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1. Introduction

Markov decision processes (MDPs) are controlled Markov
chains. Brute force numerical solution to compute the optimal
policy of an MDP with a large state and action space is expensive
and yields little insight into the structure of the controller. Struc-
tural results for MDPs are widely studied in stochastic control,
operations research and economics (Amir, 2005; Heyman & Sobel,
1984; Puterman, 1994; Topkis, 1998). They impose sufficient
conditions on the parameters of an MDP model so that there
exists an optimal policy p*(x) that is increasing' in the state x,
denoted as u*(x) 1 x. Such monotone optimal policies are useful
as they yield insight into the structure of the optimal controller of
the MDP. Put simply, they provide a mathematical justification for
rule of thumb heuristics such as choose a “larger” control action
for a “larger” state. Also, since monotone optimal policies are
differentially sparse (see Section 5), optimization algorithms and
reinforcement learning algorithms that exploit this sparsity can
solve the MDP efficiently (Krishnamurthy, 2016; Mattila, Rojas,
Krishnamurthy, & Wahlberg, 2017).

* This research was partially supported by U.S. Army Research Office grant
W911NF-21-1-0093, Air Force Office of Scientific Research, USA grant FA9550-
22-1-0016 and National Science Foundation, USA grant CCF-2112457. The
material in this paper was not presented at any conference. This paper was rec-
ommended for publication in revised form by Associate Editor Valery Ugrinovskii
under the direction of Editor lan R. Petersen.
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T we use increasing in the weak sense to mean non-decreasing.
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The classical assumption (Heyman & Sobel, 1984; Puterman,
1994) for the existence of a monotone policy in a MDP relies
on supermodularity (Liu, Chong, Pezeshki, & Zhang, 2020; Topkis,
1998). By imposing supermodularity conditions on the rewards
and transition probabilities of the MDP, the classical proof shows
that the Q function in Bellman’s dynamic programming equation
is supermodular. (These conditions are reviewed in Section 2.)
Withx ={1,...,X}, A= {1, ..., A} denoting a finite state space
and action space, recall (Topkis, 1998) that ¢ : X x A — R is
supermodular? if it has increasing differences:

d)()_(v a) - ¢()_(a a) = ¢(X, (_1) - d)(xv a)a

Then the well known Topkis’ theorem (Topkis, 1998) states that
supermodularity is a sufficient condition for

X>x, a>a. (1)

a*(x) € argmax ¢(x, a) 1 x. (2)
ac A
So if it can be shown for an MDP that its Q function is supermod-
ular, then Topkis theorem implies that there exists an optimal
policy that is monotone: p*(x) € argmax,c 4 Q(x, a) 1 x.
However, supermodularity is a restrictive sufficient condition
for the existence of a monotone optimal policy; it imposes con-
ditions on the rewards and transition probabilities that may not
hold in many cases.

2 More generally supermodularity applies to lattices with a partial order (Top-
kis, 1998). In our simple setup of (1), Puterman (1994) uses the terminology
‘superadditive’.
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Recently, Quah and Strulovici (2009) introduced the Interval
Dominance condition which is necessary and sufficient for (2) to
hold. For the purposes of our paper, Quah and Strulovici (2009,
Proposition 3) gives the following useful sufficient condition> for
¢ : X x A — R to satisfy interval dominance:

P(X, a+1)— $(X, ) > axra[d(x, a+ 1) = p(x,a)], X>x (3)

where the scalar valued function oy 3 o > 0 (strictly non-negative)
is increasing in a. We symbolically denote (3) as the condition
(¢, @) € Z. Comparing supermodularity (1) with Z in (3), we see
that supermodularity is a special case of Z when ayz, = 1. An
important property of 7 is that it compares adjacent actions a
and a + 1. A more restrictive condition would be to replace a + 1
with any action a > a in (3). However, this stronger condition
(which in analogy to (1) can be called a-supermodularity) is
highly restrictive and does not hold for MDP examples considered
below.

Main Results. This paper shows how Z in (3) applies to obtain
structural results for MDPs under more general conditions than
the classical supermodularity conditions. Theorems 1 and 2 are
our main results. To avoid technicalities we consider finite state,
finite action MDPs which are either finite horizon or discounted
reward infinite horizon. We present several MDP examples where
the Q functions satisfy Z but not supermodularity, and the op-
timal policy is monotone. One important class comprises MDPs
with sigmoidal and concave rewards; since a sigmoidal function
comprises convex and concave segments, supermodularity rarely
holds. Such sigmoidal rewards arise in prospect theory (behav-
ioral economics) based models for human decision making (Kah-
neman & Tversky, 1979). A second important class of examples
we will consider involves perturbed bi-diagonal transition ma-
trices for which the standard supermodularity assumptions do
not hold. Bi-diagonal transition matrices arise in optimal alloca-
tion with penalty costs (Derman, Lieberman, & Ross, 1976; Ross,
1983). The result in the Appendix complements this classical
result for possibly non-submodular costs. Finally, a third class of
examples comprises MDPs with integer concave value functions.
Theorem 2 and Corollary 5 impose TP3 (totally positive of order
3) assumptions along with Z to show that the optimal policy
is monotone. An extension of the classical TP3 result of Karlin
(1968, pg 23) is proved to characterize the Z condition for MDPs
with bi-diagonal and tri-diagonal transition matrices. Such MDPs
model controlled random walks (Puterman, 1994) and arise in the
control of queuing and manufacturing systems.

2. Background. Supermodularity based results

An infinite horizon discounted reward MDP model is the tuple
(X, A, (P(a),r(a),a € A), p). Here Xx = {1,..., X} denotes the
finite state space, and we will denote x; € X as the state at time
k =0,1,.... Also A = {1,...,A} is the action space, and we
will denote a; € A as the action chosen at time k. P(a) are X x X
stochastic matrices with elements Pj(a) = P(xy11 = jlxk =i, ax =
a), r(a) are X dimensional reward vectors with elements denoted
r(x,a), and p € (0, 1) is the discount factor.

The action at each time k is chosen as ay = u(xx) where pu
denotes a stationary policy 4 : X — A. The optimal stationary

3 If axxq is a fixed constant independent of x, x, a, then (3) is sufficient for
the single crossing property (Milgrom & Shannon, 1994), namely, RHS of (1) > 0
implies LHS of (1) > 0. Supermodularity implies single crossing which in turn
implies interval dominance; see also Amir (2005) for a tutorial exposition. The
condition (3) is sufficient for interval dominance and is the main condition that
we will use.
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policy u* : X — A is the maximizer of the infinite horizon
discounted reward J,:

w*(x) € argmaxJ,(x),
n

o (4)
) =Bl prixe ai) | xo = x)

k=0

The optimal stationary policy u* satisfies Bellman’s dynamic pro-
gramming equation

w*(x) € arg n;ax{Q(x, a)}, V(x) = Ig({Q(x, a)},

X
Qx.a)=r(x.a)+p Y _Py(@)V(j) 5)
j=1

An MDP with finite horizon N is the tuple

(x, A, (P(a),r(a),a € A),t) where 7 is the X-dimensional
terminal reward vector. (In general P(a) and r(a) can depend
on time k; for notational convenience we suppress this time
dependency.) The optimal policy sequence uq, ..., uy_1 iS given

by Bellman'’s recursion: Vy(x) = 1y, x € X, and for k =0, ..., N,
wi(x) € argmax{Qx(x, @)}, Vi(x) = max{Qu(x, a)}
ac A ac A
X
Qx, @) =r(x, @)+ Y _ Py(a@) Vira(j) (6)
j=1

Monotone policies using supermodularity
The classical supermodularity assumptions for an MDP are:

(A1) Rewards r(x, a) 1 x for each a.

(A2) Py(a) <s Pys+1(a) for each x, a, where P,(a) is the xth row of
matrix P(a).*

(A3) r(x, a) is supermodular in (x, a).

(A4) ij,PXj(a) is supermodular in x, a for each | € x.

(A5) The terminal reward ty 1 x.

The following textbook result establishes Q, and Q are super-
modular; so the optimal policy is monotone:

Proposition 1 (Heyman & Sobel, 1984; Puterman, 1994). (i) For a
discounted reward MDP, under (A1)-(A4), the optimal policy p*(x)
in(5° 1 x.

(ii) For a finite horizon MDP, under (A1)-(A5), the optimal policy
sequence i(x), k=0, ...,N — 1, satisfying (6) 1 x.

3. MDP structural results using interval dominance

The supermodular conditions (A3), (A4) on the rewards and
transition probabilities, are restrictive. We relax these with the
interval dominance condition Z defined in (3) as follows:

(A6) For Byxq > 0 and 7 a, the rewards satisfy

r(X, a4+ 1) —r(x a) > feza[r(x. a+ 1) —r(x,0)], X > x

4 <; denotes first order stochastic dominance, namely, ZJ)-(:,PXJ(G) <

X
Zj:, Pyi1j(a), 1 € x.
More precisely, there exists a version of the optimal policy that is non-
decreasing in x. (4) uses the notation € since the optimal policy is not necessarily
unique.
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(A7) With X > x and oy, > 0 1 a, the transition probabilities
satisfy (recall >; denotes first order dominance)

Pila+ 1)+ Qx.x,.a Py(a) - Py(a) + Qx.%,a Pya+1)
1+ Uy %.a = 1+ Ux x.a '

(A8) There exist ayzq = Bx.x.a for which (A6), (A7

) hold.

Remark. If o = B, = 1, then (A6) and (A7) are equivalent
to supermodularity conditions (A3) and (A4). Note that (A8) is
sufficient for the sum of two Z functions to be 7 .

(A6) and (A7) compare adjacent actions a + 1 and a. A more
restrictive condition is to replace a + 1 with any action a > a
in (A6) and (A7). This stronger condition does not hold in the MDP
examples below. This is the reason why the Z condition is useful.

Main Result. The following is our main result.

Theorem 1. (i) For a discounted reward MDP, under (A1), (A2), (A6),
(A7), (A8), there exists an optimal stationary policy *(x) satisfying
(5) which is 1 x.

(ii) For a finite horizon MDP, under (A1), (A2), (A ) (A
(A8), there exists an optimal policy sequence uy(x), k =
satisfying (6) which is 1 x.

6)()
0,.

Remark. Theorem 1 also holds for average reward MDPs that are
unichain (Puterman, 1994) so that a stationary optimal policy ex-
ists. This is because our proof uses the value iteration algorithm,
and for average reward problems, the same ideas directly apply
to the relative value iteration algorithm.

Proof. The standard textbook proof (Puterman, 1994) shows via

induction that for the finite horizon case, (A1), (A2), (A5) imply

that Q(x,a) 1 x for each a € A, and therefore Vi(x) 1 x. The

induction step also constitutes the value iteration algorithm for

the infinite horizon case, and shows that Q(x, a) and V(x) 1 x.
Next, since V(x) 1 x, (A7) implies that for x > x,

X
> [Prila+ 1) = Pey(@)] V()
j=1

X
> tysa Z Pyj(a+1) = Py(@)]V() (7)

Assumption (A6) implies the rewards satisfy Z . Finally, (A8)
implies for x > x,

X
rX a+1)—rx a)+ Y [Prjla+1) = Pyi(@)]V()
Jj=1
>Vxxa|: (X a+1)—rx a)+Z Xja+ ) ()]V(])]
j=1

for y = a = B. Thus (Q, y) € Z implying that (2) holds. O
3.1. Example 1. MDPs with interval dominant rewards

Our first example considers MDPs with sigmoidal and con-
cave® rewards specified in Example (i) below. Let us give some
visual intuition. Supermodularity is difficult to ensure since a
sigmoidal reward comprises a convex segment followed by a

6 Throughout this paper convex (concave) means integer convexity (con-
cavity). Since x € {1,..., X}, integer convex ¢ means ¢(x + 1) — ¢(x) >
@(x) — ¢(x — 1). We do not consider higher dimensional discrete convexity such
as multimodularity; see Section 5.
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concave segment. In Fig. 1(a), reward r(x, 1) is sigmoidal, while
r(x,2) and r(x, 3) are concave in x. Since concave reward r(x, 3)
intersects sigmoidal reward r(x, 1) multiple times, the single
crossing condition and therefore supermodularity (A3) does not
hold. More directly, r(x, 3) — r(x, 1) is not increasing and so not
supermodular. But condition Z (A6) holds. Specifically, r(x, 2) —
r(x, 1) is single crossing, and r(x, 3) — r(x, 2) is single crossing.
Note that Z does not require r(x, 3) —r(x, 1) to be single crossing.
Consider a discounted reward MDP. Assume:

(Ex.1) For each pair of actions a, a 4 1, assume there is state x;
such that r(x, a+ 1) < r(x, a), Px(a+ 1) <s Py(a) for x < x;.
Also r(x, a+ 1) > r(x, a), Px(a + 1) >, Py(a) for x > x7.

Corollary 1. Consider a discounted reward MDP. Assume (A1), (A2),
(Ex.1). Then Theorem 1 holds.

Compared to Proposition 1, Corollary 1 does not impose super-
modularity conditions on the rewards or transition probabilities.
(Ex.1) is weaker than the single crossing condition.

Proof. We verify that condition (A6), (A7), (A8
hold:

First consider x < x < x}. Since r(x,a) > r(x,a + 1), and
r(x,a) > r(x,a+ 1), (A6) holds for all B € [B};,, o0) for some

;"Xﬂ > 0. Also Py(a + 1) <; Py(a) implies (A7) holds for all
Oxxa € [axxa’ ) for some a*fa > 0. So we can choose o =
B = maxa{a” o B, +5q) independent of a so that (A8) holds.

Next consider X > x > x’. Then (AG) holds for all 8 € (0, ﬂ:,)’c.a]
for some g5 ; %a > 0. Also Py(a+ 1) > Py(a) implies (A7) holds for
all o € (0, oy a] for some oy ; , > 0. Therefore, we can choose
o = B = ming{a} Oz a0 Biz.q} independent of a so that (A8) holds.
Finally, for x < x and X > X%, (A6) and (A7) hold for all &, B > 0.
So Theorem 1 applies and /L*(X) tx. O

) of Theorem 1

Example (i). Sigmoidal’ and Concave Rewards

The following MDP parameters satisfy Corollary 1: X = 201,
A = 3. The action dependent transition matrices are Pj(1) =
Piq(1) + plex —eq), p = 294, ¢ = 25

Pi(a) — e(ex —eq), i <50,

Pi(a“l_ 1) = {Pi(a)+€(ex — 81), l > 50

Here e; denotes the unit X-dimension row vector with 1 in the
ith position.

With6 =1[2,X — 1, 20, 5, 80, —2, 5, 80, —3.5, 0.01],
01
r(x, 1) = ———————— (sigmoidal) ,
1+ exp(%)
r(x,2) = 04(1 — exp(—g)) + 6 (concave) , (8)
5

r(x,3) = 67(1 — exp(—g)) + 69 + 610 X (concave)
]
Fig. 1(b) shows the non-supermodular Qy for N = 100, p = 0.9.
Qn(x,3) — Qn(x, 1) (broken line) intersects the horizontal axis
three times; so single crossing does not hold. Qn(x, 2) — Qn(x, 1)
(blue line) is non-monotone (non-supermodular). Statement 1,
Corollary 1 applies; so the optimal policy is monotone.

7 Sigmoidal rewards/costs are ubiquitous. They arise in logistic regression,
prospect theory in behavioral economics, and wireless communications.
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state x

(a) Rewards
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0 50 100 150 200
state =

(b) Q-function for MDP

Fig. 1. Interval Dominant Rewards that are not single crossing and so not supermodular. If supermodularity holds then the curves would be increasing with x. Yet Z
holds by Corollary 1 and the optimal policy is monotone; see Example (i). (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

Example (ii). Prospect theory based rewards

In prospect theory (Kahneman & Tversky, 1979), an agent
(human decision maker) a has utility r(x, a) that is asymmetric
sigmoidal in x. This asymmetry reflects a human decision maker’s
risk seeking behavior (larger slope) for losses and risk averse
behavior (smaller slope) for gains. With X an even integer, the
prospect theory rewards are asymmetric sigmoidals:

2 (x = 1))@
T+ (p(x— 1)f@
so they cross zero at x = X/2. The shape parameter 6(a) deter-
mines the slope of the reward curve r(x, a).

Suppose the agents (investment managers) range from a = 1
(cautious) to a = A (aggressive); so the shape parameter 6(a) 1 a.
The value of an investment evolves according to Markov chain x;
with transition probabilities P(a;) based on agent ay. Since agent
a+ 1is more aggressive (risk seeking) than agent a in losses and
gains, it incurs higher volatility. So the xth row of P(a) and P(a+1)
satisfy

r(x,a) = -1, u=2/X-=2),0(@>1 (9)

X X
Py(a + 1) < Py(a), X<§§ Py(a + 1) =5 Py(a), XEE (10)
The aim is to choose the optimal agent a; at each time k to
maximize the discounted infinite horizon reward. Since r(x, a) is
single crossing but not supermodular, (A3) does not apply.

Corollary 2. Consider a discounted reward MDP with r(x, a) spec-
ified by (9) and 6(a) 1 a. Assume (A2), (10) hold. Then Theorem 1
holds.

The proof follows from Corollary 1 with x} = X /2.
3.2. Example 2. Interval dominant transition probabilities

Corollary 3. Consider the discounted reward MDP with r(x, a) =
¢(x) where ¢ 1 x and non-negative. Suppose the ith row of
transition matrix P(a) is

Pi(a) =p+ Aiq(ex —eq) (11)

Here e; denotes the unit X-dimension row vector with 1 in the ith
position. p is an arbitrary X-dimensional probability row vector.
Also A1q = 0, Ajq € [0,1] are 1 i, and satisfy T (3). (Also,
Aiq < min{p1, 1 — px} to ensure P(a) is valid transition matrix.)
Then Theorem 1 holds.

Compared to supermodularity (A4) of the transition probabil-
ities, Corollary 3 imposes weaker conditions: A satisfy Z (3) and
p can be any probability vector. Since A only needs to satisfy
T (suitably scaled and shifted to ensure valid probabilities), (11)
offers considerable flexibility in choice of the transition matrices.

Proof. Reward r(x, a) = ¢(x) satisfies (A1), (A6) for all Bxzq >
0. Also Ay, 1 x implies (A2) holds. Next let us verify (A7).
Using (11), we need to verify

(Avast — Axa) Y _(ex — e1)e;
j=l

> le,k,a[(Ax.aJrl — Aya) Z(ex —€ )/ej] (12)
j=l

where ayzq > 0 1 a. Since ijl(ex —e1)e > 0, clearly A;q

satisfying (3) for some oy34 > 0 1 a is a sufficient condition
for (12) to hold. Since Bz, > O is unrestricted, we can choose
Bx.x.a = xx.a- Hence (A8) holds. Thus Theorem 1 holds. O

Example. Suppose p is an arbitrary probability vector, and A is
chosen as the rewards (8) suitably scaled and shifted. Then the
transition matrices inherit the sigmoidal and concave structures
of Section 3.1.

3.3. Example 3. Perturbed bi-diagonal transition matrices

This section illustrates the Z condition in MDPs with per-
turbed bi-diagonal transition matrices. The Appendix discusses a
finite horizon MDP example in optimal allocation problems with
penalty costs (Derman et al., 1976; Ross, 1983). It also has appli-
cations in wireless transmission control (Ngo & Krishnamurthy,
2010).

Consider an infinite horizon discounted reward MDP with
P<(a), a € A specified by parameter p, € [0, 1] are Py y_,(a) =
Pa, Py x(@) =1—pq
Pi(a)=1—-(A—a)e, Pix(a)=(A—a)e,

Pi(a)=1—ps—(A—a)e, pr](a):paa (13)
Pix(a)=(A—a), i=2,....,X—1

where ¢ < 1 is a small positive real. We assume that p, 1 a.
When ¢ = 0, P¢(a) are bi-diagonal transition matrices; so € can
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state =

Fig. 2. The Q-function is not-supermodular for an MDP with perturbed bi-
diagonal matrices; yet the optimal policy w*(x) is increasing in state x by
Corollary 4.

be viewed as a perturbation probability of a bi-diagonal transition
matrix.

Supermodularity (A4) of the transition matrices (13) holds if
€ > Pg+1 — Do In this section we assume € is a small parameter
with € < ming ps+1 — pg, SO that (A4) does not hold. There-
fore, textbook Proposition 1 does not hold. We show how the T
condition and Theorem 1 apply.

Remark. In our result below, to show condition Z holds, we
choose oy = By = (Par1 — Pa)/€ = vya. If pq is differentiable
wrt q, then as € — 0, i.e., for an MDP with bi-diagonal transition
matrices, this can be interpreted as choosing «, = 8, = dp,/da.

Corollary 4. Consider a discounted cost MDP with transition prob-
abilities (13). Assume p, 1 a and pg1 — pa = Ya€ for some positive
real number y, increasing in a. Assume (A1) and that

ri+1l,a+1)—r(i+1,a)> Balr(i,a+ 1) —r(i, a)] (14)
for some B, 1 a with B, > y,. Then p*(x) 1 x.

Proof. We verify that the assumptions in Theorem 1 hold. (A1)
holds by assumption. From the structure of P€(a) in (13) it is clear
that (A2) holds. Considering actions a and a + 1, it is verified
that (A7) holds for all @q > (pPa+1 — Pa)/€ = va. Next by
assumption (14), (A6) holds for 8, > y,. So we can choose
g = Ba > Va4 and so (A8) holds. O

Example. A = 2,X = 6,p; = 0.3, p, = p; + 206, ¢ = 1073,

1 35 6 6 11 43
0 2 3 6 12 63

transition probabilities, we choose o > 20. Also for the rewards,
we choose 8 = 20 in (14). So Corollary 4 holds. Fig. 2 shows
Qn(x, a) is not supermodular, yet the optimal policy is monotone
with u*(i) = 1fori e {1, 2, 3,4} and u*(i) = 2 for i € {5, 6}.

p =09 N =200r1 = ] Given the

4. Example 4. MDPs with concave value functions

Theorem 1 used first order dominance and monotone costs to
establish Z and therefore monotone optimal policies. In compar-
ison, this section extends Theorem 1 to MDPs where the value
function is concave. We use second order stochastic dominance
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and concave costs to establish Z and therefore monotone opti-
mal policies. The results below assume a TP3 transition matrix;
see Karlin (1968) for the rich structure involving their dimin-
ishing variation property. For convenience we minimize costs
instead of maximize rewards.

(C1) Costs c(x, a) are 1 x and concave in x for each a.

(C2) P(a) is TP3 with Zj(:le,-j(a) 1 i and concave in i. Totally
positive of order 3 means that each 3rd order minor of P(a)
is non-negative.

(C3) For Byza > 0and 1 a, c(X, a+ 1) — c(x, a) > Byga [c(x, a+

)—cxa)], x>x
~ Py(a+1)+ay x.q Px(a) Py(a)tay x.q Px(a+1)
(C4) For ox 34 > 0 and 1 q, T e Treyra )
X > x where >, denotes second order stochastic domi-
nance.®
(C5) Terminal cost 7y 1 x and concave in x.

Remarks. (i) As shown in the proof, (C1) (concavity), (C2), (C5)
imply the value function is concave and increasing. These to-
gether with (C3), (C4) and (A8) imply Z holds and so the optimal
policy is monotone.

(ii) (C2) generalizes the assumption that ijP,j is linear in-

creasing in i. The classical result in Karlin (1968, pg 23) states:
Suppose P is a TP3 transition matrix and ) ;jP; is linear in-
creasing in i. If vector V is concave, then vector PV is concave.
However, for bi-diagonal and tri-diagonal transition matrices,
ijPU is concave (or convex) and not linear in i (see examples

below). This is why we introduced (C2). Since the classical result
requires ijP,-j being linear in i, it no longer applies. So we will
prove a generalization that handles the case where Zj JjP; is
concave in i (see Lemma 1).

Theorem 2. (i) For a discounted cost MDP under (C1)-(C4), (A8),
optimal policy *(x) | x.

(ii) For a finite horizon MDP, under (C1)-(C5), (A8), optimal policy
sequence ji(x) § X, k=0,...,N.

Corollary 5. Consider the modified assumptions: (C1): increasing
replaced by decreasing; (C2) concave replaced with convex; (C3):
inequality involving costs reversed; (C4): >, replaced by convex
dominance® >.; (C5): increasing replaced by decreasing. Under
these assumptions and (A8), Theorem 2 holds with the modification

w*(x) and pi(x) 1 x.

Proof of Theorem 2. We prove statement (ii). The proof of
statement (i) is similar and omitted.

First we show by induction that Vi(i) 1 i for k = N,..., 1.
By (C5), Vn(i) = 7 1 i. Assume Vi (i) 4 i. TP3 (C2) im-
plies TP2 which preserves monotone functions (Karlin, 1968,
pg 23; Lehmann & Casella, 1998), namely, ZjPij(a)VkH(j) 0
i. This together with (C1) implies Q(i,a) 1 1. Thus Vi(i) =
ming Qx(i, a) 1 i.

Next we show by induction that V(i) is concave in i. By (C5),
Vy = 1 is concave. Assume Vi is concave. Then (C2) implies
Zj Pjj(a) Vi1(j) is concave in i (see Lemma 1). Since c(i, a) is
concave by (C1), it follows that Qy(i, a) = c(i, a)—e—zj Pii(a) Vir1(G)
is concave in i. Since concavity is preserved by minimization,
Vi(i) = ming Qk(i, a) is concave. Finally, V(i) increasing and

8 If p, q are probability vectors, then p >5 q if D tem 2t P = Dpem 2t
for each m. Equivalently, p >, q iff f'p > f’q for vector f increasing and concave.
Recall " denotes transpose.

9 i p, q are probability vectors, then p >c q if 3., ij, Pi= D m ij,qj
for each m. Equivalently, p >. q iff f’p > f'q for f increasing and convex.
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concave in i and (C4) implies (7) holds for all ayz, > 1. Then
with (C3), (A8), the proof is identical to Theorem 1. O

The following lemma used in the proof of Theorem 2 extends
the result in Karlin (1968, pg 23).

Lemma 1. Suppose P satisfies (C2). If V is concave and increasing,
then PV is concave and increasing.

Proof. First TP3 preserves monotonicity, so PV is increasing.
Next, since V is concave and increasing, then for any a > 0 and
b € R, V(j) — (aj + b) has two or fewer sign changes in the order
—, +, — as j increases from 1 to X. Let ¢;(a, b) = Zj Pj(aj + b).
Since P is TP3, the diminishing variation property of TP3 implies
Zj P; V;—¢i(a, b) also has two or fewer sign changes in the order
—, 4, — as i increases from 1 to X. Assume two sign changes
occur; then for some i; < iy, Zj P;V; > ¢i(a, b) for iy <i < i,.
Since ¢;(a, b) is integer concave in i by (C2), it lies above the
line segment L; that connects (iy, ¢;,) to (i, ¢y, ). So Zj P;V; >
¢i(a, b) > L;, iy < i < i, Finally, for arbitrary i; < i, € {1,...,X},
2 ViPiy =Py ) . .
we can choose a = W and b=} Py Vi —a) ;jPy;
so that Zj P V; = ¢i(a, b) = L; at i = iy, i,. Clearly, Zj PjV; > L
for arbitrary i; < i < i, and Zj P;V; = L for i = iy, i, implies
2Py V(j) is concave. O

Example (i). Bi-diagonal transition matrices

Theorem 2 applies to bi-diagonal transition matrices with
possibly non-supermodular costs; this is in contrast to Section 3.3
where we considered perturbed bi-diagonal matrices. Consider an
MDP with bi-diagonal transition matrices P;j(a) = 1—pq, P1iy1 =
Pas Pxx(a) =1, a € {1,...,A} Then ijPij(a) = i+ p, for
i < X and X for i = X; so ) ;jPj(a) is increasing and concave
in i ((C2) holds). Assume p, | a. Then (C4) is equivalent to
lem ijlp)'c,j(a + 1) = Pgj(a) < ax,)’c,a(zlsm ngl Pyjla+ 1) —
Py j(a)). Since pq > pat1, it follows that (C4) holds for all oy x4
1. If (C1), (C3) hold for some By 3, > 1, then Theorem 2 holds.
Numerical example. Consider a discounted cost MDP with A =
2,X = 50,pp = 08, p, = 07, p = 095 N = 200,
cx, 1) = 61x* 4+ Ox + 03, c(x,2) = 04(1 — exp(6sx + ),
§ = [-0.01,1,8.8,25, —0.1, —0.4]. It can be verified that the
cost is not supermodular, but the conditions of Theorem 2 are
satisfied. So the value function is concave and optimal policy is
decreasing. Fig. 3 shows Qu(x, a) is not submodular.

A%

Example (ii). Tri-diagonal transition matrices

Corollary 5 applies to MDPs with tri-diagonal transition matri-
ces where Pi_1(a) = pa, Piy1i=qa, Pi =1—pa — qa, P1i(a) =
1, Px_1x = 1 —5s4,Pxx = sq. If P(a) is TP3 and q, < pa,
S¢ > 14qq —pg hold, then ), jP;(a) is increasing and convex in i;
so modified (C2) holds. Also, if g4 1 @, pa 4 @, qa+1—G9a = Pa+1—Pa>
Sa+1 — Sa > Qa+1 — Ga + Pa — DPa+1, then convex dominance
(modified (C4)) holds for all « € (0, 1]. If the costs are chosen
so modified (C1), and modified (C3) hold for Sxzqs < 1, then
Corollary 5 holds and the optimal policy is monotone.
Numerical example. Consider a discounted cost MDP with A = 2,
X = 35, tri-diagonal transition matrices with p; = 0.2,p, =
0.1,q; = 0.05,q; = 0.1,s; = 0.95,s, = 1. Also p = 0.95,
N =200, c(x,1) = —(01 + 6, x3), c(x,2) = —(05 + 04x>) where
6 = [15,0.3/4%, 1, 3/4%]. The cost c(x, a) is not submodular but
Corollary 5 holds. Fig. 4 shows the non-submodular Qy(x, a).
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state x

Fig. 3. Non-submodular Q function for MDP with bi-diagonal transition matrix
that satisfies the assumptions of Theorem 2.

20

0 5 10 15 20 25 30 35
state x

Fig. 4. Non-submodular Q function for MDP with tri-diagonal transition matrix
that satisfies Corollary 5.

5. Summary and discussion

The classical structural result for MDPs uses supermodularity
to establish the existence of monotone optimal policies. This
paper proposes a more general condition, which we call the 7
condition, that was developed in the micro-economics literature.
We presented several examples of MDPs which satisfy Z including
sigmoidal costs, and bi-diagonal/perturbed bi-diagonal transition
matrices. The structural results in Section 3, namely, Theorem 1,
Corollaries 1, 3, 4 and Theorem 3 used first order stochastic
dominance to establish Z for several examples. of MDPs. In com-
parison, Theorem 2 in Section 4 discussed examples of T in
MDPs with concave value functions; we used TP3 assumptions
and second order (convex) stochastic dominance to prove the
existence of monotone optimal policies.

Discussion. Reinforcement Learning (RL) and Differential sparse Poli-
cies: Once the existence of a monotone optimal policy has been
established, RL algorithms that exploit this structure can be con-
structed. Q-learning algorithms that exploit the Z condition can
be obtained by generalizing the supermodular Q-learning al-
gorithms in Krishnamurthy (2016). The second approach is to
develop policy search RL algorithms. In particular, when A is small
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and X is large, then since u*(x) 1 x, it is differentially sparse, that
is u*(x + 1) — u*(x) is positive only at A — 1 values of x, and
zero for all other x. In Mattila et al. (2017), LASSO based methods
are developed to exploit this sparsity and significantly accelerate
search for w*(x); they build on the nearly-isotonic regression
techniques in Tibshirani, Hoefling, and Tibshirani (2011). The idea
is to add a rectified [;-penalty Zi:ll ') — pl(x + 1), to the
cost in the optimization problem (here u' is the estimate of
the optimal policy at iteration [ of the optimization algorithm).
Intuitively, this modifies the cost surface to be more steep in the
direction of monotone policies resulting in faster convergence of
an iterative optimization algorithm.

Appendix. Optimal allocation with penalty cost

This appendix discusses a finite horizon penalty-cost MDP
with perturbed bi-diagonal transition matrices (13). This has ap-
plications in optimal allocation problems with penalty costs (Der-
man et al,, 1976; Ross, 1983) and wireless transmission con-
trol (Ngo & Krishnamurthy, 2010). We assume € < pg+1 — Dq; SO
as discussed in Section 3.3 supermodularity condition (A4) does
not hold.

As in Example 4.2 in Derman et al. (1976) and Ross (1983,
pg.8), we consider an N-horizon MDP model. There are N-stages
to construct X components sequentially. If effort c(x, a) is allo-
cated then the component is constructed with successfully with
probability p,. Our transition matrices are specified by the per-
turbed bi-diagonal matrices (13). At the end of N stages, the
penalty cost incurred is 7; if we are i components short, where
i = {1,...,X}, with ry = 0. Note that Ross (1983) considers a
continuous action space A = [0, A], c(x, a) = a where a € A and
bi-diagonal matrices (¢ = 0). Below we show how the Z condition
applies to non-supermodular cost structures with perturbed bi-
diagonal matrices. Such cases cannot be handled by the convexity
based supermodularity in Ross (1983).

We consider the discrete action space A = {1,...,A} cor-
responding to discretization of the continuous valued actions:
A = {0, €, 2e,...,(A— 1)€). Recall € are perturbation
probabilities of the bi-diagonal transition matrices in (13). The
costs and transition probability parameter p, are

Costs: c(x,a)e, Par1 —Pa =€ Va Ya > 0. (A.1)

We make the following assumptions.

(A9) y, > 1 and 1 a. (This is relaxed in remark below.)
(A10) Terminal cost t, convex and 1 x with 7; = 0. Cost c(x, a) |
X. (More generally, c(x, a) in (A.2) | x.)

Main Result. We will work with the modified value function
Wi(x) = Vi (x)—1,. This is convenient since the terminal condition
is Wy(i) = 0 for all i. The dynamic programming recursion (6)
expressed in terms of Wj(x) and minimizing the cumulative cost
(rather than maximizing the cumulative reward) is puj(x) =
arg min, Qk(x, a), Wi(x) = min, Qi(x,a), k=0,...,N — 1,
Q(i, a) = ¢(i, a) + (1 — pa — €(A — @)) Wiy1(i)
+ paWk+l(i - 1)

c(i,a) =ec(i,a) + pa(tio1 — @) + € (A — a) (=x — @),
i=1,...,.X—1
Q(X, @) = &(X, @) + paWis1 (X — 1) + (1 = pg) Wiy 1(X),
(X, a) = ec(X, a) + pa(tx—1 — Tx)

(A2)

Theorem 3. Consider the N-horizon MDP with costs and transi-
tion probabilities specified by (A.1), (13). Assume (A9) and (A10).
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QN('r’ 2) - QN(x7 1)

1.5 ‘ ‘ ‘ ‘ ‘

state x

Fig. A.1. Non submodular Q function for optimal allocation.

Suppose ming y, > 1 and the costs satisfy
Ya(ti—t1) | Ali+1,a)— A, a)
Ya— 1 Ya— 1
fori =2,...,X — 1 where A(i,a) = c(i,a + 1) — c(i, a) and

perturbation probabilities € € (0, ming(pe+1 — pa)). Then optimal
policy u(i) k=1,...,N—=111i

Tir1 = Tx + (A3)

Remarks. 1. Theorem 3 can be viewed as complementary result
to the structural result in Derman et al. (1976) and Ross (1983).
If we choose the same instantaneous cost as Ross (1983), namely
c(x,a) = fa for some constant f, then (A.3) becomes t;;; >

™ + % — f. But terminal costs satisfying this condition
yield monotone policies that are degenerate, namely, u;(i) = 1
for all i. So for c(x, a) = f a, the T condition does not yield a useful
result. It is necessary to exploit convexity of the value function,
as in Ross (1983), to obtain non-degenerate optimal policies. On
the other hand, the Z condition (A.3) allows for non-submodular
costs and yields monotone policies (see examples below). For
such cases, it is not clear how to extend the convexity based
submodularity proof in Ross (1983) (which applies when € = 0)
to the MDP (13) for arbitrary € > 0.

2. (A9) is equivalent to p, 1 a and convex. (A9) can be
relaxed to p, 1 a by imposing stronger conditions on (A.3),
see (A.4). The convexity (A10) of terminal costs implies c(i, a)
in (A.2) is decreasing. Recall decreasing costs (A1) is used to show
submodularity (and Theorem 1).

Examples. We chose the MDP parametersin (13), (A.1)as X = 11,
A=2vy =12¢ =10% 1t = [0,1,2,4,8, 15,25, 40, 60,
90, 200]. Fig. A.1 displays Q(x, 2) — Q(x, 1) when c(x, 1) = 0,
c(x,2) =e(f +2.5xU(x < 3) — (x +2)%), f = 10°. Notice Q(x, a)
is not submodular. But Theorem 3 holds; so uj(x) 1 x.

Proof of Theorem 3. Using (A.2), the proof follows straightfor-
wardly by verifying the assumptions in Theorem 1. O

Remark. Choosing @ = y = max, j, in the proof, we obtain a
stronger sufficient condition than (A.3):

y — 1 % Ti — Ti_
Ti+1ZTXy +V7a(l i-1)
a_l )/a—l
Ali+1,a)—yA(i,a) | (Ya— YT (A4)
Va— 1 Ya— 1
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Since o = B is a constant and not a dependent, (A9) is relaxed to
Va > 1.
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