
Automatica 153 (2023) 111024

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Interval dominance based structural results forMarkov decision
process✩

Vikram Krishnamurthy
School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, 14853, USA

a r t i c l e i n f o

Article history:

Received 8 April 2022

Received in revised form 15 December 2022

Accepted 18 February 2023

Available online xxxx

Keywords:

MDP

Interval Dominance

Monotone policy

Supermodularity

TP3 stochastic matrices

Reinforcement learning

a b s t r a c t

Structural results impose sufficient conditions on the model parameters of a Markov decision process

(MDP) so that the optimal policy is an increasing function of the underlying state. The classical

assumptions for MDP structural results require supermodularity of the rewards and transition prob-

abilities. However, supermodularity does not hold in many applications. This paper uses a sufficient

condition for interval dominance (called I ) proposed in the micro-economics literature, to obtain

structural results for MDPs under more general conditions. We present several MDP examples where

supermodularity does not hold, yet I holds, and so the optimal policy is monotone; these include

sigmoidal rewards (arising in prospect theory for human decision making), bi-diagonal and perturbed

bi-diagonal transition matrices (in optimal allocation problems). We also consider MDPs with TP3

transition matrices and concave value functions. Finally, reinforcement learning algorithms that exploit

the differential sparse structure of the optimal monotone policy are discussed.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Markov decision processes (MDPs) are controlled Markov

chains. Brute force numerical solution to compute the optimal

policy of an MDP with a large state and action space is expensive

and yields little insight into the structure of the controller. Struc-

tural results for MDPs are widely studied in stochastic control,

operations research and economics (Amir, 2005; Heyman & Sobel,

1984; Puterman, 1994; Topkis, 1998). They impose sufficient

conditions on the parameters of an MDP model so that there

exists an optimal policy µ∗(x) that is increasing1 in the state x,

denoted as µ∗(x) ↑ x. Such monotone optimal policies are useful

as they yield insight into the structure of the optimal controller of

the MDP. Put simply, they provide a mathematical justification for

rule of thumb heuristics such as choose a ‘‘larger’’ control action

for a ‘‘larger’’ state. Also, since monotone optimal policies are

differentially sparse (see Section 5), optimization algorithms and

reinforcement learning algorithms that exploit this sparsity can

solve the MDP efficiently (Krishnamurthy, 2016; Mattila, Rojas,

Krishnamurthy, & Wahlberg, 2017).
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ommended for publication in revised form by Associate Editor Valery Ugrinovskii

under the direction of Editor Ian R. Petersen.

E-mail address: vikramk@cornell.edu.
1 We use increasing in the weak sense to mean non-decreasing.

The classical assumption (Heyman & Sobel, 1984; Puterman,

1994) for the existence of a monotone policy in a MDP relies

on supermodularity (Liu, Chong, Pezeshki, & Zhang, 2020; Topkis,

1998). By imposing supermodularity conditions on the rewards

and transition probabilities of the MDP, the classical proof shows

that the Q function in Bellman’s dynamic programming equation

is supermodular. (These conditions are reviewed in Section 2.)

With X = {1, . . . , X},A = {1, . . . , A} denoting a finite state space

and action space, recall (Topkis, 1998) that φ : X × A → R is

supermodular2 if it has increasing differences:

φ(x̄, ā) − φ(x̄, a) ≥ φ(x, ā) − φ(x, a), x̄ > x, ā > a. (1)

Then the well known Topkis’ theorem (Topkis, 1998) states that

supermodularity is a sufficient condition for

a∗(x) ∈ argmax
a∈A

φ(x, a) ↑ x. (2)

So if it can be shown for an MDP that its Q function is supermod-

ular, then Topkis theorem implies that there exists an optimal

policy that is monotone: µ∗(x) ∈ argmaxa∈A Q (x, a) ↑ x.

However, supermodularity is a restrictive sufficient condition

for the existence of a monotone optimal policy; it imposes con-

ditions on the rewards and transition probabilities that may not

hold in many cases.

2 More generally supermodularity applies to lattices with a partial order (Top-

kis, 1998). In our simple setup of (1), Puterman (1994) uses the terminology

‘superadditive’.
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Recently, Quah and Strulovici (2009) introduced the Interval

Dominance condition which is necessary and sufficient for (2) to

hold. For the purposes of our paper, Quah and Strulovici (2009,

Proposition 3) gives the following useful sufficient condition3 for

φ : X × A → R to satisfy interval dominance:

φ(x̄, a + 1) − φ(x̄, a) ≥ αx,x̄,a

[

φ(x, a + 1) − φ(x, a)
]

, x̄ > x (3)

where the scalar valued function αx,x̄,a > 0 (strictly non-negative)

is increasing in a. We symbolically denote (3) as the condition

(φ, α) ∈ I. Comparing supermodularity (1) with I in (3), we see

that supermodularity is a special case of I when αx,x̄,a = 1. An

important property of I is that it compares adjacent actions a

and a+ 1. A more restrictive condition would be to replace a+ 1

with any action ā > a in (3). However, this stronger condition

(which in analogy to (1) can be called α-supermodularity) is

highly restrictive and does not hold for MDP examples considered

below.

Main Results. This paper shows how I in (3) applies to obtain

structural results for MDPs under more general conditions than

the classical supermodularity conditions. Theorems 1 and 2 are

our main results. To avoid technicalities we consider finite state,

finite action MDPs which are either finite horizon or discounted

reward infinite horizon. We present several MDP examples where

the Q functions satisfy I but not supermodularity, and the op-

timal policy is monotone. One important class comprises MDPs

with sigmoidal and concave rewards; since a sigmoidal function

comprises convex and concave segments, supermodularity rarely

holds. Such sigmoidal rewards arise in prospect theory (behav-

ioral economics) based models for human decision making (Kah-

neman & Tversky, 1979). A second important class of examples

we will consider involves perturbed bi-diagonal transition ma-

trices for which the standard supermodularity assumptions do

not hold. Bi-diagonal transition matrices arise in optimal alloca-

tion with penalty costs (Derman, Lieberman, & Ross, 1976; Ross,

1983). The result in the Appendix complements this classical

result for possibly non-submodular costs. Finally, a third class of

examples comprises MDPs with integer concave value functions.

Theorem 2 and Corollary 5 impose TP3 (totally positive of order

3) assumptions along with I to show that the optimal policy

is monotone. An extension of the classical TP3 result of Karlin

(1968, pg 23) is proved to characterize the I condition for MDPs

with bi-diagonal and tri-diagonal transition matrices. Such MDPs

model controlled random walks (Puterman, 1994) and arise in the

control of queuing and manufacturing systems.

2. Background. Supermodularity based results

An infinite horizon discounted reward MDP model is the tuple

(X ,A, (P(a), r(a), a ∈ A), ρ). Here X = {1, . . . , X} denotes the

finite state space, and we will denote xk ∈ X as the state at time

k = 0, 1, . . .. Also A = {1, . . . , A} is the action space, and we

will denote ak ∈ A as the action chosen at time k. P(a) are X × X

stochastic matrices with elements Pij(a) = P(xk+1 = j|xk = i, ak =

a), r(a) are X dimensional reward vectors with elements denoted

r(x, a), and ρ ∈ (0, 1) is the discount factor.

The action at each time k is chosen as ak = µ(xk) where µ

denotes a stationary policy µ : X → A. The optimal stationary

3 If αx,x̄,a is a fixed constant independent of x, x̄, a, then (3) is sufficient for

the single crossing property (Milgrom & Shannon, 1994), namely, RHS of (1) ≥ 0

implies LHS of (1) ≥ 0. Supermodularity implies single crossing which in turn

implies interval dominance; see also Amir (2005) for a tutorial exposition. The

condition (3) is sufficient for interval dominance and is the main condition that

we will use.

policy µ∗ : X → A is the maximizer of the infinite horizon

discounted reward Jµ:

µ∗(x) ∈ argmax
µ

Jµ(x),

Jµ(x) = Eµ{

∞
∑

k=0

ρkr(xk, ak) | x0 = x}
(4)

The optimal stationary policy µ∗ satisfies Bellman’s dynamic pro-

gramming equation

µ∗(x) ∈ argmax
a∈A

{Q (x, a)}, V (x) = max
a∈A

{Q (x, a)},

Q (x, a) = r(x, a) + ρ

X
∑

j=1

Pxj(a) V (j) (5)

An MDP with finite horizon N is the tuple

(X ,A, (P(a), r(a), a ∈ A), τ ) where τ is the X-dimensional

terminal reward vector. (In general P(a) and r(a) can depend

on time k; for notational convenience we suppress this time

dependency.) The optimal policy sequence µ0, . . . , µN−1 is given

by Bellman’s recursion: VN (x) = τx, x ∈ X , and for k = 0, . . . ,N ,

µ∗
k(x) ∈ argmax

a∈A

{Qk(x, a)}, Vk(x) = max
a∈A

{Qk(x, a)}

Qk(x, a) = r(x, a) +

X
∑

j=1

Pxj(a) Vk+1(j) (6)

Monotone policies using supermodularity

The classical supermodularity assumptions for an MDP are:

(A1) Rewards r(x, a) ↑ x for each a.

(A2) Px(a) ≤s Px+1(a) for each x, a, where Px(a) is the xth row of

matrix P(a).4

(A3) r(x, a) is supermodular in (x, a).

(A4)
∑

j≥l Pxj(a) is supermodular in x, a for each l ∈ X .

(A5) The terminal reward τx ↑ x.

The following textbook result establishes Qk and Q are super-

modular; so the optimal policy is monotone:

Proposition 1 (Heyman & Sobel, 1984; Puterman, 1994). (i) For a

discounted reward MDP, under (A1)–(A4), the optimal policy µ∗(x)

in (5)5 ↑ x.

(ii) For a finite horizon MDP, under (A1)–(A5), the optimal policy

sequence µ∗
k(x), k = 0, . . . ,N − 1, satisfying (6) ↑ x.

3. MDP structural results using interval dominance

The supermodular conditions (A3), (A4) on the rewards and

transition probabilities, are restrictive. We relax these with the

interval dominance condition I defined in (3) as follows:

(A6) For βx,x̄,a > 0 and ↑ a, the rewards satisfy

r(x̄, a + 1) − r(x̄, a) ≥ βx,x̄,a

[

r(x, a + 1) − r(x, a)
]

, x̄ > x

4 ≤s denotes first order stochastic dominance, namely,
∑X

j=l Px,j(a) ≤
∑X

j=l Px+1,j(a), l ∈ X .

5 More precisely, there exists a version of the optimal policy that is non-

decreasing in x. (4) uses the notation ∈ since the optimal policy is not necessarily

unique.

2



V. Krishnamurthy Automatica 153 (2023) 111024

(A7) With x̄ > x and αx,x̄,a > 0 ↑ a, the transition probabilities

satisfy (recall ≥s denotes first order dominance)

Px̄(a + 1) + αx,x̄,a Px(a)

1 + αx,x̄,a

≥s

Px̄(a) + αx,x̄,a Px(a + 1)

1 + αx,x̄,a

.

(A8) There exist αx,x̄,a = βx,x̄,a for which (A6), (A7) hold.

Remark. If αa = βa = 1, then (A6) and (A7) are equivalent

to supermodularity conditions (A3) and (A4). Note that (A8) is

sufficient for the sum of two I functions to be I .

(A6) and (A7) compare adjacent actions a + 1 and a. A more

restrictive condition is to replace a + 1 with any action ā > a

in (A6) and (A7). This stronger condition does not hold in the MDP

examples below. This is the reason why the I condition is useful.

Main Result. The following is our main result.

Theorem 1. (i) For a discounted reward MDP, under (A1), (A2), (A6),

(A7), (A8), there exists an optimal stationary policy µ∗(x) satisfying

(5) which is ↑ x.

(ii) For a finite horizon MDP, under (A1), (A2), (A5), (A6), (A7),

(A8), there exists an optimal policy sequence µ∗
k(x), k = 0, . . . ,N

satisfying (6) which is ↑ x.

Remark. Theorem 1 also holds for average reward MDPs that are

unichain (Puterman, 1994) so that a stationary optimal policy ex-

ists. This is because our proof uses the value iteration algorithm,

and for average reward problems, the same ideas directly apply

to the relative value iteration algorithm.

Proof. The standard textbook proof (Puterman, 1994) shows via

induction that for the finite horizon case, (A1), (A2), (A5) imply

that Qk(x, a) ↑ x for each a ∈ A, and therefore Vk(x) ↑ x. The

induction step also constitutes the value iteration algorithm for

the infinite horizon case, and shows that Q (x, a) and V (x) ↑ x.

Next, since V (x) ↑ x, (A7) implies that for x̄ > x,

X
∑

j=1

[

Px̄,j(a + 1) − Px̄,j(a)
]

V (j)

≥ αx,x̄,a

(

X
∑

j=1

[

Px,j(a + 1) − Px,j(a)
]

V (j)
)

(7)

Assumption (A6) implies the rewards satisfy I . Finally, (A8)

implies for x̄ > x,

r(x̄, a + 1) − r(x̄, a) +

X
∑

j=1

[

Px̄,j(a + 1) − Px̄,j(a)
]

V (j)

≥ γx,x̄,a

[

r(x, a + 1) − r(x, a) +

X
∑

j=1

[

Px,j(a + 1) − Px,j(a)
]

V (j)

]

for γ = α = β . Thus (Q , γ ) ∈ I implying that (2) holds. □

3.1. Example 1. MDPs with interval dominant rewards

Our first example considers MDPs with sigmoidal and con-

cave6 rewards specified in Example (i) below. Let us give some

visual intuition. Supermodularity is difficult to ensure since a

sigmoidal reward comprises a convex segment followed by a

6 Throughout this paper convex (concave) means integer convexity (con-

cavity). Since x ∈ {1, . . . , X}, integer convex φ means φ(x + 1) − φ(x) ≥

φ(x)− φ(x− 1). We do not consider higher dimensional discrete convexity such

as multimodularity; see Section 5.

concave segment. In Fig. 1(a), reward r(x, 1) is sigmoidal, while

r(x, 2) and r(x, 3) are concave in x. Since concave reward r(x, 3)

intersects sigmoidal reward r(x, 1) multiple times, the single

crossing condition and therefore supermodularity (A3) does not

hold. More directly, r(x, 3) − r(x, 1) is not increasing and so not

supermodular. But condition I (A6) holds. Specifically, r(x, 2) −

r(x, 1) is single crossing, and r(x, 3) − r(x, 2) is single crossing.

Note that I does not require r(x, 3)− r(x, 1) to be single crossing.

Consider a discounted reward MDP. Assume:

(Ex.1) For each pair of actions a, a + 1, assume there is state x∗
a

such that r(x, a+ 1) ≤ r(x, a), Px(a+ 1) ≤s Px(a) for x ≤ x∗
a .

Also r(x, a + 1) ≥ r(x, a), Px(a + 1) ≥s Px(a) for x ≥ x∗
a .

Corollary 1. Consider a discounted reward MDP. Assume (A1), (A2),

(Ex.1). Then Theorem 1 holds.

Compared to Proposition 1, Corollary 1 does not impose super-

modularity conditions on the rewards or transition probabilities.

(Ex.1) is weaker than the single crossing condition.

Proof. We verify that condition (A6), (A7), (A8) of Theorem 1

hold:

First consider x < x̄ ≤ x∗
a . Since r(x, a) ≥ r(x, a + 1), and

r(x̄, a) ≥ r(x̄, a + 1), (A6) holds for all β ∈ [β∗
x,x̄,a, ∞) for some

β∗
x,x̄,a > 0. Also Px(a + 1) ≤s Px(a) implies (A7) holds for all

αx,x̄,a ∈ [α∗
x,x̄,a, ∞) for some α∗

x,x̄,a > 0. So we can choose α =

β = maxa{α
∗
x,x̄,a, β

∗
x,x̄,a} independent of a so that (A8) holds.

Next consider x̄ > x ≥ x∗
a . Then (A6) holds for all β ∈ (0, β∗

x,x̄,a]

for some β∗
x,x̄,a > 0. Also Px(a + 1) ≥s Px(a) implies (A7) holds for

all α ∈ (0, α∗
x,x̄,a] for some α∗

x,x̄,a > 0. Therefore, we can choose

α = β = mina{α
∗
x,x̄,a, β

∗
x,x̄,a} independent of a so that (A8) holds.

Finally, for x ≤ x∗
a and x̄ > x∗

a , (A6) and (A7) hold for all α, β > 0.

So Theorem 1 applies and µ∗(x) ↑ x. □

Example (i). Sigmoidal7 and Concave Rewards

The following MDP parameters satisfy Corollary 1: X = 201,

A = 3. The action dependent transition matrices are Pi(1) =

Pi−1(1) + µ(eX − e1), µ = 0.004
X

, ϵ = 0.05
X

,

Pi(a + 1) =

{

Pi(a) − ϵ(eX − e1), i ≤ 50,

Pi(a) + ϵ(eX − e1), i > 50

Here ei denotes the unit X-dimension row vector with 1 in the

ith position.

With θ = [2, X − 1, 20, 5, 80, −2, 5, 80, −3.5, 0.01],

r(x, 1) =
θ1

1 + exp(
x−θ2
θ3

)
(sigmoidal) ,

r(x, 2) = θ4(1 − exp(−
x

θ5
)) + θ6 (concave) ,

r(x, 3) = θ7(1 − exp(−
x

θ8
)) + θ9 + θ10 x (concave)

(8)

Fig. 1(b) shows the non-supermodular QN for N = 100, ρ = 0.9.

QN (x, 3) − QN (x, 1) (broken line) intersects the horizontal axis

three times; so single crossing does not hold. QN (x, 2) − QN (x, 1)

(blue line) is non-monotone (non-supermodular). Statement 1,

Corollary 1 applies; so the optimal policy is monotone.

7 Sigmoidal rewards/costs are ubiquitous. They arise in logistic regression,

prospect theory in behavioral economics, and wireless communications.
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Fig. 1. Interval Dominant Rewards that are not single crossing and so not supermodular. If supermodularity holds then the curves would be increasing with x. Yet I

holds by Corollary 1 and the optimal policy is monotone; see Example (i). (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

Example (ii). Prospect theory based rewards
In prospect theory (Kahneman & Tversky, 1979), an agent

(human decision maker) a has utility r(x, a) that is asymmetric
sigmoidal in x. This asymmetry reflects a human decision maker’s
risk seeking behavior (larger slope) for losses and risk averse
behavior (smaller slope) for gains. With X an even integer, the
prospect theory rewards are asymmetric sigmoidals:

r(x, a) =
2(µ (x − 1))θ (a)

1 + (µ (x − 1))θ (a)
− 1, µ = 2/(X − 2), θ (a) > 1 (9)

so they cross zero at x = X/2. The shape parameter θ (a) deter-
mines the slope of the reward curve r(x, a).

Suppose the agents (investment managers) range from a = 1
(cautious) to a = A (aggressive); so the shape parameter θ (a) ↑ a.
The value of an investment evolves according to Markov chain xk
with transition probabilities P(ak) based on agent ak. Since agent
a+ 1 is more aggressive (risk seeking) than agent a in losses and
gains, it incurs higher volatility. So the xth row of P(a) and P(a+1)
satisfy

Px(a + 1) ≤s Px(a), x <
X

2
; Px(a + 1) ≥s Px(a), x ≥

X

2
(10)

The aim is to choose the optimal agent ak at each time k to
maximize the discounted infinite horizon reward. Since r(x, a) is
single crossing but not supermodular, (A3) does not apply.

Corollary 2. Consider a discounted reward MDP with r(x, a) spec-
ified by (9) and θ (a) ↑ a. Assume (A2), (10) hold. Then Theorem 1
holds.

The proof follows from Corollary 1 with x∗
a = X/2.

3.2. Example 2. Interval dominant transition probabilities

Corollary 3. Consider the discounted reward MDP with r(x, a) =
φ(x) where φ ↑ x and non-negative. Suppose the ith row of
transition matrix P(a) is

Pi(a) = p + ∆i,a (eX − e1) (11)

Here ei denotes the unit X-dimension row vector with 1 in the ith
position. p is an arbitrary X-dimensional probability row vector.
Also ∆1,a = 0, ∆i,a ∈ [0, 1] are ↑ i, and satisfy I (3). (Also,
∆i,a ≤ min{p1, 1 − pX } to ensure P(a) is valid transition matrix.)
Then Theorem 1 holds.

Compared to supermodularity (A4) of the transition probabil-
ities, Corollary 3 imposes weaker conditions: ∆ satisfy I (3) and
p can be any probability vector. Since ∆ only needs to satisfy
I (suitably scaled and shifted to ensure valid probabilities), (11)
offers considerable flexibility in choice of the transition matrices.

Proof. Reward r(x, a) = φ(x) satisfies (A1), (A6) for all βx,x̄,a >

0. Also ∆x,a ↑ x implies (A2) holds. Next let us verify (A7).
Using (11), we need to verify

(∆x̄,a+1 − ∆x̄,a)
∑

j≥l

(eX − e1)
′ej

≥ αx,x̄,a

[

(∆x,a+1 − ∆x,a)
∑

j≥l

(eX − e1)
′ej

]

(12)

where αx,x̄,a > 0 ↑ a. Since
∑

j≥l(eX − e1)
′ej ≥ 0, clearly ∆i,a

satisfying (3) for some αx,x̄,a > 0 ↑ a is a sufficient condition
for (12) to hold. Since βx,x̄,a > 0 is unrestricted, we can choose
βx,x̄,a = αx,x̄,a. Hence (A8) holds. Thus Theorem 1 holds. □

Example. Suppose p is an arbitrary probability vector, and ∆ is
chosen as the rewards (8) suitably scaled and shifted. Then the
transition matrices inherit the sigmoidal and concave structures
of Section 3.1.

3.3. Example 3. Perturbed bi-diagonal transition matrices

This section illustrates the I condition in MDPs with per-
turbed bi-diagonal transition matrices. The Appendix discusses a
finite horizon MDP example in optimal allocation problems with
penalty costs (Derman et al., 1976; Ross, 1983). It also has appli-
cations in wireless transmission control (Ngo & Krishnamurthy,
2010).

Consider an infinite horizon discounted reward MDP with
Pϵ(a), a ∈ A specified by parameter pa ∈ [0, 1] are Pϵ

X,X−1(a) =
pa, P

ϵ
X,X (a) = 1 − pa

Pϵ
11(a) = 1 − (A − a) ϵ, Pϵ

1,X (a) = (A − a) ϵ,

Pϵ
ii (a) = 1 − pa − (A − a) ϵ, Pϵ

i,i−1(a) = pa,

Pϵ
i,X (a) = (A − a)ϵ, i = 2, . . . , X − 1

(13)

where ϵ ≪ 1 is a small positive real. We assume that pa ↑ a.
When ϵ = 0, Pϵ(a) are bi-diagonal transition matrices; so ϵ can

4
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Fig. 2. The Q -function is not-supermodular for an MDP with perturbed bi-

diagonal matrices; yet the optimal policy µ∗(x) is increasing in state x by

Corollary 4.

be viewed as a perturbation probability of a bi-diagonal transition
matrix.

Supermodularity (A4) of the transition matrices (13) holds if
ϵ ≥ pa+1 − pa. In this section we assume ϵ is a small parameter
with ϵ ≤ mina pa+1 − pa, so that (A4) does not hold. There-
fore, textbook Proposition 1 does not hold. We show how the I

condition and Theorem 1 apply.

Remark. In our result below, to show condition I holds, we
choose αa = βa = (pa+1 − pa)/ϵ = γa. If pa is differentiable
wrt a, then as ϵ → 0, i.e., for an MDP with bi-diagonal transition
matrices, this can be interpreted as choosing αa = βa = dpa/da.

Corollary 4. Consider a discounted cost MDP with transition prob-
abilities (13). Assume pa ↑ a and pa+1 − pa = γaϵ for some positive
real number γa increasing in a. Assume (A1) and that

r(i + 1, a + 1) − r(i + 1, a) ≥ βa [r(i, a + 1) − r(i, a)] (14)

for some βa ↑ a with βa ≥ γa. Then µ∗(x) ↑ x.

Proof. We verify that the assumptions in Theorem 1 hold. (A1)
holds by assumption. From the structure of Pϵ(a) in (13) it is clear
that (A2) holds. Considering actions a and a + 1, it is verified
that (A7) holds for all αa ≥ (pa+1 − pa)/ϵ = γa. Next by
assumption (14), (A6) holds for βa ≥ γa. So we can choose
αa = βa ≥ γa, and so (A8) holds. □

Example. A = 2, X = 6, p1 = 0.3, p2 = p1 + 20ϵ, ϵ = 10−3,

ρ = 0.9, N = 200, r ′ =

[

1 3.5 6 6 11 43

0 2 3 6 12 63

]

. Given the

transition probabilities, we choose α ≥ 20. Also for the rewards,
we choose β = 20 in (14). So Corollary 4 holds. Fig. 2 shows
QN (x, a) is not supermodular, yet the optimal policy is monotone
with µ∗(i) = 1 for i ∈ {1, 2, 3, 4} and µ∗(i) = 2 for i ∈ {5, 6}.

4. Example 4. MDPs with concave value functions

Theorem 1 used first order dominance and monotone costs to
establish I and therefore monotone optimal policies. In compar-
ison, this section extends Theorem 1 to MDPs where the value
function is concave. We use second order stochastic dominance

and concave costs to establish I and therefore monotone opti-

mal policies. The results below assume a TP3 transition matrix;

see Karlin (1968) for the rich structure involving their dimin-

ishing variation property. For convenience we minimize costs

instead of maximize rewards.

(C1) Costs c(x, a) are ↑ x and concave in x for each a.

(C2) P(a) is TP3 with
∑X

j=1 jPij(a) ↑ i and concave in i. Totally

positive of order 3 means that each 3rd order minor of P(a)

is non-negative.

(C3) For βx,x̄,a > 0 and ↑ a, c(x̄, a+ 1)− c(x̄, a) ≥ βx,x̄,a

[

c(x, a+

1) − c(x, a)
]

, x̄ > x.

(C4) For αx,x̄,a > 0 and ↑ a,
Px̄(a+1)+αx,x̄,a Px(a)

1+αx,x̄,a
>2

Px̄(a)+αx,x̄,a Px(a+1)

1+αx,x̄,a
,

x̄ > x where >2 denotes second order stochastic domi-

nance.8

(C5) Terminal cost τx ↑ x and concave in x.

Remarks. (i) As shown in the proof, (C1) (concavity), (C2), (C5)

imply the value function is concave and increasing. These to-

gether with (C3), (C4) and (A8) imply I holds and so the optimal

policy is monotone.

(ii) (C2) generalizes the assumption that
∑

j jPij is linear in-

creasing in i. The classical result in Karlin (1968, pg 23) states:

Suppose P is a TP3 transition matrix and
∑

j jPij is linear in-

creasing in i. If vector V is concave, then vector P V is concave.

However, for bi-diagonal and tri-diagonal transition matrices,
∑

j jPij is concave (or convex) and not linear in i (see examples

below). This is why we introduced (C2). Since the classical result

requires
∑

j jPij being linear in i, it no longer applies. So we will

prove a generalization that handles the case where
∑

j jPij is

concave in i (see Lemma 1).

Theorem 2. (i) For a discounted cost MDP under (C1)–(C4), (A8),

optimal policy µ∗(x) ↓ x.

(ii) For a finite horizon MDP, under (C1)–(C5), (A8), optimal policy

sequence µ∗
k(x) ↓ x, k = 0, . . . ,N.

Corollary 5. Consider the modified assumptions: (C1): increasing

replaced by decreasing; (C2) concave replaced with convex; (C3):

inequality involving costs reversed; (C4): >2 replaced by convex

dominance9 >c ; (C5): increasing replaced by decreasing. Under

these assumptions and (A8), Theorem 2 holds with the modification

µ∗(x) and µ∗
k(x) ↑ x.

Proof of Theorem 2. We prove statement (ii). The proof of

statement (i) is similar and omitted.

First we show by induction that Vk(i) ↑ i for k = N, . . . , 1.

By (C5), VN (i) = τi ↑ i. Assume Vk+1(i) ↑ i. TP3 (C2) im-

plies TP2 which preserves monotone functions (Karlin, 1968,

pg 23; Lehmann & Casella, 1998), namely,
∑

j Pij(a)Vk+1(j) ↑

i. This together with (C1) implies Qk(i, a) ↑ i. Thus Vk(i) =

mina Qk(i, a) ↑ i.

Next we show by induction that Vk(i) is concave in i. By (C5),

VN = τ is concave. Assume Vk+1 is concave. Then (C2) implies
∑

j Pij(a) Vk+1(j) is concave in i (see Lemma 1). Since c(i, a) is

concave by (C1), it follows that Qk(i, a) = c(i, a)+
∑

j Pij(a) Vk+1(j)

is concave in i. Since concavity is preserved by minimization,

Vk(i) = mina Qk(i, a) is concave. Finally, Vk(i) increasing and

8 If p, q are probability vectors, then p >2 q if
∑

l≤m

∑

j≤l pj ≤
∑

l≤m

∑

j≤l qj

for each m. Equivalently, p >2 q iff f ′p ≥ f ′q for vector f increasing and concave.

Recall ′ denotes transpose.
9 If p, q are probability vectors, then p >c q if

∑

l≥m

∑

j≥l pj ≥
∑

l≥m

∑

j≥l qj

for each m. Equivalently, p >c q iff f ′p ≥ f ′q for f increasing and convex.
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concave in i and (C4) implies (7) holds for all αx,x̄,a ≥ 1. Then

with (C3), (A8), the proof is identical to Theorem 1. □

The following lemma used in the proof of Theorem 2 extends

the result in Karlin (1968, pg 23).

Lemma 1. Suppose P satisfies (C2). If V is concave and increasing,

then P V is concave and increasing.

Proof. First TP3 preserves monotonicity, so PV is increasing.

Next, since V is concave and increasing, then for any a > 0 and

b ∈ R, V (j) − (aj + b) has two or fewer sign changes in the order

−, +, − as j increases from 1 to X . Let φi(a, b) =
∑

j Pij(aj + b).

Since P is TP3, the diminishing variation property of TP3 implies
∑

j Pij Vj−φi(a, b) also has two or fewer sign changes in the order

−, +, − as i increases from 1 to X . Assume two sign changes

occur; then for some i1 < i2,
∑

j Pij Vj ≥ φi(a, b) for i1 ≤ i ≤ i2.

Since φi(a, b) is integer concave in i by (C2), it lies above the

line segment Li that connects (i1, φi1 ) to (i2, φi2 ). So
∑

j Pij Vj ≥

φi(a, b) ≥ Li, i1 ≤ i ≤ i2 Finally, for arbitrary i1 < i2 ∈ {1, . . . , X},

we can choose a =

∑

j Vj(Pi2,j−Pi1,j)
∑

j j(Pi2,j−Pi1,j)
and b =

∑

j Pi1,jVj − a
∑

j j Pi1,j

so that
∑

j Pij Vj = φi(a, b) = Li at i = i1, i2. Clearly,
∑

j Pij Vj ≥ Li
for arbitrary i1 ≤ i ≤ i2 and

∑

j Pij Vj = Li for i = i1, i2 implies
∑

j Pij V (j) is concave. □

Example (i). Bi-diagonal transition matrices

Theorem 2 applies to bi-diagonal transition matrices with

possibly non-supermodular costs; this is in contrast to Section 3.3

where we considered perturbed bi-diagonal matrices. Consider an

MDP with bi-diagonal transition matrices Pi.i(a) = 1−pa, P1,i+1 =

pa, PX,X (a) = 1, a ∈ {1, . . . , A}. Then
∑

j jPij(a) = i + pa for

i < X and X for i = X; so
∑

j jPij(a) is increasing and concave

in i ((C2) holds). Assume pa ↓ a. Then (C4) is equivalent to
∑

l≤m

∑

j≤l Px̄,j(a + 1) − Px̄,j(a) ≤ αx,x̄,a(
∑

l≤m

∑

j≤l Px,j(a + 1) −

Px,j(a)). Since pa ≥ pa+1, it follows that (C4) holds for all αx,x̄,a ≥

1. If (C1), (C3) hold for some βx,x̄,a > 1, then Theorem 2 holds.

Numerical example. Consider a discounted cost MDP with A =

2, X = 50, p1 = 0.8, p2 = 0.7, ρ = 0.95, N = 200,

c(x, 1) = θ1x
2 + θ2x + θ3, c(x, 2) = θ4

(

1 − exp(θ5x + θ6)
)

,

θ = [−0.01, 1, 8.8, 25, −0.1, −0.4]. It can be verified that the

cost is not supermodular, but the conditions of Theorem 2 are

satisfied. So the value function is concave and optimal policy is

decreasing. Fig. 3 shows QN (x, a) is not submodular.

Example (ii). Tri-diagonal transition matrices

Corollary 5 applies to MDPs with tri-diagonal transition matri-

ces where Pi−1,i(a) = pa, Pi+1,i = qa, Pii = 1 − pa − qa, P11(a) =

1, PX−1,X = 1 − sa, PX,X = sa. If P(a) is TP3 and qa < pa,

sa > 1+qa−pa hold, then
∑

i jPij(a) is increasing and convex in i;

so modified (C2) holds. Also, if qa ↑ a, pa ↓ a, qa+1−qa ≥ pa+1−pa,

sa+1 − sa > qa+1 − qa + pa − pa+1, then convex dominance

(modified (C4)) holds for all α ∈ (0, 1]. If the costs are chosen

so modified (C1), and modified (C3) hold for βx,x̄,a ≤ 1, then

Corollary 5 holds and the optimal policy is monotone.

Numerical example. Consider a discounted cost MDP with A = 2,

X = 35, tri-diagonal transition matrices with p1 = 0.2, p2 =

0.1, q1 = 0.05, q2 = 0.1, s1 = 0.95, s2 = 1. Also ρ = 0.95,

N = 200, c(x, 1) = −(θ1 + θ2 x
3), c(x, 2) = −(θ3 + θ4x

3) where

θ = [15, 0.3/43, 1, 3/43]. The cost c(x, a) is not submodular but

Corollary 5 holds. Fig. 4 shows the non-submodular QN (x, a).

Fig. 3. Non-submodular Q function for MDP with bi-diagonal transition matrix

that satisfies the assumptions of Theorem 2.

Fig. 4. Non-submodular Q function for MDP with tri-diagonal transition matrix

that satisfies Corollary 5.

5. Summary and discussion

The classical structural result for MDPs uses supermodularity

to establish the existence of monotone optimal policies. This

paper proposes a more general condition, which we call the I

condition, that was developed in the micro-economics literature.

We presented several examples of MDPs which satisfy I including

sigmoidal costs, and bi-diagonal/perturbed bi-diagonal transition

matrices. The structural results in Section 3, namely, Theorem 1,

Corollaries 1, 3, 4 and Theorem 3 used first order stochastic

dominance to establish I for several examples. of MDPs. In com-

parison, Theorem 2 in Section 4 discussed examples of I in

MDPs with concave value functions; we used TP3 assumptions

and second order (convex) stochastic dominance to prove the

existence of monotone optimal policies.

Discussion. Reinforcement Learning (RL) and Differential sparse Poli-

cies: Once the existence of a monotone optimal policy has been

established, RL algorithms that exploit this structure can be con-

structed. Q-learning algorithms that exploit the I condition can

be obtained by generalizing the supermodular Q-learning al-

gorithms in Krishnamurthy (2016). The second approach is to

develop policy search RL algorithms. In particular, when A is small

6
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and X is large, then since µ∗(x) ↑ x, it is differentially sparse, that

is µ∗(x + 1) − µ∗(x) is positive only at A − 1 values of x, and

zero for all other x. In Mattila et al. (2017), LASSO based methods

are developed to exploit this sparsity and significantly accelerate

search for µ∗(x); they build on the nearly-isotonic regression

techniques in Tibshirani, Hoefling, and Tibshirani (2011). The idea

is to add a rectified l1-penalty
∑X−1

x=1 |µl(x) − µl(x + 1)|+ to the

cost in the optimization problem (here µl is the estimate of

the optimal policy at iteration l of the optimization algorithm).

Intuitively, this modifies the cost surface to be more steep in the

direction of monotone policies resulting in faster convergence of

an iterative optimization algorithm.

Appendix. Optimal allocation with penalty cost

This appendix discusses a finite horizon penalty-cost MDP

with perturbed bi-diagonal transition matrices (13). This has ap-

plications in optimal allocation problems with penalty costs (Der-

man et al., 1976; Ross, 1983) and wireless transmission con-

trol (Ngo & Krishnamurthy, 2010). We assume ϵ < pa+1 − pa; so

as discussed in Section 3.3 supermodularity condition (A4) does

not hold.

As in Example 4.2 in Derman et al. (1976) and Ross (1983,

pg.8), we consider an N-horizon MDP model. There are N-stages

to construct X components sequentially. If effort c(x, a) is allo-

cated then the component is constructed with successfully with

probability pa. Our transition matrices are specified by the per-

turbed bi-diagonal matrices (13). At the end of N stages, the

penalty cost incurred is τi if we are i components short, where

i = {1, . . . , X}, with τ1 = 0. Note that Ross (1983) considers a

continuous action space A = [0, A], c(x, a) = a where a ∈ A and

bi-diagonal matrices (ϵ = 0). Below we show how the I condition

applies to non-supermodular cost structures with perturbed bi-

diagonal matrices. Such cases cannot be handled by the convexity

based supermodularity in Ross (1983).

We consider the discrete action space A = {1, . . . , A} cor-

responding to discretization of the continuous valued actions:

Ā = {0, ϵ, 2 ϵ, . . . , (A − 1) ϵ}. Recall ϵ are perturbation

probabilities of the bi-diagonal transition matrices in (13). The

costs and transition probability parameter pa are

Costs: c(x, a) ϵ, pa+1 − pa = ϵ γa γa > 0. (A.1)

We make the following assumptions.

(A9) γa ≥ 1 and ↑ a. (This is relaxed in remark below.)

(A10) Terminal cost τx convex and ↑ x with τ1 = 0. Cost c(x, a) ↓

x. (More generally, c̄(x, a) in (A.2) ↓ x.)

Main Result. We will work with the modified value function

Wk(x) = V ϵ
k (x)−τx. This is convenient since the terminal condition

is WN (i) = 0 for all i. The dynamic programming recursion (6)

expressed in terms of Wk(x) and minimizing the cumulative cost

(rather than maximizing the cumulative reward) is µ∗
k(x) =

argmina Q̄k(x, a), Wk(x) = mina Q̄k(x, a), k = 0, . . . ,N − 1,

Q̄k(i, a) = c̄(i, a) +
(

1 − pa − ϵ(A − a)
)

Wk+1(i)

+ paWk+1(i − 1)

c̄(i, a) = ϵ c(i, a) + pa (τi−1 − τi) + ϵ (A − a) (τX − τi),

i = 1, . . . , X − 1 (A.2)

Q̄k(X, a) = c̄(X, a) + paWk+1(X − 1) + (1 − pa)Wk+1(X),

c̄(X, a) = ϵ c(X, a) + pa(τX−1 − τX )

Theorem 3. Consider the N-horizon MDP with costs and transi-

tion probabilities specified by (A.1), (13). Assume (A9) and (A10).

Fig. A.1. Non submodular Q function for optimal allocation.

Suppose mina γa > 1 and the costs satisfy

τi+1 ≥ τX +
γ 2
a (τi − τi−1)

γa − 1
+

∆(i + 1, a) − γa∆(i, a)

γa − 1
(A.3)

for i = 2, . . . , X − 1 where ∆(i, a) = c(i, a + 1) − c(i, a) and
perturbation probabilities ϵ ∈

(

0,mina(pa+1 − pa)
)

. Then optimal
policy µ∗

k(i), k = 1, . . . ,N − 1 ↑ i.

Remarks. 1. Theorem 3 can be viewed as complementary result
to the structural result in Derman et al. (1976) and Ross (1983).
If we choose the same instantaneous cost as Ross (1983), namely
c(x, a) = f a for some constant f , then (A.3) becomes τi+1 ≥

τX +
γ 2
a (τi−τi−1)

γa−1
− f . But terminal costs satisfying this condition

yield monotone policies that are degenerate, namely, µ∗
k(i) = 1

for all i. So for c(x, a) = f a, the I condition does not yield a useful
result. It is necessary to exploit convexity of the value function,
as in Ross (1983), to obtain non-degenerate optimal policies. On
the other hand, the I condition (A.3) allows for non-submodular
costs and yields monotone policies (see examples below). For
such cases, it is not clear how to extend the convexity based
submodularity proof in Ross (1983) (which applies when ϵ = 0)
to the MDP (13) for arbitrary ϵ > 0.

2. (A9) is equivalent to pa ↑ a and convex. (A9) can be
relaxed to pa ↑ a by imposing stronger conditions on (A.3),
see (A.4). The convexity (A10) of terminal costs implies c̄(i, a)
in (A.2) is decreasing. Recall decreasing costs (A1) is used to show
submodularity (and Theorem 1).

Examples. We chose the MDP parameters in (13), (A.1) as X = 11,
A = 2, γa = 1.2, ϵ = 10−6, τ = [0, 1, 2, 4, 8, 15, 25, 40, 60,
90, 200]. Fig. A.1 displays Qk(x, 2) − Qk(x, 1) when c(x, 1) = 0,

c(x, 2) = ϵ(f + 2.5 x4I(x ≤ 3) − (x + 2)3), f = 103. Notice Q (x, a)
is not submodular. But Theorem 3 holds; so µ∗

k(x) ↑ x.

Proof of Theorem 3. Using (A.2), the proof follows straightfor-
wardly by verifying the assumptions in Theorem 1. □

Remark. Choosing α = γ̄ = maxa γa in the proof, we obtain a
stronger sufficient condition than (A.3):

τi+1 ≥ τX
γ̄ − 1

γa − 1
+

γ̄ γa (τi − τi−1)

γa − 1

+
∆(i + 1, a) − γ̄∆(i, a)

γa − 1
+

(γa − γ̄ )τi

γa − 1
(A.4)
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Since α = β is a constant and not a dependent, (A9) is relaxed to

γa > 1.
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