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ABSTRACT
Compiling high-level programs to high-speed packet-processing

pipelines is a challenging combinatorial optimization problem. The

compiler must configure the pipeline’s resources to match the se-

mantics of the program’s high-level specification, while packing all

of the program’s computation into the pipeline’s limited resources.

State of the art approaches tackle individual aspects of this prob-

lem. Yet, they miss opportunities to produce globally high-quality

outcomes within reasonable compilation times.

We develop a framework to decompose the compilation problem

for such pipelines into three phases—making extensive use of solver

engines (e.g., ILP, SMT, and program synthesis) to simplify the

development of these phases. Transformation rewrites programs

to use more abundant pipeline resources, avoiding scarce ones.

Synthesis breaks complex transactional code into configurations of

pipelined compute units. Allocation maps the program’s compute

and memory to the pipeline’s hardware resources.

We prototype these ideas in a compiler, CaT, which targets (1)

the Tofino programmable switch pipeline and (2) Menshen, a cycle-

accurate simulator of a Verilog description of the RMT pipeline.

CaT can handle programs that existing compilers cannot currently

run on pipelines and generates code faster than existing compilers,

where the generated code uses fewer pipeline resources.

CCS CONCEPTS
• Networks → Programmable networks; In-network process-
ing.

KEYWORDS
Programmable switches; program synthesis; code generation;

packet processing pipelines; integer linear programming
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1 INTRODUCTION
Reconfigurable packet-processing pipelines (e.g., RMT [27]) are

emerging as important programmable platforms. They are embod-

ied in many programmable high-speed switches and network in-

terface cards (NICs) such as the Tofino [9], Trident [4], and Jericho

switches [3]; the Pensando SmartNIC [1]; and Intel IPUs [8].

Programmable pipelines are organized into multiple stages,

where each stage processes one packet in parallel, and hands it

off to the next stage (§2.1). Each stage contains memory blocks

to hold tables containing packet-matching rules and state (e.g.,

counters) maintained across packets. Header fields are extracted

from packets to match the table rules. Once the packet’s fields are

matched against a rule, the packet or state can also be updated

using an action.

P4 [12] is emerging as a popular language to program these

pipelines. P4 offers the ability to parse packets according to custom

header definitions, and specify the match types and actions on

parsed packets. A P4 action may modify packet headers and state.

The compilation problem. The networking community has de-

veloped P4 programs targeting programmable pipelines for several

research [24, 38, 47, 48] and production [6, 40, 45, 50] use cases. To

enable these use cases, a compiler must translate P4 programs to

pipeline configurations. This compiler must solve a combinatorial

optimization problem with several challenging aspects to it:

(1) Multiple resource types: There are multiple pipeline resources,

with some resources being scarce, e.g., pipeline stages, and others

being abundant, e.g., arithmetic logic units (ALUs). Some resources

must be allocated hand in hand (e.g., match memory and ALUs).

(2) Transactional guarantees: P4 actions can be annotated to have

transactional guarantees [13, 18]: executing to completion on each

packet before processing the next one. If such a transactional P4

action requires multiple pipeline stages, the compiler must be able

to split the action into multiple ALUs and stages, ensuring the

implementation respects the action’s transactional semantics [53].
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Figure 1: The workflow of the CaT compiler.

(3) All-or-nothing fit:A program for a high-speed pipeline can either

run at the pipeline’s highest throughput (typically line rate above a

minimum packet size), or cannot run at all. Thus, it is important to

“pack” all of the P4 program into the pipeline’s limited resources.

Prior work has tackled several individual aspects of this com-

pilation problem (§2.2). Such an approach loses opportunities to

globally reduce resource usage (e.g., stages), which is necessary to

fit complex programs on a pipeline. However, it is challenging to

solve a single combinatorial optimization problem. Our goal is to

find a good decomposition of the large problem into smaller pieces,

enabling global optimization of resource usage, while keeping each

piece small enough to solve efficiently.

Our approach. In this paper, we present an end-to-end compiler,

CaT
1
, that unifies prior approaches and translates high-level P4

programs into a low-level representation suitable for pipelined

execution. We take inspiration from high-level synthesis (HLS)—
a technology for improving productivity of hardware design for

ASICs [16] and FPGAs [7].

Informally, HLS [29] takes as input a high-level algorithmic

description of the hardware design with no reference to clocks

or pipelining, and with limited parallelism in the description. An

HLS compiler then progressively lowers this high-level description

down to an optimized hardware implementation, pipelining the

implementation if possible, executing multiple computations in

parallel, scheduling computations in time, and converting these

computations into a register-transfer level (RTL) design.

We believe such an approach to developing compilers target-

ing packet-processing pipelines will raise the user’s level of pro-

gramming abstraction, while retaining the performance of low-

level pipeline programming. For a user developing algorithmic

programs in P4 (such as those used for in-network computation,

e.g., [38, 51, 62]), such an approach eliminates the labor of manu-

ally breaking the high-level algorithmic computation into actions

spread over many pipeline stages (§3).

The workflow of our compiler, CaT, is shown in Figure 1. It

consists of three phases. The input consists of P4 code containing

tables that match on specific headers and action code blocks that

modify packet headers and state. The action code blocks may be

written without regard to their feasibility within a single pipeline

stage. The first phase of CaT employs resource transformations that
rewrite a high-level P4 program to another semantically-equivalent

high-level P4 program; these rewrites are used to transform a com-

putation’s use of one scarce resource to its use of a relatively abun-

dant resource, and potentially reduce the number of stages as well.

The second phase performs resource synthesis to lower transactional
blocks of statements in the high-level P4 program to a lower-level

1
CaT stands for Code Generation and Table Allocation.

program suitable for hardware execution. In this step, individual

ALUs in hardware are configured to realize the programmers’ in-

tent in the transactional action blocks, while respecting the ALUs’

computational limits. The third phase performs resource allocation
to allocate the computation units corresponding to the lowered

program to physical resources such as ALUs and memory in the

pipeline. Notably, our compiler workflowworks within the confines

of the widely used P4 ecosystemwithout requiring the development

of a new domain-specific language (DSL) for packet processing.

Our contributions. The main technical contribution of CaT’s

three-phase approach is the modularization of the large combina-

torial optimization problem of compilation into smaller problems,

whose solutions still enable a high-quality global result (§7). These

smaller problems can also be fed to solver engines, simplifying the

process of solving them. Additionally, we improve upon the state of

the art and introduce new techniques in each phase. In particular,

our resource transformations (§4) are driven by a novel guarded
dependency analysis that identifies false dependencies between com-

putations, exposing more parallelism opportunities when rewriting

programs to use more abundant resources. Our resource synthe-

sis phase (§5) uses a novel synthesis procedure that quickly finds

pipelined solutions with good-quality results for complex actions.

It separates out stateful updates from stateless updates, to decom-

pose a large program synthesis problem into smaller and more

tractable subproblems; each subproblem uses a program synthesis

engine (SKETCH) as a subroutine. Stateless code is synthesized into

a minimum-depth computation tree, i.e., with the minimum number

of stages. In comparison to prior work [34], this new synthesis algo-

rithm allows CaT to handle many large actions, in a much shorter

time, and with fewer computational resources needed for compila-

tion. Finally, our resource allocation phase (§6) uses a constraint-

based formulation that extends prior work [39] to handle complex

multi-stage transactional actions; this formulation can be fed to

either an ILP or SMT solver. Our techniques can support general P4

programs (including @atomic constructs [13]) efficiently, including

programs translated into P4 from higher-level DSLs developed for

pipeline programming [33, 34, 37, 53, 56].

Our prototype of CaT can target: (1) the Tofino pipeline, and (2)

an open-source RMT pipeline called Menshen (that was previously

implemented on an FPGA) [10, 61]. Existing commercial switches

have proprietary instruction sets that preclude the kind of low-level

resource allocation and control over ALU configurations needed

by CaT. Therefore, our backend for Tofino [9] generates low-level

P4 in lieu of machine code. To evaluate CaT in full generality, we

extend Menshen’s open-source register-transfer level (RTL) Verilog

model with additional resources for our experiments. We generate

code for the cycle-accurate simulator of Menshen, and also use it

for testing the CaT prototype. Our results (§7) show that CaT can

automatically compile programs that previously required manual

changes to be accepted by the Tofino compiler. On other challenging

benchmarks, CaT produces good quality code and does so about 3

times faster (on average) than prior work [34].
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2 BACKGROUND AND RELATEDWORK
2.1 Packet-Processing Pipelines
The compiler target in this paper is a programmable packet-

processing pipeline following the Reconfigurable Match Tables

(RMT) architecture [27]. Such pipelines are present in commer-

cially available programmable switches such as the Barefoot Tofino,

Broadcom Trident, and Mellanox Spectrum, and NICs such as

the Pensando DPU. An RMT-style pipeline consists of (i) a pro-

grammable packet parser and (ii) a number of processing stages

structured around match-action computation. We describe these

components below.

A programmable parser takes in a programmer-specified header

specification, and extracts packet header fields. This set of fields

is termed the packet header vector (PHV). PHV fields can be both

read and written in each pipeline stage, termed a match-action

stage. One match-action stage extracts relevant fields from the

PHVs using a crossbar circuit. The fields are then matched against

user-inserted rules in stage-local match memory. The memory

may also contain state, i.e., values maintained on the switch and

updated by every packet, such as a packet counter. Once a packet

matches a rule, a corresponding set of actions is invoked. The

actions are implemented using Very Long Instruction Word (VLIW)

ALUs which may modify multiple PHV fields in one shot. Some

match-action tables may be skipped entirely (e.g., due to control

flow) through hardware components called gateways.
Three factors limit the available resources and expressiveness of

packet-processing pipelines. First, to support high throughput (e.g.,

6.5 Tbit/s in Tofino), pipelines are clocked at high frequencies (e.g.,

1 GHz for Tofino). Thus, the pipeline must admit a new packet every

clock cycle. Hence, stateful computations (read-modify-write) must

finish in one clock cycle. Second, on-chip and stage-local memories

are limited in size, to support fast lookup. Third, constraints on

chip area and power limit the number of pipeline stages (e.g., 12

match-action stages in Tofino) and control circuitry (e.g., number

of gateways and crossbars). Such exacting hardware constraints

pose compiler challenges. Furthermore, program behavior is all-or-
nothing: a program that fits into the pipeline resources would run

at the pipeline’s clock frequency; otherwise it cannot be run. There

is no graceful degradation between these extremes.

2.2 Related Work
There has been significant interest in developing compilers and

domain-specific languages (DSLs) for packet-processing pipelines.

We categorize the existing compiler efforts based on their support

for program rewriting, code generation, and resource allocation.

DSLs for programming packet pipelines. P4 and NPL are the

most widely used languages to program packet pipelines. They

share many syntactic and semantic aspects. Several academic

projects have proposed new DSLs or extensions to P4 to remedy

many of P4’s shortcomings. For instance, microP4 [57] adds modu-

larity to P4. Lyra [33] addresses the issue of portability of programs

across multiple devices. Lyra and FlightPlan [58] address the prob-

lem of partitioning a program automatically across multiple devices.

Lucid [56] introduces an event-driven programming model for con-

trol applications in the data plane. P4All [37] extends P4 to support

‘elastic’ data structures, whose size can grow and shrink dynami-

cally based on the availability of switch resources. Domino [53] is a

DSL that supports transactional packet processing: a programmer

specifies a block of code that is executed on each packet in isolation

from other packets. These languages can all be translated into P4,

and in this paper, we directly take P4 programs as our starting point.

Thus, our work is complementary to work on such new DSLs. One

limitation of CaT is that it does not currently handle the problem

of partitioning a network-wide program into per-device programs,

like Lyra and Flightplan. Instead, our goal is to build a high quality

compiler that inputs a P4 program for a single device and outputs a

high-quality implementation for that device.

Program rewriting. The open-source reference P4 compiler [11],

which is the foundation for most P4 compilers including the widely-

used Tofino compiler [9], employs rewrite rules to turn an input

P4 program into successively simpler P4 programs. These rewrite

rules consist of classical optimizations like common sub-expression

elimination and constant folding. Rewrite rules are also employed

by Cetus [44] and Lyra [33] to merge tables in different stages

(under certain conditions) into a single “cartesian-product” table

in a single stage, thereby saving on the number of stages. CaT

uses rewrite rules to transform uses of scarce resources (gateways,

stages) to more abundant ones (tables, memory, ALUs), in a style

similar to Cetus.

Code generation for complex actions. Domino [53] and Chip-

munk [34] tackle the problem of code generation: selecting the right
instructions (i.e., ALU opcodes) for a program action expressed in

a high-level language. These compilers have to respect the limited

capabilities of each stage’s VLIW ALUs while correctly implement-

ing state updates according to @atomic semantics for transactions

(§2.1). Domino largely uses rewrite rules and employs program

synthesis to code-generate just the stateful fragments in the ac-

tion, but minor semantic-preserving modifications to programs can

cause compilation to fail. Chipmunk addresses this drawback of

Domino by using program synthesis to exhaustively search for ALU

configurations that could implement a high-level program, but at

the expense of high compile time. Lyra [33] uses predicate blocks,
chunks of code predicated by the same path condition, to break up

algorithmic code into smaller blocks that have only inter-block (but

no intra-block) dependencies. CaT’s resource synthesis is faster

than Chipmunk’s and more reliable than Domino’s (Table 5, §7.3).

It generalizes Lyra’s predicate block approach by considering ALUs

expressed via a parameterizable grammar, such that the procedure

is independent of the operations in the program’s source code or

intermediate representation.

Resource allocation. The problem of allocating specific resources

required by a P4 program (e.g., match memory blocks, a specific

number of ALUs, etc.) can be posed as an integer linear program-

ming problem (ILP) [37, 39] or as a constraint problem [33] for

Satisfiability Modulo Theory (SMT) solvers [23]. If the constraints

of the hardware are modeled precisely, ILP-based techniques can

improve resource allocation relative to greedy heuristics for re-

source allocation. To this end, CaT’s resource allocation (§6) uses

a fine-grained constraint-based formulation that models detailed

pipeline resources and enables global optimization by considering

dependencies across tables as well as within actions.
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Table 1: CaT unifies prior work in P4 compilers (first column) to provide and improve various features (listed in other columns)
in an end-to-end flow, and does so within the context of the P4 language without needing a new DSL.

Project Program Rewriting Code Generation Resource Allocation Retargetability New Language Constructs
Instruction Sets Resource Constraints

Domino [53] Yes Rewriting, some program synthesis Atom templates Packet transactions

Chipmunk [34] Program synthesis ALU DSL Packet transactions

Lyra [33] Yes SMT SMT constraints Network-wide programs

Flightplan [58] Resource rules Resource rules Resource rules Network-wide programs

Cetus [44] Yes Table Merging, PHV Sharing SMT constraints

P4All [37] ILP ILP constraints Elastic data structures

Jose et al. [39] ILP ILP constraints

Lucid [56] Memops Memops Event-driven programming

Tofino compiler [9] Yes Yes Heuristics

CaT (this work) Yes Min-depth tree synthesis ILP/SMT ALU grammars ILP/SMT constraints P4’s atomic construct

Table 2: Detailed relationship of the 3 phases of CaT with prior work on compilers, HLS, and packet-processing pipelines.

CaT compiler phase CaT technique Builds on prior work Differences in CaT Other complementary work

1: Resource transformation Rewrite rules LLVM [43], HLS [7, 29], p4c [11] Rewrite rules target RMT, based on novel guarded

dependency analysis

p4c [11] uses platform-independent rewrites, Ce-

tus [44] merges tables

2: Resource synthesis Mapping operations to ALU pipeline HLS operation binding [7, 29] Stateful updates restricted to 1 stage Lucid [56] uses syntactic rules to ensure opera-

tions map to Tofino

Synthesis procedure uses SKETCH queries for program synthesis Chipmunk [34] Novel synthesis procedure: faster, more scalable,

uses smaller queries

Target portability: via parameterizable grammars for ALUs Sketch [55], Chipmunk [34] Generate resource graph (used in Phase 3), not

low-level ALU configs

Preprocessing: branch removal, SSA, SCC in computation graph Domino [53], SSA [30], VLIW [42] No backward control flow (similar to Domino)

Simplifications: const prop, expr simplification, deadcode elimination LLVM [43] No backward control flow

3: Resource allocation Constraints for match memories Jose et al. [39], Lyra [33] Associates match memories with corresponding

action resources (ALUs)

Constraints for multi-stage actions HLS scheduling [29], Domino [53], Chipmunk [34] Uses result of Phase 2 for intra-action dependen-

cies and ALU output propagation

Constraints for multiple transactions Domino [53], Chipmunk [34] handle a single trans-

action only

Enforces inter-table and intra-action dependencies

for global optimization

Modeling real hardware constraints in backend FPGA target Menshen provides a FPGA backend target [61] Extended functionality of resources in comparison

to Menshen

Tofino compiler uses heuristics

3 CAT: MOTIVATION AND OVERVIEW

Motivation. Today, P4 developers typically write down actions in

P4 programs with the assumption that each action must finish in

one stage. However, tracking the hardware-level feasibility of an

action leads to thinking at an unnecessarily low level of abstraction,

especially when developing high-speed algorithmic code. Consider

the example pseudocode (motivating example ME-1) shown in Fig-

ure 2. This function implements the SipHash algorithm, used as a

hash function to prevent collision-based flooding attacks [22]. The

developer of a P4 version of this algorithm (distinct from the authors

of this paper) started with a high-level transactional description of

the algorithm (Table 3, [62]). The developer thenmanually changed
it into a pipelined implementation (Table 4, [62]), because the al-

gorithm as expressed cannot be compiled by the Tofino compiler

since it cannot be finished in one stage. We believe that a good

compiler should automate this process of synthesizing pipelined

implementations from transactional specifications. Indeed, CaT

can successfully handle this example (discussed in §7.3), without

requiring an expert developer to manually pipeline their code. Fur-

thermore, beyond automatically pipelining a single transaction, a

compiler should be capable of pipeliningmultiple such transactions,

generating pipeline configurations for their resulting implemen-

tations, and then allocate physical resources in the pipeline for

these implementations. Finally, P4 programs can often be written

in different ways, which consume different kinds of resources; if

possible, a compiler must be able to transform uses of a scarce

resource into uses of an abundant resource, e.g., using larger tables

in lieu of more stages [44].

CaT’s approach. CaT is an end-to-end compiler for P4-16 pro-

grams that takes inspiration from high-level synthesis (HLS) [7, 16]

#define ROTL(x, b) (uint32_t) ((x << b) | (x >> (32 - b)))
void siphash(uint32_t v0, uint32_t v1, uint32_t v2, uint32_t v3) {

1) v0 += v1;   
2 ) v1 = ROTL(v1, 5);
3) v1 ^= v0;
4) v0 = ROTL(v0, 16);
5) v2 += v3;
6) v3 = ROTL(v3, 8);
7) v3 ^= v2;

}

8) v0 += v3;
9) v3 = ROTL(v3, 7);
10) v3 ^= v0;
11) v2 += v1;
12) v1 = ROTL(v1, 13);
13) v1 ^= v2;
14) v2 = ROTL(v2, 16);

Figure 2: Motivating Example ME-1: SipHash was manually
split into four stages and rewritten by P4 programmers [62].

to provide both: (1) a high level of abstraction for specifying packet-

processing functionality, and (2) high quality of the compiler-

produced implementation.While prior approaches to HLS for ASICs

and FPGAs have sometimes resulted in poor quality of the generated

implementation, we believe that the narrower domain of packet-

processing pipelines is particularly well-suited for applying HLS

gainfully for 2 reasons. First, HLS techniques are designed to system-

atically explore tradeoffs between functionality (e.g., which ALU

can implement an operation?), capacity (e.g., how many ALUs, gate-

ways, etc.?), and scheduling of resources (which stage should run

an operation?)—a core challenge in compiling to packet-processing

pipelines. Second, HLS techniques can be effective in pipelining

transactional code with updates to state, while providing transac-

tional semantics to the programmer: the illusion that each packet

modifies headers and state in isolation from other packets.

CaT overview. To produce high quality implementations, CaT

combines ideas from several prior P4 compiler projects (Table 1)

into an end-to-end system for the first time. CaT divides up the

process of compiling a P4-16 program into three phases, as shown

in Figure 1; the detailed relationship of these phases to prior HLS

and compiler research is shown in Table 2. First, resource transfor-
mations rewrite packet-processing programs in P4 from one form
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(that makes use of a scarce resource) to another form (that makes

use of a more abundant resource). Second, resource synthesis em-

ploys a novel algorithm based on program synthesis to synthesize

low-level resource graphs with hardware ALUs, from a high-level

transactional specification of a match-action table’s action func-

tionality. Third, resource allocation employs ILP or SMT solvers to

allocate computations and data structures to memory blocks and

action units, while respecting program dependencies and per-stage

resource constraints. Throughout the 3 phases, CaT makes per-

vasive use of solver engines to simplify the development of and

improve the quality of the compiler.

How CaT factorizes the compilation problem. The problem
of optimal code generation in compilers is known to be NP-
complete [19] in general. Within the context of P4, Vass et al. [60]

show that the problem of compiling P4 programs to pipelines is

NP-hard. These results suggest that a compiler may have to decom-

pose the problem in some way to tradeoff optimality for reasonable

performance. In CaT’s approach, Phases 2 and 3 can be viewed as

an action-block based decomposition of the P4 compilation problem.

In Phase 2, we perform local resource synthesis for each individual

action block (after transformations in Phase 1). Then, in Phase 3,

we use these local synthesis results to perform a global resource
allocation for all action blocks. This keeps the synthesis runtime

manageable in practice while still attempting a good quality allo-

cation of computation to resource units. Furthermore, our Phase 2

supports rich computations in action blocks that could require mul-

tiple stages as well as transactional (@atomic) semantics. In the rest

of the paper, we refer to action block computations as transactions.
The next three sections detail the three phases of our compiler.

4 PHASE 1: RESOURCE TRANSFORMATION
In the first phase of our compiler, we perform source-to-source

rewrites in P4, with the goal of transforming a program that makes

use of scarce resources, to one that makes use of more abundant

resources. Rewrite rules provide a flexible and general mechanism

for this purpose, and can be easily extended by addingmore rules for

new backend targets and resources. CaT includes rewrite rules for

if-else statements in the control block of a P4 program. The standard

p4c compiler transforms each action in an if-else branch into one

default table, i.e., a table without a match key and with only one

action. Our rewrites effectively merge together multiple (possibly

nested) if-else statements into one bigger table with keys, thereby

using fewer gateway resources (which are used to implement if-else

branches) . Such rewrites are in turn driven by a novel guarded
dependency analysis that identifies parallelism opportunities by

eliminating false dependencies — this often leads to reduced usage

of pipeline stages in a program.

4.1 Guarded Dependencies
The sequence of program statements inside the apply {...} block

of a P4 control block can be treated as a branching program (without

loops) with (possibly nested) if-statements, reads and writes to

PHV fields, and apply statements, which apply match-action tables.

This program induces Read-after-Write (RAW), Write-after-Read

(WAR), and Writer-after-Write (WAW) dependencies between pairs

of program statements, which must be respected during synthesis

and resource allocation. Conventionally, these dependencies are

header packet {
        int p1;
        int p2;
}
control ingress (inout packet p) {
  apply{
     if (p.p1 == v1) { p.p2 = p.p2 + 1; }
    if (p.p1 == v2) { p.p2 = p.p2 + 2; }
    if (p.p1 == v3) { p.p2 = p.p2 + 3; }
   }
}

p.p1==v1

p.p2 = p.p2 + 1

p.p1==v2

p.p1==v3

WAW

p.p2 = p.p2 + 2

WAW

p.p2 = p.p2 + 3

Figure 3: Motivating Example ME-2: The control flow graph
of a P4 control block (left); snippet taken from a different
portion of SipHash [15]. Dependencies shown as dotted red
edges. 𝑣1 ≠ 𝑣2 ≠ 𝑣3 are constants.

defined between pairs of program statements without accounting

for path conditions [41], i.e., conditions under which a control path

in a program is executed. Specifically, a dependency due to variable

𝑣 between two statements 𝑠1 and 𝑠2 is denoted as (𝑣@𝑠1 → 𝑣@𝑠2, 𝑡),
where 𝑡 ∈ {𝑅𝐴𝑊 ,𝑊𝐴𝑅,𝑊𝐴𝑊 }.

Consider the motivating example ME-2 shown in Figure 3, in-

spired by a different portion of the SipHash program [15]. TheWAW

dependencies (shown on the right) cause the Tofino compiler to

produce an implementation with 3 pipeline stages. However, these
WAW dependencies are not real, since the if-conditions guarding
these assignments are disjoint. Indeed, a developer of this pro-

gram recognized the disjoint conditions and manually changed
the program to use a single block of if...else if...else if...

statements, thereby reducing the pipeline usage of the compiled

program to 1 stage. We aim to automate such rewrites. In particular,

p4c and the Tofino compiler miss these rewrites in ME-2, likely due

to a conservative dependency analysis.

To solve this issue, we propose guarded dependencies, which take

into account path conditions along control paths. Given a control-

flow graph (CFG)𝐶 for a P4 control block, a guarded dependency be-

tween nodes (𝑛1, 𝑛2) ∈ 𝐶 is defined as a tuple (𝑣@𝑠1 → 𝑣@𝑠2, 𝑡, 𝜙),
where 𝑣 is the variable of concern at statement 𝑠1 (in node 𝑛1) and

statement 𝑠2 (in node 𝑛2), 𝑡 ∈ {𝑅𝐴𝑊 ,𝑊𝐴𝑅,𝑊𝐴𝑊 }, and 𝜙 (called

a guard) is a formula that describes all the path conditions under

which node 𝑛2 may be visited after node 𝑛1 is visited. A procedure

based on symbolic execution [41] or model checking [25] that com-

putes path conditions can be used to determine precise guarded

dependencies for the program. In particular, we can use an SMT

solver to identify false dependencies, i.e., dependencies where 𝜙 is

unsatisfiable. Since running model checking or symbolic execution

on the input program can be expensive, we next describe a faster

lightweight analysis for analyzing guarded dependencies in CaT.

4.2 Lightweight Guarded Dependency Analysis
for CaT Rewrites

We now describe a lightweight analysis that helps CaT determine

guarded dependencies in a P4 program. First, we check that none

of the assignment statements update any variables used in con-

ditions of if-else statements. Such updates lead to WAR depen-

dencies and complicates the analysis; we currently choose to not
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header packet {
        int p1;
        int p2;}
control ingress(...) {
    if (p.p1 == v1) { p.p2 = p.p2 + 1; }
    if (p.p1 == v2) { p.p2 = p.p2 + 2; }
    if (p.p1 == v3) { p.p2 = p.p2 + 3; }}

if (flipflop == 1) {
      if (lo_flag == 1) {get_df_lo();}
      else { drop_flag_lo = 0;} /* T1 */
      if (…) {…} else {…} /* T2*/
      if (…) {…} else {…} /* T3 */
   } else { // flipflop  == 0
     if (lo_flag == 1) {get_df_lo();}
     else {drop_flag_lo = 0;} /* T1 */
     if (…) {…} else {…} /* T2 */
     if (…) {…} else {…}} /* T3 */ }}

Program ME-2, Pre-transformation

Program ME-3, Pre-transformation

p.p2 = p2 + 1;
action a1

p.p2 = p2 + 2;

p.p2 = p2 + 3;

Program ME-3, Post-transformation

key = { p.p1: exact; }
actions = { a1, a2, a3 };
const entries =
{ v1: a1; v2: a2;
 v3: a3; }

Table T

action a2

action a3

Program ME-2, Post-transformation

......
action get_df_lo

drop_flag_lo = 0
action set_df_lo

key = { flipflop : exact;
            lo_flag : exact; }
actions = { get_df_lo; set_df_lo; }
const entries = {
  (1,1) : get_df_lo(); (1,0) : set_df_lo();
  (0,1) : get_df_lo(); (0,0) : set_df_lo();}

Table T2 Table T3

Table T1

...... ......

Figure 4: Illustration of Phase 1 Rewrites in CaT, on motivat-
ing examples ME-2 (from Figure 3) and ME-3 (from a UPF
Rate_enforcer [14] example provided by P4 programmers).

perform any rewrites in such cases. When there are no such up-

dates, the path condition for each CFG node is a simple logical AND

of branch conditions, which we compute by a depth-first traversal

of the CFG. During the depth-first traversal, branch conditions are

pushed/popped on a stack at branch/merge points, respectively. For

a pair of nodes (𝑛1, 𝑛2) ∈ 𝐶 with a guarded dependency, the guard

𝜙 is a logical AND of the computed path conditions for 𝑛1 and 𝑛2.

If 𝜙 is unsatisfiable, then this is a false dependency and removed;

otherwise it is conservatively retained as a dependency. For our

ME-2 example in Figure 3, this analysis finds that the shown WAW

dependencies are false, and removes them.

4.3 Rewrites to Match-Action Tables
We now focus on (possibly nested) if-else statements where the

branch conditions are tests on packet fields that can be implemented

as keys in a match-action table. Based on the guarded dependency

analysis, if there is no dependency between the branches, then we

can rewrite them into a match-action table. The key of the gener-

ated table is comprised from packet fields used in the if-else con-

ditions, and the actions are the computations within each branch.

For example, Figure 4 illustrates our rewrites on two P4 programs

– ME-2, and another motivating example ME-3 taken from a UPF

Rate_enforcer example [46]. After rewriting, both ME-2 and ME-3

use only match-action tables and thus no gateway resources. ME-2

uses only 1 stage post-rewriting vs. 3 stages before rewriting (due

to false WAW dependencies). ME-3 also uses only 1 stage post-

rewriting vs. 2 stages before rewriting (due to needing too many

gateway resources to fit into 1 stage). These motivating examples

drawn from real-world P4 programs show the effectiveness of our

approach, where manual steps taken by a programmer to reduce
resource usage are successfully automated by CaT.

5 PHASE 2: RESOURCE SYNTHESIS
For the second phase, we propose a novel procedure to perform

resource synthesis on each P4 action block. Like Chipmunk [34],

we too use the SKETCH program synthesis tool [55] to generate

a semantically equivalent pipelined hardware implementation us-

ing ALUs. However, there are several important differences from

Chipmunk, which we summarize at the end of this section, after

describing our procedure.

5.1 Preprocessing of a P4 Action
We preprocess each action block of the P4 program to prepare for

synthesis. We first use some standard preprocessing steps, similar

to Domino [53], including (a) branch removal (by replacing assign-

ments under branches with conditional assignments), (b) creating

two temporary packet fields for each stateful variable – pre-state
field (denoting its value before update) and post-state field (denoting

its value after update), and (c) conversion to static single-assignment

(SSA) form [30].

In addition, and differently from Domino, we perform several

static analyses during preprocessing: constant folding, expression

simplification, and dead code elimination. These analyses are useful

in simplifying the action block of a P4 program, thereby reducing

the difficulty of the subsequent SKETCH queries. While preprocess-

ing can create temporary packet fields, we neither add nor delete

stateful variables during preprocessing simplifications.

5.2 Computation Graph for a P4 Action
After preprocessing, we construct a dependency graph (similar to

Domino), with nodes for each program statement and an edge

for each RAW dependency.
2
Edges in both directions are also

added to/from the pre/post-state fields of each stateful variable. The

strongly connected components (SCCs) of this graph correspond

to stateful updates, which are condensed to form a computation
graph 𝐺 . Thus, 𝐺 is a directed acyclic graph (DAG) with nodes

for program computations (some with stateful updates) and edges

for RAW dependencies. Nodes in 𝐺 are partitioned into two sets:

stateful nodes are formed from SCCs on the dependency graph, con-

taining a set of program statements that describe an atomic stateful

update; stateless nodes are the other nodes in the dependency graph.

Each edge (𝑢, 𝑣) is mapped to a packet field variable that appears in

the LHS of the assignment at 𝑢 and in the RHS of the assignment at

𝑣 . We call source edges of𝐺 primary inputs (PIs); each is associated

with an input packet field variable. We call outgoing edges of 𝐺

primary outputs (POs), each is associated with a final value written

to a packet field variable.

5.3 Synthesis Procedure for a P4 Action
Synthesis for a P4 action is now performed on the computation

graph 𝐺 . Rather than create a large synthesis query for the en-

tire 𝐺 , we decompose the problem into multiple smaller synthesis

queries. Specifically, we generate individual synthesis queries for

the following variables in𝐺 : (1) the output stateful variable of each

stateful node (i.e., the LHS of the stateful update assignment), (2)

each input variable to a stateful node (i.e., any variable in the RHS

of a stateful update assignment), and (3) each primary output (PO)

variable, which corresponds to a packet field. Each synthesis query

finds an ALU-based implementation and is parameterized by an

ALU grammar that specifies the functionality of the ALUs (stateful

or stateless) available in a given hardware target. These implemen-

tations are then connected together according to 𝐺 , to result in a

resource graph 𝑅, where a node 𝑣 represents an ALU, and an edge

2
Conversion to SSA form removes WAW and WAR dependencies.
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Input:
1. Computation graph G = (V,E), with

V = Stateful ∪ Stateless, where Stateful is the set of
stateful nodes and Stateless is the set of stateless nodes;

2. Primary outputs POs: Outgoing edges of G
3. Stateful ALU grammar A1, stateless ALU grammar A2;
4. Number of pipeline stages available in hardware,

numPipelineStages.
Output: Synthesized code for each primary output (PO) and

each stateful update.
1 // Step 1: Normalize the computation graph to ensure every stateful

node in G has out-degree 1.

2 Normalize(G);
3 // Step 2: Perform predecessor packing and folding optimizations.

4 graphModified← TRUE;
5 // Iterate until fixpoint

6 while graphModified do
7 // Folding: tryFold returns TRUE iff G changed

8 for (u, v) ∈ E do
9 if v ∈ Stateful ∧ u ∈ Stateless then

10 graphModified← tryFold (G, u, v, A1) ;
11 end

12 end
13 // Predecessor packing: tryPack returns TRUE iff G changed

14 for (u, v) ∈ E do
15 if u ∈ Stateful ∨ v ∈ Stateful then
16 graphModified← tryPack (G, u, v, A1) ;
17 end

18 end

19 end
20 // Step 3: Synthesis of stateful updates

21 for v ∈ Stateful do
22 s← querySketchStateful (v,A1) ;
23 if s ≡ FAILURE then
24 abort(
25 "Error synthesizing stateful node " + v);

26 end

27 end
28 // Step 4: Min-depth solutions for stateless code

29 Os← POs ∪ {inputs(v)|v ∈ Stateful};
30 Order elements of Os according to topological order in G;
31 for o ∈ Os do
32 // Compute the Backwards Cone of Influence (BCI) of o

33 spec← computeBCI(o); // spec of o

34 i← 1; // initial depth of solution tree

35 // Loop over i to find a minimum depth solution tree

36 while i ≤ numPipelineStages do
37 s← querySketchStateless(spec, i, A2) ;
38 if s ≡ SUCCESS then
39 break;
40 else
41 i← i+ 1; // increment depth

42 end

43 end

44 end

Auxilliary procedures:

procedure tryFold(G, u, v, A1): Query SKETCH to
determine if edge (u, v) can be folded into stateful node v
using stateful grammar A1. If query succeeds, edge (u, v) is
removed from G.

procedure tryPack(G, u, v, A1): Query SKETCH to
determine if nodes u, v can be packed into a single new
stateful node using stateful grammar A1.

1

Algorithm 1: CaT Synthesis Procedure. Calls that use a SKETCH query are highlighted in blue .

(𝑢, 𝑣) indicates that the output of ALU 𝑢 is connected to an input

of ALU 𝑣 . We prove that our synthesis procedure is correct: the

resource graph 𝑅 is functionally equivalent to 𝐺 .

Our synthesis procedure is shown in Algorithm 1, which con-

sists of four main steps: 1) normalization; 2) folding and predecessor

packing optimizations; 3) synthesis of stateful updates; 4) synthesis

of minimum-depth solutions for stateless code. The critical step is

Step 3, which queries SKETCH to see if each stateful update assign-

ment can be synthesized into configurations for a single stateful

ALU. If any such query fails, then we terminate the procedure and

provide feedback to the programmer. We create separate synthesis

queries to perform optimizations in Step 2, to help Step 3 succeed.

Finally, Step 4 creates synthesis queries to implement the POs and

inputs to the stateful nodes.

Step 1: Normalization of computation graph 𝐺 . In the typical

hardware backends that we target (e.g., Menshen, Tofino), a stateful

ALU can output a single value that is either the pre-state or the post-

state value of one of its stateful registers. In this step, we normalize

𝐺 to a graph such that each stateful node has only one output, and

each packet field labelled as an out-edge from a stateful node is

either the pre-state field or the post-state field. Normalization is

performed by replicating stateful nodes that have multiple outputs.

Step 2: Folding and predecessor packing optimizations.We

iterate the following two optimizations until convergence.

Folding to reduce input edges. A stateful node with too many in-

edges could cause Step 3 to fail, due to a limited number of inputs

available in ALUs. The folding optimization finds opportunities

to reduce the number of in-edges to a stateful node. We consider

dependent inputs, i.e., inputs that are themselves functions of other

inputs to the same stateful node. For each such candidate 𝑖 , we

query SKETCH to check if the function that computes 𝑖 can be

folded into the stateful node itself, such that the enlarged node

fits into a single stateful ALU. If the synthesis query is successful,

𝑖 is removed. Figure 5 shows an example benchmark—BLUE (de-

crease) [32]—where this works successfully. Here, folding reduces

an edge between the top two nodes in the computation graph 𝐺

(extreme left of Figure 5), thereby reducing the pipeline usage by 1.

Predecessor packing to merge nodes. Even after folding, the state-

ful update in a single node in 𝐺 might not fully utilize an available

stateful ALU in hardware. Consider again the BLUE (decrease) ex-

ample in Figure 5, where the middle box shows 𝐺 after folding.

Here, a single Tofino stateful ALU can actually implement both
stateful updates (in blue boxes) in a single stage, as shown by a

merged node on the right. To achieve this compaction, we use a sim-

ple heuristic called predecessor packing, inspired by technology

mapping for hardware designs [28]. The key idea is to pack more

into a stateful ALU by attempting a merge of nodes 𝑢 and 𝑣 , where

at least one node is stateful and where predecessor 𝑢 has only one

out-edge (to 𝑣). Like folding, we implement the packing attempt via
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p_now_plus_free0 = p_now-1;

p_last_update00 = last_update; 

p__br_tmp1 = p_now_plus_free0>p_last_update00;
p_last_update01 = p__br_tmp1 ? 

          (p_now) | (p_last_update00);
last_update = p_last_update01;

p_p_mark00 = p_mark;
p_p_mark01 = p__br_tmp1 ? 

               (p_p_mark00-2) | (p_p_mark00);
p_mark = p_p_mark01;

out: p__br_tmp1

p_now_plus_free0 = p_now-1;
p_last_update00 = last_update; 

p__br_tmp1 = p_now_plus_free0>p_last_update00;
p_last_update01 = p__br_tmp1 ? 

          (p_now) | (p_last_update00);
last_update = p_last_update01;

p_p_mark00 = p_mark;
p_p_mark01 = p__br_tmp1 ? 

               (p_p_mark00-2) | (p_p_mark00);
p_mark = p_p_mark01;

out: p__br_tmp1

p_now_plus_free0 = p_now-1;

p_now_plus_free0 = p_now-1;
p_last_update00 = last_update; 

p__br_tmp1 = p_now_plus_free0>p_last_update00;
p_last_update01 = p__br_tmp1 ? 

          (p_now) | (p_last_update00);
last_update = p_last_update01;






p_p_mark00 = p_mark;
p_p_mark01 = p__br_tmp1 ? 

               (p_p_mark00-2) | (p_p_mark00);
p_mark = p_p_mark01;

p_now_plus_free0 = p_now-1;

Folding optimization
 Predecessor packing optimization

(edge eliminated via folding)

Figure 5: Computation graph for the BLUE(decrease) [32] (leftmost) and optimizations performed by CaT when targeting the
Tofino ALU. Stateful nodes are in blue, stateless nodes are in yellow, pre/post-state fields are in red, modified parts are in bold.

a SKETCH query, and merge the nodes if the query is successful.

In our evaluations (§7.3), we show that these optimizations are

effective in compiling to fewer pipeline stages.

Step 3: Synthesizing stateful updates. We are now ready to

synthesize the outputs of the stateful nodes in 𝐺 . To preserve the

transactional semantics of the program, each stateful update must

be completed within a single pipeline stage, i.e., the update operation
must fit in a single stateful ALU. Accordingly, for each stateful

node in 𝐺 , we generate a SKETCH query to check if the stateful

update operation can be implemented by a single stateful ALU. The

functionality of the stateful ALU available in hardware is specified

using an ALU grammar 𝐴1, which is expressed as a large block of

multiple if-else statements with one case for each opcode. We assert

that each such query succeeds; if any query fails, our procedure

exits with an error, giving feedback to the programmer.

Step 4: Minimum-depth solutions for stateless code. In the

last step, we synthesize code for the POs and inputs to the stateful

nodes in𝐺 (line 29). For each such variable 𝑜 to be synthesized, we

first compute its backwards cone of influence (BCI), which is often

used in verification/synthesis tasks to determine the dependency

region up to some (boundary of) inputs [36]. In graph-theoretic

terms, BCI𝐺 (𝑜) is a subgraph in 𝐺 derived by going recursively

backward from 𝑜 , stopping at a PI or an output of a stateful node.

Essentially, the BCI provides the functional specification for 𝑜 in

terms of a set of inputs, where each input is a PI or the output of a

stateful node in 𝐺 . Note that these specifications are stateless, i.e.,

they do not include any stateful nodes.

We model a switch’s stateless ALU functionality using an ALU

grammar 𝐴2 (expressed as a large block of if-else statements). We

use SKETCH to find a minimum-depth tree solution for 𝑜 , where

each tree node represents a stateless ALU, and the leaf nodes rep-

resent the inputs in BCI𝐺 (𝑜). A minimum-depth solution helps

reduce the number of pipeline stages – this is explained in more

detail in the next section (§5.4). Since SKETCH does not support

optimal synthesis, we invoke it in a loop to minimize depth, where

each iteration tries to find a solution tree of a given depth 𝑖 (line

35), starting from 1 and continuing until 𝑖 exceeds the maximum

number of pipeline stages. An example computation graph with a

single stateful update (blue box) and the associated synthesis query

results are shown in Figure 6.

p.t1 = p.c + p.d;

p.o1 = p.a + p.b + p.t1; p.o3 = p.t1 - p.e + p.f +
p.g;

s1 = (p.o1>2) ? s1 + 1 : s1;

p.t1 := ALU(+, p.c, p.d);

p.x1 := ALU(-, p.t1, p.e) p.x2 := ALU(+, p.f, p.g)

p.o3 := ALU(+, p.x1, p.x2)

(a): Illustration of a computation graph.

(b): Synthesized (depth-3) solution for BCI of p.o3.

p.t1 := ALU(+, p.c, p.d);

p.o1 = ALU(+, p.t1, p.x3)

p.x3 := ALU(+, p.a, p.b);

(c): Synthesized (depth-2) solution for BCI of p.o1.

s1 := StatefulALU(CIncr, p.o1>2)
(d): Synthesized solution for stateful update s1. CIncr
refers to the conditional increment ALU instruction.

(1)

(2) (3)

(4)

Figure 6: Example of a computation graph (left) and the syn-
thesis query results (right) targeting Banzai ALUs [53]. State-
ful nodes in blue and stateless nodes in yellow. The POs are:
{p.o1,p.o3}. p.o1’s BCI contains nodes 1 and 2; p.o3’s BCI
contains nodes 1 and 3.

5.4 Staged-Input Tree Grammar for Synthesis
We now describe details of the grammar used for the synthesis

queries in Step 4, where each query (in line 37) tries to find a

solution tree of a given depth 𝑖 for implementing a given variable 𝑜 .

Initially, we used a simple recursive tree grammar for the SKETCH

query, where each tree node is an ALU (specified by a stateless

ALU grammar 𝐴2) and its children are the ALU operands; and a

leaf node is an input in BCI𝐺 (𝑜), i.e., either a primary input (PI) or

an output of a stateful node in 𝐺 . By iteratively incrementing 𝑖 , we

were able to find a minimum-depth tree solution for 𝑜 .

However, even with a minimum-depth tree solution for each

variable 𝑜 , when we compose together these solution trees ac-

cording to 𝐺 , the number of pipeline stages for the entire action

may not be the minimum possible. This is because with this sim-

ple grammar, the depth is optimized to be minimum within an
individual synthesis query for 𝑜 , without considering the larger

scope of the entire action. As a concrete example, consider the

computation graph 𝐺 for the Flowlet switching benchmark [52]

shown in Figure 7. As before, blue nodes are stateful nodes and

yellow nodes are stateless. In addition, we show two synthe-

sized solutions for the variable p_br_tmp0 , with the specification

p_br_tmp0 = (p_arrival0 - p_last_time_0 > 2) . Its BCI has two

inputs: p_arrival0 is a PI, and p_last_time_0 is the output of the

stateful node 1.
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p_last_time_0 = last_time[p_id0];
last_time[p_id0] = p_arrival0; p_saved_hop_1 = p_new_hop0;

p_saved_hop_0 = saved_hop[p_id0]; 
p_saved_hop_2 = p_br_tmp0 ? p_saved_hop_1 : p_saved_hop_0; 
saved_hop[p_id0] = p_saved_hop_2;

p_next_hop1 = p_saved_hop_2;

tmp = p_last_time_0 + 2;

p_br_tmp0 = p_arrival0 > tmp;

tmp = p_arrival0 – 2; 

p_br_tmp0 = tmp > p_last_time_0;

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Figure 7: Computation graph for the Flowlet switch-
ing [52], showing twominimum-depth solutions for variable
p_br_tmp0 using Banzai ALUs: nodes {2, 3} and nodes {4, 5}.

Note first that the BCI input p_last_time_0 can only be available

after stage 1 within the overall action (stages are numbered starting

from 1), since the implementation of node 1 occupies one stage.

Now, consider a minimum-depth solution with nodes 2 and 3 (both

shown in orange), where node 1 provides an input to the ALU

operation in node 2, which in turn provides an input to the ALU

operation in node 3, which computes p_br_tmp0 . Hence, p_br_tmp0

is computed in stage 3 and is available at the end of stage 3.

Consider a second minimum-depth solution shown by dashed

nodes and edges, with nodes 4 and 5 (both shown in green). Like the

first solution, it also has twoALU operations and the sameminimum

depth 2. However, the ALU operation in node 4 is independent of
p_last_time_0 , and can be computed in parallel with node 1. This

allows p_br_tmp0 to be computed in stage 2, making it available at

the end of stage 2. This example shows that although both solutions

have the minimum depth 2, the second is better because p_br_tmp0

can be computed in an earlier stage for the overall action.

Since the number of pipeline stages is often a critical resource in

compiling P4 programs, we consider the larger scope of the action

in each individual synthesis query. We achieve this by augmenting

our tree grammar for a query, where an input in the BCI is now

associated with a stage, which denotes the stage within the action
at which the input is available to be used. We call this grammar a

staged-input tree grammar. We regard a primary input (PI) in𝐺 as

being available for use at stage 1, and the output of a stateful node

being available for use at some stage 𝑠 > 1, where 𝑠 depends on its

own implementation. In each individual synthesis query, we now

look for a minimum-depth tree solution that produces the output at

the earliest possible stage, based on stage information of the inputs

in its BCI. To compute the latter, in Step 4, we use a topological

ordering over the set of outputs 𝑜 in𝐺 (line 30), such that any input

in BCI𝐺 (𝑜) is already implemented before the synthesis query for

𝑜 . For the example in Figure 7, our synthesis query with a staged-

input tree grammar returns the solution with nodes 4 and 5 (in

green) for the output p_br_tmp0 . The complete SKETCH input for

this query is shown in Appendix A, which includes the grammars

for a staged-input tree and for a stateless ALU.

5.5 Final Result of the Synthesis Procedure
The final result of the synthesis procedure is represented in the

form of a resource graph 𝑅 for a given P4 action block, where each

node 𝑣 in 𝑅 represents a stateful or a stateless ALU, and an edge

(𝑢, 𝑣) in 𝑅 indicates that the output of ALU 𝑢 is connected to an

input of ALU 𝑣 . These resource graphs play an important role in

resource allocation, the next phase of our compiler. We now state

and prove correctness of our synthesis procedure.

Theorem 1 (Correctness). The result of the CaT synthesis pro-
cedure (Algorithm 1) on a computation graph 𝐺 is correct.

Proof sketch. The synthesis procedure works by decomposing

𝐺 (after correctness-preserving normalization and optimizations in

Steps 1 and 2, respectively) into subgraph components comprising

of: (1) outputs and inputs of stateful nodes, (2) inputs of stateful

nodes and their stateless BCIs, and (3) POs and their stateless BCIs.

Each such subgraph of 𝐺 represents a specification for a synthesis

query (in Steps 3 or 4), which generates a corresponding implemen-
tation using ALUs, i.e., a subgraph in the resource graph 𝑅. Based

on correctness of program synthesis in SKETCH [55], each stateful

node output, stateful node input, and PO in 𝑅 is functionally equiv-

alent to that in 𝐺 . Hence the synthesis procedure is correct. □

5.6 Comparison with Synthesis in Chipmunk
Our motivation for a new synthesis procedure was improving

the performance of synthesis in Chipmunk [34], which also uses

SKETCH. CaT and Chipmunk have several differences.

First, CaT creates multiple smaller synthesis queries for SKETCH.
Although Chipmunk uses a slicing technique to create per-output

queries, the scope for each such query is the entire transaction. Our

procedure separates queries for stateful update operations from

those on stateless operations in Steps 3 and 4, respectively. The

scope for a stateful query is a single stateful ALU: these queries

are small and also critical; if any fails, synthesis cannot succeed.

The scope for a stateless query is typically smaller than an entire

transaction, since its BCI stops at outputs of other stateful nodes.

Overall, smaller synthesis queries lead to significant performance

improvement over Chipmunk, as demonstrated in evaluations (§7).

We note that because SKETCH queries are independent of each

other in both CaT and Chipmunk, both lose opportunities to share

common computations across multiple queries.

Second, for stateless operations, we use multiple SKETCH

queries to synthesize solutions of minimum-depth, i.e., the min-

imum number of pipeline stages, while searching the space over all

possible equivalent programs. Although Chipmunk also considers

the space of all possible programs, its queries do not guarantee

minimum-depth solutions within a given bound.

Third, Chipmunk creates synthesis queries in the form of low-

level holes in an ALU grid architecture that are filled by SKETCH. In

contrast, our synthesis queries ask for ALU-based implementations

that we represent as resource graphs. These resource graphs are

used during resource allocation (in Phase 3) for handling multiple
transactions, which are not supported by Chipmunk.

Finally, similar to Chipmunk’s ALU DSL, our synthesis queries

are parameterized by an ALU grammar that specifies the function-

ality of ALUs available in a given hardware target. This enables the

same synthesis procedure to be used for different hardware back-

ends, providing compiler retargetability. CaT currently supports

three different ALU grammars: Tofino ALUs [9], Banzai ALUs [53],

and Menshen ALUs [61]; more can be supported as needed. As

long as compiler developers have access to the documentation of a

hardware ALU in the target backend, it is straight-forward to write

a complete and correct ALU grammar describing its capabilities.
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Table 3: Constraint formulation for resource allocation.

Name Definition

Constants 𝑁𝑆 maximum number of pipeline stages

𝑁𝑎𝑙𝑢 maximum number of ALUs in each stage

𝑁𝑃 number of packet fields that must remain available through the pipeline

𝑁𝑡𝑎𝑏𝑙𝑒 maximum number of logical table IDs per stage

𝑁𝑒𝑛𝑡𝑟𝑖𝑒𝑠 maximum number of match entries per table per stage

𝑒𝑡 maximum number of entries in table 𝑡 in program

Indices 𝑡 index for Table

𝑖 index for partition of a Table, partition denoted 𝑡 [𝑖 ]
𝑎 index for Action

𝑢 index for ALU

𝑠 index for pipeline Stage

Variables 𝑀𝑡𝑖𝑠 binary, set to 1 iff match of 𝑡 [𝑖 ] is assigned to stage 𝑠 , 0 otherwise
𝑠𝑡𝑎𝑔𝑒𝑢 integer, stage assigned to ALU𝑢
𝑠𝑡𝑎𝑔𝑒𝑢𝑠 binary, set to 1 iff ALU𝑢 is assigned to stage 𝑠
𝑏𝑒𝑔𝑢 integer, stage where ALU𝑢 output is computed

𝑒𝑛𝑑𝑢 integer, ≥ last stage where ALU𝑢 is used as an input

𝑝𝑟𝑜𝑝𝑢𝑠 binary, set to 1 iff output of ALU𝑢 is propagated in stage 𝑠

Sets 𝑅𝑡𝑖𝑎 Resource graph for action 𝑎 of table partition 𝑡 [𝑖 ]
𝑉𝑡𝑖𝑎 Vertices in 𝑅𝑡𝑖𝑎 , each represents an ALU

𝐸𝑡𝑖𝑎 Edges in 𝑅𝑡𝑖𝑎 , each represents a connection between ALUs

𝐴𝑃𝑡𝑖𝑎 Set of ALUs in 𝑅𝑡𝑖𝑎 , whose outputs may need to be propagated across stages

𝑈𝑉𝑡𝑖𝑎𝑢 Set of ALUs 𝑣 in 𝑅𝑡𝑖𝑎 , s.t. (𝑢, 𝑣) ∈ 𝐸𝑡𝑖𝑎 , i.e., ALU𝑢 is an input to ALU 𝑣

Constraints similar to prior work [39, 44]

Match table capacity ∀𝑠 :

∑
𝑡,𝑖 𝑀𝑡𝑖𝑠 ≤ 𝑁𝑡𝑎𝑏𝑙𝑒

Match action pairing ∀𝑠 ∀𝑡, 𝑖, 𝑎 ∀𝑢 ∈ 𝑉𝑡𝑖𝑎 : 𝑠𝑡𝑎𝑔𝑒𝑢𝑠 → 𝑀𝑡𝑖𝑠
Table dependency ∀𝑖1, 𝑖2, 𝑎1, 𝑎2, ∀𝑢1 ∈ 𝑉𝑡

1
𝑖
1
𝑎
1
, ∀𝑢2 ∈ 𝑉𝑡

2
𝑖
2
𝑎
2
: 𝑠𝑡𝑎𝑔𝑒𝑢

1
< 𝑠𝑡𝑎𝑔𝑒𝑢

2

New constraints in our work

ALU allocation 1 ∀𝑡, 𝑖, 𝑎 ∀𝑢 ∈ 𝑉𝑡𝑖𝑎 : 1 ≤ 𝑠𝑡𝑎𝑔𝑒𝑢 ≤ 𝑁𝑆
ALU allocation 2 ∀𝑠 ∀𝑡, 𝑖, 𝑎, ∀𝑢 ∈ 𝑉𝑡𝑖𝑎 : 𝑠𝑡𝑎𝑔𝑒𝑢 = 𝑠 ↔ 𝑠𝑡𝑎𝑔𝑒𝑢𝑠
Action dependency ∀𝑡, 𝑖, 𝑎 ∀(𝑢, 𝑣) ∈ 𝐸𝑡𝑖𝑎 : 𝑠𝑡𝑎𝑔𝑒𝑢 < 𝑠𝑡𝑎𝑔𝑒𝑣
ALU propagation 1 ∀𝑡, 𝑖, 𝑎 ∀𝑢 ∈ 𝐴𝑃𝑡𝑖𝑎 : 𝑏𝑒𝑔𝑢 = 𝑠𝑡𝑎𝑔𝑒𝑢 ∧ 𝑏𝑒𝑔𝑢 < 𝑒𝑛𝑑𝑢 ∧ 𝑒𝑛𝑑𝑢 ≤ 𝑁𝑆
ALU propagation 2 ∀𝑡, 𝑖, 𝑎 ∀𝑢 ∈ 𝐴𝑃𝑡𝑖𝑎 , ∀𝑣 ∈ 𝑈𝑉𝑡𝑖𝑎𝑢 : 𝑒𝑛𝑑𝑢 ≥ 𝑠𝑡𝑎𝑔𝑒𝑣
ALU propagation 3 ∀𝑡, 𝑖, 𝑎 ∀𝑢 ∈ 𝐴𝑃𝑡𝑖𝑎 , ∀𝑠 ∈ {1, . . . , 𝑁𝑆 } : (𝑏𝑒𝑔𝑢 < 𝑠 ∧ 𝑠 < 𝑒𝑛𝑑𝑢 ) ↔ 𝑝𝑟𝑜𝑝𝑢𝑠
ALU propagation 4 ∀𝑠 ∑

∀𝑡,𝑖,𝑎 ∀𝑢∈𝐴𝑃𝑡𝑖𝑎
(𝑠𝑡𝑎𝑔𝑒𝑢𝑠 + 𝑝𝑟𝑜𝑝𝑢𝑠 ) ≤ 𝑁𝑎𝑙𝑢 − 𝑁𝑃

6 PHASE 3: RESOURCE ALLOCATION
After performing synthesis for each P4 action block, the third phase

of our compiler performs global resource allocation for the full P4

program by using a constraint-based formulation, shown in Table 3.

The top part lists the definitions of constants, indices, variables, and

sets that are used to automatically generate the constraints. The

bottom part shows the full set of constraints, divided into a first

set that is similar to prior work [39, 44], and a second set that is

new. Our new constraints address: (1) ALU resources in action com-

putations, (2) multi-stage actions, (3) fitting multiple action blocks

in the same pipeline stage, and (4) propagation of ALU outputs.

Prior efforts either do not consider allocation of ALU resources

and multi-stage actions [39, 44], or do not address multiple action

blocks [34, 53]. Another novel feature of our approach is that we

use the resource graph 𝑅 synthesized for each action block (in Phase

2), to perform global optimization in this phase.

6.1 Constraints Similar to Prior Work
If a match table in the program has too many entries to fit within

a single stage, it is partitioned into 𝑏𝑡 separate tables, where 𝑏𝑡 =

⌈(𝑒𝑡/𝑁𝑒𝑛𝑡𝑟𝑖𝑒𝑠 )⌉. Currently, we only support exact matches; hence,

a packet will match at most one of the partitions 𝑡 [𝑖] that have
the same actions as table 𝑡 . The first constraint ensures that the

number of match tables allocated in a stage is less than or equal to

the number of table IDs available. The second ensures that ALUs

in action blocks are accompanied by the associated match table.

The third enforces four types of table dependencies: match, action,

successor, and reverse-match [39]. If table 𝑡2 depends on table 𝑡1,

all ALUs of 𝑡2 are allocated after ALUs of 𝑡1. For successor and

reverse-match, < is replaced by ≤.

6.2 New Constraints in Our Work
The constraints for ALU allocation (1,2) ensure that each ALU in

each action is assigned to one and only one pipeline stage. The

Action dependency constraint uses the edges in 𝑅𝑡𝑖𝑎 (synthesized in

Phase 2) to enforce dependencies between ALUs. Together with the

Table dependency constraint, this allows ALUs frommultiple action

blocks to be assigned in the same pipeline stage, while respecting
both inter-table and intra-action dependencies.

We support a multi-stage action under the condition that it

does not modify the table’s match key, by duplicating the match

entries at each stage to ensure that the entire action is executed.

As an example, suppose a match entry𝑚 in table 𝑡 is associated

with action 𝐴 that takes 2 stages. We can allocate table 𝑡 in two

consecutive stages, such that if a packet matches entry𝑚 in table

𝑡 in stage 𝑠 , it will match entry𝑚 in table 𝑡 in stage 𝑠 + 1 as well,

resulting in action𝐴 being executed completely over the two stages.

We allow allocation of multiple actions in the same stage and

also allow assigning an Action 𝐴 to non-consecutive stages. In the

latter case, we need additional ALUs in the intermediate stages to

propagate the intermediate results. The ALU propagation constraints

(1-4) handle allocation of these additional ALUs. Here, 𝐴𝑃𝑡𝑖𝑎 is the

set of ALUs in 𝑅𝑡𝑖𝑎 whose outputs may need to be propagated

across stages, and 𝑈𝑉𝑢𝑡𝑖𝑎 is a set of ALUs 𝑣 in 𝑅𝑡𝑖𝑎 that use ALU

𝑢 as an input. The ALU propagation constraints 1-3 ensure that

an ALU 𝑢 ∈ 𝐴𝑃𝑡𝑖𝑎 is propagated until the largest stage where it

is used as an input. The ALU propagation constraint 4 enforces

the ALU capacity constraint in each stage, where 𝑁𝑃 ALUs are

pre-occupied to carry packet fields that remain live through the

whole pipeline (e.g., IP TTL) or are updated (by ALUs not in any

𝐴𝑃𝑡𝑖𝑎); the remaining (𝑁𝑎𝑙𝑢 − 𝑁𝑃 ) ALUs must be enough for the

sum over all ALUs 𝑢 in any 𝐴𝑃𝑡𝑖𝑎 that are either assigned to or

propagated in that stage. (Appendix B shows the formulation of

ALU propagation 3 using the well-known Big-M method).

6.3 Solving the Constraint Problem
We can use either an ILP solver (Gurobi [5]) or an SMT solver

(Z3 [31]) to find an optimal or a feasible solution. We specify an

objective function to find an optimal solution, e.g., we add the

constraint min 𝑐𝑜𝑠𝑡 to minimize the number of stages, where 𝑐𝑜𝑠𝑡

is ≥ the stage assigned to any ALU. i.e., ∀𝑡, 𝑖, 𝑎, ∀𝑢 ∈ 𝑉𝑡𝑖𝑎 : 𝑐𝑜𝑠𝑡 ≥
𝑠𝑡𝑎𝑔𝑒𝑢 . To find a feasible solution, we use a trivial objective function

(𝑚𝑖𝑛 1) with Gurobi (none is needed with Z3).

7 IMPLEMENTATION AND EVALUATION
We implement the CaT compiler with the workflow shown in Fig-

ure 1. The resource transformation phase is implemented on top

of p4c [11]. We also use p4c to identify the action blocks and table

dependencies needed in CaT’s resource synthesis and resource al-

location phases. For the backend, ideally the CaT compiler should

directly output machine code for the targets. However, due to the

undocumented and proprietary machine code format of the Tofino

chipset, we generate a low-level P4 program by using a best-effort

encoding for the resource constraints, based on known information

about the Tofino chipset. For the Menshen backend, we extend the

open-source RMT pipeline [10, 61] by writing additional Verilog

to support richer ALUs, e.g., the IfElseRAW ALU [53]. The CaT

81



CaT: A Solver-Aided Compiler for Packet-Processing Pipelines ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

compiler directly outputs machine code to configure various pro-

grammable knobs (e.g., opcodes) within Menshen’s Verilog code.

Sanity checking of CaT prototype.We check CaT’s output for

Menshen using its cycle-accurate simulator, which can be fed in-

put packets to test the generated machine code. We create P4-16

benchmarks starting with a subset of the switch.p4 program [54],

consisting of 2–6 tables randomly sampled from switch.p4. Then,

we add new actions to the tables using @atomic blocks for transac-

tional behavior. The logic within these atomic blocks consists of

one of 8 Domino benchmark programs [53]; the IfElseRawALU [53]

in our simulator is not expressive enough for the remaining 6. We

also test the 8 benchmark programs in isolation, generating 24

benchmarks in total, many of which have multiple transactions and

thus stress both resource synthesis and resource allocation. We ran-

domly generate test input packets and inspect the output packets

from the simulation. So far, all our sanity checks have passed.

7.1 Evaluation Setup and Experiments
We address the following evaluation questions:

Q1: Resource Transformation. How much does CaT’s re-

source transformation help in terms of the resource usage? We

select 3 benchmarks [2] extracted from real P4 programs and com-

pare resource usage for pre- and post-transformed programs (§7.2).

Q2: Resource Synthesis. How does CaT’s resource synthesizer

compare to existing ones? We compare CaT with Chipmunk on sev-

eral dimensions using ALUs drawn from Tofino [9] and Banzai [53],

along with controlled experiments on the predecessor packing and

preprocessing optimizations (§7.3).

Q3: Resource Allocation. How good is the CaT compiler in

terms of resource usage? We use Gurobi as the default solver for

resource allocation and compare the runtime of the Gurobi and Z3

solvers. In addition, we compare 2 modes: finding either an optimal

or a feasible solution (§7.4).

Q4: Retargetable Backend. Can CaT easily perform compi-

lation for different hardware targets? Our synthesis experiments

with the Banzai and Tofino ALUs already demonstrate this feature.

Additionally, we run the CaT compiler on different simulated hard-

ware configurations, compile switch.p4 under varying constraints

and report the results (§7.4).

Benchmark selection. We use different benchmarks to demon-

strate the benefits of each phase of the compiler.

• Resource transformation: 3 benchmarks (ME-1, ME-2, ME-3)

extracted from SipHash and UPF (real P4 programs devel-

oped by other P4 programmers).

• Resource synthesis: 14 benchmarks together with their se-

mantically equivalent mutations (10 for each benchmark,

hence 140 in total) from the Chipmunk paper [34].
3

• Resource allocation: Same as the benchmarks we use for

sanity checking our prototype. We use the full switch.p4

program for experiments that vary hardware resource pa-

rameters in the Menshen backend.

Machine configuration.We use a 4-socket AMD Opteron 6272

(2.1 GHz) machine with 64 hyperthreads and 256 GB RAM to run

3
Chipmunk can compile all 14 benchmarks by using Banzai ALUs [53], and 10 of the

14 benchmarks by using Tofino ALUs [34]. For Banzai ALUs, we also show the Domino

pipeline usage as reported in the Chipmunk paper [34].

Table 4: Resource usage with/without CaT’s transformation.

Program Without CaT transformations With CaT transformations
#gateways #tables #stages #gateways #tables #stages

ME-1 15 15 5 15 15 4

ME-2 3 3 3 0 1 1

ME-3 19 12 2 0 3 1

all our experiments for both CaT and Chipmunk. Additionally, we

note that Chipmunk requires performing a grid search on pipeline

geometries (within an upper bound) using multiple such machines

in parallel to find an implementation that consumes a small number

of pipeline resources. By contrast, CaT does not require multiple

machines since CaT’s resource synthesis (Algorithm 1) directly

tries to minimize pipeline depth without a parallel grid search.

7.2 Results for Resource Transformation
The resource transformation phase of the CaT compiler performs

a best-effort rewrite of if-else statements in the P4 program into

match-action tables. Table 4 shows the resource usage of compiling

benchmarks ME-{1,2,3} to the Tofino architecture with and with-

out the CaT rewrites. As expected, the rewrites help in reducing

the number of gateways. Furthermore, they may merge together

multiple tables without match entries (i.e., default tables), thereby
reducing the total number of tables. More importantly, for all bench-

marks shown, the rewritten program consumes fewer pipeline stages
due to either reduced gateway usage (ME-2, ME-3) or the removal of

false control flow dependencies (ME-1). CaT does this automatically

without the developer engaging in trial-and-error compilation [44].

7.3 Results for Resource Synthesis
In all our experiments, the resource synthesis phase consumes

the most time, and the SKETCH synthesis queries dominate the

overall runtime of CaT. In this section, we focus on evaluating

this phase. We compare the CaT and Chipmunk compilers on the

SipHash benchmark (cf. Figure 2) and on all benchmarks used in

the Chipmunk work [34]. For the latter, we target both Tofino ALUs

and Banzai ALUs, to evaluate the performance of CaT on different

instruction sets and various input programs. This also demonstrates

CaT’s retargetability via different ALU grammars.

Results for SipHash. For the SipHash P4 program, the CaT com-

piler was successful with the Tofino ALU, and took about 40 hours

to complete. In comparison, Chipmunk failed to generate the output

even after 150 hours. After investigation, we found two main rea-

sons for the long runtime of CaT: (1) 1 multistage action required

4 pipeline stages – the synthesis query for this action has a large

search space and took more than 30 hours in SKETCH. (2) SipHash

includes bitvector operations in addition to integer arithmetic. This

results in a harder synthesis problem for SKETCH: SipHash uses

32-bit bitvectors, while SKETCH’s default for integers is 5 bits.

We plan to explore new ideas for handling deep multistage

actions in future work. For handling 32-bit bitvectors more effi-

ciently, we enhanced our basic procedure as follows. We first run

the SKETCH synthesis query on a programwith a constrained input

space, and verify separately whether the generated solution works

for the full input space. If it does, then we have found a correct

solution; otherwise, we add the generated solution as a counterex-

ample in SKETCH and repeat the procedure. The hope is to quickly

generate a solution from the constrained input space that can be

proven correct for the whole input space. For the SipHash example,
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Table 5: CaT vs. Chipmunk and Domino; Tofino or Banzai ALUs. (pred: Predecessor packing, ppa: Preprocessing, ✗: failed, Std
Dev: sample standard deviation).

Program ALU CaT Chipmunk [34] CaT Speedup Domino [53]
Mean Time (s) Std Dev (s) Avg #stages Mean Time (s) Std Dev (s) Avg #stages wrt Chipmunk Avg #stages

default w/o pred w/o ppa (from [34])

BLUE (increase) [32] Tofino ALU 19.04 0.43 1 2 1 159.78 59.03 2 8.39 ×
BLUE (decrease) [32] Tofino ALU 18.72 0.84 1 2 1 142.5 42.5 2 7.61 ×
Flowlet switching [52] Tofino ALU 19.76 0.69 2 ✗ 2 962.83 1170.16 2 48.73 ×
Marple new flow [49] Tofino ALU 6.65 0.52 1 ✗ 1 5.2 1.71 1 0.78 ×
Marple TCP NMO [49] Tofino ALU 13.24 0.53 2 ✗ ✗ 6.56 0.36 2 0.50 × N/A
Sampling [53] Tofino ALU 14.03 0.57 1 ✗ 1 22.87 10.68 1 1.63 ×
RCP [59] Tofino ALU 20.19 0.59 1 ✗ 1 65.13 20.93 1 3.23 ×
SNAP heavy hitter [21] Tofino ALU 3.58 0.25 1 1 1 26.83 13.63 1 7.49 ×
DNS TTL change [26] Tofino ALU 20.84 1.97 2 3 ✗ 36.34 50.55 2 1.74 ×
CONGA [20] Tofino ALU 10.24 0.43 1 ✗ 1 3.02 0.17 1 0.29 ×

BLUE (increase) [32] Banzai ALU: pred raw 40.69 1.41 4 4 4 166.88 36.59 4 4.10 × ✗
BLUE (decrease) [32] Banzai ALU: sub 38.83 1.48 4 4 4 1934.82 1611.66 4 49.83 × ✗
Flowlet switching [52] Banzai ALU: pred raw 25.37 0.94 3 3 3 185.84 81.41 3 7.33 × 8.3

Marple new flow [49] Banzai ALU: pred raw 13.79 0.44 2 2 2 12.31 0.18 2 0.89 × ✗
Marple TCP NMO [49] Banzai ALU: pred raw 28.12 2.60 3 4 ✗ 15.3 0.49 3 0.54 × ✗
Sampling [53] Banzai ALU: if else 11.52 0.65 2 2 2 33.39 11.09 2 2.90 × ✗
RCP [59] Banzai ALU: pred raw 25.08 0.85 2 2 2 31.21 7.55 2 1.24 × 5.6

SNAP heavy hitter [21] Banzai ALU: pair 3.45 0.23 1 1 1 69.07 19.36 1 20.02 × 3.3

DNS TTL change [26] Banzai ALU: nested if 32.63 34.91 3 5 ✗ 211.67 22.65 3 6.49 × ✗
CONGA [20] Banzai ALU: pair 10.27 0.55 1 1 1 19.47 8.05 1 1.90 × ✗
Stateful firewall [21] Banzai ALU: pred raw 2499.43 4638.58 4 4 ✗ 6749.89 6349.94 4 2.70 × 15.5

Learn filter [53] Banzai ALU: raw 31.01 0.73 3 3 3 212.32 4.47 3 6.85 × 17.5

Spam Detection [21] Banzai ALU: pair 3.51 0.21 1 1 1 59.95 17.75 1 17.08 × 3.1

STFQ [35] Banzai ALU: nested if 20.99 2.04 3 3 3 22.73 6.94 2 1.08 × ✗
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Figure 8: Gurobi vs. Z3: Running time, Num of stages.
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Figure 11: Varying # of tables per stage.
we constrained the input space to use only 16 bits (by setting the

higher 16 bits of the input 32-bit bitvectors to 0). CaT separately

verified that the generated solution is also correct for unconstrained

32-bit bitvectors. This approach reduced CaT’s runtime to under 2

minutes, showing the promise of such an approach.

Results for Chipmunk benchmarks. The results are shown in

Table 5, for Tofino and Banzai ALUs, respectively. We report the

runtime of full compilation; for CaT, this includes the resource allo-

cation time, whereas Chipmunk does not perform any resource al-

location. We consider 10 semantically equivalent mutations of each

of the benchmarks, which are identical to those in Chipmunk [34].

We report the mean and sample standard deviation of compilation

time across all mutations.
4
These experiments evaluate if CaT can

effectively handle semantically equivalent programs.

We report the resource consumption of the generated code pro-

duced by CaT, in terms of the total number of pipeline stages re-

quired on average across the mutations ("#stages default" column).

Stages are the most scarce resource in programmable switches (e.g.,

12 for Tofino). For evaluating the effectiveness of our predecessor

packing optimization (pred) and the preprocessing analyses (ppa)

(§5.3), we also report the number of stages without these optimiza-

tions in columns "#stages w/o pred" and "#stages w/o ppa." Gray-ed

entries indicate a difference from the default setting.

4
The runtimes in Table 5 are similar to, but slightly different from that in Table 2 of

the Chipmunk paper [34]. The differences arise due to Chipmunk’s use of SKETCH’s

parallel mode, which introduces non-determinism due to thread interleaving.
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Our results show that CaT is able to compile all programs suc-

cessfully compiled by Chipmunk, with almost all compiled results

having a matching number of pipeline stages. Furthermore, CaT
is often much faster and more stable (in running time) than Chip-
munk. Specifically, for the Tofino ALUs (top section of Table 5),

CaT finishes compilation within a few seconds, 2.75x faster on

average (geometric mean) than Chipmunk. The max speedup is

48x for flowlet switching, a minutes-to-seconds improvement (≈16
minutes in Chipmunk vs. 20 seconds in CaT). In BLUE (increase)
and BLUE (decrease), CaT generates a solution with fewer stages

than Chipmunk. In all other benchmarks the number of stages is

the same. For the BLUE benchmarks, since the Tofino stateful ALU

contains two registers, CaT’s optimizations enabled it to pack a

successive pair of stateful updates into a single stateful ALU (§5.3).

In comparison, Chipmunk mapped the two stateful updates to two

ALUs in two stages. This shows that CaT’s approach can find addi-

tional opportunities for fully utilizing the functionality of available

hardware resources. Predecessor packing is also effective in 9 of

10 benchmarks, enabling compilation to succeed or reducing the

number of stages; preprocessing is also useful in 2 benchmarks.

For the Banzai ALUs (lower section of Table 5), we additionally

report results on stages output by the Domino compiler [53] (which

only handled Banzai ALUs), with the average number of stages

across different program mutations shown in the last column (as

reported in [34]). Note first that CaT takes no more than 1 minute

on most successful benchmarks. Although it takes 40 minutes for

stateful firewall, Chipmunk is much slower, requiring more than 1.5

hours. CaT provides 3.94x speedup on average (geometric mean)

and 49x maximum, with respect to Chipmunk. CaT is slower only

on Marple new flow and Marple TCP NMO, but finishes both within

30 seconds. Note that Chipmunk must use multiple machines in

parallel for synthesis, while CaT only uses one machine for syn-

thesis. In terms of number of stages, CaT generates code with the

same number of stages as Chipmunk for all benchmarks except the

STFQ example (3 in CaT vs. 2 in Chipmunk). Upon investigation,

we find that this is due to separation between queries for stateful

and stateless nodes in our synthesis procedure. Although our prede-

cessor packing optimization can often mitigate this negative effect,

we plan to improve it further in future work. Still, both predeces-

sor packing and preprocessing optimizations are effective in some

benchmarks here as well. Finally, Domino either fails to compile

(8 of 14 examples), or uses many more stages (other 6 examples).

Overall, CaT generates high-quality code comparable to Chipmunk,
but in much less time and with fewer compute resources.

Results for controlled experiments. We selectively turned on 2

optimizations: (1) Predecessor packing, (2) Preprocessing analyses

(constant folding, algebraic simplification, dead code elimination).

According to the results in Table 5, for Banzai ALUs, without prede-

cessor packing, our compiler uses additional stages in two examples

(Marple TCP NMO, and DNS TTL change), showing that predecessor
packing can reduce the number of pipeline stages; for the Tofino

ALUs, predecessor packing was even more beneficial: disabling

predecessor packing resulted in compilation errors for 6 examples

(flowlets, Marple new flow, Marple TCP NMO, Sampling, RCP, and
CONGA). The reason is that the Tofino ALU supports very limited

stateless computations and cannot handle relational or conditional

expressions. Packing such expressions into adjacent stateful ALUs

was essential for compilation to succeed. For Banzai ALUs, without

preprocessing analyses, 3 of the examples could not be compiled.

The runtime of preprocessing is less than 0.1 sec in all examples.

Overall, CaT’s optimizations allow compilation to succeed where it
would fail otherwise and reduce the number of pipeline stages.

7.4 Results for Resource Allocation
We experiment with two solvers (Gurobi and Z3) and two modes

(optimal and feasible) on our benchmark examples. The results are

in Figure 8 with more detailed data in Appendix C, Table 6. The

results show that for checking feasibility, Gurobi returns suboptimal

solutions that use all the pipeline stages, while Z3 finds feasible

solutions that are better than Gurobi’s but takes marginally more

time. However, Gurobi finds an optimal solution almost as quickly

as a feasible solution. For these benchmarks, Gurobi is faster than

Z3. Thus, Gurobi with optimization is a good default.

In additional experiments, we study the resource allocation time

of switch.p4 as a function of the parameters of the Menshen back-

end target. We vary the maximum number of entries per table,

number of stages, and number of tables per stage, and plot the

runtime of Gurobi in both optimal and feasible mode in Figures 9,

10, 11. A vertical line indicates the transition from infeasibility to

feasibility for the constraint solver. Across a variety of hardware

configurations, we find that the runtime of both modes are quite

similar. Figure 9 shows that runtime increases as the maximum

number of entries decreases because of an increase in the number

of partitions of a table as the maximum number of entries decreases.

Figure 10 shows that runtime increases as the number of stages in-

creases because of the increase in the number of indicator variables

tracking which stage a table belongs to. In Figure 11, the number

of Gurobi variables is constant as we vary the number of tables per

stage; The runtime is similar for optimal and feasible modes, but

varies significantly depending on whether there is a solution.

8 CONCLUSION
We introduce a new decomposition of the compilation problem for

packet pipelines into 3 phases: resource transformation, resource

synthesis, and resource allocation, where solver engines (e.g., ILP,

SMT, program synthesis) are employed extensively within these

phases. We prototype CaT, a compiler for P4 programs based on this

decomposition. CaT can handle more programs, reduce pipeline re-

source usage, compile faster, and requires fewer compute resources

than existing compilers. We hope our results encourage compiler

engineers for such pipelines to adopt similar ideas.
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A EXAMPLE OF SKETCH QUERY WITH
GRAMMARS

Figure 12 presents one SKETCH synthesis query generated by CaT

to implement a stateless variable in the flowlets.

B ILP ENCODING FOR ALU PROPAGATION
CONSTRAINTS

We use the big-M method to obtain an ILP formulation of the

constraint

∀𝑢 ∈ 𝐼 ,∀𝑠 (𝑏𝑒𝑔𝑢 < 𝑠 ∧ 𝑠 < 𝑒𝑛𝑑𝑢 ) ↔ 𝑝𝑟𝑜𝑝𝑢𝑠 = 1

For each 𝑢 ∈ 𝐼 and 𝑠 ∈ {1, . . . 𝑁𝑆 }, we use a binary variable 𝑙𝑜𝑢𝑠 as

an indicator for 𝑏𝑒𝑔𝑢 < 𝑠 and a binary variable ℎ𝑖𝑢𝑠 as an indicator

for 𝑠 < 𝑒𝑛𝑑𝑢 .𝑀 is a large constant (e.g., 𝑁𝑆 + 5).

The following constraints ensure that 𝑙𝑜𝑢𝑠 is 1 if 𝑏𝑒𝑔𝑢 < 𝑠 and 0

otherwise.

𝑠 − 𝑏𝑒𝑔𝑢 ≤ 𝑀𝑙𝑜𝑢𝑠 (1)

𝑠 − 𝑏𝑒𝑔𝑢 > −𝑀 (1 − 𝑙𝑜𝑢𝑠 ) (2)

If 𝑠 −𝑏𝑒𝑔𝑢 > 0 then 𝑙𝑜𝑢𝑠 = 1 (1) and if 𝑠 −𝑏𝑒𝑔𝑢 ≤ 0 then 𝑙𝑜𝑢𝑠 = 0 (2).

The following constraints ensure that ℎ𝑖𝑢𝑠 is 1 if 𝑠 < 𝑒𝑛𝑑𝑢 and 0

otherwise.

𝑠 − 𝑒𝑛𝑑𝑢 < 𝑀 (1 − ℎ𝑖𝑢𝑠 ) (3)

𝑠 − 𝑒𝑛𝑑𝑢 ≥ −𝑀ℎ𝑖𝑢𝑠 (4)

If 𝑠−𝑒𝑛𝑑𝑢 < 0 then ℎ𝑖𝑢𝑠 = 1 (4) and if 𝑠−𝑒𝑛𝑑𝑢 ≥ 0 then ℎ𝑖𝑢𝑠 = 0 (3).

The following constraints use 𝑙𝑜𝑢𝑠 and ℎ𝑖𝑢𝑠 to make 𝑝𝑟𝑜𝑝𝑢𝑠 an

indicator for 𝑏𝑒𝑔𝑢 < 𝑠 < 𝑒𝑛𝑑𝑢 .

𝑙𝑜𝑢𝑠 + ℎ𝑖𝑢𝑠 − 2 < 𝑀𝑝𝑟𝑜𝑝𝑢𝑠 (5)

𝑙𝑜𝑢𝑠 + ℎ𝑖𝑢𝑠 − 2 ≥ −𝑀 (1 − 𝑝𝑟𝑜𝑝𝑢𝑠 ) (6)

If 𝑙𝑜𝑢𝑠 + ℎ𝑖𝑢𝑠 − 2 ≥ 0 then 𝑝𝑟𝑜𝑝𝑢𝑠 = 1 (5) and if 𝑙𝑜𝑢𝑠 + ℎ𝑖𝑢𝑠 − 2 < 0

then 𝑝𝑟𝑜𝑝𝑢𝑠 = 0 (6). This means that 𝑝𝑟𝑜𝑝𝑢𝑠 = 1 only if both

𝑙𝑜𝑢𝑠 = 1 and ℎ𝑖𝑢𝑠 = 1. Hence, 𝑝𝑟𝑜𝑝𝑢𝑠 = 1 if 𝑠 > 𝑏𝑒𝑔𝑢 and 𝑠 < 𝑒𝑛𝑑𝑢 ,

otherwise 𝑝𝑟𝑜𝑝𝑢𝑠 = 0.

C ADDITIONAL RESULTS FOR RESOURCE
ALLOCATION

We experiment with two solvers (Gurobi vs. Z3) and two modes

(optimal and feasible solutions) on all our 24 benchmarks. We report

both time spent running the solvers and the final number of stage

usage to compare between different solvers and different modes.

Table 6 shows the detailed results for the running time.

D ARTIFACT APPENDIX
D.1 Abstract
This artifact appendix section describes how to reproduce results

demonstrated in this paper by running CaT on Amazon EC2 in-

stances.

D.2 Artifact Check-list (Meta-information)
• Data set: Our data for reproducing Table 5 comes from

https://github.com/CaT-mindepth/benchmarks repo.

• Run-time environment: AWS image with number: ami-

0bf331cf0e574fa8b.

• Hardware: Amazon EC2 Instances (c5ad.16xlarge).

• Metrics: Compilation time and resource (e.g., number of pipeline

stages) usage.

• Output: Compilation time and resource (e.g., number of pipeline

stages) usage.

• How much disk space required (approximately)?: 128GB (on

EC2 instance).

• How much time is needed to complete experiments (approxi-
mately)?: 15 hours.

• Publicly available?: Yes.

• Archived (DOI)?: https://doi.org/10.5281/zenodo.7592970 [17].
• Latest update: We put the latest FAQs and up-

dates in this file (https://github.com/CaT-mindepth/CaT-

AE/blob/main/UPDATES.md) and please check it before

reproducing experiment results.

Table 6: Comparing optimal and feasible for Gurobi and Z3

Benchmark Gurobi opt Gurobi sat Z3 opt Z3 sat
Time (s) Stages Time (s) Stages Time (s) Stages Time (s) Stages

stateful fw 0.133 4 0.14 12 0.251 4 0.273 4

Blue increase 0.1 4 0.12 12 0.218 4 0.244 4

marple new flow 0.102 2 0.11 12 0.201 2 0.225 2

sampling 0.102 2 0.103 12 0.21 2 0.226 2

flowlets 0.127 3 0.124 12 0.232 3 0.254 3

rcp 0.131 2 0.135 12 0.234 2 0.253 2

learn_filter 0.151 3 0.146 12 0.241 3 0.272 3

marple_tcp 0.117 3 0.119 12 0.223 3 0.241 3

benchmark9 0.169 4 0.161 12 0.81 4 1.8 12

benchmark10 0.165 4 0.163 12 0.781 4 0.501 4

benchmark11 0.19 4 0.18 12 1.13 4 0.639 12

benchmark12 0.178 4 0.168 12 0.967 4 0.502 11

benchmark13 0.18 3 0.173 12 0.88 3 0.506 11

benchmark14 0.202 3 0.182 12 0.889 4 0.523 11

benchmark15 0.241 4 0.22 12 1.033 4 0.585 11

benchmark16 0.198 4 0.183 12 0.963 4 0.553 12

benchmark17 0.159 3 0.142 12 0.845 4 0.459 12

benchmark18 0.156 3 0.146 12 0.922 4 0.447 12

benchmark19 0.169 4 0.154 12 0.946 4 0.531 12

benchmark20 0.181 5 0.17 12 1.086 4 0.6 11

benchmark21 0.145 3 0.148 12 0.733 4 0.462 12

benchmark22 0.162 3 0.168 12 1.578 4 1.578 12

benchmark23 0.215 3 0.201 12 2.544 4 0.798 12

benchmark24 0.174 3 0.149 12 1.53 4 0.595 12

D.3 Description
D.3.1 How Delivered. The latest version of CaT compiler is

open-source in github repo: https://github.com/CaT-mindepth, and

the detailed process of reproducing the experiment results is shown

in the artifact appendix.

D.3.2 Hardware Dependencies. Amazon EC2 Instances with ≈
64 cores such as c5ad.16xlarge.

D.3.3 Software Dependencies. We have already installed all

the software dependencies in the shared Amazon EC2 image.

D.4 Experiment Workflow
D.4.1 Fetch the Latest Updates from Github Repos:

$ cd /home/ubuntu/workspace/cat_eval

$ ./init.sh
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// SKETCH input file for one synthesis query
// ALU grammar specification
int alu(int opcode , int pkt_0 , int pkt_1 , int pkt_2 , int

immediate_operand) {
if (opcode == 0) {

return immediate_operand;
} else if (opcode == 1) {

return pkt_0 + pkt_1;
} else if (opcode == 2) {

return pkt_0 + immediate_operand;
} else if (opcode == 3) {

return pkt_0 - pkt_1;
} else if (opcode == 4) {

return pkt_0 - immediate_operand;
} else if (opcode == 5) {

return immediate_operand - pkt_0;
} else if (opcode == 6) {

return pkt_0 !=pkt_1;
} else if (opcode == 7) {

return (pkt_0 != immediate_operand);
} else if (opcode == 8) {

return (pkt_0 == pkt_1);
} else if (opcode == 9) {

return (pkt_0 == immediate_operand);
} else if (opcode == 10) {

return (pkt_0 >= pkt_1);
} else if (opcode == 11) {

return (pkt_0 >= immediate_operand);
} else if (opcode == 12) {

return (pkt_0 < pkt_1);
} else if (opcode == 13) {

return (pkt_0 < immediate_operand);
} else if (opcode == 14) {

return pkt_0 != 0 ? pkt_1 : pkt_2;
} else if (opcode == 15) {

return pkt_0 != 0 ? pkt_1 : immediate_operand;
} else if (opcode == 16) {

return ((pkt_0 != 0) || (pkt_1 != 0));
} else if (opcode == 17) {

return ((pkt_0 != 0) || (immediate_operand != 0));
} else if (opcode == 18) {

return ((pkt_0 != 0) && (pkt_1 != 0));
} else if (opcode == 19) {

return ((pkt_0 != 0) && (immediate_operand != 0));
} else {

return (pkt_0 == 0);
}

}
// staged -input tree grammar for implementation (vars0 , vars1 , and

vars are specific to each query and are defined in the
harness below)

generator int expr(fun vars0 , fun vars1 , fun vars , int bnd){
if (bnd == 0){

return vars0();
}
int t = ??(1);
if (t == 0) {

return vars();
}
else {

return alu(??, expr(vars0 , vars1 , vars , bnd -1), expr(vars0
, vars1 , vars , bnd -1), expr(vars0 , vars1 , vars , bnd -1), ??);

}
}
// specification function , with BCI inputs as arguments
int comp_5(int pkt_arrival , int pkt_last_time00) {

bit pkt__br_tmp1;
pkt__br_tmp1 = pkt_arrival -pkt_last_time00 >5;
return pkt__br_tmp1;

}
// harness for synthesis
harness void sketch(int pkt_arrival , int pkt_last_time00) {

generator int vars0(){
return {| pkt_arrival |};

}
generator int vars1(){

return {| pkt_last_time00 |};
}
generator int vars(){

return {| pkt_arrival | pkt_last_time00 |};
}
// synthesized expression must be equivalent to specification
assert expr(vars0 , vars1 , vars , 2) == comp_5(pkt_arrival ,
pkt_last_time00);

}

Figure 12: One example of the generated synthesis query for
SKETCH.

D.4.2 Part I: Reproduce the Result in Table 5.
In general, the 10 mutations for program name <X> may

be found at the following folder: /home/ubuntu/workspace/-

cat_eval/benchmarks/Domino_mutations/<X>/

The running script for Banzai ALU:
Default mode:

$ ./quickrun-domino.sh <absolute path to input Domino program>

<user-specified absolute path to output JSON file> <Banzai ALU

name>

Without Predecessor Packing mode:

$ ./quickrun-domino-noPredPack.sh <absolute path to input

Domino program> <user-specified absolute path to output JSON

file> <Banzai ALU name>

Without Preprocessing mode:

$ ./quickrun-domino-noPreprocessing.sh <absolute path to input

Domino program> <user-specified absolute path to output JSON

file> <Banzai ALU name>

See the "num_pipeline_stages" field in the output JSON file for

the number of pipeline stages usage.

As for Tofino ALU:
Default mode:

$ ./quickrun-tofino.sh <absolute path to input Domino program>

<user-specified absolute path to output P4 file>

Without Predecessor Packing mode:

$ ./quickrun-tofino-noPredPack.sh <absolute path to input

Domino program> <user-specified absolute path to output P4 file>

Without Preprocessing mode:

$ ./quickrun-tofino-noPreprocessing.sh <absolute path to input

Domino program> <user-specified absolute path to output P4 file>

See the "num pipeline stages" in the output P4 file for the

number of pipeline stages usage.

As for Chipmunk and Domino compiler:
Should you wish to reproduce the results generated by Chipmunk

and Domino compilers, please refer to their artifact evaluation

instructions, with links listed below:

Chipmunk: https://github.com/chipmunk-project/chipmunk-

project.github.io

Domino: http://web.mit.edu/domino/

D.4.3 Part II: Reproduce the Result in Figure 8 and Table 6.
$ cd /home/ubuntu/workspace/cat_eval/CaT-AE/figure_gen

$ bash figure8.sh

D.4.4 Part III: Reproduce the Result in Figure 9, Figure 10,
and Figure 11.
Generating the running time and #stages used in ILP.

$ cd /home/ubuntu/workspace/cat_eval/CaT-AE/figure_gen

$ bash figure9.sh

$ bash figure10.sh

$ bash figure11.sh

Generating the infeasible and feasible boundary.

Infeasible boundary in Figure 9:

$ time python3 Gurobi_opt_vs_fea.py 128 16 12 Optimal

Feasible boundary in Figure 9:

$ time python3 Gurobi_opt_vs_fea.py 256 16 12 Optimal
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Infeasible boundary in Figure 10:

$ time python3 Gurobi_opt_vs_fea.py 256 16 11 Optimal

Feasible boundary in Figure 10:

$ time python3 Gurobi_opt_vs_fea.py 256 16 12 Optimal

Infeasible boundary in Figure 11:

$ time python3 Gurobi_opt_vs_fea.py 256 15 12 Optimal

Feasible boundary in Figure 11:

$ time python3 Gurobi_opt_vs_fea.py 256 16 12 Optimal

D.5 Evaluation and Expected Results
The results of resource usage should be exactly the same as those

reported in all tables and figures. However, in terms of the running

time, they should be within the same magnitude if you use the

similar machines to rerun the experiments.

D.6 Notes
We put the latest FAQs and updates in https://github.com/CaT-

mindepth/CaT-AE/blob/main/UPDATES.md. If you have any ques-

tions, feel free to open an issue there or let us know through email.

D.7 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-

badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html
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