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ABSTRACT

‘We present a novel approach for mapping vertical uplifts in exhumed metasedimentary rocks
by coupling Raman spectroscopy of carbonaceous material with (U-Th)/He thermochronometry
on apatite and zircon. We apply this approach to carbonaceous metasedimentary rocks of the
Franciscan subduction complex, exposed in the Nacimiento block of central California, USA, an
area that records high-pressure-low-temperature metamorphism prior to entrainment within
the present-day transform plate boundary. We reveal the extent and magnitude of previously
unrecognized exhumation gradients, which, combined with regional structural observations, can
be used to quantify vertical crustal motion associated with localized transpression. We propose
that the Nacimiento block was affected by a kilometer-scale, post-subduction thermal anomaly
linked to a localized transpressive regime since ca. 25 Ma, with an uplift rate of ~0.3 mm/yr.

INTRODUCTION

Transpression is a common style of defor-
mation along transform plate boundaries that
may result from variation in fault geometry,
oblique convergence, or strain localization
along contrasts in lithospheric strength (Mol-
nar and Dayem, 2010; Cooke et al., 2020).
Because regions of localized transpression
generally lack syn-deformational sedimentary
records, low-temperature thermochronometry
is often the preferred tool for reconstructing
the initiation age, rate, and magnitude of verti-
cal exhumation (e.g., Ducea et al., 2003). Such
studies are frequently undertaken along active
restraining bends, where the development of sig-
nificant topographic relief serves as a proxy for
the identification of transpressive uplift (Spo-
tila et al., 2001; Ducea et al., 2003; Niemi and
Clark, 2018). However, in cases of minimal top-
ographic expression (e.g., due to low uplift rates,
rapid erosional removal of topography, or the
cessation of transpressional uplift), the identifi-
cation and quantification of transpressive defor-
mation may be challenging. Regional thermal
structure mapping using Raman spectroscopy
of carbonaceous material (RSCM; e.g., Beyssac
et al., 2002; Lahfid et al., 2010; Boutoux et al.,

2016) can identify regions of localized exhuma-
tion, providing both a target for the collection
of low-temperature thermochronometric data, as
well as information on peak burial temperatures
that are complementary to the thermal modeling.

We followed this approach through a study
of the Central California Coast Range, USA,
which underwent a transition from Late Cre-
taceous subduction-related metamorphism to
early Miocene strike-slip deformation resulting
from the northward migration of a slab window
associated with growth of the Pacific—-North
America transform plate boundary (Atwater,
1970; Atwater and Stock, 1998). Significant
vertical deformation and topographic uplift
have subsequently occurred along the San
Andreas fault and associated transform faults
(Dumitru, 1991; Ducea et al., 2003), although
regional patterns and magnitudes of transpres-
sion throughout the Coast Range remain cryptic
(Ducea et al., 2003; Steely, 2016). We present a
new high-resolution peak temperature map of
the Nacimiento block, derived from RSCM and
integrated with apatite and zircon (U-Th)/He
thermochronometric data, to delineate a com-
plex spatial pattern of late Cenozoic regional
heating and exhumation.

THE NACIMIENTO BLOCK

The Franciscan Complex of the Nacimiento
block (Fig. 1) is an exhumed accretionary ter-
rane associated with the subduction of the Far-
allon oceanic plate under the western margin
of North America (Ernst, 1980). It is bounded
to the east by the Sur-Nacimiento fault, to
the south by the Santa Ynez fault, and to the
west by the San Gregorio Hosgri fault (Fig. 1).
The Franciscan Complex is composed chiefly
of Late Cretaceous clastic sedimentary rocks
with volumetrically minor inclusions of chert,
basalt, and serpentinite, all equilibrated under
high-pressure—low-temperature (HP-LT) con-
ditions (e.g., Ernst, 1980; Underwood et al.,
1995, Ukar, 2012; Wakabayashi, 2015; Ukar
and Cloos, 2019).

Based on metamorphic assemblages of
metasandstones, Ernst (1980) divided the
Nacimiento block into three zones (from west
to east): zone I—calcite and K-felspar—bear-
ing; zone II—pumpellyite-bearing; and zone
III—lawsonite £ jadeitic pyroxene—bear-
ing (Fig. 1B). Estimated peak metamor-
phic temperature and pressure conditions
increase from ~150 °C to ~300 °C and
~200 MPa to ~800 MPa, respectively, from
west to east (Cloos, 1982). Age constraints on
regional metamorphism of clastic rocks in the
Nacimiento Franciscan are sparse, although
existing K-Ar whole-rock and “’Ar/*Ar detrital
K-feldspar ages generally fall in the 93-70 Ma
window (Suppe and Armstrong, 1972; Under-
wood et al., 1995). Based on vitrinite reflec-
tance, Underwood et al. (1995) estimated peak
temperatures of up to ~300 °C and recognized
the existence of a local post-metamorphic
thermal anomaly in the vicinity of Cape San
Martin and Alder Peak (Fig. 1B). The vitrinite
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Figure 1. (A) Simplified geologic map of the Nacimiento block. (B) Franciscan metamorphic zones are from Ernst (1980), and paleotemperature
contours are from Underwood et al. (1995). (C) Shaded-relief digital elevation models showing the distribution of peak Raman spectroscopy of
carbonaceous material (RSCM) temperatures interpreted from 47 analyzed samples and apatite (AHe) and zircon (ZHe) (U-Th)/He ages (in Ma)
for the Nacimiento block. Locations of RSCM samples are given in Table S1 (see footnote 1). Regional structural trajectories of the principal
fabrics (fold axial trace, bedding, and foliation) are marked with red dashed lines (some of the structural data are from Graymer et al. [2014]).

isoreflectance contours cut across regional met-
amorphic isograds (Fig. 1B), further supporting
that the thermal anomaly post-dates subduc-
tion. However, the distribution of Underwood
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et al.’s samples was primarily along the coast, PEAK TEMPERATURE DISTRIBUTION
adjacent to the San Gregorio Hosgri fault,and IN THE NACIMIENTO BLOCK

did not capture the thermal structure of the We investigated peak temperature distribu-
entire Nacimiento block. tion for rock samples across the Nacimiento
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block by applying RSCM thermometry to 47
samples (Fig. 1C). The samples are lithic sand-
stones containing abundant quartz, albite, musco-
vite, chlorite, and carbonaceous material (CM).

Peak temperatures for each sample were cal-
culated using the parameter RA1 proposed by
Lahfid et al. (2010), which has been empirically
calibrated in the range 200-350 °C (Table S1 in
the Supplemental Material'). Details on RSCM
measurement conditions and data processing are
provided in the Supplemental Material. RSCM
peak temperature estimates vary from <180 °C
near San Simeon to ~300 °C near Lopez Point
(Fig. 1C; Fig. S1). The well-defined northwest-
ward increase in peak temperature highlighted
by RSCM is consistent with the paleotempera-
ture gradient generated by exposure of more

'Supplemental Material. RSCM methods and
results, (U-Th)/He procedures and thermal modeling,
and thermal model sensitivity tests. Please visit
https://doi.org/10.1130/GEOL.S.21183529 to access
the supplemental material, and contact editing@
geosociety.org with any questions.

deeply buried metasedimentary rocks through
differential uplift (Ernst, 1980; Underwood
et al., 1995). Moreover, our RSCM tempera-
ture map reveals the presence of a kilometer-
scale, east-west—trending paleothermal anomaly
(peak temperatures of 300—360 °C) in the area
located between Cape San Martin and Alder
Peak (Fig. 1C).

HELIUM THERMOCHRONOMETRY
OF THE NACIMIENTO BLOCK

We used the RSCM temperature map to tar-
get metasediments that experienced different
peak temperature conditions for low-tempera-
ture thermochronometric analysis. We collected
11 samples of sandstones of Late Cretaceous
depositional age (ca. 82-98 Ma U-Pb detrital
zircon maximum deposition ages; Chapman
etal., 2016) for (U-Th)/He analysis. The zircon
(U-Th)/He (ZHe) system has a closure tempera-
ture of ~180-200 °C, below the observed peak
RSCM temperatures (Reiners et al., 2002). Apa-
tite (U-Th-Sm)/He (AHe) analysis was under-
taken on a subset of samples along a profile
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across the RSCM thermal anomaly (Fig. 1C).
The AHe system has a closure temperature of
40-70 °C (Farley, 2002).

Apatite ages range from 3.9 Ma in the center
of the thermal anomaly to 8.1 Ma ~42 km to the
southeast (Fig. 1C). These ages demonstrate that
the samples were exhumed recently to near-sur-
face conditions. The ZHe ages are more varied
and range from 104.5 Mato 7.1 Ma, with the old-
est ZHe age located in the southern (coldest) part
of the study area (Fig. 1C). The majority of the
ZHe ages are significantly younger than both the
detrital age of the samples from which they were
collected and the inferred Late Cretaceous timing
of regional HP-LT metamorphism (Ernst, 1980;
Underwood et al., 1995; Chapman et al., 2016).

To better resolve the thermal history of the
Nacimiento block, we performed inverse ther-
mal modeling on subsets of low-temperature
thermochronometric data at various distances
from the apparent thermal anomaly (Fig. 2).
The modeling was performed using the pro-
gram QTQt (Gallagher, 2012; http://iearth.edu
.au/codes/QTQt/), and our thermochronometric
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Figure 2. New tectonic model of the Nacimiento block, estimated by integration of Raman spec-
troscopy of carbonaceous material (RSCM) mapping, (U-Th)/He thermochronometry on apatite and
zircon, and regional structural analysis. Note that the apparent RSCM thermal anomaly is bounded
by reverse/thrust faults. Insets show inverse thermal history models of temperature versus time
(in Ma) for Alder Peak, Salmon Creek, Lottie Potrero, and San Simeon. Salmon Creek model was
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computed by integrating the data set from Steely (2016). MDA—maximum depositional age.
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ca. 25 Ma: subduction of the East Pacific Rise Crest

data were supplemented with two other data sets
from the Nacimiento block (Table S4; Lori,
2016; Steely, 2016). Inverse thermal models
were guided by depositional age information for
the samples (Chapman et al., 2016), peak tem-
peratures for each sample derived from RSCM,
and present-day surface temperatures.

The inverse thermal models reveal a suite of
time-temperature histories along the Nacimiento
block that are consistent with protracted sub-
duction-related burial throughout the Late Cre-
taceous and early Cenozoic, followed by a late
Oligocene—early Miocene (ca. 20 Ma) onset of
exhumation (Fig. 2). The ages of initiation of the
exhumation are robust and, according to our for-
ward models testing a range of burial scenarios,
insensitive to burial conditions (see the Supple-
mental Material). Peak temperatures prior to
exhumation decrease southward from ~250 °C
at Alder Peak to ~225 °C at Salmon Creek and
~200 °C at Lottie Potrero (Fig. 2). The south-
ernmost sample (San Simeon) reveals a much
lower peak temperature (~80 °C) and later onset
of exhumation (10-15 Ma) but should be treated
cautiously, as this history is constrained by a
single AHe age and a RSCM peak temperature
below the calibrated range. The calculated cool-
ing rate of the three northernmost samples is
~10 °C/m.y. (~0.3 mm/yr exhumation rate for
a 30 °C/km geothermal gradient).

EVIDENCE OF TRANSPRESSIONAL
DEFORMATION

The paleothermal anomaly recorded between
Cape San Martin and Alder Peak is hypothesized
to be the product of a post-metamorphic heat-
ing event (Underwood et al., 1995). However,
structural analysis of the area shows that most
of the fold orientations measured within and
near the paleothermal anomaly (at 250°) con-
trast with the regional accretion-related fabrics
(generally oriented 315-350°; Fig. 1C; Graymer
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etal., 2014; Johnson et al., 2018, Lacroix et al.,
2020), suggesting a counterclockwise rotation
of ~50-75°. We infer that this structural rota-

tion highlights the presence of an undocumented
local restraining bend that accommodates ver-
tical uplift between the San Gregorio Hosgri
and Nacimiento faults during dextral move-
ment (Figs. 2 and 3). In active strike-slip set-
tings, motion can be accommodated by local
vertical-axis rotation and subsequent transpres-
sional ridge formation (e.g., Spotila et al., 1998).
Transpressional uplift and the associated devel-
opment of folds are well-documented along the
southern offshore extension of the San Gregorio
Hosgri fault (Sorlien et al., 1999), as well as
along other portions of the San Andreas fault
system; e.g., the San Bernardino Mountains
(Spotila et al., 2001; Niemi and Clark, 2018).
The existence of transpressional deformation
is supported by our RSCM temperature distribu-
tion map (Fig. 1C), which shows the presence of
an apparent thermal anomaly exposing rocks as
hot as 336 °C in the area of Cape San Martin—
Alder Peak (Figs. 1C and 2). Importantly, this
apparent anomaly is spatially and geometrically
correlated with the reorientation of the regional
subduction-related structures. Additionally,
this anomaly is bounded by a series of deeply
incised valleys interpreted as thrust/reverse
faults (Graymer et al., 2014; Fig. 2). Similar
evidence of transpression has been documented
by Johnston et al. (2019) along the McWay fault,
a well-documented south-vergent thrust fault
that marks the northern limit of the apparent
thermal anomaly ~20 km north of Lopez Point.
A post-metamorphic heating event associ-
ated with local magmatism and hydrothermal
gold deposits (e.g., Underwood et al., 1995)
predicts a paleothermal anomaly with decreas-
ing thermochronometric ages toward its center,
though it fails to explain the structural reorienta-
tion discussed above. Indeed, samples collected

Nacimiento Block

Figure 3. Schematic
diagram of oblique sub-
duction of the Mendocino
Triple Junction migration
beneath the Nacimiento
block at ca. 25 Ma.
Oblique subduction of the
spreading rise produced
ridge-parallel shortening
that caused the erosion of
the restraining bend form-
ing the observed thermal
anomaly. Note that some
of the required Neogene
heating of the Nacimiento
block may be attributable
to slab-window passage.
TRSCM—Temperature
Raman spectroscopy of
carbonaceous material.

at the contact of a small magmatic intrusion
(sample BG16-70, see the Supplemental Mate-
rial) and within the Los Burros deposit (Lac-
roix et al., 2020) did not record high RSCM
temperatures (< 280 °C). Instead, we attribute
the combination of (1) the apparent temperature
anomaly, (2) the structural reorientation, and
(3) the young (U-Th)/He thermochronometric
ages to the presence of a previously undocu-
mented east-west—trending transpressive zone
that developed between the San Gregorio Hosgri
and Nacimiento faults (Fig. 1C). Whereas the
role of a post-metamorphic heating event can-
not be fully excluded, and indeed we suggest
here the existence of upwelling material due
to impingement of the Mendocino Triple Junc-
tion with the California margin, the present-day
exposure of a paleothermal anomaly is princi-
pally produced by transpressional deformation
generating significant uplift in the vicinity of
Cape San Martin/Alder Peak relative to the rest
of the Nacimiento block to accommodate the
shear activities of both the San Gregorio Hosgri
and Nacimiento faults.

GEODYNAMIC INTERPRETATION

Thermochronometric ages of Franciscan ter-
rigenous rocks from the Cape San Martin—Alder
Peak area are significantly younger than Ar-Ar
metamorphic ages (93-38 Ma; Ernst 1980,
Underwood et al., 1995) and maximum detrital
zircon depositional ages (98—82 Ma; Chapman
et al., 2016). We suggest that the paleothermal
anomaly area identified by RSCM was gener-
ated by significant transpressional exhumation
over the past 25 Ma related to shear movement
associated with the Pacific-North American
plate boundary (Ducea et al., 2003).

Igneous geochronology and offshore mag-
netic anomaly patterns document the migra-
tion of the Mendocino Triple Junction beneath
California and the transition of the continental
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margin from convergent to transform motion
(Atwater, 1970; Dickinson, 1997; Atwater
and Stock, 1998). Tectonic reconstructions
suggest that impingement of the East Pacific
Rise crest with the Nacimiento block occurred
between 28.5 Ma and 20 Ma, which overlaps
with the onset of exhumation as constrained
by thermal models (Fig. 2). This similarity
between our thermal models and collision of
the East Pacific Rise crest suggests that the
Mendocino Triple Junction migration may be
responsible for both the local uplift and the
apparent thermal anomaly (Fig. 3). Consid-
ering the angle of convergence between the
ridge-transform fault system and the trench,
the relative motion between the continental
and oceanic plates had a significant dextral
strike-slip component to initiate the observed
transpressive deformation (Kuiper and Waka-
bayashi, 2018; Fig. 3). Additionally, develop-
ment of a slab window in the subducting plate
may have caused heating and fluid-flow that
enhanced the local thermal overprint (Thorkel-
son, 1996; Underwood et al., 1999; Kuiper and
Wakabayashi, 2018) and emplacement of the
Los Burros gold deposit (Underwood et al.,
1995; Lacroix et al., 2020).

We suggest that the apparent thermal
anomaly recorded within the study area cor-
responds to one of the earliest expressions of
transpressional deformation within the Coast
Range of California and formed during the
incipient stage of ridge subduction (Fig. 3).
Other thermal anomalies have been reported
within the Coast Range of California; e.g., the
King Range and Point San Luis (Underwood
etal., 1999; Underwood and Laughland, 2001).
These authors propose alternatives to explain
the presence of such anomalies involving either
slab window heating or out-of-sequence thrust
faults. Interestingly, the anomaly of Point San
Luis is spatially correlated to structural grain,
suggesting that localized and unsuspected
transpressive zones may be common in the
Franciscan Complex.

CONCLUSIONS

Tandem use of RSCM and (U-Th)/He ther-
mochronometry permits mapping of the peak
temperature distribution of the Nacimiento
block, revealing an apparent post-subduction
thermal anomaly. Structural data support the
development of an apparent thermal anomaly
through localized transpressive uplift and poten-
tially heating, both of which are associated with
ca. 25 Ma impingement of the East Pacific Rise
crest with the Nacimiento block. Thermochrono-
logical data and thermal inverse modeling sug-
gest that the area studied corresponds to one of
the earliest expressions of transpressional defor-
mation and associated exhumation (~0.3 mm/
yr vertical exhumation rate) in the past 25 m.y.
caused by the subduction of an ocean ridge.
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