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Abstract 17 
Desert dust accounts for a large fraction of shortwave radiation absorbed by aerosols, 18 
which adds to the climate warming produced by greenhouse gases. However, it remains 19 
uncertain exactly how much shortwave radiation dust absorbs. Here, we leverage in-situ 20 
measurements of dust single-scattering albedo to constrain absorption at mid-visible 21 
wavelength by North African dust, which accounts for approximately half of global dust. 22 
We find that climate and chemical transport models overestimate North African dust 23 
absorption aerosol optical depth (AAOD) by up to a factor of two. This occurs primarily 24 
because models overestimate the dust imaginary refractive index, the effect of which is 25 
partially masked by an underestimation of large dust particles. Similar factors might 26 
contribute to an overestimation of AAOD retrieved by the Aerosol Robotic Network, 27 
which is commonly used to evaluate models. The overestimation of dust absorption by 28 
models could lead to substantial biases in simulated dust impacts on the Earth system, 29 
including warm biases in dust radiative effects. 30 
 31 
  32 
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Introduction 33 
Most of the aerosol species in the atmosphere produce a cooling effect that opposes the 34 
warming effect produced by greenhouse gases1. However, mineral dust is one of the three 35 
main aerosol species, in addition to black carbon and brown carbon, that absorb solar 36 
radiation and therefore could add to the warming produced by greenhouse gases1,2. The 37 
exact amount of solar radiation that dust absorbs greatly affects its impact on the global 38 
climate system. For instance, whether the net direct radiative effect of dust aerosols 39 
warms or cools the global climate system depends, in large part, on the amount of solar 40 
radiation absorbed by dust3–5. Therefore, determining the extent of dust absorption of 41 
solar radiation is critical to determining whether future changes in atmospheric dust will 42 
slow or accelerate the projected warming of the climate system by greenhouse gases6. 43 
Beyond its direct radiative impacts, dust shortwave absorption also modifies atmospheric 44 
temperature profiles, thereby altering atmospheric circulations, cloud distributions, and 45 
precipitation7–9. For example, enhanced dust shortwave absorption within the Saharan air 46 
layer can reduce the intensification of tropical cyclones over the North Atlantic Ocean by 47 
enhancing the low-level temperature inversion and increasing the vertical wind shear, 48 
which could ultimately weaken associated precipitation10,11.  49 
 50 
Despite the importance of dust shortwave absorption on weather and the climate 51 
system12, the exact amount of shortwave radiation absorbed by dust in the atmosphere 52 
remains highly uncertain13,14. This uncertainty in estimating dust shortwave absorption is 53 
partially due to uncertainties in the microphysical properties of dust used in climate and 54 
chemical transport models (Figure 1)12,15. The amount of shortwave radiation absorbed by 55 
dust aerosols is quantified by the dust absorption aerosol optical depth (dust AAOD) – a 56 
parameter that depends on dust extinction, quantified by the dust aerosol optical depth 57 
(AOD), and the fraction of that extinction that is due to absorption, quantified by the 58 
single scattering albedo (SSA; Figure 1). Whereas global dust extinction scales with 59 
overall dust mass loading and has been effectively constrained using remote sensing 60 
observations16–18, estimates of dust SSA remain very uncertain12,15. This is because dust 61 
SSA primarily depends on the dust size distribution, dust shape, and the dust 62 
mineralogical composition (characterized by dust refractive index), and all these 63 
microphysical properties are poorly constrained in climate and chemical transport models 64 
(Figure 1). For example, recent studies have shown that dust size distributions assumed in 65 
global aerosol models overestimate the amount of fine dust particles (with diameter, D ≤ 66 
5 µm) and greatly underestimate the amount of large or coarse dust particles (D ≥ 5 µm) 67 
in the atmosphere compared to in-situ measurements3,19–21. Since coarse dust absorbs 68 
more shortwave radiation than fine dust22,23, this underestimation of coarse dust particles 69 
could bias estimates of dust AAOD in climate and chemical transport models5,20,24. 70 
Furthermore, a coarse irregularly-shaped dust particle absorbs more radiation than a 71 
spherical dust particle of the same volume and mineralogy, causing errors in models 72 
because of the common assumption that dust is spherical25–27. Another factor contributing 73 
to large uncertainties in the dust SSA is that it primarily depends on iron-bearing 74 
minerals, mainly hematite and goethite28–31. These minerals have substantial but poorly 75 
known spatial variabilities, differing significantly between different dust sources32,33. 76 
However, most climate and chemical transport models still implicitly assume an invariant 77 
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mineralogical composition by using constant dust refractive index values that do not vary 78 
in space and time34,35. Because dust aerosols contribute more than a third of the total 79 
shortwave absorption in most climate and chemical transport models14, therefore, large 80 
uncertainties in dust AAOD could substantially influence the overall impacts of aerosol 81 
absorption in the atmosphere. 82 
 83 
One reason for the large uncertainties in dust shortwave absorption and the associated 84 
dust size distribution and refractive index is that these dust properties are difficult to 85 
obtain from remote-sensing observations. Because the instruments on these remote-86 
sensing platforms cannot directly measure aerosol size distributions and refractive 87 
indices, inversion algorithms are needed to retrieve these key aerosol properties. 88 
However, these inversion algorithms are, in turn, generally underdetermined and thus 89 
require important underlying assumptions, such as the representation of dust shape36,37, 90 
which could lead to substantial uncertainties in the retrieved absorption aerosol 91 
properties38. One such remote-sensing retrieval from the ground-based AErosol RObotic 92 
NETwork (AERONET) is widely used to characterize atmospheric aerosol properties and 93 
evaluate climate and chemical transport models39. However, previous studies have 94 
highlighted that AERONET retrievals of dust size distribution may be too fine when 95 
compared against near-coincidental aircraft-based in-situ measurements over North 96 
Africa, although these measurements are not column-integrated and thus not directly 97 
comparable40,41. In addition, comparisons between AERONET retrievals of refractive 98 
index and mineralogical analysis of dust particles measured onboard an aircraft indicated 99 
substantial differences in the estimated dust imaginary refractive index42,43. Therefore, 100 
uncertainties in dust size distribution and dust refractive index in both remote-sensing 101 
retrievals and model simulations have made it difficult to estimate dust shortwave 102 
absorption accurately and have introduced substantial uncertainties in estimates of dust 103 
impacts on regional and global climate systems3,7,12,44,45. 104 
 105 
Here we address these problems by leveraging observationally based constraints on size-106 
resolved dust properties and dust refractive index to constrain the dust shortwave 107 
absorption (Figure 1). Specifically, we developed a framework that leveraged dozens of 108 
in-situ measurements of dust SSA to constrain the dust refractive index, which is 109 
combined with observationally based constraints on size-resolved dust properties to 110 
constrain the dust AAOD at mid-visible (550 nm) wavelength (Methods & fig. S-1). 111 
Although dust shortwave absorption occurs across the solar spectrum, we focus on the 112 
550 nm wavelength and use it as a representative wavelength. This is because, 550 nm 113 
wavelength is the reference wavelength used in most modeling and remote sensing 114 
studies16,46. Estimates of dust shortwave absorption at other visible wavelengths can be 115 
obtained by combining measurements of the spectral distribution of dust absorption 116 
properties 47,48 with our constraints at 550 nm wavelength. In addition, we focus on dust 117 
emitted from North Africa, the world's largest dust source, because it accounts for more 118 
than half of the global dust mass burden49,50. As such, uncertainties in the absorption 119 
properties of North African dust can substantially influence estimates of dust impacts on 120 
the global climate system 51. Overall, our observationally based constraints suggest that 121 
North African dust absorbs substantially less shortwave radiation than estimated by an 122 
ensemble of climate and chemical transport model simulations and retrieved by the 123 
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AERONET inversion algorithms. This suggests that models and retrievals overestimate 124 
dust shortwave absorption, implying substantial biases in estimates of dust impacts on the 125 
energy balance, precipitation, and other critical aspects of the regional and global climate 126 
systems. 127 
 128 
Results and Discussion 129 
The imaginary refractive index of North African dust  130 
We obtained constraints on the imaginary refractive index of North African dust by 131 
leveraging more than a dozen in-situ measurements of dust single scattering albedo 132 
(SSA) over North Africa (Figure 1 & fig. S-1). Specifically, we used an optimization 133 
method52, whereby we obtained the dust imaginary refractive index at 550 nm 134 
wavelength that yields a dust SSA in optimal agreement with the collection of in-situ 135 
SSA measurements (see cyan-filled bars and circles in Figure 2a & b, respectively, and 136 
more details in Table S-1). Our estimates of dust SSA better reproduce the compilation of 137 
in-situ measurements of dust SSA over North Africa than estimates from climate and 138 
chemical transport models (Figure 2a). Specifically, the climate and chemical transport 139 
models consistently underestimate the dust SSA in-situ measurements at 550 nm 140 
wavelength. To put these measurements and model simulations of dust SSA on a similar 141 
footing, we calculated the simulated values over the same diameter range, height range, 142 
locations, and season as reported for the measurements (see Methods). We made the 143 
comparison of dust SSA for two sets of model simulations – an ensemble of six selected 144 
models (gray bars in Figure 2a) and an ensemble of eight models that are part of the 145 
AeroCom (Aerosol Comparison between Observations and Models) Phase III project 146 
(dark-green bars in Figure 2a) (see Table S-2 for details of both sets of models). We 147 
estimated mean dust SSA values of about 0.95 (standard error: 0.94 - 0.97) and 0.94 148 
(standard error: 0.93 - 0.96) for the ensemble of selected models and AeroCom models, 149 
respectively. In contrast, the in-situ measurements revealed that North African dust 150 
generally has higher dust SSA values with a mean of about 0.97 (mean values range 151 
between 0.92 and 0.99) than the climate model simulations, over the same diameter 152 
range, height range, locations, and season. These discrepancies between the in-situ 153 
measurements and simulated dust SSA are consistent for cases with sub-micron diameter 154 
cut-off23,41,53–56 and for cases that account for larger dust particles57–59. Overall, the 155 
underestimation of dust SSA in the ensemble of selected models and AeroCom models 156 
can result in a mean bias of approximately -5% over some locations and collectively 157 
result in root-mean-square errors of up to a factor of two larger than our estimate of dust 158 
SSA (fig. S-2).  159 
 160 
Consequently, we find the imaginary refractive index that optimally reproduces the 161 
compilation of the in-situ SSA measurements of North African dust is much smaller than 162 
assumed in most climate and chemical transport models (Figure 2c). Specifically, North 163 
African dust has a mean imaginary refractive index at 550 nm wavelength of 0.0012 (one 164 
standard error range of 0.0009 - 0.0016; pink/red bars in Figure 2c). Our analysis focused 165 
on constraining the dust imaginary refractive index because dust shortwave absorption 166 
depends more sensitively on the imaginary part of the refractive index than on its real 167 
part (e.g., fig. S-3)15,31,60,61. In addition, although our source-resolved constraints on dust 168 
imaginary refractive index are informed by a compilation of in-situ dust SSA 169 
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measurements, they are consistent with previous lab-based measurements of imaginary 170 
refractive index from mineral soil dust29,62,63. For example, Di Biagio et al.29 used parent 171 
soil samples from North Africa and found that the dust imaginary refractive index over 172 
the Sahel has a relatively larger uncertainty than the Sahara dust source region (see blue 173 
bars in Figure 2c for interpolated values at 550 nm wavelength). In contrast, most climate 174 
model simulations ignore these regional differences in dust imaginary refractive index 175 
and assume that the refractive indices are invariant in space and time34. The average dust 176 
imaginary refractive index for the ensemble of selected and AeroCom models are 177 
respectively 0.0029 (standard error: 0.0014 - 0.0030) and 0.0026 (0.0011 - 0.0031) (see 178 
Table S-2). Therefore, on average, these climate and chemical transport models 179 
overestimate the imaginary refractive index of North African dust by more than a factor 180 
of two. 181 
 182 
Consistent with these estimates in climate and chemical transport models, we also find 183 
that dust-dominated AERONET retrievals estimate a larger imaginary refractive index at 184 
550 nm wavelength over North Africa than obtained from our observationally based 185 
constraints (compare pink/red and purple bars in Figure 2c). Since AERONET retrievals 186 
account for both dust and non-dust aerosol species (such as smoke aerosols), we obtained 187 
dust-dominated AERONET retrievals by applying strong criteria, including using an 188 
Ångström exponent of less than 0.2 to discriminate the observations that predominantly 189 
contain dust aerosols from observations containing other aerosol species47 and thereby 190 
minimizing the non-dust component in the resulting estimates (see Methods). In addition, 191 
to put the AERONET retrievals on a similar footing as our constraints and ensemble of 192 
model simulations and because of the non-linear dependence of complex refractive index 193 
on wavelength, we fit a second-order polynomial as a function of wavelength between 194 
440 and 1020 nm to obtain interpolated values of AERONET-retrieved imaginary 195 
refractive at 550 nm wavelength63–65. We find that the dust-dominated AERONET-196 
retrieved imaginary refractive index is approximately 0.0019 (0.0016 - 0.0021) for all of 197 
North Africa. Although the AERONET-retrieved imaginary refractive index is slightly 198 
less than the ensemble mean dust imaginary refractive index used in models, it is 199 
comparable to values used in some members of the selected and AeroCom models (see 200 
Figure 2c and Table S-2). In addition, like most climate models, AERONET-retrieved 201 
imaginary refractive index is larger than our constraints on dust imaginary refractive 202 
index over North Africa by about 54%.  203 
 204 
The shortwave absorption aerosol optical depth of North African dust 205 
We find that climate models and AERONET retrievals estimate substantially more 206 
absorption of shortwave radiation by North African dust aerosols than indicated by our 207 
observationally based constraints. We obtained our constraints on the dust absorption 208 
aerosol optical depth (dust AAOD) at 550 nm wavelength by combining our constraints 209 
on source-resolved dust imaginary refractive index (Figure 2c) with observationally 210 
informed constraints on dust shape27, column-integrated dust size distribution, and dust 211 
mass loading3,21 (see Methods). As a result, we find that the dust AAOD averaged over 212 
the North African continent is about 0.0094 (0.0073-0.0120) (Figure 3a). However, the 213 
simulated dust AAOD values over the same area are approximately 0.0110 (0.0064-214 
0.0494) and 0.0180 (0.0148-0.0219) for the ensemble of selected and AeroCom models, 215 
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respectively (Figure 3b & c). Furthermore, averaging over both the continent and the 216 
ocean, where North African dust sources dominate global dust loading (by more than 80 217 
%; see the dashed black contour in Figure 3a-c)50, our constraint on dust AAOD is about  218 
0.0045 (0.0035-0.0057), whereas the simulated dust AAOD values are 0.0053 (0.0030-219 
0.0232) and 0.0090 (0.0059-0.0107) for the ensemble of selected and AeroCom models, 220 
respectively. Therefore, relative to our constraints, climate and chemical transport models 221 
overestimate the shortwave aerosol absorption by up to a factor of two in regions where 222 
North African dust dominates. 223 
 224 
Similarly, we also find that dust-dominated AERONET retrievals estimate substantially 225 
greater shortwave absorption over North Africa than indicated by our observationally 226 
based constraints (Figure 3f). As highlighted above, we use a second-order fit to 227 
interpolate to 550 nm wavelength63–65 and also applied strong criteria to discriminate the 228 
AERONET retrievals that are predominantly dust aerosols and thus minimize the non-229 
dust component in the AERONET-retrieved total AAOD (see Methods). To put the 230 
AERONET retrievals, climate model simulations, and our constraints on a similar 231 
footing, we obtained the column-integrated non-dust AAOD from the ensemble of 232 
AeroCom models and added it to our constraints on column-integrated dust AAOD. Over 233 
each AERONET station (cf. Figure 2b), the dust-dominated retrievals are consistently 234 
larger than the total AAOD of our estimate. This possible overestimation of AAOD could 235 
reach up to a factor of three over some AERONET stations (fig. S-4). In addition, the 236 
difference between AERONET-retrieved total AAOD and our estimates for Saharan 237 
stations is about 55% more than that for Sahelian stations (Figure 3f). Collectively over 238 
North Africa, the average dust-dominated AERONET-retrieved total AAOD is 0.029 239 
(0.021 - 0.031), whereas our estimate over the same locations is 0.017 (0.010 - 0.027; 240 
Figure 3f). Although AERONET thus estimates a larger total AAOD than our constraints, 241 
the retrieved value is comparable with model-estimated column-integrated total AAOD, 242 
which is similarly collocated with the dust-dominated North African AERONET stations 243 
(Figure 3f). Overall, our analysis suggests that North African dust might absorb less 244 
shortwave radiation than simulated in climate and chemical transport models or obtained 245 
from dust-dominated AERONET retrievals. 246 
 247 
The cause of possible biases in the simulated and retrieved North African dust 248 
shortwave absorption. 249 
Our observationally based constraints thus show a substantially lower shortwave 250 
absorption by dust than simulated by climate models and retrieved by AERONET. 251 
Although we cannot rule out that this difference is due to biases in the in situ 252 
measurements of the single-scattering albedo used in our analysis, these results suggest 253 
that models and AERONET retrievals might overestimate dust shortwave absorption. To 254 
understand the cause of this possible overestimation, we decomposed the bias in dust 255 
AAOD by examining the contribution of the input parameters. Specifically, we assessed 256 
the contribution to the overall bias in the ensemble of selected models due to the bias in 257 
the simulated dust refractive index and the size-resolved dust properties, which include 258 
the dust load, dust shape, and dust size distribution (see Methods).  259 
 260 
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We find that the bias in the simulated dust AAOD is a strong function of dust diameter 261 
(Figure 4a). Averaged over the region where North African dust sources dominate global 262 
dust loading (by more than 80 %; see dashed contour in Figure 3)50, the ensemble of 263 
selected models overestimates dust AAOD for fine dust particles (ܦ ≤ 5μ݉) by 0.0021 264 
(-0.0003 to +0.0044) but underestimates it for coarse dust particles by -0.0013 (-0.0016 to 265 
-0.0009). This contrast between the overestimation of dust AAOD for fine dust and the 266 
underestimation of dust AAOD for coarse dust is primarily driven by the inherent bias in 267 
the simulated size-resolved dust mass loading. Specifically, climate and chemical 268 
transport models overestimate the fraction of fine dust particles and underestimate the 269 
fraction of coarse dust particles compared to in-situ measurements over North Africa 270 
(Figure 4b). Depending on the model, the underestimation of coarse dust can be up to 271 
approximately one-and-a-half orders of magnitude (colored lines Figure 4b). In contrast, 272 
DustCOMM (Dust Constraints from joint Observational-Modelling experiMental 273 
analysis), the observationally constrained dust size distribution used in this study, 274 
captures the measurements better than the climate model simulations (compare red lines 275 
with other lines in Figure 4b).  276 
 277 
In addition, and across the diameter range, we also find that the bias in dust imaginary 278 
refractive index contributes a substantial fraction of the bias in the simulated dust AAOD 279 
(Figure 4a). Specifically, the overestimation of dust imaginary refractive index in the 280 
ensemble of selected models (Figure 2c) is primarily responsible for the overestimation 281 
of all North African dust AAOD (green bars in Figure 4a). This contribution of the bias 282 
in dust imaginary refractive index to the bias in the dust AAOD is masked by the 283 
contribution of the bias in size-resolved dust properties, which include the size-resolved 284 
dust mass load and the shape representation. That is, the model overestimation of the fine 285 
dust load results in an overestimation of dust AAOD; the model underestimation of the 286 
coarse dust load results in an underestimation of dust AAOD; and the spherical 287 
representation of dust shape results in an underestimation of dust AAOD. Whereas the 288 
resulting collective bias in the size-resolved dust properties results in an underestimation 289 
of the simulated North-African dust AAOD by -0.0013 (-0.0032 to +0.0054; cyan bar in 290 
Figure 4a third column), the bias in the dust imaginary refractive index alone adds an 291 
overestimation of 0.0023 (0.0006 – 0.0041). Put together, the bias in the representation of 292 
simulated dust refractive index and size-resolved dust properties dust explains the 293 
majority (> 70%) of the total discrepancy in the simulated dust AAOD for the ensemble 294 
of selected climate models (compare the orange and grey bars in Figure 4a). Overall, our 295 
analysis indicates that approximately half of the model overestimation of the simulated 296 
dust AAOD due to the overestimation of the dust imaginary refractive index is offset by 297 
the model underestimation of coarse dust. 298 
 299 
As with the ensemble of selected global aerosol models, we find that the AERONET-300 
retrieved aerosol size distribution and imaginary refractive index explain the difference in 301 
total AAOD between dust-dominated AERONET retrievals and our estimates. 302 
Specifically, the AERONET-retrieved aerosol size distribution over dust-dominated 303 
locations overestimates fine particles (ܦ ≤  5μ݉)  and underestimates coarse particles 304 
ܦ) ≥  5μ݉) by about the same amount as the dust size distribution in the ensemble of 305 
selected models (compare purple line with other lines in Figure 4c). Similarly, as shown 306 
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above (Figure 2c), the AERONET-retrieved imaginary refractive index overestimates our 307 
constraints on the dust imaginary refractive index by a similar amount as the ensemble of 308 
selected and AeroCom models. These contributions from the mean aerosol size 309 
distribution and imaginary refractive index to the overestimation of retrieved AAOD are 310 
similar regardless of the Ångström exponent used to discriminate dust-dominated 311 
measurements over North Africa (fig. S-5). This suggests that the overestimation in dust-312 
dominated AERONET-retrieved AAOD and its associated uncertainties in the retrieved 313 
aerosol imaginary refractive index and aerosol size distribution are primarily due to the 314 
uncertainties in retrievals during dusty conditions, and for instance not due to 315 
contamination by other aerosol species. Overall, our results suggest that the possible 316 
overestimation of retrieved and simulated North African dust shortwave absorption is 317 
driven primarily by biases in dust size distribution and dust imaginary refractive index 318 
(Figure 4). 319 
 320 
Implications of the bias in the simulated and retrieved North African dust 321 
shortwave absorption. 322 
Our finding that climate model simulations and dust-dominated AERONET retrievals 323 
might overestimate dust shortwave absorption has important implications for dust 324 
impacts on the regional and global climate system. This is because North African dust 325 
sources emit more than half of the world's dust aerosols49,50 and because inaccurate 326 
representations of dust absorption properties would have important consequences for our 327 
understanding of dust impacts on the global climate system51. One such consequence is 328 
that the bias in simulated and retrieved dust shortwave absorption could affect the 329 
estimates of regional dust direct radiative effects (DRE) with potential impacts on the 330 
global energy balance. For example, an overestimated shortwave dust imaginary 331 
refractive index (e.g., Figure 2c) could result in a warm bias for the shortwave DRE5,13. 332 
However, such a bias could be masked by the contemporaneous bias in the dust size 333 
distribution (Figure 4) since an underestimation of coarse dust by itself produces a cold 334 
bias in the shortwave DRE3. Additionally, an underestimation of coarse dust could also 335 
introduce a cold bias in the longwave DRE3,66, contributing to the overall bias in previous 336 
modeling studies that showed that dust cools the climate system67–70. Therefore, because 337 
of the sensitivity of the DRE to dust absorption properties67,71, an accurate representation 338 
of these properties is crucial to determine whether dust warms or cools the global climate 339 
system. 340 
 341 
Furthermore, our findings also have important consequences for our understanding of 342 
dust impacts on the hydrological cycle and biogeochemistry. Specifically, because dust 343 
shortwave absorption induces thermodynamical and dynamical responses in the 344 
atmosphere, overestimation of simulated dust AAOD could bias the temperature, 345 
moisture, and wind distribution that could, in turn, affect the distributions of clouds and 346 
precipitation7,8,44,72. Such effects on clouds and precipitation would depend on the vertical 347 
distribution of dust absorption properties, the ratio of fine and coarse dust particles, and 348 
the relative position of the dust and cloud layers, which climate models have found 349 
difficult to simulate accurately24,73. In addition, the bias in dust absorption properties 350 
could have implications for the iron mass concentration upon its deposition in the North 351 
Atlantic Ocean. Specifically, because iron-oxides are the primary mineral that controls 352 
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the dust imaginary refractive index in the shortwave spectrum29,31, our finding that 353 
models overestimate dust imaginary index of refraction implies that models likely 354 
overestimate the iron content in deposited dust particles. This inference is supported by 355 
recent studies that indicated that surface-level total iron mass concentration is 356 
overestimated near North African dust sources74–76, suggesting that the fractional 357 
contribution of iron-oxides to total iron mass concentration is also overestimated67. 358 
Considering this sensitivity of the radiation budget, cloud cover, precipitation 359 
distribution, and biogeochemistry to dust absorption properties, the impacts of biases in 360 
simulated dust AAOD on the regional and global climate system could be substantial. 361 
 362 
In addition to the consequences of the overestimation of dust absorption in climate 363 
models, our findings also have implications for retrievals of aerosol absorption properties 364 
from remotely sensed observations, particularly near dust source regions such as North 365 
Africa. Specifically, our results indicate that AERONET retrievals at dust-dominated 366 
locations might overestimate the imaginary refractive index and underestimate the 367 
contribution of coarse aerosols. Such uncertainties in aerosol properties could be 368 
propagated into other applications within remote-sensing and modeling communities that 369 
utilize AERONET datasets as a benchmark. For example, most satellite-based remote-370 
sensing retrievals rely on algorithms that often leverage AERONET retrievals of aerosol 371 
size distribution and refractive index to discriminate different aerosol types in the 372 
atmosphere77. One such satellite-based retrieval is from CALIPSO (Cloud-Aerosol Lidar 373 
and Infrared Pathfinder Satellite Observations), where previous studies have attributed 374 
the possible underestimation of its extinction coefficients to a bias in the dust lidar ratio, 375 
which in turn has been estimated based on AERONET retrievals of aerosol size 376 
distribution and complex refractive index78,79. In addition, AERONET retrievals are 377 
generally used as a benchmark with which model simulations of aerosol properties are 378 
constrained and validated67. For example, Bond et al.80 adjusted the simulated direct 379 
radiative forcing of black carbon because climate models substantially underestimated 380 
AAOD when compared against AERONET retrievals (see also Figure 3f). However, 381 
given that our results suggest that AERONET-retrieved dust-dominated AAOD might be 382 
overestimated over North Africa, such adjustments of the simulated radiative forcing 383 
could result in an overestimation of aerosol direct radiative forcing. Therefore, because of 384 
the global coverage of the AERONET stations, a more accurate constraint on the 385 
AERONET-retrieved aerosol size distribution and refractive index is crucial for the 386 
retrieval of aerosol properties from other remote-sensing platforms and to better constrain 387 
model simulations of the impacts of dust and other absorbing aerosols on key aspects of 388 
the Earth system. 389 
 390 
Since our findings rely on in-situ dust SSA measurements and other input observational-391 
based parameters over North Africa, it is subject to some important limitations (see 392 
Methods for details). One of these limitations includes uncertainties and biases associated 393 
with instrumentations, which may result in the dust SSA measurements not fully 394 
accounting for all the particle sizes observed over North Africa. For example, coarse and 395 
super-coarse dust particles, while present over North Africa3,81, are often not measured by 396 
commonly-used instruments, such as nephelometers and Particle Soot Absorption 397 
Photometers53,82–84. In addition, the fine-mode size range of most of the SSA 398 
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measurements is also susceptible to contamination by other aerosol species, such as black 399 
carbon, even though these measurements are obtained over dust-dominated regions85,86. 400 
Additional limitations to our results may be introduced through inherent uncertainties in 401 
other observationally based datasets we used as inputs, including uncertainties in the 402 
DustCOMM dust size distribution, dust loading, dust shape, and the fractional 403 
contribution of each dust source used to constrain the dust absorption properties (see 404 
Methods). For example, uncertainties may be introduced through the assumption of a 405 
representative location and height range used for dust SSA measurements (Figure 2a), as 406 
well as the exclusion of particles larger than D ≥ 20 µm in the DustCOMM dust size 407 
distribution. We propagate some of these uncertainties into our estimates of dust 408 
refractive index and dust AAOD by using a non-parametric procedure based on the 409 
bootstrap method87,88 that randomly selects (with replacement) from the probability 410 
distributions of each of the input parameters (see Methods).  411 
 412 
Because of these limitations and uncertainties, our calculated errors on dust imaginary 413 
refractive index and dust AAOD should be considered as lower bounds. This is 414 
particularly relevant for the assessment of AERONET-derived imaginary refractive index 415 
and total AAOD89–91. For example, in-situ dust SSA measurements used to constrain 416 
source-resolved dust imaginary refractive index are not directly collocated with 417 
AERONET dust-dominated sites, and even in locations that are collocated, in-situ 418 
measurements are obtained over specific atmospheric layers, whereas AERONET 419 
retrievals are over the entire atmospheric column. Similarly, our comparison with 420 
AERONET-retrieved total AAOD uses our constraints on dust AAOD and estimates of 421 
non-dust AAOD from an ensemble of AeroCom models. However, most models 422 
underestimate the burden of black carbon in the atmosphere, which dominates non-dust 423 
AAOD80. As such, the differences between our constraints and AERONET retrievals are 424 
likely smaller than indicated for dust imaginary refractive index in Figure 2c and total 425 
AAOD in Figure 4f. Furthermore, this suggests that the analysis cannot directly establish 426 
that our constraints are more accurate than those obtained from AERONET and that the 427 
overestimation of AERONET-retrieved imaginary index and AAOD are likely smaller 428 
over North Africa (e.g., fig. S-5).  429 
 430 
In conclusion, our results suggest that climate models overestimate mid-visible 431 
absorption by North African dust. Specifically, we found that the imaginary refractive 432 
index that optimally reproduces a compilation of in-situ measurements of the single-433 
scattering albedo of North African dust is less than what is assumed in most climate and 434 
chemical transport models over North Africa. By itself, this underestimation of the 435 
imaginary refractive index relative to what is indicated by measurements would result in 436 
an overestimation of mid-visible absorption and AAOD by climate models. However, our 437 
results further suggest that this overestimation might be partially mitigated by climate 438 
models underestimating the abundance of coarse dust (dust diameter, ܦ ≥ 5μ݉) relative 439 
to in situ measurements. In addition, our results also suggest that similar factors may 440 
contribute to an overestimation of dust-dominated total AAOD retrieved by AERONET 441 
over the Sahara and Sahel regions of North Africa. Because approximately half of the 442 
global dust is emitted from North African sources49,50, our finding that models and remote 443 
sensing retrievals might overestimate mid-visible absorption suggests potentially 444 
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substantial biases in estimates of dust impacts on the energy balance, precipitation, 445 
biogeochemistry, and other critical aspects of the Earth system. 446 
 447 
Methods  448 
We constrained the spatially varying absorption optical depth (AAOD) of North African 449 
dust by combining constraints on the distribution of dust mass loading and dust mass 450 
absorption efficiency at 550 nm, both as a function of dust diameter (fig. S-1). The size-451 
resolved dust mass absorption efficiency and dust mass loading, in turn, depend primarily 452 
on (a) the dust size distribution, (b) dust mass loading, (c) dust shape, and (d) dust 453 
complex refractive index (Figure 1). We thus obtained constraints on the dust AAOD by 454 
obtaining observationally informed constraints on these four key dust properties. In the 455 
next few paragraphs, we summarize the methodology and datasets used to constrain these 456 
dust properties and, therefore, the dust AAOD and then provide more detail for each step 457 
in the following sub-sections. 458 
 459 
To obtain constraints on the key dust properties needed to estimate dust AAOD, our 460 
framework leveraged in-situ measurements of airborne dust particles over North Africa 461 
(fig. S-1). For the first two key dust properties – the dust size distribution and dust mass 462 
loading – we used the data from DustCOMM (Dust Constraints from joint Observational-463 
Modelling experiMental analysis). This dataset combined aircraft-based in-situ 464 
measurements of dust size distribution with satellite-based and reanalysis-derived dust 465 
properties and an ensemble of climate model simulations3,21. Because these constraints on 466 
the dust size distribution and dust mass loading rely on in-situ measurements, they 467 
account for the coarse dust (diameter, D ≥ 5µm) missing from most climate model 468 
simulations3. In addition, the constraint on the third dust property – dust shape – 469 
leverages the measurements compilation of dust aspect ratio and height-to-width ratio 470 
from Huang et al.27 to account for the asphericity of dust that is commonly neglected in 471 
climate model simulations34. For constraint on the last dust property – the dust refractive 472 
index – we leveraged more than a dozen in-situ measurements of dust single scattering 473 
albedo (SSA) taken over North Africa (Figure 2a). Specifically, we obtained constraints 474 
on the dust imaginary refractive index by minimizing the disagreement between the 475 
compilation of in-situ SSA measurements and our estimates of dust SSA. Our SSA 476 
estimates utilized the regionally invariant constraints on dust shape and DustCOMM 477 
constraints on dust size distribution obtained over the same location, altitude range, 478 
season, and dust diameter range as the in-situ SSA measurements. With these constraints 479 
on the dust size distribution, dust mass loading, dust shape, and dust refractive index, we 480 
obtained constraints on dust AAOD (fig. S-1).  481 
 482 
Furthermore, because the dust size distribution, dust mass loading, and dust refractive 483 
index depend on dust source regions, we accounted for the contribution of North African 484 
dust sources in the constraints on dust AAOD. Specifically, we divided North Africa into 485 
two major dust source regions – the Sahara and Sahel regions (Figure 2b)49,50,92. 486 
Consequently, we used the observationally informed dataset obtained by Kok et al.93 as 487 
part of DustCOMM to constrain the fractional contribution of each source region to the 488 
dust size distribution over every location. This constraint on source-resolved dust size 489 
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distribution is used in our constraints on size-resolved dust mass loading, dust refractive 490 
index, and subsequently on dust AAOD.  491 
 492 
One major strength of our constraints on dust AAOD is quantifying the associated 493 
uncertainties for each step of the analysis. Specifically, we quantified the uncertainties in 494 
dust AAOD by using a non-parametric procedure based on the bootstrap 495 
methodology87,88. This propagates the uncertainties in each input dataset, including the 496 
in-situ measurements, satellite-based, and reanalysis-derived dust properties, and the 497 
spread in global model simulations used in DustCOMM. In addition, we used a similar 498 
bootstrap methodology to quantify the uncertainties in our constraints on the dust 499 
imaginary refractive index. We discuss the details of the framework used to constrain 500 
dust refractive index and dust AAOD in the sub-sections below. In addition, we 501 
compared our results with the dust-dominated aerosol refractive index and AAOD 502 
retrieved from the ground-based AErosol RObotic NETwork (AERONET) and obtained 503 
from several climate and chemical transport models. 504 
 505 
Constraints on the imaginary refractive index of North African dust at 550 nm 506 
wavelength 507 
Dust refractive index is one of the key ingredients that determine dust AAOD (fig. S-1). 508 
Because dust shortwave absorption depends more sensitively on the imaginary part of the 509 
refractive index than on its real part15,31,60,61, we focused on constraining the imaginary 510 
dust refractive index. Specifically, we constrained the imaginary dust refractive index for 511 
dust from both the Sahara and Sahel source regions by determining the values of these 512 
two variables that optimally reproduced a compilation of 14 in-situ measurements of dust 513 
single scattering albedo (SSA) over North Africa (Figure 2a). We compiled these dust 514 
SSA measurements that used directly measured absorption and extinction coefficients 515 
from major field campaigns taken over North Africa (see table S-1)23,41,53–59,94–96. These 516 
directly measured dust SSA measurements contrast indirect experimental dust SSA 517 
estimates, which are usually based on Lorenz-Mie theory calculations that neglect dust 518 
asphericity (see supplementary section S-1)97,98. In contrast, the directly measured dust 519 
SSA requires no assumption about dust shape and often has a lower uncertainty range 520 
than the indirectly estimated dust SSA23. We minimized the sum of squared differences 521 
between these directly measured dust SSA estimates and our corresponding estimates of 522 
dust SSA (cyan and pink/red bars in Figure 2a) to obtain constraints on the imaginary 523 
refractive indices (݇௥) of dust particles generated by the Sahara and the Sahel source 524 
regions (pink/red bars in Figure 2c). That is: 525 ߯ଶሺ݇௥ሻ = ෍ቂSSA୑ୣୟୱ୳୰ୣ୫ୣ୬୲୨  ൫ߠ௝ ,߶௝ , ௝൯ݐ − SSA୘୦୧ୱ ୗ୲୳ୢ୷୨ ൫ߠ௝ ,߶௝ , ௝൯ቃଶேೕݐ

௝ୀଵ , ሺ1ሻ 526 

where ߯ଶ is the cost function to minimize, with parameter bound for imaginary refractive 527 
index at 550-nm wavelength between 10-4 and 10-2; SSA୑ୣୟୱ୳୰ୣ୫ୣ୬୲୨  is the ݆௧௛ 528 
measurement in the compilation of in-situ dust SSA with a longitude,  ߠ௝, latitude, ߶௝, 529 
season ݐ௝; ௝ܰ = 14 is the total number of in-situ SSA measurements available (Table S-1). 530 
The second parameter on the right of Eqn. 1 – SSA୘୦୧ୱ ୗ୲୳ୢ୷୨  – is the dust SSA calculated 531 
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for the same location and season as the ݆௧௛ measurement (see supplementary section S-2 532 
for details). In addition, the SSA୘୦୧ୱ ୗ୲୳ୢ୷୨   is estimated over the same location, altitude 533 
range and diameter range as reported for the ݆௧௛ measurement (see table S-1 for details). 534 
 535 
To estimate SSA୘୦୧ୱ ୗ୲୳ୢ୷୨  and therefore obtain constraints on dust imaginary refractive 536 
index (݇௥), Eqn. 1 requires knowledge of three additional input parameters (see 537 
supplementary section S-2). These input parameters are (1) the dust size distribution, (2) 538 
the real part of dust refractive index, and (3) dust asphericity describing dust shape. 539 
Because SSA୘୦୧ୱ ୗ୲୳ୢ୷୨  and ݇௥ can vary substantially between the Sahara and Sahel dust 540 
source regions, we also accounted for the difference in the optical properties of dust 541 
generated by each of these two dust sources. Specifically, we accounted for the fractional 542 
contribution by each dust source as a function of dust diameter to the overall dust 543 
concentration at the measurement's location. This fractional contribution by each dust 544 
source region was obtained by Kok et al.93 as part of DustCOMM, which combined 545 
observational constraints on dust properties and dust aerosol optical depth with an 546 
ensemble of global model simulations. Consequently, we obtained the source-resolved 547 
constraints on dust size distribution by multiplying the DustCOMM dust size distribution 548 
with constraints on the fractional contribution by each dust source region to the overall 549 
dust concentration (see Eqn. S-2.3). Therefore, we obtained the source-resolved 550 
constraints on dust size distribution over the same height range and diameter range as 551 
reported for the in-situ dust SSA measurements.  552 
 553 
For the other two input parameters, we leveraged measurement-based estimates of dust 554 
real refractive index and shape distribution of dust to determine SSA୘୦୧ୱ ୗ୲୳ୢ୷୨ . 555 
Specifically, we used the real dust refractive index, ݊௥ =  1.51 ± 0.03 (which is the same 556 
for Sahara and Sahel) obtained from lab-based measurements of dust generated from 557 
North African soil samples by Di Biagio et al.29 (see their Table 429). Because the real 558 
part of the dust refractive index has been shown to have smaller spatial and temporal 559 
variability than the imaginary part29,58,63, we used these lab-based measurements of dust 560 
real refractive index to represent its value in the atmosphere. In addition, we accounted 561 
for dust asphericity by using the source-invariant distributions of dust aspect ratio (AR; 562 
length-to-width ratio) and height-to-width ratio (HWR) compiled by Huang et al.27 using 563 
measurements from dozens of studies. Since the Lorenz-Mie theory used in most global 564 
models is invalid for aspherical dust particles, we obtained constraints on single-particle 565 
optical properties that incorporate the effects of dust asphericity using the single-566 
scattering database of Meng et al.99 (see supplementary section S-4). Therefore, with 567 
these observationally informed constraints on dust size distribution, the real refractive 568 
index, and dust asphericity, we estimated SSA୘୦୧ୱ ୗ୲୳ୢ୷୨  (see sections S-2 & S-3 for 569 
details) and consequently obtained constraints on the dust imaginary refractive index (݇௥) 570 
by minimizing the sum of squared differences in Eqn. 1. Finally, we also quantified the 571 
uncertainties in ݇௥ using a bootstrap method87,88 that randomly selects (with replacement) 572 
from the probability distributions of each of the input parameters (see supplementary 573 
section S-5).   574 
 575 
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Constraints on the absorption optical depth of North African dust at 550 nm 576 
wavelength 577 
We leveraged the constraint on dust imaginary refractive index (݇௥) to obtain constraints 578 
on the absorption aerosol optical depth (AAOD) for North African dust at 550 nm 579 
wavelength (fig. S-1). Specifically, we obtained constraints on the size-resolved dust 580 
AAOD (߬̂௔௕௦) for dust particles generated by the Sahara and Sahel source regions by 581 
obtaining constraints on column-integrated dust mass size distribution and the size-582 
resolved dust mass absorption efficiency, which partially depends on dust refractive 583 
index (fig. S-1). That is: 584 ݀߬̂௔௕௦ሺߠ,߶, ܦሻ݀ܦ,ݐ = ෍εො௔௕௦,௔௦௣௥ ሺ݊௥ ,݇௥ ሻܦ,ܴܹܪ,ܴܣ, ∙ ,߶,ߠ෡௥ሺܯ݀ ேೝܦሻ݀ܦ,ݐ

௥ୀଵ ሺ2ሻ 585 

where, εො௔௕௦,௔௦௣௥ = ଷଶఘ೏ ∙ ொ෠ೌ್ೞ,ೌೞ೛ೝ ሺ௡ೝ,௞ೝ,஺ோ,ுௐோ,஽ሻ஽  is the single-particle mass absorption 586 
efficiency (݉ଶ ݃ିଵ) for dust particles generated by each source region ݎ, ( ௥ܰ = 2, for 587 
Sahara and Sahel source regions; see Figure 2a). Here, we have assumed that the density 588 
of dust particles (ߩௗ = 2.5 ± 0.2 × 10ଷ ݇݃ ݉ିଷ) is independent of the dust source 589 
region, mineralogy, and dust diameter, 102–3,100ܦ. Additionally, ෠ܳ௔௕௦,௔௦௣௥  is the constraint 590 
on size-resolved single-particle dust absorption efficiency that varies as a function of 591 
source region ݎ. It is defined as the absorption cross-section of the dust particle, 592 
normalized by the projected area of a sphere (ܦߨଶ/4) with diameter ܦ (see 593 
supplementary section S-2 & S-4). The size-resolved ෠ܳ௔௕௦,௔௦௣௥  and εො௔௕௦,௔௦௣௥  depend on the 594 
source-invariant constraints on the dust aspect ratio (AR; length-to-width ratio) and 595 
height-to-width ratio (HWR), the lab-based measurement of dust real refractive index 596 
(݊௥), and our constraints source-resolved dust imaginary refractive indices (݇௥). Since the 597 
Lorenz-Mie theory used in most global models is invalid for aspherical dust particles, we 598 
obtained constraints on ෠ܳ௔௕௦,௔௦௣௥  (and other single-particle dust optical properties – 599 ෠ܳ௦௖௔,௔௦௣௥  and ෠ܳ௘௫௧,௔௦௣௥ ) using the single-scattering database of Meng et al.99 that 600 
incorporates the effects of dust asphericity on the dust optical property (see 601 
supplementary section S-4). 602 
 603 

The second parameter on the right-hand side of Eqn. 2 – ௗெ෡ೝௗ஽  –  is the constraint on the 604 
contribution of each source region ݎ to the column-integrated dust mass size distribution 605 ሺ ݃ ݉ିଷሻ at location ߠ,߶, during season ݐ. Specifically, we obtained ௗெ෡ೝௗ஽  by multiplying 606 
the constraints on the column-integrated dust mass loading (ܯ෡௔௧௠;  ݃ ݉ିଶ) with 607 
constraints on the column-integrated dust volume size distribution per source region 608 
(ௗ௏෡ೋೝௗ஽ ). In turn, this constraint on the volume size distribution per source region (ௗ௏෡ೋೝௗ஽ ) was 609 
calculated by multiplying the DustCOMM dust volume size distribution from Refs.3,21 610 
with constraints on the fractional contribution by each dust source region to the size-611 
resolved dust loading obtained from Kok et al.93 (see Eqn. S-2.3). We normalized ௗ௏෡ೋೝௗ஽  612 
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such that ׬ ∑ ௗ௏෡ೋೝௗ஽ேೝ௥ୀଵ ஽೘ೌೣ଴ܦ݀ = 1 over each location, with the upper limit of dust 613 
diameter, ܦ௠௔௫ = 20 μ݉. 614 
 615 
Overall, we used observationally informed constraints on dust loading, dust size 616 
distribution, dust shape, and dust refractive index to obtain our constraints on source-617 
resolved size-resolved North African dust AAOD at 550 nm wavelength (Eqn. 1 and fig. 618 
S-1). In addition, we also quantified the uncertainties in dust AAOD using a non-619 
parametric procedure based on the bootstrap method87,88 that randomly selects (with 620 
replacement) from the probability distributions of each of the input parameters (see 621 
supplementary section S-5). The probability distribution of the input parameters also 622 
propagates the uncertainties in the different in-situ measurements, satellite-based and 623 
reanalysis-derived dust properties, as well as due to the spread in the global aerosol 624 
model simulations. 625 
 626 
Dust optical properties obtained from selected models and from AeroCom models 627 
We obtained dust absorption properties over North Africa, and the North Atlantic Ocean 628 
from two sets of global aerosol model simulations: (1) selected climate models, which 629 
include the Goddard Institute for Space Studies (GISS) ModelE general circulation 630 
model103, the Weather Research and Forecasting model coupled with Chemistry (WRF-631 
Chem), the Community Earth System Model (CESM)104, Goddard Earth Observing 632 
System model coupled with Chemistry (GEOS-Chem), ARPEGE-Climate (CNRN)105, 633 
and Integrated Massively Parallel Atmospheric Chemical Transport (IMPACT)106 [see 634 
Table S-2 for details]; and (2) the AeroCom (Aerosol Comparison between Observations 635 
and Models) phase III models (details on the AeroCom models can be found in the 636 
references listed in Table S-2 and at https://wiki.met.no/aerocom/phase3-experiments). 637 
From these two sets of models, we obtained the following spatially-varying seasonally 638 
averaged dust properties: from the selected models, we obtained height-resolved and size-639 
resolved dust mass loading21,  while from the AeroCom models, we obtained the column-640 
integrated dust AAOD and total AAOD14.  641 
 642 
Using these variables, we calculated other dust properties that are not part of these model 643 
simulations but are required for comparisons made in this study. For example, since dust 644 
AAOD is only available for AeroCom models, we estimated the dust AAOD for the 645 
selected models using the size-resolved dust mass loading and the dust refractive index 646 
assumed in each model (see Table S-2). In addition, to compare model simulations with 647 
the in-situ dust SSA measurements, we calculated the dust SSA for the Selected and 648 
AeroCom models using each model's assumed dust refractive index and simulated dust 649 
size distribution over the same height range and diameter range as the in-situ dust SSA 650 
measurements (Table S-1). Details of the procedures to calculate the dust aerosol 651 
absorption optical depth and the dust single-scattering albedo for selected models and 652 
AeroCom models are described in supplementary section S-6. 653 
 654 
In addition, to understand the contribution of dust imaginary refractive index and size-655 
resolved dust properties on the overall bias in simulated dust AAOD (Figure 4a), we 656 
replaced the input parameters in the calculation of dust AAOD (Eqn. 2) for each of the 657 
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six Selected models with the constraints obtained in this study (see section S-6 for 658 
details). Specifically, for the contribution of size-resolved dust properties, we replaced 659 
simulated source-resolved dust size distribution (

ௗ௏෩೘ೄೝௗ஽ ; where ݉௦ represent each Selectd 660 
model), source-resolved column-integrated dust mass load (ܯ෩௠ೄ௥ ) by the corresponding 661 

constraints obtained from this study (that is ௗ௏෡ೋೝ ௗ஽  and ܯ෡௔௧௠ respectively). In addition, the 662 
spherical representation of dust shape is replaced by an aspherical representation obtained 663 
by the measurement compilation of Huang et al.27 of the dust aspect ratio (AR) and 664 
height-to-width ratio (HWR) used in the calculation of single-particle dust optical 665 
properties. Furthermore, for the contribution of dust imaginary refractive index, we 666 
replaced the source-invariant values assumed for each model (i.e., ݇௠ೄ  see Table S-2) 667 
with our source-resolved estimates (݇௥). We also replace the real part of the imaginary 668 
refractive index (݊௠ೄ), with the lab-based estimates (݊௥) from Di Biagio et al.29. 669 
Therefore, the difference between these mode-based estimates and our constraints shows 670 
the contribution of that the input parameter on the simulated dust AAOD. Given the non-671 
linear, non-additive nature of this procedure and the parameters, the combined effect of 672 
contributions does not directly reproduce the overall bias, indicating that the residual is 673 
non-zero (see Figure 4a). 674 
 675 
Dust optical properties obtained from AERONET.  676 
We obtained aerosol absorption optical depth, size distribution, and complex refractive 677 
index from AERONET (AErosol RObotic NETwork). While details about the AERONET 678 
project, its instrumentations, and retrieval algorithm can be found elsewhere in the 679 
literature36,37, we provide here a brief overview. AERONET provides global ground-based 680 
remote-sensing observations of aerosol extinction and retrieval of other atmospheric 681 
aerosol properties39. Specifically, each AERONET station is equipped with an automatic 682 
sun and sky scanning radiometer that measures the direct solar intensity and almucantar 683 
sky radiance, which are used to obtain the total column aerosol optical depth for at least 684 
the four main wavelengths (including 440, 670, 870, and 1020 nm)107. The spectral aerosol 685 
optical depth and the spectral sky radiances, through an inversion algorithm36,37, are used 686 
to obtain column integrated aerosol size distribution, complex index of refraction, and 687 
subsequently the single-scattering albedo (SSA) and the aerosol absorption optical depth 688 
(AAOD).  689 
We used AERONET version-3 aerosol properties, which include substantial improvements 690 
to the retrieval algorithm compared to the previous versions. Details of these improvements 691 
in version-3 can be found in Giles et al.108 and Sinyuk et al.91. The level-2.0 of version-3 692 
datasets applies additional quality control criteria relative to the level-1.5 datasets. 693 
Specifically, level-2.0 requires the solar zenith angle to be greater than 50 degrees and the 694 
aerosol optical depth at 440 nm to be greater than 0.491,108. Because these additional quality 695 
control criteria substantially reduce the number of available measurements by excluding 696 
days with low aerosol concentration and locations farther from the major sources over 697 
North Africa, it may result in bias in the retrieved aerosol properties. To minimize this bias, 698 
we follow Bond et al.80 and combined level-2.0 with the level-1.5 dataset, only using level-699 
1.5 for days where level-2.0 is not available. 700 
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Furthermore, since AERONET reports the total aerosol properties and does not 701 
discriminate between aerosol species, we applied additional constraints to select the 702 
stations and retrievals that are dominated by dust aerosols over North Africa. First, we 703 
selected only days with measurements that have an extinction angstrom exponent less than 704 
0.2 using wavelengths of 440 and 870 nm47,61,109 (AE≤0.2). We do so because AE ≤ 0.2 705 
better represents 'pure dust’110, which further helps to discriminate dust from other non-706 
dust aerosols and have enough measurements for a statistically significant analysis over 707 
North Africa. Although some previous studies have used different values of angstrom 708 
exponent (both above and below AE=0.2) to discriminate dust from non-dust 709 
aerosols18,109,111, our selection here does not change the conclusion presented in this study 710 
(see fig. S-5). For example, using a lower angstrom exponent of 0.1 still results in an 711 
overestimation of AERONET-retrieved AAOD, which is still associated with higher 712 
refractive index (although less than when AE≤0.2) and lower coarse dust load (although 713 
higher than when AE≤0.2), when compared to our estimates over North Africa. Second, to 714 
further improve the validity of our estimates and reduce the uncertainties in the 715 
climatological averages that we compared, we required that each monthly average contains 716 
retrievable information for at least ten (10) days in each month, with at least two (2) months 717 
of available data for the seasonal averages80. Third, we selected AERONET stations whose 718 
measurements are likely dominated by dust aerosols. To do so, we used MERRA-2 719 
reanalysis aerosol properties112 to select only stations where the percentage contribution of 720 
dust extinction to the climatological total aerosol extinction is more than 60 % (see fig. S-721 
6). In addition, to avoid coastal stations with substantial contamination from sea salt in the 722 
boundary layer, we used the threshold that the climatological contribution of seas-salt 723 
aerosols to the total aerosol surface concentration (which include black and organic 724 
carbons, DMS, SO2, SO4, and dust aerosols) should be less than 20 % for each station (see 725 
fig. S-6). Fourth, to account for the non-linearity in the spectral variation of imaginary 726 
refractive index and AAOD, we use a second order fit of the logarithm of AERONET-727 
retrieved imaginary refractive index and AAOD versus logarithm of the wavelength to 728 
interpolate their respective values at 550 nm wavelength63–65. Finally, to put the 729 
AERONET retrievals on a similar footing with our constraints and ensemble of model 730 
simulations, we calculated the climatological average of the quality-controlled AERONET 731 
retrievals over each location. 732 
 733 
Limitations of our methodology  734 
Although we quantified the uncertainties in our constraints on dust imaginary refractive 735 
index (݇௥Eqn. 1) and dust AAOD (߬̂௔௕௦; Eqn. 2), our methodology is still subject to some 736 
important limitations. First, limitations in instrumentation resulted in a compilation of in-737 
situ dust SSA measurements that may not adequately account for the full range of particle 738 
sizes observed over North Africa. Although airborne dust particles with a diameter larger 739 
than 50 µm have been measured over North Africa20,23,55,113,114, most of our dust SSA 740 
measurements are taken by airborne nephelometers and Particle Soot Absorption 741 
Photometers with sub-micron diameter cut-off less than ~3 µm 23,41,53–56. Only a few of the 742 
dust SSA measurements account for particles larger than 3 µm diameter (Table S-1) 57–743 
59,95,96. We mitigated this issue by matching the diameter range in the calculation of dust 744 
SSA (SSA୘୦୧ୱ ୗ୲୳ୢ୷୨ ; Eqn. 1 & Eqn. S2.1) to the diameter range captured by each 745 
measurement.  746 
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 747 
The second limitation is that additional uncertainties may be introduced into our estimates 748 
through inherent uncertainties associated with our methodology and the input datasets, 749 
including uncertainties in DustCOMM dust size distribution, dust loading, and the 750 
fractional contribution of each dust source. For example, methodological uncertainties may 751 
be introduced through the representative location and height range used for dust SSA 752 
measurements. Although we used the reported location and height range, we assigned a 753 
representative location to each dust SSA measurement based on the reported locations over 754 
which the data was taken (see section S-1). In addition, to constrain dust imaginary 755 
refractive index, we used seasonally averaged DustCOMM dust size distribution that 756 
corresponds to the measurement’s season. However, the dust size distribution for a 757 
representative season and location may not necessarily reflect the condition of the specific 758 
date(s) when the measurement was taken.   759 
 760 
Furthermore, other inherent uncertainties associated with DustCOMM dust size 761 
distribution may be introduced into our analysis (Eqn. 2). Specifically, although dust 762 
particles with D ≥ 20 µm have also been measured for North African dust 20,23,55,113,114, 763 
their inclusion in DustCOMM dust size distribution may result in large uncertainties 764 
because such measurements are still relatively scarce 3,21. As a result, we also avoided such 765 
large uncertainties in our constraints on dust AAOD. In addition, most climate and 766 
chemical transport models, including those highlighted in this study, also don’t account for 767 
dust with D ≥ 20µm, and the majority have dust with a maximum diameter of 10µm 14,115.  768 
 769 
An additional limitation is that our constraints on dust AAOD only accounted for the 770 
contributions from Sahara and Sahel sources. However, Kok et al. 50 highlighted that the 771 
sources over the Middle East and Central Asian regions contribute to dust aerosols reaching 772 
locations over North Africa. Although this contribution is small (about 7.5 %) relative to 773 
the Sahara and the Sahel regions, it could introduce non-negligible uncertainties in the 774 
source-resolved dust mass distribution and, consequently, on our constraints on dust 775 
AAOD. Furthermore, our methodology did not account for the effect of aging on the 776 
composition of dust and, consequently, the dust refractive index as it is transported from 777 
the source regions 116. However, previous studies with in-situ measurements pointed to 778 
little changes in the optical properties of dust plumes as they are transported from North 779 
African sources 114,117, thus suggesting that the effect of aging in our estimate of dust 780 
AAOD is likely small.   781 
 782 
Data and materials availability: Dust absorption properties from AeroCom models are 783 
obtained from the repository at http://aerocom.met.no (last assessed on January 2020), 784 
and AERONET-retrieved aerosol absorption properties are obtained from 785 
https://aeronet.gsfc.nasa.gov (last assessed on June 2021). Previously published datasets, 786 
such as dust properties from the selected models and DustCOMM datasets, are available 787 
through cited publications118–120. Our constraints on dust imaginary refractive index and 788 
dust absorption aerosol optical depth as well as the code used to obtain these datasets are 789 
publicly available at ref121 (https:/doi.org/10.5281/zenodo.6406831). 790 
 791 
Code availability 792 
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Code used to generate the dust single-scattering albedo, the dust imaginary refractive 793 
index and dust AAOD are available at ref121 (https:/doi.org/10.5281/zenodo.6406831). 794 
Matlab was used for data generation, but all figures except Figure 1 are made using 795 
National Center for Atmospheric Research (NCAR) Command Line (NCL; 796 
https://www.ncl.ucar.edu/).  797 
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 1184 

 1185 
Figure 1: Dust shortwave absorption depends on dust microphysical properties. Dust 1186 
shortwave absorption – quantified by the dust absorption aerosol optical depth (dust 1187 
AAOD) – depends on dust shortwave extinction and dust single scattering albedo, both of 1188 
which depend on dust microphysical properties. Direct and continuous observations of 1189 
these microphysical properties, including, dust refractive index, dust size distribution, 1190 
and dust shape, are difficult to obtain from remote-sensing platforms. Therefore, overall 1191 
uncertainties in dust shortwave absorption depend primarily on the uncertainties in these 1192 
microphysical properties. To obtain constraints on dust AAOD at 550 nm wavelength, we 1193 
obtained constraints on dust refractive index in this study, which leveraged over a dozen 1194 
measurements of dust single-scattering albedo at 550 nm wavelength over North Africa 1195 
(green shaded box; see Methods). These constraints are then combined with 1196 
observationally informed constraints on dust size distribution, dust loading, and dust 1197 
shape from previously-published datasets that similarly leveraged in-situ measurements 1198 
of dust properties (blue shaded boxes)3,21,27,93 to obtain constraints on dust AAOD.  1199 
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 1201 
Figure 2: Climate and chemical transport models underestimate dust single-scattering 1202 
albedo and overestimate dust imaginary refractive index over North Africa. (a) The 1203 
dust single-scattering albedo (SSA) at 550 nm wavelength obtained from in-situ 1204 
measurements over North Africa (cyan bars) and the corresponding estimates from this 1205 
study (pink/red bars), from an ensemble of six selected global aerosol models (gray 1206 
bars), and from an ensemble of eight AeroCom Phase III models (dark green bars; 1207 
Aerosol Comparison between Observations and Models project). Details of the models 1208 
that are part of the selected and AeroCom model ensembles are provided in Methods and 1209 
Table S-2. The figure also includes the regionally averaged SSA at 550 nm wavelength 1210 
for the Sahara and Sahel regions and for all of North Africa, as defined by the dashed 1211 
boxes in Figure 2b.  The black/red vertical lines on the bars indicate the one standard 1212 
error range, and the black dots represent the values from individual models in the two 1213 
ensembles. (b) The locations of the 14 dust SSA in-situ measurements (cyan circles), 12 1214 
dust size distribution measurements (obtained from Adebiyi et al.122, red stars), and 23 1215 
dust-dominated AERONET stations (purple stars; see Methods) that are used as part of 1216 
this study. Details of the in-situ dust SSA measurements can be found in Table S-1 and 1217 
section S-1. The boxes in (b) delineate the Sahara (25W-32.5E; 18-37N) and Sahel (25W-1218 
32.5E; 0-18N) dust source regions. (c) Comparison between the constraints on the dust 1219 
imaginary refractive index at 550-nm wavelength obtained from this study (red/pink), 1220 
from laboratory measurements of dust generated from several North African soil samples 1221 
by Di Biagio et al.29 (blue), and from AERONET dust-dominated observations (purple), 1222 

a)

b) c)
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both interpolated to 550 nm over the Sahara and Sahel regions (see Method for details). 1223 
The figure also includes spatially invariant imaginary refractive index values used in an 1224 
ensemble of selected global aerosol models (gray) and an ensemble of AeroCom models 1225 
(dark green) at 550 nm wavelength. The box boundaries approximately indicate one 1226 
standard error range; the horizontal lines and solid dots within the box denote the mean 1227 
values; the red vertical lines indicate the 95% confidence interval. Finally, the stars 1228 
represent the member values used in the calculation. 1229 
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 1231 
Figure 3: Climate models and AERONET retrievals overestimate dust absorption 1232 
optical depth. Estimates of dust absorption optical depth (dust AAOD) obtained for (a) 1233 
this study, (b) an ensemble of six selected models, and (c) an ensemble of eight AeroCom 1234 
models. (d) & (e) The corresponding mean bias in the ensemble of selected and AeroCom 1235 
models, respectively, relative to our constraints on dust AAOD. Dashed black lines in 1236 
Figure 3a-c delineates the region where dust emitted from North African dust sources 1237 
account for more than 80 % of annual dust loading50, and the dashed green boxes 1238 
delineate the Sahara and Sahel regions shown in Figure 2b.  (f) Total AAOD (dust plus 1239 
non-dust AAOD) estimated at dust-dominated AERONET stations (purple stars in Figure 1240 
3a-c), for this study (pink bars), an ensemble of selected models (dark-grey bars), an 1241 
ensemble of AeroCom models (dark-green bars), and AERONET retrievals (purple bars). 1242 
The total AAOD for this study and the ensemble of selected models includes the ensemble 1243 
of non-dust AAOD obtained from the AeroCom models. The AERONET total AAOD 1244 
minimizes the non-dust components in the resulting estimates by applying several criteria 1245 
(see Methods for details). The black vertical lines on the bars denote one standard error 1246 
range.  1247 
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 1248 

Figure 4: The decomposition of the bias in the simulated dust aerosol absorption 1249 
optical depth. (a) Averaged over the region where North African dust sources dominate 1250 
global dust loading (by more than 80 %; see dashed contour in Figure 3)50, the mean 1251 
bias in simulated dust aerosol absorption optical depth (dust AAOD), including the total 1252 
mean bias (orange bar) and the bias due to dust refractive index (green-yellow bar) and 1253 
size-resolved dust properties (blue bar) which includes the biases in dust load, dust 1254 
shape, and dust size distribution, obtained for the ensemble of six global aerosols models, 1255 
and averaged for fine dust (diameter, D ≤ 5 µm), coarse dust (D ≥ 5 µm), and all dust of 1256 
North African origin. The residue (grey bar) is the difference in the total bias in dust 1257 

c)b)

a)
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AAOD and the sum of the bias due to the bias in refractive index and size-resolved dust 1258 
properties. (b & c) The normalized dust size distributions obtained from in-situ 1259 
measurements (dark gold dots), collocated DustCOMM constraints on dust size 1260 
distribution (red), and collocated estimates from six selected global aerosol model 1261 
simulations (see Table S-1) and the aerosol size distribution obtained from AERONET 1262 
retrievals (purple), compared at the locations of (b) the in-situ measurements and (c) the 1263 
dust-dominated stations (see Figure 2b) over North Africa. All size distributions are 1264 
normalized between 2.5 and 10 µm (see Methods).   1265 
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