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Abstract

Desert dust accounts for a large fraction of shortwave radiation absorbed by aerosols,
which adds to the climate warming produced by greenhouse gases. However, it remains
uncertain exactly how much shortwave radiation dust absorbs. Here, we leverage in-situ
measurements of dust single-scattering albedo to constrain absorption at mid-visible
wavelength by North African dust, which accounts for approximately half of global dust.
We find that climate and chemical transport models overestimate North African dust
absorption aerosol optical depth (AAOD) by up to a factor of two. This occurs primarily
because models overestimate the dust imaginary refractive index, the effect of which is
partially masked by an underestimation of large dust particles. Similar factors might
contribute to an overestimation of AAOD retrieved by the Aerosol Robotic Network,
which is commonly used to evaluate models. The overestimation of dust absorption by
models could lead to substantial biases in simulated dust impacts on the Earth system,
including warm biases in dust radiative effects.
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Introduction

Most of the aerosol species in the atmosphere produce a cooling effect that opposes the
warming effect produced by greenhouse gases'. However, mineral dust is one of the three
main aerosol species, in addition to black carbon and brown carbon, that absorb solar
radiation and therefore could add to the warming produced by greenhouse gases'-2. The
exact amount of solar radiation that dust absorbs greatly affects its impact on the global
climate system. For instance, whether the net direct radiative effect of dust aerosols
warms or cools the global climate system depends, in large part, on the amount of solar
radiation absorbed by dust®>. Therefore, determining the extent of dust absorption of
solar radiation is critical to determining whether future changes in atmospheric dust will
slow or accelerate the projected warming of the climate system by greenhouse gases®.
Beyond its direct radiative impacts, dust shortwave absorption also modifies atmospheric
temperature profiles, thereby altering atmospheric circulations, cloud distributions, and
precipitation’ . For example, enhanced dust shortwave absorption within the Saharan air
layer can reduce the intensification of tropical cyclones over the North Atlantic Ocean by
enhancing the low-level temperature inversion and increasing the vertical wind shear,
which could ultimately weaken associated precipitation'®!!,

Despite the importance of dust shortwave absorption on weather and the climate
system'?, the exact amount of shortwave radiation absorbed by dust in the atmosphere
remains highly uncertain'®!*, This uncertainty in estimating dust shortwave absorption is
partially due to uncertainties in the microphysical properties of dust used in climate and
chemical transport models (Figure 1)!*!°. The amount of shortwave radiation absorbed by
dust aerosols is quantified by the dust absorption aerosol optical depth (dust AAOD) — a
parameter that depends on dust extinction, quantified by the dust aerosol optical depth
(AOD), and the fraction of that extinction that is due to absorption, quantified by the
single scattering albedo (SSA; Figure 1). Whereas global dust extinction scales with
overall dust mass loading and has been effectively constrained using remote sensing
observations'®!®, estimates of dust SSA remain very uncertain'>!. This is because dust
SSA primarily depends on the dust size distribution, dust shape, and the dust
mineralogical composition (characterized by dust refractive index), and all these
microphysical properties are poorly constrained in climate and chemical transport models
(Figure 1). For example, recent studies have shown that dust size distributions assumed in
global aerosol models overestimate the amount of fine dust particles (with diameter, D <
5 um) and greatly underestimate the amount of large or coarse dust particles (D > 5 pm)
in the atmosphere compared to in-situ measurements>!*2!, Since coarse dust absorbs
more shortwave radiation than fine dust?>??, this underestimation of coarse dust particles
could bias estimates of dust AAOD in climate and chemical transport models®2%%*,
Furthermore, a coarse irregularly-shaped dust particle absorbs more radiation than a
spherical dust particle of the same volume and mineralogy, causing errors in models
because of the common assumption that dust is spherical®® 7. Another factor contributing
to large uncertainties in the dust SSA is that it primarily depends on iron-bearing
minerals, mainly hematite and goethite?!. These minerals have substantial but poorly
known spatial variabilities, differing significantly between different dust sources*>>>.
However, most climate and chemical transport models still implicitly assume an invariant
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mineralogical composition by using constant dust refractive index values that do not vary
in space and time***°. Because dust aerosols contribute more than a third of the total
shortwave absorption in most climate and chemical transport models'*, therefore, large
uncertainties in dust AAOD could substantially influence the overall impacts of aerosol
absorption in the atmosphere.

One reason for the large uncertainties in dust shortwave absorption and the associated
dust size distribution and refractive index is that these dust properties are difficult to
obtain from remote-sensing observations. Because the instruments on these remote-
sensing platforms cannot directly measure aerosol size distributions and refractive
indices, inversion algorithms are needed to retrieve these key aerosol properties.
However, these inversion algorithms are, in turn, generally underdetermined and thus
require important underlying assumptions, such as the representation of dust shape®®-7,
which could lead to substantial uncertainties in the retrieved absorption aerosol
properties*®. One such remote-sensing retrieval from the ground-based AErosol RObotic
NETwork (AERONET) is widely used to characterize atmospheric aerosol properties and
evaluate climate and chemical transport models®®. However, previous studies have
highlighted that AERONET retrievals of dust size distribution may be too fine when
compared against near-coincidental aircraft-based in-situ measurements over North
Africa, although these measurements are not column-integrated and thus not directly
comparable*®*!. In addition, comparisons between AERONET retrievals of refractive
index and mineralogical analysis of dust particles measured onboard an aircraft indicated
substantial differences in the estimated dust imaginary refractive index*>*. Therefore,
uncertainties in dust size distribution and dust refractive index in both remote-sensing
retrievals and model simulations have made it difficult to estimate dust shortwave
absorption accurately and have introduced substantial uncertainties in estimates of dust
impacts on regional and global climate systems®71244:45,

Here we address these problems by leveraging observationally based constraints on size-
resolved dust properties and dust refractive index to constrain the dust shortwave
absorption (Figure 1). Specifically, we developed a framework that leveraged dozens of
in-situ measurements of dust SSA to constrain the dust refractive index, which is
combined with observationally based constraints on size-resolved dust properties to
constrain the dust AAOD at mid-visible (550 nm) wavelength (Methods & fig. S-1).
Although dust shortwave absorption occurs across the solar spectrum, we focus on the
550 nm wavelength and use it as a representative wavelength. This is because, 550 nm
wavelength is the reference wavelength used in most modeling and remote sensing
studies'®4. Estimates of dust shortwave absorption at other visible wavelengths can be
obtained by combining measurements of the spectral distribution of dust absorption
properties 4”8 with our constraints at 550 nm wavelength. In addition, we focus on dust
emitted from North Africa, the world's largest dust source, because it accounts for more
than half of the global dust mass burden***°. As such, uncertainties in the absorption
properties of North African dust can substantially influence estimates of dust impacts on
the global climate system >!. Overall, our observationally based constraints suggest that
North African dust absorbs substantially less shortwave radiation than estimated by an
ensemble of climate and chemical transport model simulations and retrieved by the
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AERONET inversion algorithms. This suggests that models and retrievals overestimate
dust shortwave absorption, implying substantial biases in estimates of dust impacts on the
energy balance, precipitation, and other critical aspects of the regional and global climate
systems.

Results and Discussion

The imaginary refractive index of North African dust

We obtained constraints on the imaginary refractive index of North African dust by
leveraging more than a dozen in-situ measurements of dust single scattering albedo
(SSA) over North Africa (Figure 1 & fig. S-1). Specifically, we used an optimization
method™?, whereby we obtained the dust imaginary refractive index at 550 nm
wavelength that yields a dust SSA in optimal agreement with the collection of in-situ
SSA measurements (see cyan-filled bars and circles in Figure 2a & b, respectively, and
more details in Table S-1). Our estimates of dust SSA better reproduce the compilation of
in-situ measurements of dust SSA over North Africa than estimates from climate and
chemical transport models (Figure 2a). Specifically, the climate and chemical transport
models consistently underestimate the dust SSA in-situ measurements at 550 nm
wavelength. To put these measurements and model simulations of dust SSA on a similar
footing, we calculated the simulated values over the same diameter range, height range,
locations, and season as reported for the measurements (see Methods). We made the
comparison of dust SSA for two sets of model simulations — an ensemble of six selected
models (gray bars in Figure 2a) and an ensemble of eight models that are part of the
AeroCom (Aerosol Comparison between Observations and Models) Phase III project
(dark-green bars in Figure 2a) (see Table S-2 for details of both sets of models). We
estimated mean dust SSA values of about 0.95 (standard error: 0.94 - 0.97) and 0.94
(standard error: 0.93 - 0.96) for the ensemble of selected models and AeroCom models,
respectively. In contrast, the in-situ measurements revealed that North African dust
generally has higher dust SSA values with a mean of about 0.97 (mean values range
between 0.92 and 0.99) than the climate model simulations, over the same diameter
range, height range, locations, and season. These discrepancies between the in-situ
measurements and simulated dust SSA are consistent for cases with sub-micron diameter
cut-off?*4153-56 and for cases that account for larger dust particles’’>°. Overall, the
underestimation of dust SSA in the ensemble of selected models and AeroCom models
can result in a mean bias of approximately -5% over some locations and collectively
result in root-mean-square errors of up to a factor of two larger than our estimate of dust
SSA (fig. S-2).

Consequently, we find the imaginary refractive index that optimally reproduces the
compilation of the in-situ SSA measurements of North African dust is much smaller than
assumed in most climate and chemical transport models (Figure 2¢). Specifically, North
African dust has a mean imaginary refractive index at 550 nm wavelength of 0.0012 (one
standard error range of 0.0009 - 0.0016; pink/red bars in Figure 2¢). Our analysis focused
on constraining the dust imaginary refractive index because dust shortwave absorption
depends more sensitively on the imaginary part of the refractive index than on its real
part (e.g., fig. S-3)!931:6061 In addition, although our source-resolved constraints on dust
imaginary refractive index are informed by a compilation of in-situ dust SSA
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measurements, they are consistent with previous lab-based measurements of imaginary
refractive index from mineral soil dust?®$>%. For example, Di Biagio et al.>’ used parent
soil samples from North Africa and found that the dust imaginary refractive index over
the Sahel has a relatively larger uncertainty than the Sahara dust source region (see blue
bars in Figure 2¢ for interpolated values at 550 nm wavelength). In contrast, most climate
model simulations ignore these regional differences in dust imaginary refractive index
and assume that the refractive indices are invariant in space and time**. The average dust
imaginary refractive index for the ensemble of selected and AeroCom models are
respectively 0.0029 (standard error: 0.0014 - 0.0030) and 0.0026 (0.0011 - 0.0031) (see
Table S-2). Therefore, on average, these climate and chemical transport models
overestimate the imaginary refractive index of North African dust by more than a factor
of two.

Consistent with these estimates in climate and chemical transport models, we also find
that dust-dominated AERONET retrievals estimate a larger imaginary refractive index at
550 nm wavelength over North Africa than obtained from our observationally based
constraints (compare pink/red and purple bars in Figure 2c). Since AERONET retrievals
account for both dust and non-dust aerosol species (such as smoke aerosols), we obtained
dust-dominated AERONET retrievals by applying strong criteria, including using an
Angstrom exponent of less than 0.2 to discriminate the observations that predominantly
contain dust aerosols from observations containing other aerosol species*’ and thereby
minimizing the non-dust component in the resulting estimates (see Methods). In addition,
to put the AERONET retrievals on a similar footing as our constraints and ensemble of
model simulations and because of the non-linear dependence of complex refractive index
on wavelength, we fit a second-order polynomial as a function of wavelength between
440 and 1020 nm to obtain interpolated values of AERONET-retrieved imaginary
refractive at 550 nm wavelength® %, We find that the dust-dominated AERONET-
retrieved imaginary refractive index is approximately 0.0019 (0.0016 - 0.0021) for all of
North Africa. Although the AERONET-retrieved imaginary refractive index is slightly
less than the ensemble mean dust imaginary refractive index used in models, it is
comparable to values used in some members of the selected and AeroCom models (see
Figure 2c and Table S-2). In addition, like most climate models, AERONET-retrieved
imaginary refractive index is larger than our constraints on dust imaginary refractive
index over North Africa by about 54%.

The shortwave absorption aerosol optical depth of North African dust

We find that climate models and AERONET retrievals estimate substantially more
absorption of shortwave radiation by North African dust aerosols than indicated by our
observationally based constraints. We obtained our constraints on the dust absorption
aerosol optical depth (dust AAOD) at 550 nm wavelength by combining our constraints
on source-resolved dust imaginary refractive index (Figure 2c) with observationally
informed constraints on dust shape?’, column-integrated dust size distribution, and dust
mass loading®?! (see Methods). As a result, we find that the dust AAOD averaged over
the North African continent is about 0.0094 (0.0073-0.0120) (Figure 3a). However, the
simulated dust AAOD values over the same area are approximately 0.0110 (0.0064-
0.0494) and 0.0180 (0.0148-0.0219) for the ensemble of selected and AeroCom models,
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respectively (Figure 3b & c). Furthermore, averaging over both the continent and the
ocean, where North African dust sources dominate global dust loading (by more than 80
%; see the dashed black contour in Figure 3a-c)*, our constraint on dust AAOD is about
0.0045 (0.0035-0.0057), whereas the simulated dust AAOD values are 0.0053 (0.0030-
0.0232) and 0.0090 (0.0059-0.0107) for the ensemble of selected and AeroCom models,
respectively. Therefore, relative to our constraints, climate and chemical transport models
overestimate the shortwave aerosol absorption by up to a factor of two in regions where
North African dust dominates.

Similarly, we also find that dust-dominated AERONET retrievals estimate substantially
greater shortwave absorption over North Africa than indicated by our observationally
based constraints (Figure 3f). As highlighted above, we use a second-order fit to
interpolate to 550 nm wavelength®%* and also applied strong criteria to discriminate the
AERONET retrievals that are predominantly dust aerosols and thus minimize the non-
dust component in the AERONET-retrieved total AAOD (see Methods). To put the
AERONET retrievals, climate model simulations, and our constraints on a similar
footing, we obtained the column-integrated non-dust AAOD from the ensemble of
AeroCom models and added it to our constraints on column-integrated dust AAOD. Over
each AERONET station (cf. Figure 2b), the dust-dominated retrievals are consistently
larger than the total AAOD of our estimate. This possible overestimation of AAOD could
reach up to a factor of three over some AERONET stations (fig. S-4). In addition, the
difference between AERONET-retrieved total AAOD and our estimates for Saharan
stations is about 55% more than that for Sahelian stations (Figure 3f). Collectively over
North Africa, the average dust-dominated AERONET-retrieved total AAOD is 0.029
(0.021 - 0.031), whereas our estimate over the same locations is 0.017 (0.010 - 0.027;
Figure 3f). Although AERONET thus estimates a larger total AAOD than our constraints,
the retrieved value is comparable with model-estimated column-integrated total AAOD,
which is similarly collocated with the dust-dominated North African AERONET stations
(Figure 3f). Overall, our analysis suggests that North African dust might absorb less
shortwave radiation than simulated in climate and chemical transport models or obtained
from dust-dominated AERONET retrievals.

The cause of possible biases in the simulated and retrieved North African dust
shortwave absorption.

Our observationally based constraints thus show a substantially lower shortwave
absorption by dust than simulated by climate models and retrieved by AERONET.
Although we cannot rule out that this difference is due to biases in the in situ
measurements of the single-scattering albedo used in our analysis, these results suggest
that models and AERONET retrievals might overestimate dust shortwave absorption. To
understand the cause of this possible overestimation, we decomposed the bias in dust
AAOD by examining the contribution of the input parameters. Specifically, we assessed
the contribution to the overall bias in the ensemble of selected models due to the bias in
the simulated dust refractive index and the size-resolved dust properties, which include
the dust load, dust shape, and dust size distribution (see Methods).
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We find that the bias in the simulated dust AAOD is a strong function of dust diameter
(Figure 4a). Averaged over the region where North African dust sources dominate global
dust loading (by more than 80 %; see dashed contour in Figure 3)°°, the ensemble of
selected models overestimates dust AAOD for fine dust particles (D < 5um) by 0.0021
(-0.0003 to +0.0044) but underestimates it for coarse dust particles by -0.0013 (-0.0016 to
-0.0009). This contrast between the overestimation of dust AAOD for fine dust and the
underestimation of dust AAOD for coarse dust is primarily driven by the inherent bias in
the simulated size-resolved dust mass loading. Specifically, climate and chemical
transport models overestimate the fraction of fine dust particles and underestimate the
fraction of coarse dust particles compared to in-situ measurements over North Africa
(Figure 4b). Depending on the model, the underestimation of coarse dust can be up to
approximately one-and-a-half orders of magnitude (colored lines Figure 4b). In contrast,
DustCOMM (Dust Constraints from joint Observational-Modelling experiMental
analysis), the observationally constrained dust size distribution used in this study,
captures the measurements better than the climate model simulations (compare red lines
with other lines in Figure 4b).

In addition, and across the diameter range, we also find that the bias in dust imaginary
refractive index contributes a substantial fraction of the bias in the simulated dust AAOD
(Figure 4a). Specifically, the overestimation of dust imaginary refractive index in the
ensemble of selected models (Figure 2c¢) is primarily responsible for the overestimation
of all North African dust AAOD (green bars in Figure 4a). This contribution of the bias
in dust imaginary refractive index to the bias in the dust AAOD is masked by the
contribution of the bias in size-resolved dust properties, which include the size-resolved
dust mass load and the shape representation. That is, the model overestimation of the fine
dust load results in an overestimation of dust AAOD; the model underestimation of the
coarse dust load results in an underestimation of dust AAOD; and the spherical
representation of dust shape results in an underestimation of dust AAOD. Whereas the
resulting collective bias in the size-resolved dust properties results in an underestimation
of the simulated North-African dust AAOD by -0.0013 (-0.0032 to +0.0054; cyan bar in
Figure 4a third column), the bias in the dust imaginary refractive index alone adds an
overestimation of 0.0023 (0.0006 — 0.0041). Put together, the bias in the representation of
simulated dust refractive index and size-resolved dust properties dust explains the
majority (> 70%) of the total discrepancy in the simulated dust AAOD for the ensemble
of selected climate models (compare the orange and grey bars in Figure 4a). Overall, our
analysis indicates that approximately half of the model overestimation of the simulated
dust AAOD due to the overestimation of the dust imaginary refractive index is offset by
the model underestimation of coarse dust.

As with the ensemble of selected global aerosol models, we find that the AERONET-
retrieved aerosol size distribution and imaginary refractive index explain the difference in
total AAOD between dust-dominated AERONET retrievals and our estimates.
Specifically, the AERONET-retrieved aerosol size distribution over dust-dominated
locations overestimates fine particles (D < 5pum) and underestimates coarse particles

(D = 5pm) by about the same amount as the dust size distribution in the ensemble of
selected models (compare purple line with other lines in Figure 4c). Similarly, as shown
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above (Figure 2c), the AERONET-retrieved imaginary refractive index overestimates our
constraints on the dust imaginary refractive index by a similar amount as the ensemble of
selected and AeroCom models. These contributions from the mean aerosol size
distribution and imaginary refractive index to the overestimation of retrieved AAOD are
similar regardless of the Angstrom exponent used to discriminate dust-dominated
measurements over North Africa (fig. S-5). This suggests that the overestimation in dust-
dominated AERONET-retrieved AAOD and its associated uncertainties in the retrieved
aerosol imaginary refractive index and aerosol size distribution are primarily due to the
uncertainties in retrievals during dusty conditions, and for instance not due to
contamination by other aerosol species. Overall, our results suggest that the possible
overestimation of retrieved and simulated North African dust shortwave absorption is
driven primarily by biases in dust size distribution and dust imaginary refractive index
(Figure 4).

Implications of the bias in the simulated and retrieved North African dust
shortwave absorption.

Our finding that climate model simulations and dust-dominated AERONET retrievals
might overestimate dust shortwave absorption has important implications for dust
impacts on the regional and global climate system. This is because North African dust
sources emit more than half of the world's dust aerosols***® and because inaccurate
representations of dust absorption properties would have important consequences for our
understanding of dust impacts on the global climate system>!. One such consequence is
that the bias in simulated and retrieved dust shortwave absorption could affect the
estimates of regional dust direct radiative effects (DRE) with potential impacts on the
global energy balance. For example, an overestimated shortwave dust imaginary
refractive index (e.g., Figure 2c) could result in a warm bias for the shortwave DRE™!3.
However, such a bias could be masked by the contemporaneous bias in the dust size
distribution (Figure 4) since an underestimation of coarse dust by itself produces a cold
bias in the shortwave DRE3. Additionally, an underestimation of coarse dust could also
introduce a cold bias in the longwave DRE*%®, contributing to the overall bias in previous
modeling studies that showed that dust cools the climate system®”~7°. Therefore, because
of the sensitivity of the DRE to dust absorption properties®’-’!, an accurate representation
of these properties is crucial to determine whether dust warms or cools the global climate
system.

Furthermore, our findings also have important consequences for our understanding of
dust impacts on the hydrological cycle and biogeochemistry. Specifically, because dust
shortwave absorption induces thermodynamical and dynamical responses in the
atmosphere, overestimation of simulated dust AAOD could bias the temperature,
moisture, and wind distribution that could, in turn, affect the distributions of clouds and
precipitation”##72_ Such effects on clouds and precipitation would depend on the vertical
distribution of dust absorption properties, the ratio of fine and coarse dust particles, and
the relative position of the dust and cloud layers, which climate models have found
difficult to simulate accurately?*”*. In addition, the bias in dust absorption properties
could have implications for the iron mass concentration upon its deposition in the North
Atlantic Ocean. Specifically, because iron-oxides are the primary mineral that controls
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the dust imaginary refractive index in the shortwave spectrum?”!, our finding that

models overestimate dust imaginary index of refraction implies that models likely
overestimate the iron content in deposited dust particles. This inference is supported by
recent studies that indicated that surface-level total iron mass concentration is
overestimated near North African dust sources™’®, suggesting that the fractional
contribution of iron-oxides to total iron mass concentration is also overestimated®’.
Considering this sensitivity of the radiation budget, cloud cover, precipitation
distribution, and biogeochemistry to dust absorption properties, the impacts of biases in
simulated dust AAOD on the regional and global climate system could be substantial.

In addition to the consequences of the overestimation of dust absorption in climate
models, our findings also have implications for retrievals of aerosol absorption properties
from remotely sensed observations, particularly near dust source regions such as North
Africa. Specifically, our results indicate that AERONET retrievals at dust-dominated
locations might overestimate the imaginary refractive index and underestimate the
contribution of coarse aerosols. Such uncertainties in aerosol properties could be
propagated into other applications within remote-sensing and modeling communities that
utilize AERONET datasets as a benchmark. For example, most satellite-based remote-
sensing retrievals rely on algorithms that often leverage AERONET retrievals of aerosol
size distribution and refractive index to discriminate different aerosol types in the
atmosphere’’. One such satellite-based retrieval is from CALIPSO (Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observations), where previous studies have attributed
the possible underestimation of its extinction coefficients to a bias in the dust lidar ratio,
which in turn has been estimated based on AERONET retrievals of aerosol size
distribution and complex refractive index’®”. In addition, AERONET retrievals are
generally used as a benchmark with which model simulations of aerosol properties are
constrained and validated®’. For example, Bond et al.?° adjusted the simulated direct
radiative forcing of black carbon because climate models substantially underestimated
AAOD when compared against AERONET retrievals (see also Figure 3f). However,
given that our results suggest that AERONET-retrieved dust-dominated AAOD might be
overestimated over North Africa, such adjustments of the simulated radiative forcing
could result in an overestimation of aerosol direct radiative forcing. Therefore, because of
the global coverage of the AERONET stations, a more accurate constraint on the
AERONET-retrieved aerosol size distribution and refractive index is crucial for the
retrieval of aerosol properties from other remote-sensing platforms and to better constrain
model simulations of the impacts of dust and other absorbing acrosols on key aspects of
the Earth system.

Since our findings rely on in-situ dust SSA measurements and other input observational-
based parameters over North Africa, it is subject to some important limitations (see
Methods for details). One of these limitations includes uncertainties and biases associated
with instrumentations, which may result in the dust SSA measurements not fully
accounting for all the particle sizes observed over North Africa. For example, coarse and
super-coarse dust particles, while present over North Africa®®!, are often not measured by
commonly-used instruments, such as nephelometers and Particle Soot Absorption
Photometers™*®, In addition, the fine-mode size range of most of the SSA

10
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measurements is also susceptible to contamination by other aerosol species, such as black
carbon, even though these measurements are obtained over dust-dominated regions®>*°,
Additional limitations to our results may be introduced through inherent uncertainties in
other observationally based datasets we used as inputs, including uncertainties in the
DustCOMM dust size distribution, dust loading, dust shape, and the fractional
contribution of each dust source used to constrain the dust absorption properties (see
Methods). For example, uncertainties may be introduced through the assumption of a
representative location and height range used for dust SSA measurements (Figure 2a), as
well as the exclusion of particles larger than D > 20 pm in the DustCOMM dust size
distribution. We propagate some of these uncertainties into our estimates of dust
refractive index and dust AAOD by using a non-parametric procedure based on the
bootstrap method®”:%® that randomly selects (with replacement) from the probability
distributions of each of the input parameters (see Methods).

Because of these limitations and uncertainties, our calculated errors on dust imaginary
refractive index and dust AAOD should be considered as lower bounds. This is
particularly relevant for the assessment of AERONET-derived imaginary refractive index
and total AAOD¥!. For example, in-situ dust SSA measurements used to constrain
source-resolved dust imaginary refractive index are not directly collocated with
AERONET dust-dominated sites, and even in locations that are collocated, in-situ
measurements are obtained over specific atmospheric layers, whereas AERONET
retrievals are over the entire atmospheric column. Similarly, our comparison with
AERONET-retrieved total AAOD uses our constraints on dust AAOD and estimates of
non-dust AAOD from an ensemble of AeroCom models. However, most models
underestimate the burden of black carbon in the atmosphere, which dominates non-dust
AAOD. As such, the differences between our constraints and AERONET retrievals are
likely smaller than indicated for dust imaginary refractive index in Figure 2¢ and total
AAOD in Figure 4f. Furthermore, this suggests that the analysis cannot directly establish
that our constraints are more accurate than those obtained from AERONET and that the
overestimation of AERONET-retrieved imaginary index and AAQOD are likely smaller
over North Africa (e.g., fig. S-5).

In conclusion, our results suggest that climate models overestimate mid-visible
absorption by North African dust. Specifically, we found that the imaginary refractive
index that optimally reproduces a compilation of in-sifu measurements of the single-
scattering albedo of North African dust is less than what is assumed in most climate and
chemical transport models over North Africa. By itself, this underestimation of the
imaginary refractive index relative to what is indicated by measurements would result in
an overestimation of mid-visible absorption and AAOD by climate models. However, our
results further suggest that this overestimation might be partially mitigated by climate
models underestimating the abundance of coarse dust (dust diameter, D > 5um) relative
to in situ measurements. In addition, our results also suggest that similar factors may
contribute to an overestimation of dust-dominated total AAOD retrieved by AERONET
over the Sahara and Sahel regions of North Africa. Because approximately half of the
global dust is emitted from North African sources*°, our finding that models and remote
sensing retrievals might overestimate mid-visible absorption suggests potentially

11



445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489

substantial biases in estimates of dust impacts on the energy balance, precipitation,
biogeochemistry, and other critical aspects of the Earth system.

Methods

We constrained the spatially varying absorption optical depth (AAOD) of North African
dust by combining constraints on the distribution of dust mass loading and dust mass
absorption efficiency at 550 nm, both as a function of dust diameter (fig. S-1). The size-
resolved dust mass absorption efficiency and dust mass loading, in turn, depend primarily
on (a) the dust size distribution, (b) dust mass loading, (c) dust shape, and (d) dust
complex refractive index (Figure 1). We thus obtained constraints on the dust AAOD by
obtaining observationally informed constraints on these four key dust properties. In the
next few paragraphs, we summarize the methodology and datasets used to constrain these
dust properties and, therefore, the dust AAOD and then provide more detail for each step
in the following sub-sections.

To obtain constraints on the key dust properties needed to estimate dust AAOD, our
framework leveraged in-situ measurements of airborne dust particles over North Africa
(fig. S-1). For the first two key dust properties — the dust size distribution and dust mass
loading — we used the data from DustCOMM (Dust Constraints from joint Observational-
Modelling experiMental analysis). This dataset combined aircraft-based in-situ
measurements of dust size distribution with satellite-based and reanalysis-derived dust
properties and an ensemble of climate model simulations>*'. Because these constraints on
the dust size distribution and dust mass loading rely on in-sifu measurements, they
account for the coarse dust (diameter, D > 5um) missing from most climate model
simulations®. In addition, the constraint on the third dust property — dust shape —
leverages the measurements compilation of dust aspect ratio and height-to-width ratio
from Huang et al.?’ to account for the asphericity of dust that is commonly neglected in
climate model simulations**. For constraint on the last dust property — the dust refractive
index — we leveraged more than a dozen in-situ measurements of dust single scattering
albedo (SSA) taken over North Africa (Figure 2a). Specifically, we obtained constraints
on the dust imaginary refractive index by minimizing the disagreement between the
compilation of in-situ SSA measurements and our estimates of dust SSA. Our SSA
estimates utilized the regionally invariant constraints on dust shape and DustCOMM
constraints on dust size distribution obtained over the same location, altitude range,
season, and dust diameter range as the in-sifu SSA measurements. With these constraints
on the dust size distribution, dust mass loading, dust shape, and dust refractive index, we
obtained constraints on dust AAOD (fig. S-1).

Furthermore, because the dust size distribution, dust mass loading, and dust refractive
index depend on dust source regions, we accounted for the contribution of North African
dust sources in the constraints on dust AAOD. Specifically, we divided North Africa into
two major dust source regions — the Sahara and Sahel regions (Figure 2b)*->0:2,
Consequently, we used the observationally informed dataset obtained by Kok et al.”* as
part of DustCOMM to constrain the fractional contribution of each source region to the
dust size distribution over every location. This constraint on source-resolved dust size
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distribution is used in our constraints on size-resolved dust mass loading, dust refractive
index, and subsequently on dust AAOD.

One major strength of our constraints on dust AAOD is quantifying the associated
uncertainties for each step of the analysis. Specifically, we quantified the uncertainties in
dust AAOD by using a non-parametric procedure based on the bootstrap
methodology®”®8. This propagates the uncertainties in each input dataset, including the
in-situ measurements, satellite-based, and reanalysis-derived dust properties, and the
spread in global model simulations used in DustCOMM. In addition, we used a similar
bootstrap methodology to quantify the uncertainties in our constraints on the dust
imaginary refractive index. We discuss the details of the framework used to constrain
dust refractive index and dust AAOD in the sub-sections below. In addition, we
compared our results with the dust-dominated aerosol refractive index and AAOD
retrieved from the ground-based AErosol RObotic NETwork (AERONET) and obtained
from several climate and chemical transport models.

Constraints on the imaginary refractive index of North African dust at 550 nm
wavelength

Dust refractive index is one of the key ingredients that determine dust AAOD (fig. S-1).
Because dust shortwave absorption depends more sensitively on the imaginary part of the
refractive index than on its real part'>3!9%%! we focused on constraining the imaginary
dust refractive index. Specifically, we constrained the imaginary dust refractive index for
dust from both the Sahara and Sahel source regions by determining the values of these
two variables that optimally reproduced a compilation of 14 in-situ measurements of dust
single scattering albedo (SSA) over North Africa (Figure 2a). We compiled these dust
SSA measurements that used directly measured absorption and extinction coefficients
from major field campaigns taken over North Africa (see table S-1)*3#1:33-599496 Thege
directly measured dust SSA measurements contrast indirect experimental dust SSA
estimates, which are usually based on Lorenz-Mie theory calculations that neglect dust
asphericity (see supplementary section S-1)°7?%. In contrast, the directly measured dust
SSA requires no assumption about dust shape and often has a lower uncertainty range
than the indirectly estimated dust SSA%}. We minimized the sum of squared differences
between these directly measured dust SSA estimates and our corresponding estimates of
dust SSA (cyan and pink/red bars in Figure 2a) to obtain constraints on the imaginary
refractive indices (k,.) of dust particles generated by the Sahara and the Sahel source
regions (pink/red bars in Figure 2¢). That is:

Nj
. . 2
_ j j
x° (kr) = z [SSAMeasurement (ej’ d)]" tj) — SSATy;s Study(ej’ d)f‘ tj)] ’ (1)
j=1
where y? is the cost function to minimize, with parameter bound for imaginary refractive
index at 550-nm wavelength between 10 and 10”%; SSA\..curement i the j7

measurement in the compilation of in-situ dust SSA with a longitude, 6;, latitude, ¢;,
season t;; N; = 14 is the total number of in-situ SSA measurements available (Table S-1).

The second parameter on the right of Eqn. 1 — SSA — is the dust SSA calculated

This Study
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for the same location and season as the j'* measurement (see supplementary section S-2

for details). In addition, the SSAjThis Study is estimated over the same location, altitude

range and diameter range as reported for the j** measurement (see table S-1 for details).

) j
To estimate SSAThis Study

index (k,.), Eqn. 1 requires knowledge of three additional input parameters (see
supplementary section S-2). These input parameters are (1) the dust size distribution, (2)
the real part of dust refractive index, and (3) dust asphericity describing dust shape.

j
Because SSAqy;q srudy

source regions, we also accounted for the difference in the optical properties of dust
generated by each of these two dust sources. Specifically, we accounted for the fractional
contribution by each dust source as a function of dust diameter to the overall dust
concentration at the measurement's location. This fractional contribution by each dust
source region was obtained by Kok et al.” as part of DustCOMM, which combined
observational constraints on dust properties and dust aerosol optical depth with an
ensemble of global model simulations. Consequently, we obtained the source-resolved
constraints on dust size distribution by multiplying the DustCOMM dust size distribution
with constraints on the fractional contribution by each dust source region to the overall
dust concentration (see Eqn. S-2.3). Therefore, we obtained the source-resolved
constraints on dust size distribution over the same height range and diameter range as
reported for the in-situ dust SSA measurements.

and therefore obtain constraints on dust imaginary refractive

and k, can vary substantially between the Sahara and Sahel dust

For the other two input parameters, we leveraged measurement-based estimates of dust
real refractive index and shape distribution of dust to determine SSA]This Study"
Specifically, we used the real dust refractive index, n,, = 1.51 £ 0.03 (which is the same
for Sahara and Sahel) obtained from lab-based measurements of dust generated from
North African soil samples by Di Biagio et al.? (see their Table 4%*°). Because the real
part of the dust refractive index has been shown to have smaller spatial and temporal
variability than the imaginary part?*>%% we used these lab-based measurements of dust
real refractive index to represent its value in the atmosphere. In addition, we accounted
for dust asphericity by using the source-invariant distributions of dust aspect ratio (AR;
length-to-width ratio) and height-to-width ratio (HWR) compiled by Huang et al.?’ using
measurements from dozens of studies. Since the Lorenz-Mie theory used in most global
models is invalid for aspherical dust particles, we obtained constraints on single-particle
optical properties that incorporate the effects of dust asphericity using the single-
scattering database of Meng et al.”” (see supplementary section S-4). Therefore, with
these observationally informed constraints on dust size distribution, the real refractive

index, and dust asphericity, we estimated SSAjThiS Study (see sections S-2 & S-3 for

details) and consequently obtained constraints on the dust imaginary refractive index (k,)
by minimizing the sum of squared differences in Eqn. 1. Finally, we also quantified the
uncertainties in k,. using a bootstrap method®”*® that randomly selects (with replacement)
from the probability distributions of each of the input parameters (see supplementary
section S-5).
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Constraints on the absorption optical depth of North African dust at 550 nm
wavelength

We leveraged the constraint on dust imaginary refractive index (k,) to obtain constraints
on the absorption aerosol optical depth (AAOD) for North African dust at 550 nm
wavelength (fig. S-1). Specifically, we obtained constraints on the size-resolved dust
AAOD (%) for dust particles generated by the Sahara and Sahel source regions by
obtaining constraints on column-integrated dust mass size distribution and the size-
resolved dust mass absorption efficiency, which partially depends on dust refractive
index (fig. S-1). That is:

(2)

Ny _
dt . (0, d,t,D) A dm (8, ,t,D)
abs - = ngbs,asp(nr, k,,AR,HWR,D) - -

r=1

AT
% . Qabsasp (nr’I;r'AR'HWR'D) is the single-particle mass absorption
efficiency (m? g~1) for dust particles generated by each source region r, (N, = 2, for
Sahara and Sahel source regions; see Figure 2a). Here, we have assumed that the density
of dust particles (pg; = 2.5 + 0.2 X 103 kg m™~3) is independent of the dust source
region, mineralogy, and dust diameter, D*!°12_ Additionally, Q}ps 45 is the constraint
on size-resolved single-particle dust absorption efficiency that varies as a function of
source region 7. It is defined as the absorption cross-section of the dust particle,
normalized by the projected area of a sphere (mD?/4) with diameter D (see
supplementary section S-2 & S-4). The size-resolved ngs’asp and &3 45p depend on the
source-invariant constraints on the dust aspect ratio (AR; length-to-width ratio) and
height-to-width ratio (HWR), the lab-based measurement of dust real refractive index
(n,-), and our constraints source-resolved dust imaginary refractive indices (k,.). Since the
Lorenz-Mie theory used in most global models is invalid for aspherical dust particles, we
obtained constraints on ngs_asp (and other single-particle dust optical properties —

ar j—
where, €abs,asp =

erca’asp and ngt_asp) using the single-scattering database of Meng et al.”” that
incorporates the effects of dust asphericity on the dust optical property (see
supplementary section S-4).

amr
dD
contribution of each source region r to the column-integrated dust mass size distribution
am”
,\ dp
the constraints on the column-integrated dust mass loading (Mys,,; g m™2) with
constraints on the column-integrated dust volume size distribution per source region
(d?ZT avy
dD dD
calculated by multiplying the DustCOMM dust volume size distribution from Refs.
with constraints on the fractional contribution by each dust source region to the size-
avy
dD

— 1is the constraint on the

The second parameter on the right-hand side of Eqn. 2 —

(g m™3) at location 8, ¢, during season t. Specifically, we obtained by multiplying

). In turn, this constraint on the volume size distribution per source region (—=) was

3,21

resolved dust loading obtained from Kok et al.”* (see Eqn. S-2.3). We normalized
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m or
such that [ OD 2’:;1 % dD = 1 over each location, with the upper limit of dust

diameter, D™ = 20 um.

Overall, we used observationally informed constraints on dust loading, dust size
distribution, dust shape, and dust refractive index to obtain our constraints on source-
resolved size-resolved North African dust AAOD at 550 nm wavelength (Eqn. 1 and fig.
S-1). In addition, we also quantified the uncertainties in dust AAOD using a non-
parametric procedure based on the bootstrap method®”-%® that randomly selects (with
replacement) from the probability distributions of each of the input parameters (see
supplementary section S-5). The probability distribution of the input parameters also
propagates the uncertainties in the different in-sifu measurements, satellite-based and
reanalysis-derived dust properties, as well as due to the spread in the global aerosol
model simulations.

Dust optical properties obtained from selected models and from AeroCom models
We obtained dust absorption properties over North Africa, and the North Atlantic Ocean
from two sets of global aerosol model simulations: (1) selected climate models, which
include the Goddard Institute for Space Studies (GISS) ModelE general circulation
model'®, the Weather Research and Forecasting model coupled with Chemistry (WRF-
Chem), the Community Earth System Model (CESM)!**, Goddard Earth Observing
System model coupled with Chemistry (GEOS-Chem), ARPEGE-Climate (CNRN)!%,
and Integrated Massively Parallel Atmospheric Chemical Transport (IMPACT)!% [see
Table S-2 for details]; and (2) the AeroCom (Aerosol Comparison between Observations
and Models) phase I1I models (details on the AeroCom models can be found in the
references listed in Table S-2 and at https://wiki.met.no/aerocom/phase3-experiments).
From these two sets of models, we obtained the following spatially-varying seasonally
averaged dust properties: from the selected models, we obtained height-resolved and size-
resolved dust mass loading?!, while from the AeroCom models, we obtained the column-
integrated dust AAOD and total AAOD'™.

Using these variables, we calculated other dust properties that are not part of these model
simulations but are required for comparisons made in this study. For example, since dust
AAOD is only available for AeroCom models, we estimated the dust AAOD for the
selected models using the size-resolved dust mass loading and the dust refractive index
assumed in each model (see Table S-2). In addition, to compare model simulations with
the in-situ dust SSA measurements, we calculated the dust SSA for the Selected and
AeroCom models using each model's assumed dust refractive index and simulated dust
size distribution over the same height range and diameter range as the in-situ dust SSA
measurements (Table S-1). Details of the procedures to calculate the dust aerosol
absorption optical depth and the dust single-scattering albedo for selected models and
AeroCom models are described in supplementary section S-6.

In addition, to understand the contribution of dust imaginary refractive index and size-

resolved dust properties on the overall bias in simulated dust AAOD (Figure 4a), we
replaced the input parameters in the calculation of dust AAOD (Eqn. 2) for each of the
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six Selected models with the constraints obtained in this study (see section S-6 for
details). Specifically, for the contribution of size-resolved dust properties, we replaced
r

: . e e aVm
simulated source-resolved dust size distribution ( st

; where mg represent each Selectd

model), source-resolved column-integrated dust mass load (1\7I,rns) by the corresponding
avy

. g and M, respectively). In addition, the

spherical representation of dust shape is replaced by an aspherical representation obtained
by the measurement compilation of Huang et al.?’ of the dust aspect ratio (AR) and
height-to-width ratio (HWR) used in the calculation of single-particle dust optical
properties. Furthermore, for the contribution of dust imaginary refractive index, we
replaced the source-invariant values assumed for each model (i.e., k™S see Table S-2)
with our source-resolved estimates (k,.). We also replace the real part of the imaginary
refractive index (n™s), with the lab-based estimates (n,.) from Di Biagio et al.%.
Therefore, the difference between these mode-based estimates and our constraints shows
the contribution of that the input parameter on the simulated dust AAOD. Given the non-
linear, non-additive nature of this procedure and the parameters, the combined effect of
contributions does not directly reproduce the overall bias, indicating that the residual is
non-zero (see Figure 4a).

constraints obtained from this study (that is

Dust optical properties obtained from AERONET.

We obtained aerosol absorption optical depth, size distribution, and complex refractive
index from AERONET (AErosol RObotic NETwork). While details about the AERONET
project, its instrumentations, and retrieval algorithm can be found elsewhere in the
literature®®*’, we provide here a brief overview. AERONET provides global ground-based
remote-sensing observations of aerosol extinction and retrieval of other atmospheric
aerosol properties®®. Specifically, each AERONET station is equipped with an automatic
sun and sky scanning radiometer that measures the direct solar intensity and almucantar
sky radiance, which are used to obtain the total column aerosol optical depth for at least
the four main wavelengths (including 440, 670, 870, and 1020 nm)'?’. The spectral aerosol
optical depth and the spectral sky radiances, through an inversion algorithm?®%*’, are used
to obtain column integrated aerosol size distribution, complex index of refraction, and
subsequently the single-scattering albedo (SSA) and the aerosol absorption optical depth
(AAOD).

We used AERONET version-3 aerosol properties, which include substantial improvements
to the retrieval algorithm compared to the previous versions. Details of these improvements
in version-3 can be found in Giles et al.!®® and Sinyuk et al.”!. The level-2.0 of version-3
datasets applies additional quality control criteria relative to the level-1.5 datasets.
Specifically, level-2.0 requires the solar zenith angle to be greater than 50 degrees and the
aerosol optical depth at 440 nm to be greater than 0.4°"!%®, Because these additional quality
control criteria substantially reduce the number of available measurements by excluding
days with low aerosol concentration and locations farther from the major sources over
North Africa, it may result in bias in the retrieved aerosol properties. To minimize this bias,
we follow Bond et al.®’ and combined level-2.0 with the level-1.5 dataset, only using level-
1.5 for days where level-2.0 is not available.
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Furthermore, since AERONET reports the total aerosol properties and does not
discriminate between aerosol species, we applied additional constraints to select the
stations and retrievals that are dominated by dust aerosols over North Africa. First, we
selected only days with measurements that have an extinction angstrom exponent less than
0.2 using wavelengths of 440 and 870 nm*"*1:1% (AE<0.2). We do so because AE < 0.2
better represents "pure dust’!!?, which further helps to discriminate dust from other non-
dust aerosols and have enough measurements for a statistically significant analysis over
North Africa. Although some previous studies have used different values of angstrom
exponent (both above and below AE=0.2) to discriminate dust from non-dust
aerosols'®19%!!1 "our selection here does not change the conclusion presented in this study
(see fig. S-5). For example, using a lower angstrom exponent of 0.1 still results in an
overestimation of AERONET-retrieved AAOD, which is still associated with higher
refractive index (although less than when AE<0.2) and lower coarse dust load (although
higher than when AE<0.2), when compared to our estimates over North Africa. Second, to
further improve the validity of our estimates and reduce the uncertainties in the
climatological averages that we compared, we required that each monthly average contains
retrievable information for at least ten (10) days in each month, with at least two (2) months
of available data for the seasonal averages®’. Third, we selected AERONET stations whose
measurements are likely dominated by dust aerosols. To do so, we used MERRA-2
reanalysis aerosol properties'!? to select only stations where the percentage contribution of
dust extinction to the climatological total aerosol extinction is more than 60 % (see fig. S-
6). In addition, to avoid coastal stations with substantial contamination from sea salt in the
boundary layer, we used the threshold that the climatological contribution of seas-salt
aerosols to the total aerosol surface concentration (which include black and organic
carbons, DMS, SO2, SO4, and dust aerosols) should be less than 20 % for each station (see
fig. S-6). Fourth, to account for the non-linearity in the spectral variation of imaginary
refractive index and AAOD, we use a second order fit of the logarithm of AERONET-
retrieved imaginary refractive index and AAOD versus logarithm of the wavelength to
interpolate their respective values at 550 nm wavelength®%°. Finally, to put the
AERONET retrievals on a similar footing with our constraints and ensemble of model
simulations, we calculated the climatological average of the quality-controlled AERONET
retrievals over each location.

Limitations of our methodology

Although we quantified the uncertainties in our constraints on dust imaginary refractive
index (k,Eqn. 1) and dust AAOD (,,s; Eqn. 2), our methodology is still subject to some
important limitations. First, limitations in instrumentation resulted in a compilation of in-
situ dust SSA measurements that may not adequately account for the full range of particle
sizes observed over North Africa. Although airborne dust particles with a diameter larger
than 50 um have been measured over North Africa?®?*>>!13114 ' most of our dust SSA
measurements are taken by airborne nephelometers and Particle Soot Absorption
Photometers with sub-micron diameter cut-off less than ~3 um 2341356 Only a few of the
dust SSA measurements account for particles larger than 3 pm diameter (Table S-1) >
399596 We mitigated this issue by matching the diameter range in the calculation of dust

SSA (SSAjThiS study> £dn. 1 & Eqn. S2.1) to the diameter range captured by each

measurement.
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The second limitation is that additional uncertainties may be introduced into our estimates
through inherent uncertainties associated with our methodology and the input datasets,
including uncertainties in DustCOMM dust size distribution, dust loading, and the
fractional contribution of each dust source. For example, methodological uncertainties may
be introduced through the representative location and height range used for dust SSA
measurements. Although we used the reported location and height range, we assigned a
representative location to each dust SSA measurement based on the reported locations over
which the data was taken (see section S-1). In addition, to constrain dust imaginary
refractive index, we used seasonally averaged DustCOMM dust size distribution that
corresponds to the measurement’s season. However, the dust size distribution for a
representative season and location may not necessarily reflect the condition of the specific
date(s) when the measurement was taken.

Furthermore, other inherent uncertainties associated with DustCOMM dust size
distribution may be introduced into our analysis (Eqn. 2). Specifically, although dust
particles with D > 20 pum have also been measured for North African dust 20-2355:113.114
their inclusion in DustCOMM dust size distribution may result in large uncertainties
because such measurements are still relatively scarce *2!. As a result, we also avoided such
large uncertainties in our constraints on dust AAOD. In addition, most climate and
chemical transport models, including those highlighted in this study, also don’t account for
dust with D > 20um, and the majority have dust with a maximum diameter of 10pum '*!13,

An additional limitation is that our constraints on dust AAOD only accounted for the
contributions from Sahara and Sahel sources. However, Kok et al. °° highlighted that the
sources over the Middle East and Central Asian regions contribute to dust aerosols reaching
locations over North Africa. Although this contribution is small (about 7.5 %) relative to
the Sahara and the Sahel regions, it could introduce non-negligible uncertainties in the
source-resolved dust mass distribution and, consequently, on our constraints on dust
AAOD. Furthermore, our methodology did not account for the effect of aging on the
composition of dust and, consequently, the dust refractive index as it is transported from
the source regions !'S. However, previous studies with in-situ measurements pointed to
little changes in the optical properties of dust plumes as they are transported from North
African sources ''*!'7  thus suggesting that the effect of aging in our estimate of dust
AAOD is likely small.

Data and materials availability: Dust absorption properties from AeroCom models are
obtained from the repository at http://aerocom.met.no (last assessed on January 2020),
and AERONET-retrieved aerosol absorption properties are obtained from
https://aeronet.gsfc.nasa.gov (last assessed on June 2021). Previously published datasets,
such as dust properties from the selected models and DustCOMM datasets, are available
through cited publications''®!2°, Our constraints on dust imaginary refractive index and
dust absorption aerosol optical depth as well as the code used to obtain these datasets are
publicly available at ref!?! (https:/doi.org/10.5281/zenodo.6406831).

Code availability
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Code used to generate the dust single-scattering albedo, the dust imaginary refractive
index and dust AAOD are available at ref!?! (https:/doi.org/10.5281/zenodo.6406831).
Matlab was used for data generation, but all figures except Figure 1 are made using
National Center for Atmospheric Research (NCAR) Command Line (NCL;
https://www.ncl.ucar.edu/).
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1186  Figure 1: Dust shortwave absorption depends on dust microphysical properties. Dust

1187  shortwave absorption — quantified by the dust absorption aerosol optical depth (dust
1188  AAOD) — depends on dust shortwave extinction and dust single scattering albedo, both of
1189  which depend on dust microphysical properties. Direct and continuous observations of
1190  these microphysical properties, including, dust refractive index, dust size distribution,
1191  and dust shape, are difficult to obtain from remote-sensing platforms. Therefore, overall
1192 uncertainties in dust shortwave absorption depend primarily on the uncertainties in these
1193 microphysical properties. To obtain constraints on dust AAOD at 550 nm wavelength, we
1194  obtained constraints on dust refractive index in this study, which leveraged over a dozen
1195  measurements of dust single-scattering albedo at 550 nm wavelength over North Africa
1196  (green shaded box; see Methods). These constraints are then combined with

1197  observationally informed constraints on dust size distribution, dust loading, and dust
1198  shape from previously-published datasets that similarly leveraged in-situ measurements
1199  of dust properties (blue shaded boxes)**"*"%* to obtain constraints on dust AAOD.
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Figure 2: Climate and chemical transport models underestimate dust single-scattering
albedo and overestimate dust imaginary refractive index over North Africa. (a) The
dust single-scattering albedo (SSA) at 550 nm wavelength obtained from in-situ
measurements over North Africa (cyan bars) and the corresponding estimates from this
study (pink/red bars), from an ensemble of six selected global aerosol models (gray
bars), and from an ensemble of eight AeroCom Phase IIl models (dark green bars,
Aerosol Comparison between Observations and Models project). Details of the models
that are part of the selected and AeroCom model ensembles are provided in Methods and
Table S-2. The figure also includes the regionally averaged SSA at 550 nm wavelength
for the Sahara and Sahel regions and for all of North Africa, as defined by the dashed
boxes in Figure 2b. The black/red vertical lines on the bars indicate the one standard
error range, and the black dots represent the values from individual models in the two
ensembles. (b) The locations of the 14 dust SSA in-situ measurements (cyan circles), 12
dust size distribution measurements (obtained from Adebiyi et al.'”’, red stars), and 23
dust-dominated AERONET stations (purple stars; see Methods) that are used as part of
this study. Details of the in-situ dust SSA measurements can be found in Table S-1 and
section S-1. The boxes in (b) delineate the Sahara (25W-32.5E; 18-37N) and Sahel (25W-
32.5E; 0-18N) dust source regions. (c) Comparison between the constraints on the dust
imaginary refractive index at 550-nm wavelength obtained from this study (red/pink),
from laboratory measurements of dust generated from several North African soil samples
by Di Biagio et al.”’ (blue), and from AERONET dust-dominated observations (purple),
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both interpolated to 550 nm over the Sahara and Sahel regions (see Method for details).
The figure also includes spatially invariant imaginary refractive index values used in an
ensemble of selected global aerosol models (gray) and an ensemble of AeroCom models
(dark green) at 550 nm wavelength. The box boundaries approximately indicate one
standard error range, the horizontal lines and solid dots within the box denote the mean
values, the red vertical lines indicate the 95% confidence interval. Finally, the stars
represent the member values used in the calculation.

31



1231
1232

1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247

Mean Bias: Selected Models

Dust AAOD: This Study
ﬂ Z--os 40N ﬂ
- 7«4\ > o\ i r
—-- . ] 20N - &
20N {;--7 L ] 0.016
(23 | X R Re 0.03 o |
P R T - : : : : . 0.008
' ' ' 90W  B0W 30W 0 30E
90W  60W  30W 0 30E 0.024 ) 0
: Mean Bias: AeroCom Models
Dust AAOD: Selected Models L ﬂ -0.008
AEU eI — 40N
40N T,: WA aall 0.018 -0.016
- K i S — ]
- i 20N
20N {5-77 L_;{% ] ‘“'
= d
2 ! S| 0012 01 , , , :
0 1 F S e [—
- - - - - L 90W  60W  30W 0 30E
SOWooW SO0 0B 06 4on TOtal AAOD at AERONET Locations
Dust AAOD: AeroCom Models | R
40N )] <L [ 0407 T AN L 7|
—————— 17l | * i
PS> [ i 0207 L [ [ A
0] A Dot —Z ofo] orEEEE |
90W  60W  30W 0 30E
Sahara Sahel  North Africa
Y bty vttt S A A v w R Rttt A A S G A Y A N

this study, (b) an ensemble of six selected models, and (c) an ensemble of eight AeroCom
models. (d) & (e) The corresponding mean bias in the ensemble of selected and AeroCom
models, respectively, relative to our constraints on dust AAOD. Dashed black lines in
Figure 3a-c delineates the region where dust emitted from North African dust sources
account for more than 80 % of annual dust loading”’, and the dashed green boxes
delineate the Sahara and Sahel regions shown in Figure 2b. (f) Total AAOD (dust plus
non-dust AAOD) estimated at dust-dominated AERONET stations (purple stars in Figure
3a-c), for this study (pink bars), an ensemble of selected models (dark-grey bars), an
ensemble of AeroCom models (dark-green bars), and AERONET retrievals (purple bars).
The total AAOD for this study and the ensemble of selected models includes the ensemble
of non-dust AAOD obtained from the AeroCom models. The AERONET total AAOD
minimizes the non-dust components in the resulting estimates by applying several criteria
(see Methods for details). The black vertical lines on the bars denote one standard error
range.
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Figure 4: The decomposition of the bias in the simulated dust aerosol absorption
optical depth. (a) Averaged over the region where North African dust sources dominate
global dust loading (by more than 80 %, see dashed contour in Figure 3)°°, the mean
bias in simulated dust aerosol absorption optical depth (dust AAOD), including the total
mean bias (orange bar) and the bias due to dust refractive index (green-yellow bar) and
size-resolved dust properties (blue bar) which includes the biases in dust load, dust
shape, and dust size distribution, obtained for the ensemble of six global aerosols models,
and averaged for fine dust (diameter, D <5 um), coarse dust (D > 5 um), and all dust of
North African origin. The residue (grey bar) is the difference in the total bias in dust
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AAOD and the sum of the bias due to the bias in refractive index and size-resolved dust
properties. (b & c) The normalized dust size distributions obtained from in-situ
measurements (dark gold dots), collocated DustCOMM constraints on dust size
distribution (red), and collocated estimates from six selected global aerosol model
simulations (see Table S-1) and the aerosol size distribution obtained from AERONET
retrievals (purple), compared at the locations of (b) the in-situ measurements and (c) the
dust-dominated stations (see Figure 2b) over North Africa. All size distributions are
normalized between 2.5 and 10 um (see Methods).
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