTL(v1, 13);
6) v3=ROTL(v3,8); i 13)v1Ar=v2;

7) v3 A= v2; i 14)v2 =ROTL(v2, 16);

}
Figure 2: Motivating Example ME-1: SipHash was manually
split into four stages and rewritten by P4 programmers [62].

to provide both: (1) a high level of abstraction for specifying packet-
processing functionality, and (2) high quality of the compiler-
produced implementation. While prior approaches to HLS for ASICs
and FPGAs have sometimes resulted in poor quality of the generated
implementation, we believe that the narrower domain of packet-
processing pipelines is particularly well-suited for applying HLS
gainfully for 2 reasons. First, HLS techniques are designed to system-
atically explore tradeoffs between functionality (e.g., which ALU
can implement an operation?), capacity (e.g., how many ALUs, gate-
ways, etc.?), and scheduling of resources (which stage should run
an operation?)—a core challenge in compiling to packet-processing
pipelines. Second, HLS techniques can be effective in pipelining
transactional code with updates to state, while providing transac-
tional semantics to the programmer: the illusion that each packet
modifies headers and state in isolation from other packets.

CaT overview. To produce high quality implementations, CaT
combines ideas from several prior P4 compiler projects (Table 1)
into an end-to-end system for the first time. CaT divides up the
process of compiling a P4-16 program into three phases, as shown
in Figure 1; the detailed relationship of these phases to prior HLS
and compiler research is shown in Table 2. First, resource transfor-
mations rewrite packet-processing programs in P4 from one form
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(that makes use of a scarce resource) to another form (that makes
use of a more abundant resource). Second, resource synthesis em-
ploys a novel algorithm based on program synthesis to synthesize
low-level resource graphs with hardware ALUs, from a high-level
transactional specification of a match-action table’s action func-
tionality. Third, resource allocation employs ILP or SMT solvers to
allocate computations and data structures to memory blocks and
action units, while respecting program dependencies and per-stage
resource constraints. Throughout the 3 phases, CaT makes per-
vasive use of solver engines to simplify the development of and
improve the quality of the compiler.

How CaT factorizes the compilation problem. The problem
of optimal code generation in compilers is known to be NP-
complete [19] in general. Within the context of P4, Vass et al. [60]
show that the problem of compiling P4 programs to pipelines is
NP-hard. These results suggest that a compiler may have to decom-
pose the problem in some way to tradeoff optimality for reasonable
performance. In CaT’s approach, Phases 2 and 3 can be viewed as
an action-block based decomposition of the P4 compilation problem.
In Phase 2, we perform local resource synthesis for each individual
action block (after transformations in Phase 1). Then, in Phase 3,
we use these local synthesis results to perform a global resource
allocation for all action blocks. This keeps the synthesis runtime
manageable in practice while still attempting a good quality allo-
cation of computation to resource units. Furthermore, our Phase 2
supports rich computations in action blocks that could require mul-
tiple stages as well as transactional (@atomic) semantics. In the rest
of the paper, we refer to action block computations as transactions.
The next three sections detail the three phases of our compiler.

4 PHASE 1: RESOURCE TRANSFORMATION

In the first phase of our compiler, we perform source-to-source
rewrites in P4, with the goal of transforming a program that makes
use of scarce resources, to one that makes use of more abundant
resources. Rewrite rules provide a flexible and general mechanism
for this purpose, and can be easily extended by adding more rules for
new backend targets and resources. CaT includes rewrite rules for
if-else statements in the control block of a P4 program. The standard
p4c compiler transforms each action in an if-else branch into one
default table, i.e., a table without a match key and with only one
action. Our rewrites effectively merge together multiple (possibly
nested) if-else statements into one bigger table with keys, thereby
using fewer gateway resources (which are used to implement if-else
branches) . Such rewrites are in turn driven by a novel guarded
dependency analysis that identifies parallelism opportunities by
eliminating false dependencies — this often leads to reduced usage
of pipeline stages in a program.

4.1 Guarded Dependencies

The sequence of program statements inside the apply {...} block
of a P4 control block can be treated as a branching program (without
loops) with (possibly nested) if-statements, reads and writes to
PHYV fields, and apply statements, which apply match-action tables.
This program induces Read-after-Write (RAW), Write-after-Read
(WAR), and Writer-after-Write (WAW) dependencies between pairs
of program statements, which must be respected during synthesis
and resource allocation. Conventionally, these dependencies are
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>

header packet { p.p2=p.p2 +1
int p1;
int p2; \

control ingress (inout packet p) {
apply{

if (p.p1==v1){p.p2

if (p.p1 ==v2){p.p2

}If (p.p1 ==v3){p.p2

@ WAW
l p.p2 =p.p2 +2
4@ WAW

p.p2=p.p2+3

Figure 3: Motivating Example ME-2: The control flow graph
of a P4 control block (left); snippet taken from a different
portion of SipHash [15]. Dependencies shown as dotted red
edges. vl # v2 # v3 are constants.

p2+1;}
p2+2;}
p2+3;}

nian
T T T

defined between pairs of program statements without accounting
for path conditions [41], i.e., conditions under which a control path
in a program is executed. Specifically, a dependency due to variable
v between two statements s; and s; is denoted as (v@s; — vV@s2, 1),
where t € {RAW, WAR, WAW }.

Consider the motivating example ME-2 shown in Figure 3, in-
spired by a different portion of the SipHash program [15]. The WAW
dependencies (shown on the right) cause the Tofino compiler to
produce an implementation with 3 pipeline stages. However, these
WAW dependencies are not real, since the if-conditions guarding
these assignments are disjoint. Indeed, a developer of this pro-
gram recognized the disjoint conditions and manually changed
the program to use a single block of if...else if...else if...
statements, thereby reducing the pipeline usage of the compiled
program to 1 stage. We aim to automate such rewrites. In particular,
p4c and the Tofino compiler miss these rewrites in ME-2, likely due
to a conservative dependency analysis.

To solve this issue, we propose guarded dependencies, which take
into account path conditions along control paths. Given a control-
flow graph (CFG) C for a P4 control block, a guarded dependency be-
tween nodes (n1, nz) € C is defined as a tuple (v@s; — v@s2, t, @),
where v is the variable of concern at statement s (in node n) and
statement s (in node ny), t € {RAW, WAR, WAW}, and ¢ (called
a guard) is a formula that describes all the path conditions under
which node ny may be visited after node n; is visited. A procedure
based on symbolic execution [41] or model checking [25] that com-
putes path conditions can be used to determine precise guarded
dependencies for the program. In particular, we can use an SMT
solver to identify false dependencies, i.e., dependencies where ¢ is
unsatisfiable. Since running model checking or symbolic execution
on the input program can be expensive, we next describe a faster
lightweight analysis for analyzing guarded dependencies in CaT.

4.2 Lightweight Guarded Dependency Analysis
for CaT Rewrites

We now describe a lightweight analysis that helps CaT determine
guarded dependencies in a P4 program. First, we check that none
of the assignment statements update any variables used in con-
ditions of if-else statements. Such updates lead to WAR depen-
dencies and complicates the analysis; we currently choose to not
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Figure 4: Illustration of Phase 1 Rewrites in CaT, on motivat-
ing examples ME-2 (from Figure 3) and ME-3 (from a UPF
Rate_enforcer [14] example provided by P4 programmers).

perform any rewrites in such cases. When there are no such up-
dates, the path condition for each CFG node is a simple logical AND
of branch conditions, which we compute by a depth-first traversal
of the CFG. During the depth-first traversal, branch conditions are
pushed/popped on a stack at branch/merge points, respectively. For
a pair of nodes (n1, nz) € C with a guarded dependency, the guard
¢ is a logical AND of the computed path conditions for n; and nj.
If ¢ is unsatisfiable, then this is a false dependency and removed;
otherwise it is conservatively retained as a dependency. For our
ME-2 example in Figure 3, this analysis finds that the shown WAW
dependencies are false, and removes them.

4.3 Rewrites to Match-Action Tables

We now focus on (possibly nested) if-else statements where the
branch conditions are tests on packet fields that can be implemented
as keys in a match-action table. Based on the guarded dependency
analysis, if there is no dependency between the branches, then we
can rewrite them into a match-action table. The key of the gener-
ated table is comprised from packet fields used in the if-else con-
ditions, and the actions are the computations within each branch.
For example, Figure 4 illustrates our rewrites on two P4 programs
— ME-2, and another motivating example ME-3 taken from a UPF
Rate_enforcer example [46]. After rewriting, both ME-2 and ME-3
use only match-action tables and thus no gateway resources. ME-2
uses only 1 stage post-rewriting vs. 3 stages before rewriting (due
to false WAW dependencies). ME-3 also uses only 1 stage post-
rewriting vs. 2 stages before rewriting (due to needing too many
gateway resources to fit into 1 stage). These motivating examples
drawn from real-world P4 programs show the effectiveness of our
approach, where manual steps taken by a programmer to reduce
resource usage are successfully automated by CaT.

5 PHASE 2: RESOURCE SYNTHESIS

For the second phase, we propose a novel procedure to perform
resource synthesis on each P4 action block. Like Chipmunk [34],
we too use the SKETCH program synthesis tool [55] to generate
a semantically equivalent pipelined hardware implementation us-
ing ALUs. However, there are several important differences from
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Chipmunk, which we summarize at the end of this section, after
describing our procedure.

5.1 Preprocessing of a P4 Action

We preprocess each action block of the P4 program to prepare for
synthesis. We first use some standard preprocessing steps, similar
to Domino [53], including (a) branch removal (by replacing assign-
ments under branches with conditional assignments), (b) creating
two temporary packet fields for each stateful variable — pre-state
field (denoting its value before update) and post-state field (denoting
its value after update), and (c) conversion to static single-assignment
(SSA) form [30].

In addition, and differently from Domino, we perform several
static analyses during preprocessing: constant folding, expression
simplification, and dead code elimination. These analyses are useful
in simplifying the action block of a P4 program, thereby reducing
the difficulty of the subsequent SKETCH queries. While preprocess-
ing can create temporary packet fields, we neither add nor delete
stateful variables during preprocessing simplifications.

5.2 Computation Graph for a P4 Action

After preprocessing, we construct a dependency graph (similar to
Domino), with nodes for each program statement and an edge
for each RAW dependency.? Edges in both directions are also
added to/from the pre/post-state fields of each stateful variable. The
strongly connected components (SCCs) of this graph correspond
to stateful updates, which are condensed to form a computation
graph G. Thus, G is a directed acyclic graph (DAG) with nodes
for program computations (some with stateful updates) and edges
for RAW dependencies. Nodes in G are partitioned into two sets:
stateful nodes are formed from SCCs on the dependency graph, con-
taining a set of program statements that describe an atomic stateful
update; stateless nodes are the other nodes in the dependency graph.
Each edge (u, v) is mapped to a packet field variable that appears in
the LHS of the assignment at u and in the RHS of the assignment at
v. We call source edges of G primary inputs (PIs); each is associated
with an input packet field variable. We call outgoing edges of G
primary outputs (POs), each is associated with a final value written
to a packet field variable.

5.3 Synthesis Procedure for a P4 Action

Synthesis for a P4 action is now performed on the computation
graph G. Rather than create a large synthesis query for the en-
tire G, we decompose the problem into multiple smaller synthesis
queries. Specifically, we generate individual synthesis queries for
the following variables in G: (1) the output stateful variable of each
stateful node (i.e., the LHS of the stateful update assignment), (2)
each input variable to a stateful node (i.e., any variable in the RHS
of a stateful update assignment), and (3) each primary output (PO)
variable, which corresponds to a packet field. Each synthesis query
finds an ALU-based implementation and is parameterized by an
ALU grammar that specifies the functionality of the ALUs (stateful
or stateless) available in a given hardware target. These implemen-
tations are then connected together according to G, to result in a
resource graph R, where a node v represents an ALU, and an edge

2Conversion to SSA form removes WAW and WAR dependencies.
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Input:
1. Computation graph G = (V, E), with
V' = Stateful U Stateless, where Stateful is the set of
stateful nodes and Stateless is the set of stateless nodes;
2. Primary outputs POs: Outgoing edges of G
3. Stateful ALU grammar A;, stateless ALU grammar As;
4. Number of pipeline stages available in hardware,
numPipelineStages.
Output: Synthesized code for each primary output (PO) and
each stateful update.
1 // Step 1: Normalize the computation graph to ensure every stateful
node in G has out-degree 1.
2 Normalize(G);
3 // Step 2: Perform predecessor packing and folding optimizations.
4 graphModified < TRUE;
5 // Iterate until fixpoint

6 while graphModified do
7 // Folding: tryFold returns TRUE iff G changed
8 for (u,v) € E do
9 if v € Stateful A u € Stateless then
10 ‘ graphModified < [tryFold (G, u,v, A1) ;
11 end
12 end
13 // Predecessor packing: tryPack returns TRUE iff G changed
14 for (u,v) € E do
15 if u € Stateful V v € Stateful then
16 ‘ graphModified < tryPack (G, u,v, A1) ;
17 end
18 end
19 end
20 // Step 3: Synthesis of stateful updates
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21 for v € Stateful do

22 s <~ querySketchStateful (v, A;);

23 if s = FAILURE then

24 abort(

25 "Error synthesizing stateful node " + v);
26 end

27 end

28 // Step 4: Min-depth solutions for stateless code

29 Os < POs U {inputs(v)|v € Stateful};

30 Order elements of Os according to topological order in G;
31 for o € Os do

32 // Compute the Backwards Cone of Influence (BCI) of o
33 spec + computeBCI(0); // spec of o

34 i <— 1; // initial depth of solution tree

35 // Loop over i to find a minimum depth solution tree

36 while ¢ < numPipelineStages do

37 s — querySketchStateless(spec,i, A2);

38 if s = SUCCESS then

39 ‘ break;

40 else

41 ‘ i 41+ 1; // increment depth

42 end

43 end

44 end

Auxilliary procedures:

procedure tryFold(G, u,v, A;): Query SKETCH to
determine if edge (u,v) can be folded into stateful node v
using stateful grammar A;. If query succeeds, edge (u,v) is
removed from G.

procedure tryPack(G,u,v, A;): Query SKETCH to
determine if nodes u,v can be packed into a single new
stateful node using stateful grammar A;.

Algorithm 1: CaT Synthesis Procedure. Calls that use a SKETCH query are highlighted in blue .

(u,v) indicates that the output of ALU u is connected to an input
of ALU u. We prove that our synthesis procedure is correct: the
resource graph R is functionally equivalent to G.

Our synthesis procedure is shown in Algorithm 1, which con-
sists of four main steps: 1) normalization; 2) folding and predecessor
packing optimizations; 3) synthesis of stateful updates; 4) synthesis
of minimum-depth solutions for stateless code. The critical step is
Step 3, which queries SKETCH to see if each stateful update assign-
ment can be synthesized into configurations for a single stateful
ALU. If any such query fails, then we terminate the procedure and
provide feedback to the programmer. We create separate synthesis
queries to perform optimizations in Step 2, to help Step 3 succeed.
Finally, Step 4 creates synthesis queries to implement the POs and
inputs to the stateful nodes.

Step 1: Normalization of computation graph G. In the typical
hardware backends that we target (e.g., Menshen, Tofino), a stateful
ALU can output a single value that is either the pre-state or the post-
state value of one of its stateful registers. In this step, we normalize
G to a graph such that each stateful node has only one output, and
each packet field labelled as an out-edge from a stateful node is
either the pre-state field or the post-state field. Normalization is
performed by replicating stateful nodes that have multiple outputs.

Step 2: Folding and predecessor packing optimizations. We
iterate the following two optimizations until convergence.
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Folding to reduce input edges. A stateful node with too many in-
edges could cause Step 3 to fail, due to a limited number of inputs
available in ALUs. The folding optimization finds opportunities
to reduce the number of in-edges to a stateful node. We consider
dependent inputs, i.e., inputs that are themselves functions of other
inputs to the same stateful node. For each such candidate i, we
query SKETCH to check if the function that computes i can be
folded into the stateful node itself, such that the enlarged node
fits into a single stateful ALU. If the synthesis query is successful,
i is removed. Figure 5 shows an example benchmark—BLUE (de-
crease) [32]—where this works successfully. Here, folding reduces
an edge between the top two nodes in the computation graph G
(extreme left of Figure 5), thereby reducing the pipeline usage by 1.

Predecessor packing to merge nodes. Even after folding, the state-
ful update in a single node in G might not fully utilize an available
stateful ALU in hardware. Consider again the BLUE (decrease) ex-
ample in Figure 5, where the middle box shows G after folding.
Here, a single Tofino stateful ALU can actually implement both
stateful updates (in blue boxes) in a single stage, as shown by a
merged node on the right. To achieve this compaction, we use a sim-
ple heuristic called predecessor packing, inspired by technology
mapping for hardware designs [28]. The key idea is to pack more
into a stateful ALU by attempting a merge of nodes u and v, where
at least one node is stateful and where predecessor u has only one
out-edge (to v). Like folding, we implement the packing attempt via
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(edge eliminated via folding)

p_now_plus_free0 = p_now-1;

p_last_update00 = last_update;

p_last_update01 = p__br_tmp1 ?
(p_now) | (p_last_update00);

p__br_tmp1 =p_now_plus_free0>p_last_update00;

p_last_update00 = last_update;

p__br_tmp1 = p_now_plus_free0>p_last_update00;

p_last_update01 = p__br_tmp1 ?
(p_now) | (p_last_update00);

p_last_update00 = last_update;
p__br_tmp1 =p_now_plus_free0>p_last_update00;
p_last_update01 = p__br_tmp1 ?

last_update = p_last_update01;

last_update = p_last_update01;

(p_now) | (p_last_update00);
last_update = p_last_update01;

kj_/

%J

p_p_mark00 = p_mark;

p_p_mark01 =p__br_tmp1?
(p_p_mark00-2) | (p_p_mark00);

p_mark = p_p_mark01;

p_p_mark00 = p_mark;

p_p_mark01 =p__br_tmp1?
(p_p_mark00-2) | (p_p_mark00);

p_mark = p_p_mark01;

p_p_mark00 = p_mark;
p_p_mark01 =p__br_tmp1 ?
(p_p_mark00-2) | (p_p_mark00);
p_mark = p_p_mark01;

Figure 5: Computation graph for the BLUE(decrease) [32] (leftmost) and optimizations performed by CaT when targeting the
Tofino ALU. Stateful nodes are in blue, stateless nodes are in yellow, pre/post-state fields are in red, modified parts are in bold.

a SKETCH query, and merge the nodes if the query is successful.
In our evaluations (§7.3), we show that these optimizations are
effective in compiling to fewer pipeline stages.

Step 3: Synthesizing stateful updates. We are now ready to
synthesize the outputs of the stateful nodes in G. To preserve the
transactional semantics of the program, each stateful update must
be completed within a single pipeline stage, i.e., the update operation
must fit in a single stateful ALU. Accordingly, for each stateful
node in G, we generate a SKETCH query to check if the stateful
update operation can be implemented by a single stateful ALU. The
functionality of the stateful ALU available in hardware is specified
using an ALU grammar A;, which is expressed as a large block of
multiple if-else statements with one case for each opcode. We assert
that each such query succeeds; if any query fails, our procedure
exits with an error, giving feedback to the programmer.

Step 4: Minimum-depth solutions for stateless code. In the
last step, we synthesize code for the POs and inputs to the stateful
nodes in G (line 29). For each such variable o to be synthesized, we
first compute its backwards cone of influence (BCI), which is often
used in verification/synthesis tasks to determine the dependency
region up to some (boundary of) inputs [36]. In graph-theoretic
terms, BCIg (o) is a subgraph in G derived by going recursively
backward from o, stopping at a PI or an output of a stateful node.
Essentially, the BCI provides the functional specification for o in
terms of a set of inputs, where each input is a PI or the output of a
stateful node in G. Note that these specifications are stateless, i.e.,
they do not include any stateful nodes.

We model a switch’s stateless ALU functionality using an ALU
grammar Ay (expressed as a large block of if-else statements). We
use SKETCH to find a minimum-depth tree solution for o, where
each tree node represents a stateless ALU, and the leaf nodes rep-
resent the inputs in BCIg(0). A minimum-depth solution helps
reduce the number of pipeline stages — this is explained in more
detail in the next section (§5.4). Since SKETCH does not support
optimal synthesis, we invoke it in a loop to minimize depth, where
each iteration tries to find a solution tree of a given depth i (line
35), starting from 1 and continuing until i exceeds the maximum
number of pipeline stages. An example computation graph with a
single stateful update (blue box) and the associated synthesis query
results are shown in Figure 6.
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(¢): Synthesized (depth-2) solution for BCI of p.o1.

l |

Figure 6: Example of a computation graph (left) and the syn-
thesis query results (right) targeting Banzai ALUs [53]. State-
ful nodes in blue and stateless nodes in yellow. The POs are:
{p.o1,p.03}. p.o1’s BCI contains nodes 1 and 2; p.03’s BCI
contains nodes 1 and 3.

5.4 Staged-Input Tree Grammar for Synthesis

We now describe details of the grammar used for the synthesis
queries in Step 4, where each query (in line 37) tries to find a
solution tree of a given depth i for implementing a given variable o.
Initially, we used a simple recursive tree grammar for the SKETCH
query, where each tree node is an ALU (specified by a stateless
ALU grammar Ay) and its children are the ALU operands; and a
leaf node is an input in BCIg (0), i.e., either a primary input (PI) or
an output of a stateful node in G. By iteratively incrementing i, we
were able to find a minimum-depth tree solution for o.

However, even with a minimum-depth tree solution for each
variable o, when we compose together these solution trees ac-
cording to G, the number of pipeline stages for the entire action
may not be the minimum possible. This is because with this sim-
ple grammar, the depth is optimized to be minimum within an
individual synthesis query for o, without considering the larger
scope of the entire action. As a concrete example, consider the
computation graph G for the Flowlet switching benchmark [52]
shown in Figure 7. As before, blue nodes are stateful nodes and
yellow nodes are stateless. In addition, we show two synthe-
sized solutions for the variable p_br_tmpe , with the specification
p_br_tmp@ = (p_arrival® - p_last_time_@ > 2).Its BCI has two
inputs: p_arrival@ isa Pl and p_last_time_@ is the output of the
stateful node 1.
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(1)
p_last_time_0 = last_time[p_id0];
last_time[p_idO0] = p_arrivalO;

@ (6)
p_saved_hop_1 = p_new_hop0;

(2) S H
tmp = p_last_time_0 + 2; N N H

'

3) ) Ny

........ Y e
[p_br_tmp0 = p_arrival0 > tmp; |  p_br_tmp0 = tmp > p_last_time_0; |
T

() v

p_saved_hop_0 = saved_hop[p_id0];
p_saved_hop_2 = p_br_tmp0 ? p_saved_hop_1 : p_saved_hop_0;
saved_hop[p_id0] = p_saved_hop_2;

8)

‘ p_next_hop1 = p_saved_hop_2; ‘

Figure 7: Computation graph for the Flowlet switch-
ing [52], showing two minimum-depth solutions for variable
p_br_tmp@ using Banzai ALUs: and nodes {4, 5}.

Note first that the BCI input p_last_time_@ can only be available
after stage 1 within the overall action (stages are numbered starting
from 1), since the implementation of node 1 occupies one stage.
Now, consider a minimum-depth solution with nodes 2 and 3 (both
shown in orange), where node 1 provides an input to the ALU
operation in node 2, which in turn provides an input to the ALU
operation in node 3, which computes p_br_tmp@ . Hence, p_br_tmpo
is computed in stage 3 and is available at the end of stage 3.

Consider a second minimum-depth solution shown by dashed
nodes and edges, with nodes 4 and 5 (both shown in green). Like the
first solution, it also has two ALU operations and the same minimum
depth 2. However, the ALU operation in node 4 is independent of
p_last_time_0, and can be computed in parallel with node 1. This
allows p_br_tmp@ to be computed in stage 2, making it available at
the end of stage 2. This example shows that although both solutions
have the minimum depth 2, the second is better because p_br_tmp@
can be computed in an earlier stage for the overall action.

Since the number of pipeline stages is often a critical resource in
compiling P4 programs, we consider the larger scope of the action
in each individual synthesis query. We achieve this by augmenting
our tree grammar for a query, where an input in the BCI is now
associated with a stage, which denotes the stage within the action
at which the input is available to be used. We call this grammar a
staged-input tree grammar. We regard a primary input (PI) in G as
being available for use at stage 1, and the output of a stateful node
being available for use at some stage s > 1, where s depends on its
own implementation. In each individual synthesis query, we now
look for a minimum-depth tree solution that produces the output at
the earliest possible stage, based on stage information of the inputs
in its BCL. To compute the latter, in Step 4, we use a topological
ordering over the set of outputs o in G (line 30), such that any input
in BCIg (o) is already implemented before the synthesis query for
o. For the example in Figure 7, our synthesis query with a staged-
input tree grammar returns the solution with nodes 4 and 5 (in
green) for the output p_br_tmp@ . The complete SKETCH input for
this query is shown in Appendix A, which includes the grammars
for a staged-input tree and for a stateless ALU.

5.5 Final Result of the Synthesis Procedure

The final result of the synthesis procedure is represented in the
form of a resource graph R for a given P4 action block, where each
node v in R represents a stateful or a stateless ALU, and an edge
(u,v) in R indicates that the output of ALU u is connected to an
input of ALU 0. These resource graphs play an important role in
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resource allocation, the next phase of our compiler. We now state
and prove correctness of our synthesis procedure.

THEOREM 1 (CORRECTNESS). The result of the CaT synthesis pro-
cedure (Algorithm 1) on a computation graph G is correct.

Proor skeTCH. The synthesis procedure works by decomposing
G (after correctness-preserving normalization and optimizations in
Steps 1 and 2, respectively) into subgraph components comprising
of: (1) outputs and inputs of stateful nodes, (2) inputs of stateful
nodes and their stateless BCIs, and (3) POs and their stateless BCIs.
Each such subgraph of G represents a specification for a synthesis
query (in Steps 3 or 4), which generates a corresponding implemen-
tation using ALUs, i.e., a subgraph in the resource graph R. Based
on correctness of program synthesis in SKETCH [55], each stateful
node output, stateful node input, and PO in R is functionally equiv-
alent to that in G. Hence the synthesis procedure is correct. O

5.6 Comparison with Synthesis in Chipmunk

Our motivation for a new synthesis procedure was improving
the performance of synthesis in Chipmunk [34], which also uses
SKETCH. CaT and Chipmunk have several differences.

First, CaT creates multiple smaller synthesis queries for SKETCH.
Although Chipmunk uses a slicing technique to create per-output
queries, the scope for each such query is the entire transaction. Our
procedure separates queries for stateful update operations from
those on stateless operations in Steps 3 and 4, respectively. The
scope for a stateful query is a single stateful ALU: these queries
are small and also critical; if any fails, synthesis cannot succeed.
The scope for a stateless query is typically smaller than an entire
transaction, since its BCI stops at outputs of other stateful nodes.
Overall, smaller synthesis queries lead to significant performance
improvement over Chipmunk, as demonstrated in evaluations (§7).
We note that because SKETCH queries are independent of each
other in both CaT and Chipmunk, both lose opportunities to share
common computations across multiple queries.

Second, for stateless operations, we use multiple SKETCH
queries to synthesize solutions of minimum-depth, i.e., the min-
imum number of pipeline stages, while searching the space over all
possible equivalent programs. Although Chipmunk also considers
the space of all possible programs, its queries do not guarantee
minimum-depth solutions within a given bound.

Third, Chipmunk creates synthesis queries in the form of low-
level holes in an ALU grid architecture that are filled by SKETCH. In
contrast, our synthesis queries ask for ALU-based implementations
that we represent as resource graphs. These resource graphs are
used during resource allocation (in Phase 3) for handling multiple
transactions, which are not supported by Chipmunk.

Finally, similar to Chipmunk’s ALU DSL, our synthesis queries
are parameterized by an ALU grammar that specifies the function-
ality of ALUs available in a given hardware target. This enables the
same synthesis procedure to be used for different hardware back-
ends, providing compiler retargetability. CaT currently supports
three different ALU grammars: Tofino ALUs [9], Banzai ALUs [53],
and Menshen ALUs [61]; more can be supported as needed. As
long as compiler developers have access to the documentation of a
hardware ALU in the target backend, it is straight-forward to write
a complete and correct ALU grammar describing its capabilities.
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Table 3: Constraint formulation for resource allocation.

Name Definition
Constants  Ng maximum number of pipeline stages
Naiu maximum number of ALUs in each stage
Np number of packet fields that must remain available through the pipeline
Nyabie maximum number of logical table IDs per stage
Nentries ~ maximum number of match entries per table per stage
et maximum number of entries in table ¢ in program
Indices t index for Table
i index for partition of a Table, partition denoted #[i]
a index for Action
u index for ALU
s index for pipeline Stage
Variables Myis binary, set to 1 iff match of #[i] is assigned to stage s, 0 otherwise
stagey integer, stage assigned to ALU u
stageys binary, set to 1 iff ALU u is assigned to stage s
begy integer, stage where ALU u output is computed
endy integer, > last stage where ALU u is used as an input
propus binary, set to 1 iff output of ALU u is propagated in stage s
Sets Rtia Resource graph for action a of table partition #[i]
Vtia Vertices in Ryjq, each represents an ALU
Etia Edges in R¢q, each represents a connection between ALUs
APtiq Set of ALUs in R4, whose outputs may need to be propagated across stages
UVtiau Set of ALUs v in R¢jq, s.t. (1, 0) € Etjq, ie, ALU u is an input to ALU 0

Constraints similar to prior work [39, 44]

Vs: Xti Mris < Niable
VsVt i,aVu € Viig: stageys — Myis
Viy, iz, a1, a2, Yur € Vi iy ay, Yuz € Vi iy ay : Stagey; < stageu,

Match table capacity
Match action pairing
Table dependency

New constraints in our work

ALU allocation 1

ALU allocation 2

Action dependency
ALU propagation 1
ALU propagation 2
ALU propagation 3
ALU propagation 4

Vti,aVu € Vijg: 1< stagey < Ng

VsVt i,a, Vu € Vijq : stagey = s < stageys

Vti,aV(u,v) € Epiq : stagey < stagey

Vt,i,aVu € APtiq : begy = stagey A begy < endy A endy < Ng

Vit i,aVu € APtiq,Yv € UViqy : endy > stagey

Vti,aVu € APtjg, Vs € {1,..., Ns}: (begy <sAs<endy) < propys
Vs Lvtia VueAP;;, (Stageus + propus) < Nap, — Np

6 PHASE 3: RESOURCE ALLOCATION

After performing synthesis for each P4 action block, the third phase
of our compiler performs global resource allocation for the full P4
program by using a constraint-based formulation, shown in Table 3.
The top part lists the definitions of constants, indices, variables, and
sets that are used to automatically generate the constraints. The
bottom part shows the full set of constraints, divided into a first
set that is similar to prior work [39, 44], and a second set that is
new. Our new constraints address: (1) ALU resources in action com-
putations, (2) multi-stage actions, (3) fitting multiple action blocks
in the same pipeline stage, and (4) propagation of ALU outputs.
Prior efforts either do not consider allocation of ALU resources
and multi-stage actions [39, 44], or do not address multiple action
blocks [34, 53]. Another novel feature of our approach is that we
use the resource graph R synthesized for each action block (in Phase
2), to perform global optimization in this phase.

6.1 Constraints Similar to Prior Work

If a match table in the program has too many entries to fit within
a single stage, it is partitioned into b; separate tables, where b; =
[(et/Nentries)]- Currently, we only support exact matches; hence,
a packet will match at most one of the partitions #[i] that have
the same actions as table t. The first constraint ensures that the
number of match tables allocated in a stage is less than or equal to
the number of table IDs available. The second ensures that ALUs
in action blocks are accompanied by the associated match table.
The third enforces four types of table dependencies: match, action,
successor, and reverse-match [39]. If table ¢, depends on table #1,
all ALUs of t; are allocated after ALUs of t1. For successor and
reverse-match, < is replaced by <.
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6.2 New Constraints in Our Work

The constraints for ALU allocation (1,2) ensure that each ALU in
each action is assigned to one and only one pipeline stage. The
Action dependency constraint uses the edges in Ry;q (synthesized in
Phase 2) to enforce dependencies between ALUs. Together with the
Table dependency constraint, this allows ALUs from multiple action
blocks to be assigned in the same pipeline stage, while respecting
both inter-table and intra-action dependencies.

We support a multi-stage action under the condition that it
does not modify the table’s match key, by duplicating the match
entries at each stage to ensure that the entire action is executed.
As an example, suppose a match entry m in table ¢ is associated
with action A that takes 2 stages. We can allocate table t in two
consecutive stages, such that if a packet matches entry m in table
t in stage s, it will match entry m in table ¢ in stage s + 1 as well,
resulting in action A being executed completely over the two stages.

We allow allocation of multiple actions in the same stage and
also allow assigning an Action A to non-consecutive stages. In the
latter case, we need additional ALUs in the intermediate stages to
propagate the intermediate results. The ALU propagation constraints
(1-4) handle allocation of these additional ALUs. Here, AP;;, is the
set of ALUs in R;j; whose outputs may need to be propagated
across stages, and UVy;iq is a set of ALUs v in Ry, that use ALU
u as an input. The ALU propagation constraints 1-3 ensure that
an ALU u € AP;jq4 is propagated until the largest stage where it
is used as an input. The ALU propagation constraint 4 enforces
the ALU capacity constraint in each stage, where Np ALUs are
pre-occupied to carry packet fields that remain live through the
whole pipeline (e.g., IP TTL) or are updated (by ALUs not in any
AP;iq); the remaining (N, — Np) ALUs must be enough for the
sum over all ALUs u in any APy, that are either assigned to or
propagated in that stage. (Appendix B shows the formulation of
ALU propagation 3 using the well-known Big-M method).

6.3 Solving the Constraint Problem

We can use either an ILP solver (Gurobi [5]) or an SMT solver
(Z3 [31]) to find an optimal or a feasible solution. We specify an
objective function to find an optimal solution, e.g., we add the
constraint min cost to minimize the number of stages, where cost
is > the stage assigned to any ALU. i.e, Vt,i,a, Yu € Vyiq : cost >
stagey,. To find a feasible solution, we use a trivial objective function
(min 1) with Gurobi (none is needed with Z3).

7 IMPLEMENTATION AND EVALUATION

We implement the CaT compiler with the workflow shown in Fig-
ure 1. The resource transformation phase is implemented on top
of p4c [11]. We also use p4c to identify the action blocks and table
dependencies needed in CaT’s resource synthesis and resource al-
location phases. For the backend, ideally the CaT compiler should
directly output machine code for the targets. However, due to the
undocumented and proprietary machine code format of the Tofino
chipset, we generate a low-level P4 program by using a best-effort
encoding for the resource constraints, based on known information
about the Tofino chipset. For the Menshen backend, we extend the
open-source RMT pipeline [10, 61] by writing additional Verilog
to support richer ALUs, e.g., the IfElseRAW ALU [53]. The CaT
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compiler directly outputs machine code to configure various pro-
grammable knobs (e.g., opcodes) within Menshen’s Verilog code.

Sanity checking of CaT prototype. We check CaT’s output for
Menshen using its cycle-accurate simulator, which can be fed in-
put packets to test the generated machine code. We create P4-16
benchmarks starting with a subset of the switch.p4 program [54],
consisting of 2—6 tables randomly sampled from switch.p4. Then,
we add new actions to the tables using @atomic blocks for transac-
tional behavior. The logic within these atomic blocks consists of
one of 8 Domino benchmark programs [53]; the IfElseRaw ALU [53]
in our simulator is not expressive enough for the remaining 6. We
also test the 8 benchmark programs in isolation, generating 24
benchmarks in total, many of which have multiple transactions and
thus stress both resource synthesis and resource allocation. We ran-
domly generate test input packets and inspect the output packets
from the simulation. So far, all our sanity checks have passed.

7.1 Evaluation Setup and Experiments

We address the following evaluation questions:

Q1: Resource Transformation. How much does CaT’s re-
source transformation help in terms of the resource usage? We
select 3 benchmarks [2] extracted from real P4 programs and com-
pare resource usage for pre- and post-transformed programs (§7.2).

Q2: Resource Synthesis. How does CaT’s resource synthesizer
compare to existing ones? We compare CaT with Chipmunk on sev-
eral dimensions using ALUs drawn from Tofino [9] and Banzai [53],
along with controlled experiments on the predecessor packing and
preprocessing optimizations (§7.3).

Q3: Resource Allocation. How good is the CaT compiler in
terms of resource usage? We use Gurobi as the default solver for
resource allocation and compare the runtime of the Gurobi and Z3
solvers. In addition, we compare 2 modes: finding either an optimal
or a feasible solution (§7.4).

Q4: Retargetable Backend. Can CaT easily perform compi-
lation for different hardware targets? Our synthesis experiments
with the Banzai and Tofino ALUs already demonstrate this feature.
Additionally, we run the CaT compiler on different simulated hard-
ware configurations, compile switch.p4 under varying constraints
and report the results (§7.4).

Benchmark selection. We use different benchmarks to demon-
strate the benefits of each phase of the compiler.

e Resource transformation: 3 benchmarks (ME-1, ME-2, ME-3)
extracted from SipHash and UPF (real P4 programs devel-
oped by other P4 programmers).

e Resource synthesis: 14 benchmarks together with their se-
mantically equivalent mutations (10 for each benchmark,
hence 140 in total) from the Chipmunk paper [34].3

e Resource allocation: Same as the benchmarks we use for
sanity checking our prototype. We use the full switch.p4
program for experiments that vary hardware resource pa-
rameters in the Menshen backend.

Machine configuration. We use a 4-socket AMD Opteron 6272
(2.1 GHz) machine with 64 hyperthreads and 256 GB RAM to run

3Chipmunk can compile all 14 benchmarks by using Banzai ALUs [53], and 10 of the
14 benchmarks by using Tofino ALUs [34]. For Banzai ALUs, we also show the Domino
pipeline usage as reported in the Chipmunk paper [34].
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Table 4: Resource usage with/without CaT’s transformation.

Program Without CaT transformations With CaT transformations
#gateways  #tables  #stages | #gateways  #tables  #stages

ME-1 15 15 5 15 15 4

ME-2 3 3 3 0 1 1

ME-3 19 12 2 0 3 1

all our experiments for both CaT and Chipmunk. Additionally, we
note that Chipmunk requires performing a grid search on pipeline
geometries (within an upper bound) using multiple such machines
in parallel to find an implementation that consumes a small number
of pipeline resources. By contrast, CaT does not require multiple
machines since CaT’s resource synthesis (Algorithm 1) directly
tries to minimize pipeline depth without a parallel grid search.

7.2 Results for Resource Transformation

The resource transformation phase of the CaT compiler performs
a best-effort rewrite of if-else statements in the P4 program into
match-action tables. Table 4 shows the resource usage of compiling
benchmarks ME-{1,2,3} to the Tofino architecture with and with-
out the CaT rewrites. As expected, the rewrites help in reducing
the number of gateways. Furthermore, they may merge together
multiple tables without match entries (i.e., default tables), thereby
reducing the total number of tables. More importantly, for all bench-
marks shown, the rewritten program consumes fewer pipeline stages
due to either reduced gateway usage (ME-2, ME-3) or the removal of
false control flow dependencies (ME-1). CaT does this automatically
without the developer engaging in trial-and-error compilation [44].

7.3 Results for Resource Synthesis

In all our experiments, the resource synthesis phase consumes
the most time, and the SKETCH synthesis queries dominate the
overall runtime of CaT. In this section, we focus on evaluating
this phase. We compare the CaT and Chipmunk compilers on the
SipHash benchmark (cf. Figure 2) and on all benchmarks used in
the Chipmunk work [34]. For the latter, we target both Tofino ALUs
and Banzai ALUs, to evaluate the performance of CaT on different
instruction sets and various input programs. This also demonstrates
CaT’s retargetability via different ALU grammars.

Results for SipHash. For the SipHash P4 program, the CaT com-
piler was successful with the Tofino ALU, and took about 40 hours
to complete. In comparison, Chipmunk failed to generate the output
even after 150 hours. After investigation, we found two main rea-
sons for the long runtime of CaT: (1) 1 multistage action required
4 pipeline stages — the synthesis query for this action has a large
search space and took more than 30 hours in SKETCH. (2) SipHash
includes bitvector operations in addition to integer arithmetic. This
results in a harder synthesis problem for SKETCH: SipHash uses
32-bit bitvectors, while SKETCH’s default for integers is 5 bits.
We plan to explore new ideas for handling deep multistage
actions in future work. For handling 32-bit bitvectors more effi-
ciently, we enhanced our basic procedure as follows. We first run
the SKETCH synthesis query on a program with a constrained input
space, and verify separately whether the generated solution works
for the full input space. If it does, then we have found a correct
solution; otherwise, we add the generated solution as a counterex-
ample in SKETCH and repeat the procedure. The hope is to quickly
generate a solution from the constrained input space that can be
proven correct for the whole input space. For the SipHash example,
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Table 5: CaT vs. Chipmunk and Domino; Tofino or Banzai ALUs. (pred: Predecessor packing, ppa: Preprocessing, X: failed, Std

Dev: sample standard deviation).

Program ALU CaT Chipmunk [34] CaT Speedup Domino [53]
Mean Time (s) ~ Std Dev (s) Avg #stages Mean Time (s)  StdDev (s)  Avg #stages | wrt Chipmunk Avg #stages
default w/opred w/oppa (from [34])
BLUE (increase) [32] Tofino ALU 19.04 0.43 1 2 1 159.78 59.03 2 8.39 X
BLUE (decrease) [32] Tofino ALU 18.72 0.84 1 2 1 1425 42,5 2 7.61 X
Flowlet switching [52] Tofino ALU 19.76 0.69 2 X 2 962.83 1170.16 2 48.73 X
Marple new flow [49] Tofino ALU 6.65 0.52 1 X 1 5.2 1.71 1 0.78 X
Marple TCP NMO [49] Tofino ALU 13.24 0.53 2 X X 6.56 0.36 2 0.50 X N/A
Sampling [53] Tofino ALU 14.03 0.57 1 X 1 22.87 10.68 1 1.63 X
RCP [59] Tofino ALU 20.19 0.59 1 X 1 65.13 20.93 1 3.23 X
SNAP heavy hitter [21]  Tofino ALU 3.58 0.25 1 1 1 26.83 13.63 1 7.49 X
DNS TTL change [26] Tofino ALU 20.84 1.97 2 g X 36.34 50.55 2 1.74 X
CONGA [20] Tofino ALU 10.24 0.43 1 X 1 3.02 0.17 1 0.29 X
BLUE (increase) [32] Banzai ALU: pred raw ~ 40.69 1.41 4 4 4 166.88 36.59 4 4.10 X X
BLUE (decrease) [32] Banzai ALU: sub 38.83 1.48 4 4 4 1934.82 1611.66 4 49.83 X X
Flowlet switching [52] Banzai ALU: pred raw  25.37 0.94 3 3 3 185.84 81.41 3 7.33 X 83
Marple new flow [49] Banzai ALU: pred raw ~ 13.79 0.44 2 2 2 12.31 0.18 2 0.89 X X
Marple TCP NMO [49] Banzai ALU: pred raw ~ 28.12 2.60 3 4 X 153 0.49 3 0.54 X X
Sampling [53] Banzai ALU: if else 11.52 0.65 2 2 2 33.39 11.09 2 2.90 X X
RCP [59] Banzai ALU: pred raw  25.08 0.85 2 2 2 31.21 7.55 2 1.24 X 5.6
SNAP heavy hitter [21] ~ Banzai ALU: pair 3.45 0.23 1 1 1 69.07 19.36 1 20.02 X 3.3
DNS TTL change [26] Banzai ALU: nested if ~ 32.63 34.91 3 5 X 211.67 22.65 3 6.49 X X
CONGA [20] Banzai ALU: pair 10.27 0.55 1 1 1 19.47 8.05 1 1.90 X X
Stateful firewall [21] Banzai ALU: pred raw ~ 2499.43 4638.58 4 4 X 6749.89 6349.94 4 2.70 X 15.5
Learn filter [53] Banzai ALU: raw 31.01 0.73 3 3 3 212.32 4.47 3 6.85 X 17.5
Spam Detection [21] Banzai ALU: pair 3.51 0.21 1 1 1 59.95 17.75 1 17.08 X 3.1
STFQ [35] Banzai ALU: nested if 20.99 2.04 3 3 3 22.73 6.94 2 1.08 X X
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Figure 9: Varying # of entries/table.

we constrained the input space to use only 16 bits (by setting the
higher 16 bits of the input 32-bit bitvectors to 0). CaT separately
verified that the generated solution is also correct for unconstrained
32-bit bitvectors. This approach reduced CaT’s runtime to under 2
minutes, showing the promise of such an approach.

Results for Chipmunk benchmarks. The results are shown in
Table 5, for Tofino and Banzai ALUs, respectively. We report the
runtime of full compilation; for CaT, this includes the resource allo-
cation time, whereas Chipmunk does not perform any resource al-
location. We consider 10 semantically equivalent mutations of each
of the benchmarks, which are identical to those in Chipmunk [34].
We report the mean and sample standard deviation of compilation
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Figure 11: Varying # of tables per stage.

time across all mutations.* These experiments evaluate if CaT can
effectively handle semantically equivalent programs.

We report the resource consumption of the generated code pro-
duced by CaT, in terms of the total number of pipeline stages re-
quired on average across the mutations ("#stages default” column).
Stages are the most scarce resource in programmable switches (e.g.,
12 for Tofino). For evaluating the effectiveness of our predecessor
packing optimization (pred) and the preprocessing analyses (ppa)
(§5.3), we also report the number of stages without these optimiza-
tions in columns "#stages w/o pred" and "#stages w/o ppa." Gray-ed
entries indicate a difference from the default setting.

4The runtimes in Table 5 are similar to, but slightly different from that in Table 2 of
the Chipmunk paper [34]. The differences arise due to Chipmunk’s use of SKETCH’s
parallel mode, which introduces non-determinism due to thread interleaving.



CaT: A Solver-Aided Compiler for Packet-Processing Pipelines

Our results show that CaT is able to compile all programs suc-
cessfully compiled by Chipmunk, with almost all compiled results
having a matching number of pipeline stages. Furthermore, CaT
is often much faster and more stable (in running time) than Chip-
munk. Specifically, for the Tofino ALUs (top section of Table 5),
CaT finishes compilation within a few seconds, 2.75x faster on
average (geometric mean) than Chipmunk. The max speedup is
48x for flowlet switching, a minutes-to-seconds improvement (16
minutes in Chipmunk vs. 20 seconds in CaT). In BLUE (increase)
and BLUE (decrease), CaT generates a solution with fewer stages
than Chipmunk. In all other benchmarks the number of stages is
the same. For the BLUE benchmarks, since the Tofino stateful ALU
contains two registers, CaT’s optimizations enabled it to pack a
successive pair of stateful updates into a single stateful ALU (§5.3).
In comparison, Chipmunk mapped the two stateful updates to two
ALUs in two stages. This shows that CaT’s approach can find addi-
tional opportunities for fully utilizing the functionality of available
hardware resources. Predecessor packing is also effective in 9 of
10 benchmarks, enabling compilation to succeed or reducing the
number of stages; preprocessing is also useful in 2 benchmarks.

For the Banzai ALUs (lower section of Table 5), we additionally
report results on stages output by the Domino compiler [53] (which
only handled Banzai ALUs), with the average number of stages
across different program mutations shown in the last column (as
reported in [34]). Note first that CaT takes no more than 1 minute
on most successful benchmarks. Although it takes 40 minutes for
stateful firewall, Chipmunk is much slower, requiring more than 1.5
hours. CaT provides 3.94x speedup on average (geometric mean)
and 49x maximum, with respect to Chipmunk. CaT is slower only
on Marple new flow and Marple TCP NMO, but finishes both within
30 seconds. Note that Chipmunk must use multiple machines in
parallel for synthesis, while CaT only uses one machine for syn-
thesis. In terms of number of stages, CaT generates code with the
same number of stages as Chipmunk for all benchmarks except the
STFQ example (3 in CaT vs. 2 in Chipmunk). Upon investigation,
we find that this is due to separation between queries for stateful
and stateless nodes in our synthesis procedure. Although our prede-
cessor packing optimization can often mitigate this negative effect,
we plan to improve it further in future work. Still, both predeces-
sor packing and preprocessing optimizations are effective in some
benchmarks here as well. Finally, Domino either fails to compile
(8 of 14 examples), or uses many more stages (other 6 examples).
Overall, CaT generates high-quality code comparable to Chipmunk,
but in much less time and with fewer compute resources.

Results for controlled experiments. We selectively turned on 2
optimizations: (1) Predecessor packing, (2) Preprocessing analyses
(constant folding, algebraic simplification, dead code elimination).
According to the results in Table 5, for Banzai ALUs, without prede-
cessor packing, our compiler uses additional stages in two examples
(Marple TCP NMO, and DNS TTL change), showing that predecessor
packing can reduce the number of pipeline stages; for the Tofino
ALUs, predecessor packing was even more beneficial: disabling
predecessor packing resulted in compilation errors for 6 examples
(flowlets, Marple new flow, Marple TCP NMO, Sampling, RCP, and
CONGA). The reason is that the Tofino ALU supports very limited
stateless computations and cannot handle relational or conditional
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expressions. Packing such expressions into adjacent stateful ALUs
was essential for compilation to succeed. For Banzai ALUs, without
preprocessing analyses, 3 of the examples could not be compiled.
The runtime of preprocessing is less than 0.1 sec in all examples.
Overall, CaT’s optimizations allow compilation to succeed where it
would fail otherwise and reduce the number of pipeline stages.

7.4 Results for Resource Allocation

We experiment with two solvers (Gurobi and Z3) and two modes
(optimal and feasible) on our benchmark examples. The results are
in Figure 8 with more detailed data in Appendix C, Table 6. The
results show that for checking feasibility, Gurobi returns suboptimal
solutions that use all the pipeline stages, while Z3 finds feasible
solutions that are better than Gurobi’s but takes marginally more
time. However, Gurobi finds an optimal solution almost as quickly
as a feasible solution. For these benchmarks, Gurobi is faster than
Z3. Thus, Gurobi with optimization is a good default.

In additional experiments, we study the resource allocation time
of switch.p4 as a function of the parameters of the Menshen back-
end target. We vary the maximum number of entries per table,
number of stages, and number of tables per stage, and plot the
runtime of Gurobi in both optimal and feasible mode in Figures 9,
10, 11. A vertical line indicates the transition from infeasibility to
feasibility for the constraint solver. Across a variety of hardware
configurations, we find that the runtime of both modes are quite
similar. Figure 9 shows that runtime increases as the maximum
number of entries decreases because of an increase in the number
of partitions of a table as the maximum number of entries decreases.
Figure 10 shows that runtime increases as the number of stages in-
creases because of the increase in the number of indicator variables
tracking which stage a table belongs to. In Figure 11, the number
of Gurobi variables is constant as we vary the number of tables per
stage; The runtime is similar for optimal and feasible modes, but
varies significantly depending on whether there is a solution.

8 CONCLUSION

We introduce a new decomposition of the compilation problem for
packet pipelines into 3 phases: resource transformation, resource
synthesis, and resource allocation, where solver engines (e.g., ILP,
SMT, program synthesis) are employed extensively within these
phases. We prototype CaT, a compiler for P4 programs based on this
decomposition. CaT can handle more programs, reduce pipeline re-
source usage, compile faster, and requires fewer compute resources
than existing compilers. We hope our results encourage compiler
engineers for such pipelines to adopt similar ideas.
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A EXAMPLE OF SKETCH QUERY WITH
GRAMMARS

Figure 12 presents one SKETCH synthesis query generated by CaT
to implement a stateless variable in the flowlets.

B ILP ENCODING FOR ALU PROPAGATION
CONSTRAINTS
We use the big-M method to obtain an ILP formulation of the
constraint
Vu € I,Vs (begy < s As < endy) & propys =1

For eachu € Iand s € {1,... Ng}, we use a binary variable lo,s as
an indicator for beg,, < s and a binary variable hi,s as an indicator
for s < end,. M is a large constant (e.g., Ng + 5).

The following constraints ensure that loy; is 1 if begy, < s and 0
otherwise.

s —begy < Mloys
s—begy > —M(1 —loys)

(1)
@)
If s—begy, > 0thenlo,s = 1(1) and if s —begy, < 0 then lo,s = 0(2).

The following constraints ensure that hiy is 1 if s < end,, and 0
otherwise.

s —endy < M(1 = hiys)

s —endy > —Mhiyg

(©)
4)
If s—end, < 0then hiys = 1(4) and if s—end, > 0 then hi,s = 0 (3).

The following constraints use loy,s and hiys to make propys an

indicator for begy,, < s < endy,.

loys + hiys — 2 < Mpropys

®)
(6)
If loys + hiys — 2 > 0 then propys = 1 (5) and if loys + hiys —2 < 0
then propys = 0 (6). This means that propys = 1 only if both
loys = 1 and hiys = 1. Hence, propys = 1if s > begy, and s < endy,
otherwise propys = 0.

loys + hiys —2 = —M(1 — propys)

C ADDITIONAL RESULTS FOR RESOURCE
ALLOCATION

We experiment with two solvers (Gurobi vs. Z3) and two modes

(optimal and feasible solutions) on all our 24 benchmarks. We report

both time spent running the solvers and the final number of stage

usage to compare between different solvers and different modes.

Table 6 shows the detailed results for the running time.

D ARTIFACT APPENDIX
D.1 Abstract

This artifact appendix section describes how to reproduce results
demonstrated in this paper by running CaT on Amazon EC2 in-
stances.

D.2 Artifact Check-list (Meta-information)

e Data set: Our data for reproducing Table 5 comes from
https://github.com/CaT-mindepth/benchmarks repo.
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e Run-time environment: AWS image with number: ami-
0bf331cf0e574fa8b.

o Hardware: Amazon EC2 Instances (c5ad.16xlarge).

e Metrics: Compilation time and resource (e.g., number of pipeline
stages) usage.

e Output: Compilation time and resource (e.g., number of pipeline

stages) usage.
o How much disk space required (approximately)?: 128GB (on
EC2 instance).
o How much time is needed to complete experiments (approxi-
mately)?: 15 hours.
Publicly available?: Yes.
Archived (DOI)?: https://doi.org/10.5281/zenodo.7592970 [17].
Latest update: We put the latest FAQs and up-
dates in this file (https://github.com/CaT-mindepth/CaT-
AE/blob/main/UPDATES.md) and please check it before
reproducing experiment results.

Table 6: Comparing optimal and feasible for Gurobi and Z3

Benchmark Gurobi opt Gurobi sat 73 opt 73 sat
Time (s)  Stages  Time(s) Stages Time(s) Stages Time(s) Stages
stateful fw 0.133 4 0.14 12 0.251 4 0.273 4
Blue increase 0.1 4 0.12 12 0.218 4 0.244 4
marple new flow  0.102 2 0.11 12 0.201 2 0.225 2
sampling 0.102 2 0.103 12 0.21 2 0.226 2
flowlets 0.127 3 0.124 12 0.232 3 0.254 3
rcp 0.131 2 0.135 12 0.234 2 0.253 2
learn_filter 0.151 3 0.146 12 0.241 3 0.272 3
marple_tcp 0.117 3 0.119 12 0.223 3 0.241 3
benchmark9 0.169 4 0.161 12 0.81 4 1.8 12
benchmark10 0.165 4 0.163 12 0.781 4 0.501 4
benchmark11 0.19 4 0.18 12 1.13 4 0.639 12
benchmark12 0.178 4 0.168 12 0.967 4 0.502 11
benchmark13 0.18 3 0.173 12 0.88 3 0.506 11
benchmark14 0.202 3 0.182 12 0.889 4 0.523 11
benchmark15 0.241 4 0.22 12 1.033 4 0.585 11
benchmark16 0.198 4 0.183 12 0.963 4 0.553 12
benchmark17 0.159 3 0.142 12 0.845 4 0.459 12
benchmark18 0.156 3 0.146 12 0.922 4 0.447 12
benchmark19 0.169 4 0.154 12 0.946 4 0.531 12
benchmark20 0.181 5 0.17 12 1.086 4 0.6 11
benchmark21 0.145 3 0.148 12 0.733 4 0.462 12
benchmark22 0.162 3 0.168 12 1.578 4 1.578 12
benchmark23 0.215 3 0.201 12 2.544 4 0.798 12
benchmark24 0.174 3 0.149 12 1.53 4 0.595 12

D.3 Description

D.3.1 How Delivered. The latest version of CaT compiler is
open-source in github repo: https://github.com/CaT-mindepth, and
the detailed process of reproducing the experiment results is shown
in the artifact appendix.

D.3.2 Hardware Dependencies. Amazon EC2 Instances with ~
64 cores such as c5ad.16xlarge.

D.3.3 Software Dependencies. We have already installed all
the software dependencies in the shared Amazon EC2 image.

D.4 Experiment Workflow
D.4.1 Fetch the Latest Updates from Github Repos:

‘ $ cd /home/ubuntu/workspace/cat_eval ‘

‘ $ ./init.sh ‘
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// SKETCH input file for one synthesis query
// ALU grammar specification

int alu(int opcode, int pkt_@, int pkt_1, int pkt_2, int
immediate_operand) {
if (opcode == 0) {
return immediate_operand;
} else if (opcode == 1) {
return pkt_0 + pkt_1;
} else if (opcode == 2) {
return pkt_@ + immediate_operand;
} else if (opcode == 3) {
return pkt_0 - pkt_1;
} else if (opcode == 4) {
return pkt_@ - immediate_operand;
} else if (opcode == 5) {
return immediate_operand - pkt_0;
} else if (opcode == 6) {
return pkt_0!=pkt_1;
} else if (opcode == 7) {
return (pkt_@ != immediate_operand);
} else if (opcode == 8) {
return (pkt_@ == pkt_1);
} else if (opcode == 9) {
return (pkt_@ == immediate_operand);
} else if (opcode == 10) {
return (pkt_0 >= pkt_1);
} else if (opcode == 11) {
return (pkt_@ >= immediate_operand);
} else if (opcode == 12) {
return (pkt_@ < pkt_1);
} else if (opcode == 13) {
return (pkt_@ < immediate_operand);
} else if (opcode == 14) {
return pkt_@ != @ ? pkt_1 : pkt_2;
} else if (opcode == 15) {
return pkt_@ != @ ? pkt_1 immediate_operand;
} else if (opcode == 16) {
return ((pkt_o !'= @) || (pkt_1 != @));
} else if (opcode == 17) {
return ((pkt_@ != @) || (immediate_operand != 0));
} else if (opcode == 18) {
return ((pkt_o != @) && (pkt_1 != @));
} else if (opcode == 19) {
return ((pkt_@ != @) && (immediate_operand != 0));
} else {
return (pkt_@ == 0);

}
// staged-input tree grammar
vars are specific to each query
harness below)
generator int expr(fun varso,
if (bnd == 0){
return varso();

for implementation (vars@, varsl, and

and are defined in the
fun vars,

fun varsi, int bnd){

)

int t = ??2(1);

if (t == 0) {
return vars();

}

else {
return alu(??, expr(vars@, varsl,
, varsl, vars, bnd-1), expr(varso,

3

vars,
vars1,

bnd-1), expr(varso
vars, bnd-1), ?2?);

}

// specification function,

int comp_5(int pkt_arrival,
bit pkt__br_tmp1;
pkt__br_tmp1 = pkt_arrival-pkt_last_time00>5;
return pkt__br_tmp1;

with BCI inputs as arguments
int pkt_last_time0@@) {

// harness for synthesis
harness void sketch(int pkt_arrival,
generator int varso(){

return {| pkt_arrival

int pkt_last_time@@) {

1Y
)
generator int varsl (){

return {|pkt_last_time@®@]|};

generator int vars(){
return {| pkt_arrival | pkt_last_time0o|};

3

// synthesized expression must be equivalent to specification

assert expr(vars@, varsl, vars, 2) == comp_5(pkt_arrival,
pkt_last_time0o);

Figure 12: One example of the generated synthesis query for
SKETCH.

D.4.2 Part I: Reproduce the Result in Table 5.
In general, the 10 mutations for program name <X> may
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be found at the following folder: /home/ubuntu/workspace/-
cat_eval/benchmarks/Domino_mutations/<X>/

The running script for Banzai ALU:

Default mode:

$ ./quickrun-domino.sh <absolute path to input Domino programs
<user-specified absolute path to output JSON file> <Banzai ALU
name>

Without Predecessor Packing mode:

$ ./quickrun-domino-noPredPack.sh <absolute path to inpuf]
Domino program> <user-specified absolute path to output JSON
file> <Banzai ALU name>
Without Preprocessing mode:

$ ./quickrun-domino-noPreprocessing.sh <absolute path to input
Domino program> <user-specified absolute path to output JSON
file> <Banzai ALU name>
See the "num_pipeline_stages" field in the output JSON file for
the number of pipeline stages usage.
As for Tofino ALU:
Default mode:

$ ./quickrun-tofino.sh <absolute path to input Domino programs
kuser-specified absolute path to output P4 file>

Without Predecessor Packing mode:

$ ./quickrun-tofino-noPredPack.sh <absolute path to input
Domino program> <user-specified absolute path to output P4 file

Without Preprocessing mode:

$ ./quickrun-tofino-noPreprocessing.sh <absolute path to input
Domino program> <user-specified absolute path to output P4 file

See the "num pipeline stages" in the output P4 file for the
number of pipeline stages usage.

As for Chipmunk and Domino compiler:

Should you wish to reproduce the results generated by Chipmunk
and Domino compilers, please refer to their artifact evaluation
instructions, with links listed below:

Chipmunk: https://github.com/chipmunk-project/chipmunk-
project.github.io

Domino: http://web.mit.edu/domino/

D.4.3 Part II: Reproduce the Result in Figure 8 and Table 6.
‘ $ cd /home/ubuntu/workspace/cat_eval/CaT-AE/figure_gen ‘

‘ $ bash figure8.sh ‘

D.4.4 Part Ill: Reproduce the Result in Figure 9, Figure 10,
and Figure 11.
Generating the running time and #stages used in ILP.

‘ $ cd /home/ubuntu/workspace/cat_eval/CaT-AE/figure_gen ‘
‘ $ bash figure9.sh ‘
‘ $ bash figure10.sh ‘

‘ $ bash figurel1.sh
Generating the infeasible and feasible boundary.
Infeasible boundary in Figure 9:

$ time python3 Gurobi_opt_vs_fea.py 128 16 12 Optimal ‘

Feasible boundary in Figure 9:

‘ $ time python3 Gurobi_opt_vs_fea.py 256 16 12 Optimal ‘




ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Infeasible boundary in Figure 10:

$ time python3 Gurobi_opt_vs_fea.py 256 16 11 Optimal ‘

Feasible boundary in Figure 10:

‘ $ time python3 Gurobi_opt_vs_fea.py 256 16 12 Optimal ‘

Infeasible boundary in Figure 11:
$ time python3 Gurobi_opt_vs_fea.py 256 15 12 Optimal ‘
Feasible boundary in Figure 11:

‘ $ time python3 Gurobi_opt_vs_fea.py 256 16 12 Optimal ‘

D.5 Evaluation and Expected Results

The results of resource usage should be exactly the same as those
reported in all tables and figures. However, in terms of the running
time, they should be within the same magnitude if you use the
similar machines to rerun the experiments.

D.6 Notes

We put the latest FAQs and updates in https://github.com/CaT-
mindepth/CaT-AE/blob/main/UPDATES.md. If you have any ques-
tions, feel free to open an issue there or let us know through email.

D.7 Methodology

Submission, reviewing and badging methodology:

o https://www.acm.org/publications/policies/artifact-review-
badging

e http://cTuning.org/ae/submission-20201122.html

e http://cTuning.org/ae/reviewing-20201122.html
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