
Kirigami, the Verifiable Art of Network Cutting
Timothy Alberdingk Thijm

Princeton University
Princeton, USA

tthijm@cs.princeton.edu

Ryan Beckett
Microsoft Research

Redmond, USA
ryan.beckett@microsoft.com

Aarti Gupta
Princeton University

Princeton, USA
aartig@cs.princeton.edu

David Walker
Princeton University

Princeton, USA
dpw@cs.princeton.edu

Abstract—Satisfiability Modulo Theories (SMT)-based analysis
allows exhaustive reasoning over complex distributed control
plane routing behaviors, enabling verification of routing under
arbitrary conditions. To improve scalability of SMT solving, we
introduce a modular verification approach to network control
plane verification, where we cut a network into smaller frag-
ments. Users specify an annotated cut which describes how
to generate these fragments from the monolithic network, and
we verify each fragment independently, using these annotations
to define assumptions and guarantees over fragments akin to
assume-guarantee reasoning. We prove this modular network
verification procedure is sound and complete with respect to
verification over the monolithic network. We implement this
procedure as Kirigami, an extension of NV [25] — a network
verification language and tool — and evaluate it on industrial
topologies with synthesized policies. We observe a 10x improve-
ment in end-to-end NV verification time, with SMT solve time
improving by up to 6 orders of magnitude.

Index Terms—modular verification, network control plane,
control plane verification, routing protocols

I. INTRODUCTION

Today’s networks are labyrinthine and hard-to-analyze sys-
tems. To determine the best paths routers may use to forward
traffic, networks typically run distributed routing protocols.
Despite advances like software-defined networking, these pro-
tocols remain widely used in data centers [40] and wide-area
networks. Millions of lines of decentralized, low-level router
configuration code control protocol behaviors, and operators
must update these device configurations over time. This over-
whelming complexity has led to several notable and costly
outages [47], [52], [54], [55]. Often, the culprits behind these
incidents are subtle network misconfigurations.

In response, researchers have developed a variety of verifica-
tion tools and techniques to catch errors before outages occur.
Some [7], [34], [36]–[38], [43], [46], [49] have targeted the
network data plane, which is responsible for forwarding traffic
from point A to point B. This work has produced scalable,
efficient methods for modeling the data plane and checking
properties of how packets traverse it.

The data plane is produced by the control plane. It uses
the aforementioned routing protocols to decide which routes
forwarding should use. Occasionally, these protocols may

This work was supported in part by the National Science Foundation awards
NeTS 1704336, FMitF 1837030, SHF 2107138, and Facebook Research
Award on “Network control plane verification at scale.”

update their choice of routes — e.g., following a device failure
— and recompute new paths. When this happens, the data
plane is regenerated, and the user must repeat any data plane
analysis. Control plane errors can lead to further issues like
route flapping, leaving human operators to hunt for subtle bugs
in a Kafkaesque morass of router configurations.

To address this problem, researchers have developed another
suite of tools to analyze the control plane [1], [9]–[11],
[17], [19], [22], [24], [25], [50], [57], [58]. Control plane
analyses consider which routes the data plane will use in
given network environments, and check properties of the
network in such environments. One branch of control plane
verification, starting from Minesweeper [9], encodes a network
as a Satisfiability Modulo Theories (SMT) formula and then
asks an SMT solver [8] to check properties of the encoded
network. SMT-based verification has some advantages over
other approaches: it is expressive and can reason symbolically
about network behavior, allowing analyses about all possible
routes a neighbor might announce; it also may form a basis
for network synthesis and repair [21]. Unfortunately, it suf-
fers from scalability issues. Prior work has explored using
abstractions to resolve this problem, e.g., using symmetries in
topologies to compress networks [10], [24]. These abstractions
offer some relief, but cannot always handle arbitrary networks.

Control plane verification users thus face a trade-off: they
may use semi-symbolic or simulation-based tools [1], [11],
[22], [25], [44], [50], [58] to analyze industrial-sized networks
when the flexibility of SMT-based symbolic reasoning is not
necessary; or they must contend with SMT-based verifiers
which may not scale to networks with more than a few hundred
nodes. This paper offers another option: using a user’s own in-
sights about their network’s behavior, we leverage the inherent
modularity of the control plane to cut a monolithic network
into multiple fragments to verify independently. Networks’
modular structure — where end-to-end behaviors emerge
from individual routers’ local decisions — makes cutting an
intuitive way to scale verification. In an SMT-based context,
it allows us to verify properties in the presence of faults or
arbitrary external announcements, which is not shown with
prior abstraction approaches [10], [11]. Building on assume-
guarantee verification of modular programs [23], [32], we
present a new technique for modular verification of control
planes and implement it as Kirigami, an extension for the
NV [25] network verification tool. While we focus on SMT-
based verification, one could combine our cutting technique978-1-6654-8234-9/22/$31.00 ©2022 IEEE

with other methods e.g., model checking, simulation.
In a typical assume-guarantee verification approach, one can

verify a safety property over a system of concurrent processes
by verifying local properties of each process independently,
using assumptions over the process’s inputs and guaran-
tees over its outputs. The verifier will check the required
proof obligations on each component (formulated as assume-
guarantee rules): if all checks pass, then the property holds
for the monolithic system. Our verification technique mirrors
this idea: we verify a property over network fragments (cf.
processes), given assumptions over the rest of the network and
guarantees over our fragments, to conclude that the property
holds for the monolithic network.

We start from an existing model for distributed routing, the
Stable Routing Problem (SRP) [10]. In an SRP, each node of
the network exchanges routes with its neighbors to compute
a locally-stable solution. Like other work in control plane
verification [1], [11], [22], [44], we focus on networks (i.e.,
SRPs) with unique solutions. To define an SRP, we require
complete knowledge of the network and its configurations.
In theory, our work could apply to interdomain routing —
if multiple organizations gave us their configurations, we
could jointly analyze those configurations. In practice, oper-
ators are reluctant to share their configurations outside their
organization. Thus, our work’s main practical application is
on networks controlled by a single entity. This is frequently
the case in large data centers, many of which run distributed
routing protocols such as BGP [2].

We first generalize SRPs to “open SRPs”, in which a
network receives routes along a set of input nodes and sends
out routes along a different set of output nodes. We identify the
input node solutions as our open SRP’s assumptions, and the
output node solutions as its guarantees. We present a procedure
CUT which, given an interface — a mapping from a cut-set
of edges to routes — cuts an open SRP S into two open SRPs
T1 and T2 covering S, and where we replace each cut edge
with a route assumed in one SRP and guaranteed in the other.
Interfaces can follow a network’s natural boundaries, e.g., tiers
or hierarchies in a data center topology [3], [30], [31].

As with the traditional (closed) SRP, we can check that an
open SRP satisfies a given safety property P by verifying that
P holds for the SRP’s solutions. We prove that if P holds on
T1 and T2’s solutions, then it holds on S’s. This is the basis
for our modular network verification technique. Starting from
a network S, an interface I , and a safety property P , we use
CUT(S, I) to obtain a set of N open SRPs T1, . . . , TN that we
verify independently. We verify P and Ti’s guarantees for each
open SRP Ti: if either the property or interface’s guarantees
do not hold, we return a counterexample demonstrating the
solution that does not satisfy P or I .

SMT-based verification time can — depending on the policy
and property — grow exponentially with the size of the
network [9]. Hence, verifying P on each open SRP Ti takes
a fraction of the time to verify P directly on S, and is
embarrassingly parallel. Our experiments demonstrate that this
modular verification technique works well for a variety of

data center, random and backbone networks, with significant
improvements in SMT solve time: we show for one set of
fattree [3] benchmarks that verifying the fattree pod-by-pod
cuts SMT time from 90 minutes to under 2 seconds; verifying
every node individually reduces SMT time to around 10
milliseconds. Taking advantage of parallelism also cuts down
NV end-to-end verification time for our largest benchmarks
from over 2 hours to under 15 minutes. This modularity
can scale verification to tomorrow’s networks, and produce
localized errors when verification fails, empowering network
operators with stronger safety and reliability guarantees.

In summary, we make the following contributions:
• A Theory of Network Fragments. We develop an ex-

tension of the Stable Routing Problem (SRP) model [10]
for network fragments. Our extension provides a method
to cut monolithic SRPs into a set of fragments. We define
interfaces to cut SRPs and map the cut edges to anno-
tations which then define assumptions and guarantees of
our fragments. We prove that under these assumptions, if
these guarantees hold, then a property that holds in every
fragment also holds in the monolithic network. (§IV)

• A Modular Network Verification Technique. We
present a checking procedure to verify SRP properties.
Given a property P we wish to verify, we cut an SRP
S according to a given interface I into fragments, and
generate checks on each fragment to both verify that
our interface soundly captures the monolithic network
behavior, and verify P on every fragment. This enables
a novel approach for modular control plane verification
based on assume-guarantee reasoning. (§V)

• Fast, Scalable and Modular SMT Verification. We im-
plement our technique as Kirigami, an extension for NV,
a network verification language and tool [25]. Kirigami
improves on NV verification scalability and performance,
with an SMT solve time up to six orders of magnitude
faster for a selection of NV benchmarks. (§VI and §VII)

II. OVERVIEW

The Stable Routing Problem. A network is a graph with
nodes V representing routers and edges E representing the
links between them. A distributed control plane uses routing
protocols to determine paths to routing destinations. Each
router deploys its own local rules to broadcast routing an-
nouncements (or routes) and select a “best” route: the details
of these rules vary with the protocol, but generally protocols
focus on minimizing routing costs.

These elements — nodes and edges, a set of routes, and a
set of rules to initialize, compare and broadcast them — form
the basis for our control plane routing model, the SRP [10].
In a well-designed network, this exchange of routes eventually
converges to a stable state, where no node may improve on its
current best route by selecting another offered by a neighbor.
A solution L to the SRP is a mapping from nodes to these
stable routes. While routing can diverge (i.e., have no solution)
or converge to multiple solutions, many typical networks have

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

Fig. 1: A 4-pod fattree topology.

1 type attribute = { id: int; cost: int }
2
3 symbolic d : int (* symbolic id *)
4 require (d = 6 || d = 7 || d = 10 || d = 14 || d

= 15 || d = 18 || d = 19)
5 let nodes = 20 (* topology *)
6 let edges = {
7 0=4; 0=8; 0=12; 0=16;(*...*)
8 16=18; 16=19; 17=18; 17=19;
9 }

10
11 let merge node x y = if x.cost < y.cost then x

else y
12 let trans edge x = {x with cost = x.cost + 1}
13 let init node = match node with
14 | 0n -> if (d = 0) then {id=d; cost=0;} else

NULL
15 | 1n -> if (d = 1) then {id=d; cost=0;} else

NULL (*...*)

Fig. 2: An NV program fat.nv representing Fig. 1.

unique solutions (e.g., when routing costs strictly increase with
distance to the destination [22], [44]): we focus in this paper
on such networks, like other work [1], [11], [22], [44].

An Example SRP. Consider a fattree [3] data center network,
as shown in Fig. 1. Routing in fattree networks typically
follows a Λ shape: traffic that starts from an edge layer switch
(e6, . . . , e19) travels up along a link to an aggregation layer
switch (a4, . . . , a17), then ascends from the pod to a core layer
switch (c0, . . . , c3) in the spine and descends into another pod.

Suppose we wish to verify that every node in a fattree SRP
instance S can reach every edge layer node of the fattree,
where S is running BGP (the Border Gateway Protocol) [40].
We can do so by first modeling S’s routes as highly-simplified
BGP announcements ⟨ p, x ⟩ with 2 fields: an identifier p (cf. a
prefix) and a cost metric x (abstracting, e.g., local preference,
AS path length [12], [51], etc.).1 Each node has an identifier p,
where every node has an initial route ⟨ p, 0 ⟩ for its identifier,
and no route to other identifiers. Nodes will broadcast their
current routes to their neighbors: in this simple example, if a
node has a route ⟨ p, x ⟩, it will send a route ⟨ p, x + 1 ⟩ to
its neighbors (incrementing the metric). Nodes compare each
received route with their current choice and select the one with
the smallest cost, and then re-broadcast if their route changes.
A node u’s solution L(u) is the best route between u’s initial
route and the solutions broadcast by each of u’s neighbors.

Verifying SRPs with NV [25]. To verify all-edge reachability
in S, we must check that for any choice of identifier p of

1In a real network, routes could represent many more BGP fields, but this
example provides the necessary detail to demonstrate the basics of SRPs.

1 include "fat.nv"
2
3 (* map nodes to solutions (stable routes) *)
4 let sol = solution {init = init; trans = trans;

merge = merge}
5 (* check a property of every node's solution *)
6 assert foldNodes (fun n r acc -> acc && r.id = d

&& r.cost <= 4) sol true

Fig. 3: An NV program asserting that every node can reach
every prefix advertised by an edge layer switch.

an edge layer node, all nodes of the network have a path
of cost at most 4 to that node. Naively enumerating all
possible identifiers is obviously inefficient, if not infeasible
in practice. In some scenarios, an equivalence class-based
approach like that of Plankton [50] may make the space of all
identifiers small enough to efficiently enumerate. We will use a
symbolic approach, where we treat the identifier as a symbolic
variable d: we then will verify that for any concrete identifier
instantiating d, every node can reach that identifier. Symbolic
variables can also help verify properties in the presence of
link failures or arbitrary external announcements from outside
one’s network. One verification tool supporting symbolic rea-
soning is NV [25]. NV is a functional programming language
for modeling control planes and verifying their properties
using SMT. An NV program’s components resemble an SRP’s:
it has a topology with nodes and edges; a type of routes
attribute; a function init to initialize routes; a function
trans to broadcast routes; and a function merge to compare
routes. NV provides symbolic and require expressions
to declare and constrain symbolic values, respectively. Fig. 2
presents a condensed NV program for Fig. 1.

Fig. 3 demonstrates how to verify a safety property P in
NV, where P holds iff ∀u. L(u).p = d ∧ L(u).x ≤ 4. We
define a solution (line 4) using init, trans and merge
from Fig. 2. We then assert (line 6) that P holds on this
solution. When we ask NV to verify Fig. 3, it encodes S and
P as an SMT query, and confirms that P holds.

Scaling Up SRP Verification. SMT-based verification is
flexible, but has issues when it comes to scalability. Our
evaluation in §VII shows it scales superlinearly for larger
fattrees with more complex policies: from 0.03 seconds for a
20-node network, to 1.4 seconds for an 80-node network, and
1833.7 seconds for a 320-node network! To verify industrial
fattree networks with 104 or more switches [34], we need a
way to scale this technique up.

Suppose then that we took a large network and cut it into
fragments, then verified a safety property P on each fragment
independently. If P holds for every fragment, then we want
it to hold for the monolithic network; otherwise, we want to
observe real counterexamples as in the monolithic network. To
achieve this goal, our cutting procedure must also summarize
the network behavior external to each fragment.

We incorporate these summaries into the SRP model by
generalizing it to open SRPs. Open SRPs extend the SRP
model by designating some nodes as input nodes and some

c0 c1 c2 c3

a4 a5

e6 e7

⟨ d, 2 ⟩ ⟨ d, 2 ⟩ ⟨ d, 2 ⟩ ⟨ d, 2 ⟩

(a) SRP fragment Tp0

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

ϕ0 ϕ0 ϕ1 ϕ1 ϕ2 ϕ2 ϕ3 ϕ3

(b) SRP fragment Tspines

Fig. 4: SRP fragments Tp0 and Tspines, with input nodes in
blue, output nodes in yellow and assumptions in purple.

others as output nodes. We annotate input and output nodes
with routes representing solutions assumed on the inputs and
guaranteed on the outputs. We express these annotations
using an interface: a mapping from each cut edge to a route
annotation. Given an open SRP S and an interface I , we cut
S into open SRP fragments, where each fragment identifies
assumptions on its inputs and guarantees on its outputs.

Cutting Down Fattrees. We will now move on to demon-
strating this idea for our example. Let’s cut each pod of our
network into its own fragment Tp0 through Tp3, leaving the
spine nodes as a fifth fragment Tspines.

Figs. 4a and 4b show pod 0 and the spines of Fig. 1 as
open SRPs Tp0 and Tspines, respectively. In Tp0, we assume
routes from the spines and check guarantees on a4 and a5.
Every route guaranteed by one fragment is assumed by another
(and vice-versa): if we guarantee that c0 has a route ⟨ d, 2 ⟩ in
Tspines, we assume it has a route ⟨ d, 2 ⟩ in Tp0. The exact
route advertised by an aggregation node a depends on if the
destination identifier d lies in a’s pod or not. For instance, if
d = 6, nodes a4, a5 of pod 0 have a route ⟨ d, 1 ⟩ from their
neighbor e6, while all other aggregation nodes have a route
⟨ d, 3 ⟩ (via the core nodes). We write ϕi as a shorthand for
this reasoning over costs in Fig. 4b, where

ϕi = if d in pod i then ⟨ d, 1 ⟩ else ⟨ d, 3 ⟩

Verifying Network Fragments. In modular verification, we
perform an independent verification query for each fragment:
we encode the open SRP and property, along with an assump-
tions formula assuming a state of the inputs and a guarantees
formula to check on the state of the outputs. We then submit
every query to our solver and ask if the network has a solution
where, under the given assumptions, either the property is
false or the guarantee do not hold. The solver searches for
a counterexample demonstrating a concrete violation of the
property or our guarantees. Guarantee violations demonstrate
possible bugs in our network implementation or mistakes in
our beliefs, just as property violations do.

Let us consider our fattree network again. Suppose we
misconfigured a4 to black hole (silently drop) outgoing traffic.

1 include "fat.nv"
2
3 let partition node = match node with
4 | 0n | 1n | 2n | 3n -> 0 (* spines *)
5 | 4n | 5n | 6n | 7n -> 1 (* p0 *)(*...*)
6
7 let interface edge x = match edge with
8 | 0˜_ | 1˜_ | 2˜_ | 3˜_ -> x = { id = d; cost

= 2; }
9 | 4˜_ | 5˜_ -> x = { id = d; cost = if d > 3

&& d < 8 then 1 else 3; }
10 | 8˜_ | 9˜_ -> x = { id = d; cost = if d > 7

&& d < 12 then 1 else 3; }

Fig. 5: An (abbreviated) NV program to cut Fig. 2 into pods.

Consider what happens when d = 6, meaning the destination
is e6: then d is in a4’s pod. Because a4 is dropping outgoing
traffic, the best route c0 will receive will be a ⟨ 6, 3 ⟩ route from
one of a8, a12, a16, and hence L(c0) = ⟨ 6, 4 ⟩. The solution
in Tspines will be as follows:

drop drop

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

⟨6, 1⟩⟨6, 1⟩⟨6, 3⟩⟨6, 3⟩⟨6, 3⟩⟨6, 3⟩⟨6, 3⟩⟨6, 3⟩

⟨ 6, 4 ⟩ ⟨ 6, 2 ⟩ ⟨ 6, 4 ⟩ ⟨ 6, 2 ⟩

Our interface maps c0a8 to ⟨ d, 2 ⟩, so we must guarantee
that L(c0) = ⟨ d, 2 ⟩ when verifying Tspines. Due to the bug,
this check fails (⟨ 6, 2 ⟩ ̸= ⟨ 6, 4 ⟩) and our solver returns
the solution above as a counterexample. This localizes the
counterexample to this part of the network; our other frag-
ments will pass verification. This means that, so long as our
interface remains the same, we only need to correct the bug
and re-verify Tspines, without needing to re-verify any other
fragment. In §IV, we prove that our cutting technique is sound
with respect to verification of P on the monolithic network S:
if our guarantees and P hold for all fragments of S, then P
holds for the monolithic network S.

Verifiable Network Cutting with Kirigami. As part of our
work, we implemented an extension Kirigami to NV for
cutting and verifying networks. Fig. 5 shows an NV file with
new partition and interface functions. partition
maps each node to a fragment, while interface adds
assertions to check that a route x along a cross-fragment edge
equals the given annotation, e.g., that the route from 0n to
4n has id d and cost 2. These functions provide the necessary
detail to construct our fragments and modularly verify them.

A Cut Above the Rest. Pod-based cuts suit our hierarchical
view of fattrees, but we can consider alternative cuts. We could
cut Fig. 2 so that every node is in its own fragment. Verifying
a single node in SMT can take milliseconds, and hence leads
to significant performance improvements. The corresponding
NV program resembles Fig. 5, except every node maps to its
own fragment and we annotate every edge.

III. BACKGROUND ON THE STABLE ROUTING PROBLEM

We summarize prior work [10] on the Stable Routing Prob-
lem (SRP) network model. Its components resemble routing
algebras used for reasoning about convergence of routing
protocols [13], [28], [53], but SRPs also include a network
topology for reasoning about properties such as reachability
between nodes.

An SRP instance S is a 6-tuple (V,E,R, init,⊕, trans),
defined as follows.

Topology. V is a set of nodes and E ⊆ V × V is a set of
directed edges. We write uv for an edge from node u to node
v. Edges may not be self-loops: ∀v ∈ V. vv /∈ E.

Routes. R is a set of routes that describe the fields of routing
messages. For example, when modeling BGP, R might be a
set of tuples of an integer local preference, a set of community
tags, and a sequence of AS numbers representing the AS
path [12], [51].

Node Initialization. The initialization function init : V → R
describes the initial route of each node. When modeling single
destination routing, init may map a destination node e19 to
some initial route rd, and all other nodes to a null route; in
multiple destination routing, we may have many initial routes.

Route Update. The merge function ⊕ : R × R → R defines
how to compare routes. ⊕ represents updates of a node’s
selected route: we assume ⊕ is associative and commutative,
i.e., the order in which routes are merged does not matter.

Route Transfer. The transfer function trans : E × R → R
describes how routes are modified between nodes. Given an
edge uv and a route r from node u, trans(uv, r) determines
the route received at v.

Solutions. A solution L : V → R is a mapping from nodes
to routes. Intuitively, a solution is defined such that each node
is locally stable, i.e., it has no incentive to deviate from its
currently chosen neighbors. Nodes compute their solution via
message exchange, where each node in the SRP advertises
its chosen route to each of its neighbors. Formally, an SRP
solution L satisfies the constraint:

L(v) = init(v)⊕
⊕
uv∈E

trans(uv,L(u)) (1)

where
⊕

is the sequence of ⊕ operations on each transferred
route trans(uv,L(u)) from each neighbor u of v. These
received routes are merged with v’s initial value init(v).

A solution may determine an SRP’s forwarding behavior
or another decision-making procedure, as shown in [10]. We
omit discussing forwarding behavior to focus on a general SRP
definition without restricting ourselves only to forwarding.

IV. CUTTING SRPS

We now introduce our original contributions, starting with
open SRPs. We define a CUT procedure to partition an open
SRP into fragments. We prove soundness and completeness of
fragment solutions with respect to the larger SRP’s solution.

a

c

b

e

d

(a) SRP S

a

c

b

e

d

(b) SRP T

a

b

e

d

(c) SRP U
Fig. 6: A series of successive cuts which produce open SRPs
S, T and U . Base nodes are grey, input nodes blue and output
nodes yellow. Each cut (in red) slices off part of the SRP,
leaving input nodes to represent the cut components.

Notation. We introduce some notation in this section. dom(f)
is the domain of the function f , and f |X is the restriction
of f to X ⊆ dom(f). We use subscripts to specify SRP
components, e.g., initS refers to SRP S’s init component.

Open SRPs. An open SRP generalizes our earlier SRP defi-
nition to include assumptions and guarantees. An open SRP
instance S is an 8-tuple (V,E,R, init,⊕, trans, ass, guar).

The first six elements are exactly as for regular (closed)
SRPs. The final two elements, ass (“assumptions”) and guar
(“guarantees”), are partial functions (V ↪→ R) mapping
mutually disjoints subsets V in , V out ⊆ V to routes. We use
V in (input nodes) as a shorthand for dom(ass) and V out

(output nodes) as a shorthand for dom(guar). All nodes that
are neither input nor output nodes are “base nodes” V base . A
closed SRP is an open SRP where V in = V out = ∅. Going
forward, we assume an open SRP wherever we write “SRP”.

Input nodes are source nodes (i.e., they have in-degree 0).
Hence, they act as auxiliary nodes, indicating where a fixed
incoming route “arrives” from outside the SRP, as specified
by the assumptions ass. Output nodes correspondingly mark
where routes “depart” the SRP, per the guarantees guar. We
do not require any connectivity properties of output nodes:
they simply identify an outgoing route we wish to guarantee,
without detailing where the SRP is announcing that route to.2

Fig. 6 illustrates this concept.

Definition IV.1 (Open SRPs). An open SRP instance S =
(V,E,R, init,⊕, trans, ass, guar) has the following properties:

• V = V in ∪ V out ∪ V base and V in , V out , V base are
pairwise-disjoint;

• ass : V in → R and guar : V out → R; and
• ∀v ∈ V in . in-degree(v) = 0.

Open SRP Solutions. A mapping L : V → R is a solution
to an open SRP iff :

L(u) = init(u)⊕
⊕
vu∈E

trans(vu,L(v)) ∀v /∈ V in (2)

L(u) = ass(u) ∀v ∈ V in (3)
L(u) = guar(u) ∀v ∈ V out (4)

Note that Equations (2) and (4) both apply for all outputs v ∈
V out . Solutions for open SRPs resemble closed SRP solutions,
with the addition of constraints based on the values of ass and

2We could have alternatively attached auxiliary nodes to output nodes to
show where routes went, but we found this definition more intuitive.

guar. For any input node u, its assumption ass(u) determines
the node’s solution directly; for an output node u, its solution
L(u) must be consistent with both the right-hand side of (2)
and the right-hand side of (4). Hence, if ∃u ∈ V out . init(u)⊕⊕

vu∈E trans(vu,L(v)) ̸= guar(u), there is no solution to the
open SRP. We focus on open SRPs with unique solutions.

We consider safety properties on SRP solutions. A property
P : V → 2R holds on an SRP S iff

∀v ∈ V base
S ∪ V out

S . L(v) ∈ P (v) (5)

We ignore input nodes as they are “outside” the SRP. We
can express many properties this way, including reachability,
isolation, path length, waypointing and fault tolerance [9], but
not convergence properties or properties over multiple nodes,
e.g., that two nodes u, v have the same solutions L(u) = L(v)
(useful for checking consistency across nodes, irrespective of
their exact solutions).

Interfaces and Cutting SRPs. We now consider how to cut an
SRP S into two SRPs T1 and T2, where T1 and T2 cover S and
replicate its behavior using their assumptions and guarantees.
We select a cut-set C ⊆ E of edges in S and annotate each
cut edge uv with a route that describes the solution transferred
from u to v. This cut-set divides the non-input nodes VS \V in

S

into two disjoint subsets, W1 and W2 (we will treat input nodes
separately). We call this annotated cut-set an interface I .

Definition IV.2 (Interface). Let S be an SRP and let C ⊆ E
be a cut-set partitioning VS \V in

S . I : C → RS is an interface
if it maps every element uv of C to a route I(uv) in RS .

We now define a CUT procedure. Given an SRP S and an
interface I , CUT(S, I) partitions S into two SRPs, T1 and T2,
which we call fragments. We can CUT an SRP into arbitrarily
many SRPs by recursively cutting the resulting fragments.

Definition IV.3 (CUT). Let S be an SRP and let I be an
interface over S. Let (W1,W2) be disjoint subsets of VS \V in

S

as cut by dom(I). Given S and I , CUT(S, I) = (T1, T2),
where T1 and T2 are open SRPs where, for i ∈ {1, 2}:

V in
i = {u | u ∈ V in

S ∧ ∃uv ∈ ES . v ∈Wi}
∪ {u | ∃uv ∈ dom(I). v ∈Wi}

V out
i = {u | u ∈Wi ∧ u ∈ V out

S }
∪ {u | ∃uv ∈ dom(I). u ∈Wi}

Vi = Wi ∪ V in
i

Ei = {uv | u, v ∈ Vi ∧ uv ∈ ES}
Ri = RS

⊕i = ⊕S

initi = initS |Vi

transi = transS |Ei

assi(u) =

{
assS(u) if u ∈ V in

S

I(uv) if uv ∈ dom(I) ∧ v ∈ Vi

guari(u) =

{
guarS(u) if u ∈ (V out

S \ V in
i)

I(uv) if uv ∈ dom(I) ∧ v /∈ Vi

The resulting SRPs T1 and T2 have the following properties:

• Covering: V1∪V2 = VS and E1∪E2 = ES , with V in
1 ∪

V in
2 ⊇ V in

S and V out
1 ∪ V out

2 ⊇ V out
S ;

• Policy preservation: init, trans and ⊕ produce the same
routes as in S for all possible routes in RS ;

• Input-output nodes: every input node u in T1 or T2

that is not an input node “inherited” from S has a
corresponding output node in the other fragment, and
such that ass1(u) = guar2(u) or ass2(u) = guar1(u);

• Input-output nodes produced by I: ∀uv ∈ dom(I), u
is an input-output node with the above property;

• Shared inherited inputs: the only other nodes shared by
T1 and T2 are input nodes into both fragments inherited
from S: V1 ∩ V2 = (V in

1 ∩ V in
2) ∪ (V in

1 ∪ V in
2) \ V in

S .

Importantly, CUT defines T1 and T2 to have equal assump-
tions and guarantees along each cut edge using our interface I .
For each edge uv ∈ dom(I), CUT(S, I) establishes a guaran-
tee guar(u) = I(uv) in T1 and an assumption ass(u) = I(uv)
in T2 (or vice-versa). By requiring guarantees and assumptions
to be equal, we rely on the stability of an open SRP’s
solution to rule out circular (self-justifying) assumptions. As
u’s solution is both assumed in one fragment and guaranteed
in the other, we refer to it as an input-output node.

We prove that if we use CUT to produce fragments T1 and
T2 from S, then the joined solutions of T1 and T2 are a solution
of S (soundness); and that if S has a solution, then there
always exists an interface I that given to CUT produces two
fragments T1 and T2 such that the solution of S is a solution
(when appropriately restricted) for T1 and T2 (completeness).

Correctness. We now present theorems relating an SRP’s
solution to the solutions of its CUT-produced fragments. By
showing that the fragments’ solutions are the same as the
monolithic SRP’s, we can use the fragments in place of the
monolithic SRP during verification of a property P . Proofs are
available in an extended version of the paper [4].

We first prove that the solutions of the fragments T1, T2 are
a solution to the monolithic SRP S: each node of S maps to
its fragment solution, with S’s input nodes mapping to their
expected assumptions.

Theorem IV.1 (CUT is Sound). Let S be an open SRP, and let
I be an interface over S. Let CUT(S, I) = (T1, T2). Suppose
T1 has a unique solution L1 and T2 has a unique solution L2.
Consider a mapping LS

′ : VS → R, defined such that:

∀v ∈ V1. LS
′(v) = L1(v)

∀v ∈ V2. LS
′(v) = L2(v)

∀v ∈ V in
S . LS

′(v) = assS(v)

Then LS
′ is a solution of S.

We can always find a suitable interface I to cut S, such
that T1 and T2 have the same solution as S for each node: we
simply annotate each cut edge uv with the solution LS(u),
which is the solution transferred from u to v in S.

Algorithm 1 The fragment checking algorithm.

1: proc SOLVE(fragment T , property P)
2: N ← ENCODE(T) ▷ (2)
3: A←

∧
u∈V in

T
LT (u) = assT (u) ▷ (3)

4: G←
∧

u∈V out
T
LT (u) = guarT (u) ▷ (4)

5: Q←
∧

u∈V base
T ∪V out

T
LT (u) ∈ P (u) ▷ property check

6: return ASKSAT(A ∧N ∧ ¬(G ∧Q))

7: proc CHECK(SRP S, property P , interface I)
8: T1, . . . , TN ← CUT(S, I)
9: for i← 1, N do in parallel

10: r ←SOLVE(Ti, P)
11: if r ̸= UNSAT then
12: return r
13: return UNSAT

Theorem IV.2 (CUT is Complete). Let S be an open SRP,
and let I be an interface over S. Let CUT(S, I) = (T1, T2).
Assume S has a unique solution LS . Assume that ∀uv ∈
dom(I). I(uv) = LS(u). Consider the following two map-
pings L1

′ : V1 → R and L2
′ : V2 → R, defined such that:

∀v ∈ V1. L1
′(v) = LS(v)

∀v ∈ V2. L2
′(v) = LS(v)

Then L1
′ is a solution for T1 and L2

′ is a solution for T2.

Our proof of soundness implies that any property that holds
over our fragments will hold over the monolithic network.

Corollary IV.3 (CUT Preserves Properties). Let S be an open
SRP, and let I be an interface over S. Let CUT(S, I) =
(T1, T2). Let P be a safety property. Assume S has a unique
solution LS , and that T1 has a solution L1 and T2 has a
solution LS . Then if P holds on T1 and P holds on T2, P
holds on S.

V. CHECKING FRAGMENTS IN SMT

We now present our three-step modular verification method-
ology: (i) given an SRP S and an interface I , produce N
fragments using CUT(S, I); then (ii) in parallel, encode each
fragment to SMT and check its guarantees and a safety
property P under the given assumptions; and (iii) if any
guarantees fail, let the user refine I or correct network bugs.
If the SMT solver verifies P and all guarantees over S’s
fragments, we can conclude that it has verified P over S.

The Fragment Checking Algorithm. Algorithm 1 shows how
we cut an SRP and check the three constraints on open SRP
solutions (described in §IV) on each of the fragments. We start
in the CHECK procedure on line 1.7. CHECK calls CUT(S, I)
to cut S into fragments, and then calls SOLVE (line 1.1) on
each fragment, reporting any SAT result it receives back from
the solver. SOLVE encodes (2) on line 1.2, (3) on line 1.3, (4)
on line 1.4, and the check that P holds on line 1.5. Since we
want to know if G or P are ever violated, our query formula
conjoins ENCODE(T) and A with the negation of G∧Q (line

1.6). ASKSAT asks an SMT solver if this formula is satisfiable,
and returns either SAT with a model, or UNSAT. This model
will be a mapping L from VT to RT where the ENCODE(T)
and A constraints hold, but ∃u ∈ V out

T . LT (u) ̸= guarT (u)
(guarantee violation) or ∃u ∈ VT . LT (u) /∈ P (u) (property
violation). Otherwise, if the solver returns UNSAT, then the
guarantees and property always hold.3

Refining Interfaces. If every fragment returns UNSAT, by
Corollary IV.3, we conclude that P and G hold and the
interface is correct. However, if any fragment returns SAT, we
must determine why our property or guarantees were violated.
For example, in §II, we considered if our interface correctly
captured the intended network behaviour, but a bug in the
network policy led to a guarantee violation. If the reverse were
true — our network is configured correctly, but our interface
is incorrect — we must refine our interface to correct it. Both
cases may be common in practice, and point to the importance
of checking our interfaces: counterexamples provide users
with insight into why the network’s actual behavior does not
conform to their beliefs. Other annotation checking tools like
Dafny [41] may use a similar interactive process of refining
interfaces as the user identifies inconsistencies or bugs.

By Theorem IV.1, we know that any incorrect interface will
not define a solution in T1 and T2, meaning our guarantee
constraint in SOLVE fails and a counterexample is returned.
This counterexample may then inform a new interface we
can provide in a successive run of CHECK. Returning to
our fattree fragments in Fig. 4, suppose we used the same
interface except for an incorrect annotation I(c0a4) = ⟨ d, 1 ⟩.
To check the corresponding guarantee, we generate a con-
straint Lspines(c0) = ⟨ d, 1 ⟩. SOLVE(Tspines, P) returns SAT,
providing Lspines(c0) = ⟨ d, 2 ⟩ as a counterexample. We can
then inspect Tspines to see that ⟨ d, 1 ⟩ is not a possible route
given the assumptions on c0’s input nodes, and correct our
interface to specify ⟨ d, 2 ⟩ instead.

VI. IMPLEMENTATION

We built Kirigami on top of the NV language [25]. NV
represents routing protocols, such as BGP, OSPF and RIP,
using an SRP-like model and a toolbox of types and data
structures such as booleans, integers, tuples, records, maps
and non-recursive functions. Our Kirigami extension adds
partition and interface functions to NV: when we run
NV on a file that declares these functions, NV cuts the SRP
into fragments as described by Definition IV.3 of CUT. The
partition function maps each node to a fragment, while
the interface function defines the interface I .

Kirigami’s SMT encoding follows Algorithm 1, using NV’s
monolithic SRP encoding as the encoding function ENCODE.
Our implementation uses the OCaml Parmap library [14]
to parallelize fragment-specific work, including decomposing
properties and the embarrassingly-parallel SOLVE procedure.
The only limit on parallelism is the number of CPU cores.

3Given a network with multiple solutions, SOLVE checks if any solution
consistent with the assumptions from the interface also satisfies the guarantees
and property; other interfaces may be necessary to cover all solutions.

VII. EVALUATION

We evaluated Kirigami on a variety of NV benchmarks
representing fattree, random and Internet topologies. Our ques-
tions focus on the scalability and performance of Kirigami
in comparison to NV, specifically: (i) does Kirigami improve
on NV verification time across topologies and properties, and
(ii) how do different cuts impact Kirigami performance? We
consider two metrics for verification time: the maximum time
reported to verify an SMT query encoding the monolithic
network or fragment using the Z3 [15] SMT solver;4 and the
“total time” of NV, which is the time taken by NV’s pipeline
of network transformations, partitioning (for cut networks),
encoding to SMT and solving the query or queries.

We ran each benchmark on a computing cluster node with a
2.4GHz CPU and up to 128GB of memory per CPU core. For
cut benchmarks, we parallelized partitioning and solving over
up to 32 cores.5 Each benchmark tested verification of either
the monolithic network or a cut network. We timed out any
benchmark that did not finish solving a Z3 query in 2 hours.6

Fattrees. To evaluate Kirigami’s performance for fattrees, we
made use of the shortest path policy SP and valley-free policy
FAT described in [25], along with two extensions: an all-edge
reachability policy AP and an original fault-tolerance policy
MAINT. Whereas SP checks reachability of a fixed prefix of
an edge layer node, AP verifies that all prefixes of edge layer
nodes are reachable using a symbolic variable for the set of
possible prefixes. MAINT extends SP by requiring that nodes
avoid routing through a non-destination node down which
is currently down for maintenance. We check this property
for any down node by encoding down as a symbolic value.
The set of routes R modelled routing using a combination of
eBGP, connected and static routes: for eBGP, we represented
its fields with bitvectors representing local preference, AS path
length, the multi-exit discriminator (MED), and a set of integer
BGP community tags; for connected and static routes, we
use integers representing the next hop; we model the choice
between eBGP, connected and static routing using 2 bits.

As in [25], we parameterize fattree designs by k, the number
of pods: we vary the topology size from k = 4 (20 nodes) to
k = 20 (500 nodes) to assess scalability.7 Furthermore, we
consider four different cuts of our fattree networks:

• Vertical: creates 2 fragments, each with half the spines
and half the pods (5k

2

8 nodes);
• Horizontal: creates 3 fragments: the pod containing the

routing destination (k nodes), the spines (k
2

4 nodes), and
all the other pods (k2 − k nodes);

4As we can solve each fragment SMT query independently, the maximum
query time is an upper bound on the total SMT solve time when we solve
every fragment in parallel.

5Benchmarks with i < 32 fragments ran in parallel on i cores. As each
core could use up to 128 GB of memory, the total memory available was
128i GB (up to 4 TB).

6Cut benchmarks call Z3 multiple times, and hence had a two-hour limit
on individual calls: total NV time could then exceed 2 hours.

7A k-fattree has 5
4
k2 nodes and k3 edges.

• Pods: creates k + 1 fragments (given k pods): the spine
nodes, and each pod (k nodes) in its own fragment; and

• Full: creates |V | fragments (given |V | nodes), with every
node in its own fragment.

To simplify the process of coming up with interfaces for
evaluating these parametric networks, we wrote a script to
generate interfaces for each of our policies. We computed
BGP AS path lengths for each node using graph algorithms,
and then generated the other route fields according to the
policy’s behavior.8 For SP, we only computed shortest paths.
For AP, we determined path lengths based on a node’s tier
relative to the symbolic destination node, as presented in
§II. For FAT, we replicated how the policy sets community
tags according to each pod’s tier to block down-up-down
routes (valleys) [20], [48]. For MAINT, we used Yen’s 2-
shortest paths algorithm [59]: this gives the shortest and
second-shortest path (taken if down lies on the shortest path)
to the destination from each node. We then assigned routes
conditioned on the length of the shortest path avoiding down.

We compare SMT verification time for monolithic bench-
marks versus their cut counterparts in Fig. 7. We plot the
number of nodes in the monolithic benchmark against the
maximum time spent by Z3 solving the SMT queries. Time
is shown on a logarithmic scale. All policies show extreme
improvements in SMT time as the number of fragments grows.
The maximum SMT time for a full cut fragment of our largest
SP benchmark is six orders of magnitude faster than the
monolithic time. The FAT policy’s SMT encoding is most
complex, leading to timeouts for the monolithic FAT16 and
FAT20 benchmarks: monolithic SMT solving also times out
for AP20 and MAINT20. Most fragments are proportionally
sized in terms of non-input nodes9, but fragments with more
input nodes such as spine fragments or with more complex
policies tend to take longer to solve.

Fig. 8 plots the times for end-to-end NV verification, again
on a logarithmic scale. These times include partitioning the
network and encoding queries to SMT. SMT encoding and
solving dominate all other operations in all benchmarks, except
for fully-cut benchmarks, where partitioning is the longest-
running operation (between 25–65% of NV time). Partitioning
takes up to 25% of NV time for the pods and horizontal cuts:
thanks to the reduced SMT time for these benchmarks, they
see the best speedup relative to the monolithic benchmarks,
e.g., for k = 16 benchmarks, we see the pods cut finish 5–
25 times faster than the monolithic benchmark. The pods and
full cut benchmarks for FAT20 hit our memory limit with 128
GB per core. We increased available memory while decreasing
cores (16 cores, 256 GB for pods; 8 cores, 512 GB for full) to
handle them (results in Fig. 8c). This does not affect Z3 times,
but NV times could improve with more available memory.

Random Networks. We next assess Kirigami with

8We used Kirigami’s counterexamples to debug mistakes in our reasoning
when writing our script, as described in §V.

9The horizontal benchmark is a notable exception, where the “non-
destination pods” fragment is significantly larger.

0 200 400
≤ 10−2

100
102
104 SMT t/o

Nodes

SM
T

Ti
m

e
[s
]

(a) SP

0 200 400

Nodes

(b) AP

0 200 400

Nodes

(c) FAT

0 200 400

Nodes

(d) MAINT
mono.
vert.

horiz.
pods
full

Fig. 7: Largest SMT solve times for fattree benchmarks.

0 200 400

100

102

104

Nodes

N
V

Ti
m

e
[s
]

(a) SP

0 200 400

Nodes

(b) AP

0 200 400

Nodes

(c) FAT

0 200 400

Nodes

(d) MAINT
mono.
vert.

horiz.
pods
full

Fig. 8: NV times for fattree benchmarks.

24 27 210
10−2
100
102
104 timeout

Nodes

SM
T

Ti
m

e
[s
]

mono.
8

16
full

Fig. 9: Largest SMT solve times for random networks.

randomly-generated topologies of N nodes using the
Erdős–Rényi–Gilbert model [16], [26], where each edge
has independent probability p of being present. To assess
scalability, we vary N and p in our experiments according to
a parameter x where N = 2x and p = 22−x for x ∈ [4, 12]:
these choices lead to networks where 2–6% of nodes are
disconnected from the others. We use BGP routes and a
pure shortest-path policy based on SP for these networks,
and check that nodes can reach the destination: we then
report counterexamples for disconnected nodes and a positive
verification result for connected nodes. Once again, we
used a script to generate interfaces using a shortest paths
algorithm. To choose cuts, we use a graph partitioning tool,
hMETIS [35], to compute i fragments for each network.
The computed fragments minimize the number of edges cut
between fragments, and capture clustering behavior of the
topology, while minimizing variance in fragment size. We
consider i = 8 and i = 16, and a full cut (i = |V |).

We show the maximal SMT solve times for these bench-
marks in Fig. 9 and NV times in Fig. 10.10 Monolithic
verification hits our Z3 timeout at N = 256; with 8 fragments,
verification times out on the 8 times larger N = 2048 network.

10We included verification times for both connected and disconnected
fragments: we did not see significant differences between the two.

24 27 210

100
102
104 timeout

Nodes

N
V

Ti
m

e
[s
]

mono.
8

16
full

Fig. 10: NV times for random networks.

mono. 8 64 512
10−2

100
102

Fragments

SM
T

Ti
m

e
[s
]

B41
B174
B754

Fig. 11: Largest SMT solve times for TopologyZoo networks.

With 16 fragments, Z3 verifies N = 4096 in under 8 minutes,
and when fully partitioning, Z3 takes at most 0.4 seconds to
finish, with NV terminating for N = 4096 after 37 minutes.

Backbone Networks. We evaluated Kirigami with backbone
network topologies from the Internet Topology Zoo [39]. We
consider three networks: a 41-node (50-edge) topology B41,
a 174-node (205-edge) topology B174 and a 754-node (895-
edge) topology B754. As before, we model BGP routing
throughout. B41’s policy enforces no-transit and drops routes
transiting [20] through AS customers or peers (relationships
inferred from the topology [45]). B174 and B754 use a
shortest-path policy as in SP. As with the random net-
works, we use hMETIS to compute i fragments. We consider
i = 2, 4, 7, 41 for B41, i = 2, 4, 20, 174 for B174, and
i = 2, 4, 8, 25, 75, 754 for B754.

mono. 8 64 512
10−1

101

103

Fragments

N
V

Ti
m

e
[s
]

B41
B174
B754

Fig. 12: NV times for TopologyZoo networks.

Fig. 11 and Fig. 12 show how the number of fragments
affects SMT solve time and NV time, respectively. Like other
benchmarks, larger cuts lead to greater reductions in SMT
solve time, while NV time is lowest for non-full cuts (i = 4
for B174 and i = 25 for B754).

VIII. RELATED WORK

Data Plane Analysis. Much prior work has analyzed proper-
ties of the network data plane [7], [34], [36]–[38], [43], [46],
[49]. These tools operate on snapshots of the data plane —
representing the global forwarding state at a single point in
time — and verify that forwarding properties are satisfied.

Our approach most closely resembles the work of Ja-
yaraman et al. on SECGURU and RCDC [34]. SECGURU
verifies reachability using invariants it infers from specific data
center topologies: our work develops a formal theory to verify
arbitrary properties and invariants as specified by a user’s
interface, provides a framework for doing so automatically
and instead focuses on the control plane.

Another relevant work is that of Plotkin et al. [49]. They
demonstrate the use of bisimulations to relate simpler networks
and formulas to more complex ones, improving verification
scalability. Modular verification is recognized as a viable
direction but left as future work; we focus on using modular
verification in the control plane.

Control Plane Analysis. Our open SRP model builds on work
on formal models of control planes, in particular, Bonsai’s
SRP model [10]. Unlike other prior work [13], [27], [28],
we ignore network convergence and focus on networks with
unique solutions, following other state-of-the-art [22], [44].

Two efforts closest to our own in modular control plane
verification are Lightyear [56] and Timepiece [5]. Lightyear
verifies safety properties for BGP networks using local in-
variant checks on a network’s nodes and edges. Invariants in
Lightyear are formulas rather than concrete routes, reducing
the annotation burden; however, it cannot verify reachabil-
ity properties and is restricted to BGP. Timepiece likewise
chooses different tradeoffs to Kirigami: while it also allows
users to specify arbitrary invariants, the user must provide
specific times for their invariants and reason over when routes
arrive, which may be difficult to do for complex networks.

Other control plane verification tools scale by abstract-
ing routing behaviors, rather than modularizing the network.
Bonsai [10] and Origami [24] compress concrete networks
to smaller abstract networks which soundly approximate the

original. Compression requires similar forwarding behavior
between nodes; our approach avoids this restriction.

Our SMT encoding is inspired by Minesweeper [9], al-
though we do not consider packet forwarding (only routing)
and Minesweeper cannot perform modular verification. Several
other tools [1], [11], [25], [44], [50], [58] use simulation-
based techniques to scale verification up to large networks,
but make pragmatic choices as to what arbitrary behaviors
they can represent or properties they can verify. For instance,
Plankton [50] uses explicit-state model checking to check a
comparable set of properties to Minesweeper. Plankton can
analyze networks with symbolic packets by using equivalence
classes, but appears to need additional support to model other
routing characteristics symbolically. None of these tools mod-
ularize the network: one could potentially extend them with
modular techniques to improve their scalability. Other analyses
also do not consider modularizing the network, and many are
more restrictive than our approach: either limited to specific
network properties [17], [22] or to specific protocols [57].

Modular Verification. Our work borrows from the compo-
sitional verification technique of assume-guarantee reason-
ing [6], [18], [23]. Such reasoning has been widely used
in software, hardware and reactive systems [18], [29], [32].
While [42] applies assume-guarantee in network congestion
control, it appears to be unexplored in analyzing routing.
Instead of modeling processes, we model network fragments,
whose shared environment is their input and output nodes.
By requiring a partition’s assumptions and guarantees to be
equal, our reasoning avoids the common pitfall of circularity
by relying on the stability of an open SRP’s solution. Work
exists on improving SMT solver performance by heuristically
partitioning an SMT instance into independent instances with
distinct search spaces [33]. Our approach is specifically for
network fragments, where we focus on generating already-
partitioned SMT formulas. For large formulas, we could
additionally apply formula partitioning techniques.

IX. CONCLUSION

Networks are growing faster than SMT-based verification
can scale. Scalable and modular verification techniques can
harness the fact that operators build networks bottom-up using
local policies at each node. By providing interfaces describing
a network’s local invariants, operators can make their networks
more robust and easier to understand. We present a formal
model representing a network as a collection of fragments, and
show how our modular verification procedure uses this model
to catch bugs and check the correctness of users’ interfaces.
We prove our procedure is sound and demonstrate it with
Kirigami, which dramatically speeds up network verification.

X. ACKNOWLEDGMENTS

We thank the ICNP anonymous reviewers and our shepherd,
Olaf Maennel, for their astute and helpful feedback.

REFERENCES

[1] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya
Akella. Tiramisu: Fast multilayer network verification. In 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
20), pages 201–219, 2020. https://www.usenix.org/system/files/nsdi20-
paper-abhashkumar.pdf.

[2] Anubhavnidhi Abhashkumar, Kausik Subramanian, Alexey Andreyev,
Hyojeong Kim, Nanda Kishore Salem, Jingyi Yang, Petr Lapukhov,
Aditya Akella, and Hongyi Zeng. Running BGP in data centers at
scale. In 18th USENIX Symposium on Networked Systems Design and
Implementation, NSDI, pages 65–81. USENIX Association, 2021.

[3] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A
scalable, commodity data center network architecture. In SIGCOMM,
2008.

[4] Timothy Alberdingk Thijm, Ryan Beckett, Aarti Gupta, and David
Walker. Kirigami, the verifiable art of network cutting, 2022. https:
//arxiv.org/abs/2202.06098.

[5] Timothy Alberdingk Thijm, Ryan Beckett, Aarti Gupta, and David
Walker. Modular control plane verification via temporal invariants, 2022.
https://arxiv.org/abs/2204.10303.

[6] Rajeev Alur and Thomas A Henzinger. Reactive modules. Formal
methods in system design, 15(1):7–48, 1999.

[7] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin,
Dexter Kozen, Cole Schlesinger, and David Walker. NetKAT: Semantic
foundations for networks. In POPL, 2014.

[8] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In
Handbook of model checking, pages 305–343. Springer, 2018.

[9] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. A general
approach to network configuration verification. In SIGCOMM, August
2017.

[10] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. Control
plane compression. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, SIGCOMM ’18, pages
476–489, New York, NY, USA, 2018. ACM.

[11] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. Abstract
interpretation of distributed network control planes. Proceedings of the
ACM on Programming Languages, 4(POPL):1–27, 2019.

[12] R. Chandra, P. Traina, and T. Li. BGP communities attribute. rfc 1997,
RFC Editor, 1996. https://www.rfc-editor.org/rfc/rfc1997.txt.

[13] Matthew L Daggitt, Alexander JT Gurney, and Timothy G Griffin. Asyn-
chronous convergence of policy-rich distributed Bellman-Ford routing
protocols. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, pages 103–116. ACM, 2018.

[14] M. Danelutto and R. Di Cosmo. A “minimal disruption” skeleton
experiment: Seamless map & reduce embedding in ocaml. Procedia
Computer Science, 9:1837–1846, 2012. Proceedings of the International
Conference on Computational Science, ICCS 2012.

[15] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
In TACAS, March 2008.

[16] Paul Erdös and Alfréd Rényi. On random graphs i. Publicationes
Mathematicae (Debrecen), 6:290–297, 1959. https://www.renyi.hu/∼p
erdos/1959-11.pdf.

[17] Seyed K. Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd
Millstein, Vyas Sekar, and George Varghese. Efficient network
reachability analysis using a succinct control plane representation.
In OSDI, 2016. https://www.usenix.org/system/files/conference/osdi16/
osdi16-fayaz.pdf.

[18] Cormac Flanagan and Shaz Qadeer. Thread-modular model checking.
In International SPIN Workshop on Model Checking of Software, pages
213–224. Springer, 2003.

[19] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh
Govindan, Ratul Mahajan, and Todd Millstein. A general approach to
network configuration analysis. In NSDI, October 2015. https://www.
usenix.org/system/files/conference/nsdi15/nsdi15-paper-fogel.pdf.

[20] Lixin Gao. On inferring autonomous system relationships in the internet.
IEEE/ACM Transactions on networking, 9(6):733–745, 2001. https://
ieeexplore.ieee.org/abstract/document/974527.

[21] Aaron Gember-Jacobson, Aditya Akella, Ratul Mahajan, and
Hongqiang Harry Liu. Automatically repairing network control
planes using an abstract representation. In Proceedings of the 26th
Symposium on Operating Systems Principles, pages 359–373, 2017.

[22] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul
Mahajan. Fast control plane analysis using an abstract representation.
In SIGCOMM, August 2016.

[23] Dimitra Giannakopoulou, Kedar S Namjoshi, and Corina S Păsăreanu.
Compositional reasoning. In Handbook of Model Checking, pages 345–
383. Springer, 2018.

[24] Nick Giannarakis, Ryan Beckett, Ratul Mahajan, and David Walker.
Efficient verification of network fault tolerance via counterexample-
guided refinement. In International Conference on Computer Aided
Verification, pages 305–323. Springer, 2019.

[25] Nick Giannarakis, Devon Loehr, Ryan Beckett, and David Walker. NV:
An intermediate language for verification of network control planes. In
Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2020, page 958–973, New
York, NY, USA, 2020. Association for Computing Machinery.

[26] Edgar N Gilbert. Random graphs. The Annals of Mathematical Statistics,
30(4):1141–1144, 1959. https://www.jstor.org/stable/2237458.

[27] Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong. The stable
paths problem and interdomain routing. IEEE/ACM Trans. Networking,
10(2), 2002. https://ieeexplore.ieee.org/abstract/document/993304.

[28] Timothy G. Griffin and Joäo Luı́s Sobrinho. Metarouting. In SIGCOMM,
pages 1–12, August 2005.

[29] Orna Grumberg and David E Long. Model checking and modular ver-
ification. ACM Transactions on Programming Languages and Systems
(TOPLAS), 16(3):843–871, 1994.

[30] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng
Shi, Chen Tian, Yongguang Zhang, and Songwu Lu. BCube: A
high performance, server-centric network architecture for modular data
centers. In SIGCOMM, 2009.

[31] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and
Songwu Lu. Dcell: A scalable and fault-tolerant network structure for
data centers. In SIGCOMM, 2008.

[32] Thomas A Henzinger, Shaz Qadeer, and Sriram K Rajamani. You
assume, we guarantee: Methodology and case studies. In International
Conference on Computer Aided Verification, pages 440–451. Springer,
1998.

[33] Antti EJ Hyvärinen, Matteo Marescotti, and Natasha Sharygina. Search-
space partitioning for parallelizing smt solvers. In International Confer-
ence on Theory and Applications of Satisfiability Testing, pages 369–386.
Springer, 2015.

[34] Karthick Jayaraman, Nikolaj Bjørner, Jitu Padhye, Amar Agrawal,
Ashish Bhargava, Paul-Andre C Bissonnette, Shane Foster, Andrew Hel-
wer, Mark Kasten, Ivan Lee, Anup Namdhari, Haseeb Niaz, Aniruddha
Parkhi, Hanukumar Pinnamraju, Adrian Power, Neha Milind Raje, and
Parag Sharma. Validating datacenters at scale. In Proceedings of the
ACM Special Interest Group on Data Communication, SIGCOMM ’19,
page 200–213, New York, NY, USA, 2019. Association for Computing
Machinery.

[35] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hyper-
graph partitioning: applications in VLSI domain. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 7(1):69–79, 1999.
https://ieeexplore.ieee.org/abstract/document/748202.

[36] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese,
Nick McKeown, and Scott Whyte. Real time network policy checking
using header space analysis. In NSDI, pages 99–112, April 2013. https:
//www.usenix.org/system/files/conference/nsdi13/nsdi13-final8.pdf.

[37] Peyman Kazemian, George Varghese, and Nick McKeown. Header space
analysis: Static checking for networks. In NSDI, April 2012. https:
//www.usenix.org/system/files/conference/nsdi12/nsdi12-final8.pdf.

[38] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and
P. Brighten Godfrey. Veriflow: Verifying network-wide invariants in
real time. In NSDI, April 2013. https://www.usenix.org/system/files/
conference/nsdi13/nsdi13-final100.pdf.

[39] Simon Knight, Hung X. Nguyen, Nickolas Falkner, Rhys Bowden, and
Matthew Roughan. The internet topology zoo. IEEE Journal on Selected
Areas in Communications, 29(9):1765–1775, 2011. https://ieeexplore.
ieee.org/abstract/document/6027859.

[40] P. Lapukhov, A. Premji, and J. Mitchell. Use of BGP for routing in
large-scale data centers. Internet draft, 2015.

[41] K Rustan M Leino. Dafny: An automatic program verifier for functional
correctness. In International Conference on Logic for Programming
Artificial Intelligence and Reasoning, pages 348–370. Springer, 2010.

[42] Alessio Lomuscio, Ben Strulo, Nigel Walker, and Peng Wu. Assume-
guarantee reasoning with local specifications. In International confer-
ence on formal engineering methods, pages 204–219. Springer, 2010.

[43] Nuno P. Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Jayara-
man, and George Varghese. Checking beliefs in dynamic networks.
In NSDI, 2015. https://www.usenix.org/system/files/conference/nsdi15/
nsdi15-paper-lopes.pdf.

[44] Nuno P Lopes and Andrey Rybalchenko. Fast BGP simulation of
large datacenters. In International Conference on Verification, Model
Checking, and Abstract Interpretation, pages 386–408. Springer, 2019.
https://web.ist.utl.pt/nuno.lopes/pubs/fastplane-vmcai19.pdf.

[45] M. Luckie, B. Huffaker, k. claffy, A. Dhamdhere, and V. Giotsas.
As relationships, customer cones, and validation. In ACM Internet
Measurement Conference (IMC), pages 243–256, 2013-10.

[46] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar,
P. Brighten Godfrey, and Samuel Talmadge King. Debugging the data
plane with anteater. In SIGCOMM, 2011.

[47] Kieren McCarthy. BGP super-blunder: How verizon today
sparked a ’cascading catastrophic failure’ that knackered cloudflare,
amazon, etc. https://www.theregister.com/2019/06/24/verizon bgp
misconfiguration cloudflare/, 2019.

[48] Ivan Pepelnjak. Valley-free routing in data center fabrics. https://blog.
ipspace.net/2018/09/valley-free-routing-in-data-center.html, 2018.

[49] Gordon D. Plotkin, Nikolaj Bjørner, Nuno P. Lopes, Andrey Ry-
balchenko, and George Varghese. Scaling network verification using
symmetry and surgery. In POPL, January 2016.

[50] Santhosh Prabhu, Ali Kheradmand, Brighten Godfrey, and Matthew
Caesar. Predicting network futures with plankton. In Proceedings of
the First Asia-Pacific Workshop on Networking, APNet’17, pages 92–
98, August 2017.

[51] Yakov Rekhter, Tony Li, Susan Hares, et al. A border gateway protocol
4 (BGP-4). RFC 4271, RFC Editor, 2006. https://www.rfc-editor.org/
rfc/rfc4271.txt.

[52] Simon Sharwood. Facebook rendered spineless by buggy audit code
that missed catastrophic network config error. https://www.theregister.
com/2021/10/06/facebook outage explained in detail/, 2021.

[53] João Luı́s Sobrinho. An algebraic theory of dynamic network rout-
ing. IEEE/ACM Trans. Netw., 13(5):1160–1173, October 2005. https:
//ieeexplore.ieee.org/abstract/document/1528502.

[54] Tom Strickx and Jeremy Hartman. Cloudflare outage on June 21, 2022.
https://blog.cloudflare.com/cloudflare-outage-on-june-21-2022/, 2022.

[55] Yevgenly Sverdlik. Microsoft: misconfigured network device led
to azure outage. http://www.datacenterdynamics.com/content-
tracks/servers-storage/microsoft-misconfigured-network-device-led-
to-azure-outage/68312.fullarticle, 2012.

[56] Alan Tang, Ryan Beckett, Karthick Jayaraman, Todd Millstein, and
George Varghese. LIGHTYEAR: Using modularity to scale BGP control
plane verification, 2022. https://arxiv.org/abs/2204.09635.

[57] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D. Ernst, Arvind
Krishnamurthy, and Zachary Tatlock. Formal semantics and automated
verification for the border gateway protocol. In NetPL, March 2016.
https://www.dougwoos.com/papers/bagpipe-netpl16.pdf.

[58] Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu, Bingchuan
Tian, Qiaobo Ye, Chunsheng Wang, Xin Wu, Tianchen Guo, Cheng
Jin, Duncheng She, Qing Ma, Biao Cheng, Hui Xu, Ming Zhang,
Zhiliang Wang, and Rodrigo Fonseca. Accuracy, scalability, coverage:
A practical configuration verifier on a global WAN. In Proceedings
of the Annual Conference of the ACM Special Interest Group on
Data Communication on the Applications, Technologies, Architectures,
and Protocols for Computer Communication, SIGCOMM ’20, page
599–614, New York, NY, USA, 2020. Association for Computing
Machinery. https://doi.org/10.1145/3387514.3406217.

[59] Jin Y Yen. Finding the k shortest loopless paths in a network.
Management Science, 17(11):712–716, 1971.

