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Abstract

"Membraneless organelles", also referred to as biomolecular condensates, perform a variety of cellular functions and their
dysregulation is implicated in cancer and neurodegeneration. In the last two decades, liquid-liquid phase separation (LLPS)
of intrinsically-disordered and multidomain proteins has emerged as a plausible mechanism underlying the formation of var-
ious biomolecular condensates. Further, the occurrence of liquid-to-solid transitions within liquid-like condensates may give
rise to amyloid structures, implying a biophysical link between phase separation and protein aggregation. Despite significant
advances, uncovering the microscopic details of liquid-to-solid phase transitions using experiments remains a considerable
challenge and presents an exciting opportunity for the development of computational models which provide valuable, com-
plementary insights into the underlying phenomenon. In this review, we highlight recent biophysical studies which provide
new insights into the molecular mechanisms underlying liquid-to-solid (fibril) phase transitions of folded, disordered and
multi-domain proteins. Next, we summarize the range of computational models used to study protein aggregation and phase
separation. Finally, we discuss recent computational approaches which attempt to capture the underlying physics of liquid-to-
solid transitions along with their merits and shortcomings.
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Introduction

A hallmark of several neurodegenerative diseases is the appearance of cytoplasmic inclusions in brain and spinal cord tis-
sues which are comprised of insoluble protein aggregates which may be amorphous or amyloid in nature [1]. The pathological
aggregation of folded (e.g., SOD1), intrinsically disordered (e.g., Tau, α-synuclein) and multidomain proteins (e.g. TDP-
43, FUS, hnRNPs) is associated with degenerative diseases such as Alzheimer’s disease, Parkinson’s, disease, amyotropic
lateral sclerosis (ALS) and fronto-temporal dementia (FTD). In the last decade, these proteins were also shown to undergo
liquid-liquid phase separation (LLPS) in vitro [2] and are implicated in the assembly and regulation of various "membrane-
less" organelles or biomolecular condensates [3]. While many of these condensates appear to exhibit liquid-like properties,
some form gel-like structures while others form solid-like (amyloid) structures [4]. In vitro studies indicated that longer
timescale incubation of liquid droplets formed by disordered proteins can promote the formation of amyloid aggregates un-
der physiological conditions, implying a potential link between LLPS and pathological aggregation as discussed in previous
reviews [5, 6]. Liquid condensates may therefore serve as attractive targets for the development of potential therapeutics for
neurodegenerative diseases [7, 8].

Email addresses: bszalamendyk@tamu.edu (Beata Szała-Mendyk), tienminhphan@tamu.edu (Tien Minh Phan), priyeshm@tamu.edu (Priyesh
Mohanty), jeetain@tamu.edu (Jeetain Mittal)

Preprint submitted to Elsevier



Figure 1: Relationship between LLPS and fibril fromation. (a) At a given temperature, liquid-liquid phase separation is delineated by a
coexistence curve or binodal. Phase separation of any concentration above the saturation concentration (Csat) manifests as liquid droplets
with a higher concentration (Cdense). (b) Protein aggregation typically shows a sigmoidal curve of growth kinetics, where two relatively flat
regions (lag phase and plateau phase, respectively) are connected by a steep transition zone (growth phase). In the lag phase, partially folded
proteins associate to form primary nuclei. As nuclei reach the critical size, small fibrils emerge and elongate (the growth phase). Secondary
processes, such as lateral growth, association, and dissociation of unmatured fibrils, also occur in this phase. When the monomer concentra-
tion reaches equilibrium, the system enters the plateau phase. (c) A liquid-to-solid transition (LST) occurs during droplet maturation with
the emergence of hydrophobic cores forming from catalytic activities on the droplet interface. The fibril structures were generated using the
CreateFibril tool [11].

Factors governing liquid-to-solid transitions based on recent biophysical experiments

LLPS involves demixing of a homogeneous macromolecular solution which gives rise to two distinct phases, a dilute and
dense phase, often represented in the form of a coexistence curve (Fig. 1a). Amyloid formation may occur independent of
phase separation (Fig. 1b) through the formation of an initial nucleus (lag phase) which undergoes elongation to form fibrils
(growth phase). Maturation of liquid condensates results in a slowdown of internal dynamics to eventually form gel-like
and/or fibrillar (amyloid) assemblies (Fig. 1c). While the liquid phase is maintained by a variety of weak interactions [9] ,
amyloid fibrils adopt a characteristic cross-β structure which is stabilized by polar and hydrophobic interactions [10]. Post-
translational modifications [12] (e.g., acetylation, phosphorylation) and pathogenic mutations [13] were shown to modulate
the liquid-like nature of condensates both in vitro and in vivo. In vitro studies indicate that LLPS can promote amyloid
formation of disordered regions in proteins associated with neurodegeneration [5, 14, 15]. Biophysical techniques such as
NMR spectroscopy and fluorescence-based methods have been extensively utilized to provide insights into the conformational
dynamics and residue-level interactions associated with the condensed phase [16, 17]. More recently, such methods were
employed to obtain insights into the underlying, molecular mechanisms of liquid-to-solid transition (LST).

LLPS is often associated with conformational transitions of folded, disordered and multidomain proteins [18, 19, 20].
Sequence-dependent conformational transitions regulate intermolecular interactions which are critical to LLPS and therefore,
may also provide clues regarding the mechanisms underlying LST. Ray et al. identified domain-level interactions which
drive LST of α-synuclein [21]⋆⋆. Based on solution NMR and FRET experiments, they observed that both N-terminal (aa:1-
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60) and hydrophobic NAC (aa:61-95) domains contributed towards intermolecular interations which promote LST and give
rise to amyloid fibrils. Cross-linking mass spectroscopy (XL-MS) experiments indicate that the conformational ensemble
of α-synuclein undergoes a population shift during LLPS from compact "hairpin-like" conformations stabilized by comple-
mentary N/C-terminal electrostatic interactions towards more expanded conformations [22]. Along these lines, truncated
C-terminal variants (aa:1-115/122) showed enhanced LLPS and amyloid aggregation, establishing the inhibitory effect of
the N/C-terminal intramolecular interactions on the phase separation of α-synuclein [23]. Solution and solid state NMR
experiments indicate that LLPS-mediated amyloid formation of α-synuclein proceeds through the formation of oligomeric
intermediates which comprise of both unstructured and β -rich ensembles [24].

Wen et al. studied the conformational changes of full-length Tau (441 aa) which were associated with its LLPS-dependent
amyloid formation [25]. Utilizing several fluorescence-based methods (smFRET, FCS and anisotropy), they observed that Tau
underwent conformational expansion and formed nanoclusters within the crowded droplet environment even at subnanomolar
concentrations. The expansion of Tau involved extension of N/C-terminal regions and resulted in exposure of the microtubule-
binding region (MTBR) which is crucial for fibrillation. LSTs may be controlled by metal co-factors which stabilize the folded
state of a protein. Das et al. showed that liquid droplets of partially-disordered, SOD1 wild type which formed upon removal
of its metal co-factor - Zinc, underwent a liquid-to-solid transition giving rise to amyloid fibrils (within 3 days) [26]. While
LLPS of SOD1 was reversible upon addition of Zn, the stability of amyloid fibrils were unaffected. Further, it was observed
the liquid droplets formed by severe ALS mutants (G85R/I113T) of SOD1 which were deficient in Zn-binding also gave rise
to amyloid fibrils.

The intrinsically disordered, low complexity domains (LCD) of several RNA binding proteins (e.g., TDP-43, FUS and
hnRPNA1/2) were shown to undergo phase separation and maturation into fibril-like structures [27]. The phase separation
of TDP-43 C-terminal LCD (aa:267-414) is dependent upon interactions mediated through the conserved helical region (CR,
aa:319-341) along with several aromatic residues in the CR-flanking, intrinsically disordered regions (IDR1/2) [28, 29, 30].
Pantoja-Uceda et al. studied the liquid-to-amyloid transition of TDP-43 LCD under low pH conditions (without salt or RNA)
and uncovered the distinct roles of LCD regions in LST [31]⋆. Using fluorescence-based confocal microscopy, it was observed
that fibril formation initiated at the droplet interface. Real time NMR experiments indicated that CR was more critical than
FG motifs in IDR1/2 for initiation of LLPS. In contrast, solid state (SS) NMR analysis of LLPS-derived fibrils coupled with
cross-seeding experiments established that in addition to CR, fibrillation was also dependent on six phenylalanine residues
in IDR1/2. Using SS NMR experiments, Fonda et al. [32] identified an additional fibril-forming core in IDR2 (aa:365-400)
which counteracts the ability of CR to undergo fibrillation within condensates. These observations highlight the mechanistic
complexity of LLPS-derived fibrillation which arises through competing interactions between LCD segments.

The crowded environment within the droplet can influence the structure of fibrils formed through dynamic protein-protein
interactions. Using solid-state MAS (Magic Angle Spinning) NMR spectroscopy, Berkeley et al observed that wild type FUS
LCD (aa:1-163) remained predominantly in a gel-like state (even upto 30 days) while G156E mutant readily converted to
an amyloid-state (within 5 days) [33]⋆. The overall structure of the amyloid species formed by both FUS LC wild type and
G156E were similar. Interestingly, several residues were not part of the β -sheet rich amyloid core (aa:39-95) observed in
seeded fibrils, implying a modification of the fibril structure within the droplet environment.

Alterations in physical parameters (e.g., shear stress, temperature) may exert a significant influence on the kinetics of
liquid-to-solid transitions for disordered proteins. Shen et al. demonstrated that the application of shear stress values in the
physiological range using microfluidics could induce LST (fibrillation) in condensates formed by multidomain proteins [34]⋆⋆.
Based on these observations, the authors proposed a model for shear-induced fibrillation wherein shear aligns polypeptide
chains within droplet leading to the formation of β -sheet structures. Chatterjee et al. observed that FUS LCD (aa:1-163)
could form kinetically trapped condensates (KTCs) upon cooling (4o C) which showed arrested coalescence and higher β -
sheet content compared to condensates formed at room temperature [35]. Further, KTCs could reconvert into untrapped,
liquid-like condensates by thermal annealing.

Aggregation-prone proteins (e.g., α-synuclein, Tau and prion) can form complex coacervates (heterotypic condensates)
through complementary, domain-specific electrostatic interactions which convert over time to amyloid co-aggregates.[36, 37,
38]. Based on time-resolved experiments, Mukopadhyay and co-workers [37, 38] observed that heterotypic condensates of
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prion/α-synuclein and prion/tau formed transient electrostatic nanoclusters on the nanosecond timescale. At longer timescales
(>40 hours), the complex coacervates underwent conformational rearrangements to form amyloid co-aggregates. Gracia et
al. [36] observed that only liquid-like coacervates (unsatisfied valences) of α-synuclein/Tau could coalesce to form larger
droplets and give rise to amyloid-like aggregates in the droplet interior through rearrangement of protein interaction networks.
In contrast, droplets which underwent gelation remained small in size (due to satisfied valences) and were unable to form
aggregates.

Protein-RNA interactions can modulate LSTs of RNA-binding proteins (RBPs) which are associated with neurodegener-
ative diseases. Depending on their concentration, length, sequence and secondary structural properties, RNA molecules may
either promote or inhibit LSTs [39]. While in vitro experiments performed at low RNA concentrations promote LLPS of
RBPs, the presence of excess RNA (physiological concentrations) generally inhibits their phase separation and subsequent ag-
gregation both in vitro and in vivo. Interestingly, Ishiguro et al. showed that interactions with G-quadruplex (structured) RNA
enhanced LLPS and LST of FUS full-length [40]. The interaction of RNA-free (unbound) RBPs with chaperones suppresses
their LSTs both in vitro and in vivo. For example, the interaction of FUS LCD (aa:1-163) with Hsp27 chaperones (phos-
phorylated form) could inhibit its LLPS and LST [41]. Similarly, interactions between TDP-43 LCD and Hsp70 chaperones
promoted the formation of intranuclear condensates and inhibited TDP-43 aggregation [42, 43, 44].

Biomolecular condensates can influence protein aggregation by affecting the partioning (condensate interface or interior)
of amyloid-prone proteins. Differential localization of these proteins within condensates can affect their stability and reactivity
with other macromolecules and metabolites. Küffner et al. showed that the recruitment of aggregation-prone Aβ -42 fragment
into LCD condensates of DEAD-box proteins (LAF-1, Dbp1 and Ddx4) could inhibit amyloid formation through competing
heterotypic interactions [45]. Lipiński et al. utilized three complex coacervate systems (formed from charged peptides,
RNA or ATP) and showed that aggregation of α-synuclein could be accelerated when it localized to the condensate interface
compared to the interior [46]⋆.

In summary, a complex interplay between sequence-dependent interactions (homotypic and heterotypic) and physical
parameters (e.g., temperature, pH, salt, metabolites) govern the overall conformational dynamics underlying LLPS-dependent
fibrillation.

All-atom models for studying phase separation and aggregation

Complementary to experiments, molecular simulations have been successfully utilized to provide high resolution insights
into protein dynamics and assembly. redAlthough atomistic simulations are unable to directly probe LLPS and aggregation
processes for many IDPs due to length and timescale limitations, they can be useful for the investigation of single-chain
properties such as intramolecular interactions, secondary structure and conformational changes associated with LLPS [28, 30,
47]. Back mapping of coarse-grained (CG) models to an all-atom representation allows for investigating various interaction
modes in intrinsically disordered domains, e.g., cation–π , sp2/π , hydrogen bonding, and salt-bridge, that cannot be resolved
in CG models [48, 49] (Fig. 2a). All-atom simulations were used to characterize intermolecular interactions implicated in
the phase separation of short disordered fragments [50] and domains [48]⋆⋆ (Fig. 2a, 3a). With regard to protein aggregation,
all-atom simulations were recently used to study the formation of Aβ dimers in solution and a neuronal membrane model
[51] to explain the mechanism of oligomer-mediated neuronal toxicity. Additional examples of studies utilizing atomistic
simulations to study LLPS and aggregation are discussed in recent reviews [16, 52].

Coarse-grained models for studying phase separation and aggregation

Coarse-grained models wherein entire macromolecules (e.g. protein, RNA) are represented by one or a few particles,
can be useful in identifying the key forces driving phase separation at high computational efficiency. CG models can bridge
the timescale gap between simulation and experiment by selectively retaining fewer degrees of freedom compared to more
expensive, atomistic models. CG approaches provide a transferable framework to compute protein phase diagrams in temper-
ature - concentration space, which can be compared to experimental phase behavior.
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The HPS model developed in our group, combines electrostatic and short-range interactions parametrized based on the
hydrophobicity scale of Kapcha and Rossky [53], has been widely used to study the sequence-dependent phase separation of
several IDPs. The model was further extended to incorporate temperature-dependent effects, account for post-translational
modifications, salt-dependent behavior and capture the multicomponent phase behavior of IDP/polynucleotide mixtures [54,
55, 56, 57, 58]. Caveats associated with the HPS model include overprediction of Rg for many IDPs and failure to capture
the effect of arginine-to-lysine or tyrosine-to-phenylalanine substitutions observed in experiments [59, 60]. Attempts have
been made to improve the HPS model by re-parametrizing short-ranged interactions based on the force balance or Bayesian
parameter learning methods or the Urry hydropathy scale, or using maximum entropy optimization based on SAXS data
[59, 61, 62, 63]. More recently, other CG strategies have been applied to study the dominant contributions of π-related
interactions on LLPS propensities of IDPs [60, 64], role of LLPS in dipeptide repeat protein (DPR) toxicity [65], mechanism of
ATP-dependent modulation of FUS phase separation [66] and phase separation of peptide/protein-RNA systems. [58, 67, 68].

The CG framework has also been applied to study the phase separation of multidomain proteins comprising both folded and
disordered domains [69, 70]. Further, a reparameterized variant of the HPS model [60] along with the compatible RNA model
[58] was used to study the influence of RNA concentration and length on the transport properties and stability of condensates
formed by RNA-binding proteins such as TDP-43, FUS and hnRNPA1 [71]. Higher resolution models can also be used with
explicit solvent; for instance, Benayad et al. scaled nonbonded interactions in the MARTINI model (version 2.2) (two to
four heavy atoms per residue) to simulate liquid droplet formation of FUS-LC and characterize its material properties from
the underlying protein dynamics [72]. A reparameterization of the MARTINI model (version 3.0) with improved interaction
balance, has been used to investigate ion and nucleotide partitioning between poly-lysine/poly-glutamate coacervates and the
surrounding solvent [73]. Despite the simplicity of CG models, they have been utilized with great success in uncovering
mechansitic insights into formation of biomolecular condensates. However, it is still challenging for CG models to accurately
reproduce experimental results or capture local secondary structure and their effects on the phase-separation propensities of

Figure 2: Interaction modes contribute to protein phase separation and protein aggregation. (a) Liquid-liquid phase separation is stabilized
by various intermolecular interactions, including π−π stacking, cation-π , salt bridges, hydrophobic interactions, and hydrogen bonds. (b) In
amyloidogenic aggregation, backbone hydrogen bonds are essential for maintaining the secondary and tertiary structures of proteins and
protein-protein interactions. Additionally, side-chain interactions involving different interaction modes can further enable the formation of
hydrophobic cores, stabilize the structure of the protein and facilitate protein aggregation.
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IDPs. Further experimental advancements will provide exciting opportunities for the development of accurate and efficient
CG models for studying biological phase separation.

CG models to study protein aggregation range from highly coarse to near atomistic in terms of model resolution [74].
Such a hierarchical approach greatly reduces the computational cost associated with simulation of the aggregation pathway at
the expense of lower model resolution. (Fig. 3c). Studies utilizing phenomenological models indicated that the β -propensity
[75], hydrophobicity [76], hydrophobic patterning [77], chain stiffness [77, 78], and side-chain geometry [79] are critical
factors for fibrillation. The fibril elongation mechanism ("dock-lock") of an Amyloid-β fragment was studied using a CG
model (UNRES), revealing the intra-monomer hairpin as a structural intermediate [80]. The higher fibril forming propensity
of FUS LCD core 1 (aa:39−95) compared to core-2 (aa:112-150) was investigated using a single-bead per residue CG model
developed for IDPs [81]. CG simulations indicated a higher population of excited states corresponding to the core-1 fibril
topology in the monomeric ensemble, highlighting the role of sequence-specific enthalpic effects in determining fibrillation
pathways. Knowledge-based CG models were recently utilized to design de novo peptides which form β -rich nanofibers
[82, 83]⋆. The coarsest models represent the whole peptide or protein as a single unit with a tunable interaction potential
which controls the transition between protein states. Despite their lower resolution, highly simplified models can simulate
systems containing hundreds of proteins, which makes them especially useful for kinetic studies and quantitative comparison
with experiments [84, 85].

Computational approaches for studying liquid-to-solid transitions

Recent attempts at modeling LSTs of proteins have utilized phenomenological approaches to circumvent the timescale
limitations associated with unbiased CG methods. Such approaches typically involve a CG description of peptides and proteins
(residue or domain-level) coupled with either modifications to the potential energy function or the incorporation of user-
defined criteria to drive the formation of ordered, fibril-like structures within the liquid phase.

Xing et al. [91]⋆ studied the liquid-to-solid transition for a model CG peptide using discrete molecular dynamics (DMD)
simulations. The peptide model was allowed to adopt two low energy states: fibrillation incompetent (helical or random
coil conformations) and fibrillation competent (β -sheet) states. It was observed that fibrillation via LLPS proceeded through
the formation of a high-density liquid phase (HDLP) comprising of either stable or transient oligomers in a concentration-
dependent manner. More recently, the authors utilized the same methodology to analyze length-dependent effects of flanking
polar sequences on the structure of oligomers formed by the model peptide en route to fibrillation [95].

CG simulations of FUS full-length condensates revealed that the interplay between homo and hetero-domain interactions
controls condensate morphology [90]. The strength of interdomain interactions were tuned by modifying the ε parameter
(energy well depth) of the Lennard-Jones potential based on the known roles of FUS domains in promoting either LLPS or
fibrillation. Depending on the relative strength of homo and heterotypic interactions involving prion-like and RNA-binding
domains, condensate morphologies varied from disordered, well-mixed assemblies to ordered, fibrillar assemblies with a
core-shell structure.

Garaizar et al. studied the maturation of FUS liquid condensates into gel-like structures using a minimal CG model
(domain-level) coupled with a dynamical algorithm which irreversibly forms inter-chain β -sheets with time [96]. Briefly,
the relative interaction strengths between aggregation-prone, FUS peptides in the disordered and ordered (fibril) states were
inferred from all-atom simulations, incorporated into residue-level CG simulations to assess their impact on the structural
organization of condensates and subsequently utilized to develop a minimal CG model. The non-equilibrium, dynamical
algorithm was also used in combination with a residue-level CG model to study the effect of RNA concentration on the
time-dependent formation of inter-protein β -sheets within FUS and hnRNAP1 condensates [88]⋆. It was observed that the
recruitment of high concentrations of RNA into condensates decelerates the accumulation of β -sheets through a combination
of attractive RNA-protein interactions and repulsive RNA-RNA interactions.
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Figure 3: Computational models for the study of protein phase separation, protein aggregation, and liquid-to-solid- transition at various time
scales and model resolutions. (a) AA slab simulation was utilized to explore interaction modes, and CG simulations using a re-balanced
Martini model were employed to study dynamic materials properties of proteins within the condensed phase. CG slab simulations using a
sequence-dependent one-bead-per-residue model were applied to establish one-phase and two-phase regimes of the phase diagram. (b) Re-
cent computational work on liquid-to-solid transition: a phenomenological CG peptide model was used to study general properties of LLPS
and amyloid aggregation, a one-bead-per-residue CG model with inter-peptide β -sheet formation was applied to explore the role of RNA
on the aging of biomolecular condensate, and a CG multidomain model was developed to explore structural properties within FUS conden-
sate. (c) Different model resolutions were employed to study different phases of amyloid aggregation ranging from explicit solvent atomistic
simulation to sequence-dependent near atomic four-bead-per-residue models, to phenomenological models with coarser graining varying
from three- and two-bead-per-residue to one-bead-per-protein. It should be noted that the CG models used to study fibril formation can also
be used to study the early stages of protein aggregation such as intramolecular conformational changes and nucleation events [81, 86]. Im-
ages of computational models were adapted with permission under the Creative Commons Attribution License (CC BY 4.0) [72, 87, 79, 88],
Creative Commons Attribution License (CC BY 3.0) [89], Copyright 2022 Biophysical Society [90], Copyright 2020 American Chemical
Society [91], Copyright 2010 Wiley-Liss, Inc. [92], and under AIP Publishing [93, 75, 94].
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Challenges and Future Outlook

Growing evidence suggests that physiological, liquid-like condensates may transform into pathological aggregates, includ-
ing highly-ordered, amyloid fibrils. Various experimental techniques have been recently employed to investigate the intrinsic
(e.g. sequence, secondary structure) and extrinsic (pH, salt concentration, crowding, etc.) factors that control LST of pro-
tein condensates. However, additional high resolution are required to gain new insights into the sequence determinants of
protein aggregation within the condensed phase [97]. Given their past success in studying LLPS and aggregation indepen-
dently, computer simulations are beginning to serve as a powerful tool to explore the underlying physics which links these
two phenomena.

The large computational expense associated with atomistic models has led to studies utilizing phenomenological ap-
proaches (domain-level or residue-level resolution) which explicitly incorporate system-specific biases based on experimental
information to drive LST. Although these models are able to reproduce the experimental trends, the system-specific nature of
these models prevents them from providing a more general view of the underlying process. Moreover, such models require
caution when choosing system features to be incorporated into the CG representation and handling inconsistencies associated
with experiments.

For one-bead-per-residue CG models, difficulties in modeling inter-protein β -sheets also arises from the lack of explicit
separation between the backbone and side-chain interactions. Backbone-mediated interactions are generic to all proteins, in-
cluding backbone-backbone hydrogen bonds which stabilize fibrils. On the other hand, the identity of side chains differentiate
proteins, contributing to fibril polymorphisms and altering LLPS tendency [9]. To overcome this, one can add additional beads
per residue or apply special anisotropic potentials [98] which however, comes at an increased computational cost.

To gain a more general view of LST, future models need to describe the sequence-specific secondary structure propensities
of amino acids. The incorporation of a conformation-dependent term into a one-bead-per-residue model led to the emergence
of internal order within liquid droplets [99]. Recently, the HPS CG model has been modified (HPS-SS) to include a sequence-
dependent, dihedral potential term in order to reproduce the variable helical propensity for amino acids [100]⋆. Explicit
modeling of helix-to-coil transitions enables CG simulations to investigate the role of helix-helix interactions in LLPS and ag-
gregation. Future efforts aimed at extending the scope of the HPS-SS model to accurately describe extended-β conformations
can allow for modeling the formation of inter-protein β -sheets within condensates.

In summary, recent computational approaches using CG models enable an efficient exploration of the conformational
landscape underlying LST of disordered and multi-domain proteins, albeit at the expense of low model resolution and preim-
posed structural biases. However, moving forward, there is a need for structurally-unbiased CG models which capture the
sequence-dependent structural propensities of amino acids and thereby enable a more accurate description of the conforma-
tional transitions and inter-molecular interactions associated with LST.
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