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Abstract— In mathematical psychology, decision makers are
modeled using the Lindbladian equations from quantum me-
chanics to capture important human-centric features such
as order effects and violation of the sure thing principle.
We consider human-machine interaction involving a quantum
decision maker (human) and a controller (machine). Given a
sequence of human decisions over time, how can the controller
dynamically provide input messages to adapt these decisions
so as to converge to a specific decision? We show via novel
stochastic Lyapunov arguments how the Lindbladian dynamics
of the quantum decision maker can be controlled to converge
to a specific decision asymptotically. Our methodology yields
a useful mathematical framework for human-sensor decision
making. The stochastic Lyapunov results are also of indepen-
dent interest as they generalize recent results in the literature.

I. INTRODUCTION

Recent studies in mathematical psychology [21], [19],
[8], show that the Lindbladian equations from quantum
mechanics facilitate modeling peculiar aspects of human
decision making. Such quantum decision models capture
order effects (humans perceive P (H|A∩B) and P (H|B∩A)
differently in decision making) and violation of the sure
thing principle (human perception of probabilities in decision
making violates the total probability rule). Motivated by
the design of human-machine interaction systems, this paper
addresses the following question: Given a sequence of human
decisions over time, how can a controller (machine) adapt
the Lindbladian dynamics (of the human decision maker)
so as to converge to a specific decision? To investigate
this, we develop a novel generalization of recent results
involving finite-step stochastic Lyapunov functions. Thus
at an abstract level, we study the stochastic stability of a
switched controlled Lindbladian dynamic system where the
switching occurs due to the interaction of the controller
(machine) and decision maker (human) at specific (possibly
random) time instants.

A. Decision Making Context

Figure 1 shows our schematic setup. The finite-valued
random variable s ∼ π0(·) denotes the underlying state
of nature, where π0 is a known probability mass function.
The input signals yk and zk are noisy observations of
the state with conditional observation densities p(y|s) and
p(z|s), respectively. The human’s psychological state ρ is
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represented as a density operator in Hilbert Space, which
evolves via the Lindbladian equation parametrized by the
observation yk and input uk. The density operator ρ encodes
a probability distribution over actions {aj}j∈{1,...,m}, and
at each time point an action is taken according to this
distribution. The machine observes the actions and outputs a
feedback control signal uk to the human.

Examples: Several examples in robotics [5], interactive
marketing/advertising [6] and recommender systems [20]
exploit models for human decision making. One example is a
machine assisted healthcare system for patients with demen-
tia [12], in which the patient is assisted by a machine (smart
watch) to wash his hands. The machine’s sensor detects
whether a certain set of sequential actions are followed by
the patient, and then sends those results to a controller which
gives an audio/video command to the patient. In this context
the underlying states (s) are the tap water, soap dispenser
and towel dispenser, which are partially observed by both
sensor and the patient. The patient has a psychological state
(ρ) and the resultant hand washing actions (ak) are sensed
by the sensor, then the controller gives the control input
(uk). In our work, we model the psychological state of the
patient as a Lindbladian evolution as shown in Figure 1 since
this accounts for a wider range of human behavior, such as
irrational decisions which could be made by the dementia
patient, than classical models.

Psychological
State

ρk+1 = L(yk,uk) ρk

State

s

Sensor Controller

Decision(ak)

Control(uk,T )Input(yk)

Input(zk)

Fig. 1. Human-Machine Interaction Model

B. Main Results and Organization

Given the described human-machine decision making sys-
tem, the question we ask is: Can the human’s decision
preference be guided by the input control signals such that a
desired target action is eventually taken at every time step?
Our results reveal that this indeed is the case. We show
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this by developing a novel Lyapunov stability result for a
Lindbladian dynamic system.

The main results and organization of the paper is as
follows:
(1) Sec. II introduces the open-quantum cognitive model of
Martinez et. al. [21] and represents the discretized process
in a form that will be mathematically useful for us.
2) Sec. III presents Theorem (1), which is our main result and
shows the stochastic stability of our human-machine decision
system. The proof uses the methodology of Amini et. al [3],
along with Lyapunov techniques and Theorem (2) which we
provide in Sec. IV.
3) Sec. IV provides a generalization of a finite-step Lyapunov
stability result given in Qin et. al. [25] in Theorem (4), to
the case when the finite-step interval T is a random variable.
Also Theorem (2) is a modified form of this result which is
used to prove Theorem (1) in Sec. III.

C. Literature Review

Generative models for human decision making are studied
extensively in behavioral economics and psychology. The
classical formalisms of human decision making are the
Expected Utility models of Von-Neumann and Morgenstern
(1953) [22] and Savage (1954) [26]. Despite the successes of
these models, numerous experimental findings, most notably
those of Kahneman and Tverksy [14], have demonstrated vi-
olations of the proposed decision making axioms. There have
since been subsequent efforts to develop axiomatic systems
which encompass wider ranges of human behavior, such as
the Prospect Theory [15]. However, given the complexity of
human psychology and behavior it is no surprise that current
models still have points of failure. The theory of Quantum
Decision Making ( [7], [16], [30] and references therein) has
emerged as a new paradigm which is capable of generalizing
current models and accounting for certain violations of
axiomatic assumptions. For example, it has been empirically
shown that humans routinely violate Savage’s ’Sure Thing
Principle’ [17], [1], which is equivalent to violation of the
law of total probability, and that human decision making
is affected by the order of presentation of information [28]
[9] (”order effects”). These violations are natural motivators
for treating the decision making agent’s mental state as a
quantum state in Hilbert Space; The mathematics of quantum
probability was developed as an explanation of observed
self-interfering and non-commutative behaviors of physical
systems, directly analogous to the findings which Quantum
Decision Theory (QDT) aims to treat.

Remark. QDT models in psychology do not claim that the
brain is acting as a quantum device in any physical sense.
Instead QDT serves as a parsimonious generative blackbox
model for human decision making that is backed up by
extensive experimental studies [19], [7].

Within Quantum Decision Theory, several recent advances
have utilized quantum dynamical systems to model time-
evolving decision preferences. The classical model for this
type of time-evolving mental state is a Markovian model, but
in [10] an alternative formulation based on Schrödinger’s

Equation is developed. This model is shown to both rec-
oncile observed violations of the law of total probability
via quantum interference effects and model choice-induced
preference changes via quantum projection. This is further
advanced in [4], and [21] where the mental state is modeled
as an open-quantum system. This open-quantum system
representation allows for a generalization of the widely used
Markovian model of preference evolution, while maintaining
these advantages of the quantum framework. Busemeyer et.
al. [19] provide empirical analysis which supports the use of
open-quantum models and conclude ”An open system model
that incorporates elements of both classical and quantum
dynamics provides the best available single system account
of these three characteristics—evolution, oscillation, and
choice-induced preference change”.

Notation

1) |n⟩ ∈ S is nth basis vector in a Hilbert space S.
2) H({|s1⟩ , . . . , |sk⟩}): Hilbert space spanned by the

orthonormal basis vector set {|s1⟩ , . . . , |sk⟩}
3) A†: adjoint of A
4) |n⟩ ⟨m|: outer product of |n⟩ and |m⟩
5) Density operator ρ: ρ = |Ψ⟩ ⟨Ψ| for some |Ψ⟩ ∈ S
6) Trace of operator A: Tr(A) =

∑N
l=1 ⟨nl|A |nl⟩ for

basis |nl⟩ ∈ S
7) Random events are defined on (Ω,F ,P).

II. QUANTUM PROBABILITY MODEL FOR HUMAN
DECISION MAKING

This section presents the open-quantum system model that
we will use to represent the decision preference evolution of
the human decision maker. We define the evolution of the
density operator of the decision maker using the open-system
Quantum Lindbladian Equation as given in [21].

A. Lindbladian Dynamics

Given a state of nature which is a random variable that can
take on n values, the human decision maker chooses one of
m possible actions. The quantum based model for human
decision making is governed by the Lindbladian evolution
of the psychological state. With L denoting the Lindblad
operator, the Lindbladian ordinary differential equation for
the dynamics of the psychological state ρt over time t ∈
[0,∞) is specified as

dρt
dt

= L(α,λ,ϕ) ρt, ρ0 =
1

nm
diag(1, · · · , 1)mn×mn (1)

Here (α, λ, ϕ) are free parameters which determine the quan-
tum decision maker’s behavior, as discussed in Appendix VI-
B. We assume that the machine has full knowledge of these
behavioral parameters, as methods for estimating these via
training are outside the scope of this paper.

In subsequent sections we will control the evolution of
ρt and formulate Lyapunov stability conditions. We are
interested in the general case when the machine can only
observe the human’s actions and output a control every T
time steps, where T is a random variable. We thus define the
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evolution of the density operator in (2), from the controller’s
perspective, over T -step iterations.

The psychological model comprises the following:
1) A state of nature s ∈ {1, . . . , n} = X , with probability

mass function π0(s)
2) An action ak ∈ {1, . . . ,m} = A by the human at

discrete time k, for k = 0, 1, 2, . . ..
3) Scalar control input uk ∈ [−ū, ū], ū ∈ IR+, from the

machine. This controls the parameters of the Lindbla-
dian operator in equation (2), and models a recom-
mendation signal (for example a posterier probability
of the state of nature) by the machine to the human.

4) The discrete time evolution of the psychological state

ρk+T = Muk

ak,T
ρk =

Muk

ak,T
ρk M

uk†
ak,T

Tr(Muk

ak,T
ρk M

uk†
ak,T

)
(2)

where k = 0, 1, . . . denotes discrete-time. Recall the
random variable T : Ω → N specifies the time intervals
over which the machine interacts with the human.
T has a known probability mass function πT (·). ak
is a T -length sequence {aki

}Ti=1of random actions
aki

taking values in A. See Appendix VI-C for the
definition of Muk

ak,T
.

5) The action probability distribution at time k

p(ak) = Tr(Muk
ak

ρk M
uk†
ak

), ak ∈ {1, · · · ,m} (3)

See Appendix VI-B and VI-C for further model details.

B. Practicality in Modeling Human Decision Making

The above Lindbladian model captures important human
decision features such as the sure-thing principle and order
effects, which we now describe. These features cannot be
explained by purely Markovian models without sacrificing
their explanatory power.

The violation of the sure-thing principle: The total prob-
ability law, also called the Sure Thing Principle (STP), is

P (A) = P (B)P (A|B) + P (B̄)P (A|B̄)

for events A and B. Violation occurs when = is replaced
by either < or >. Suppose P (A|B) = 0.6, P (A|B̄) = 0.5.
Then if the probability the human decision maker chooses
action A is either greater than 0.6 or less than 0.5, then the
STP has been violated.

[21] shows that the Lindbladian model accounts for
violations of the STP. Pothos and Busemeyer [24] (see also
[17]) review empirical evidence for the violation of STP and
show how quantum models can account for it by introducing
quantum interference in the probability evolution.

Order Effects: It is well-established in psychology [27],
[11], [29] that the order of presented information can affect
the final judgement of a human [13]. Order effects are not
easily accounted for using classical set-theoretic probability
axioms, since P (H|A ∩ B) = P (H|B ∩ A), i.e. the order
of presentation of events A and B does not influence the
final probability judgement of H . Alternative models of
inference have been proposed, such as the averaging model

[27] and the belief-adjustment model [13], but these are only
heuristic ad-hoc models which lack axiomatic foundations.
Quantum probability is a natural axiomatic framework which
can account for these effects, see [28], [7], [16], [9] and
references therein. Order effects naturally arise from the non-
commutative structure of quantum interactions.

III. MACHINE CONTROL OF HUMAN DECISION MAKER

This section exploits the Lyapunov function formulated in
[3] and a generalized finite-step convergence theorem, (that
will be proved in Section (IV)), to prove our main result,
Theorem 1. This theorem states that regardless of the initial
psychological state of the human, the machine is able to
control the preference in such a way that the target action is
eventually chosen at every time step with probability one.

We first define some notation: With d = nm, let D denote
the space of non-negative Hermitian matrices with trace 1:

D := {ρ ∈ Cd×d : ρ = ρ†,Tr(ρ) = 1, ρ ≥ 0} (4)

Let {|br⟩}dr=1 be a set of orthonormal vectors in Cd, where
each |br⟩ corresponds to a unique state-action pair. Let S
be the Hilbert space formed by taking these {|br⟩}dr=1 as an
orthonormal basis. We consider scalar control inputs uk ∈
IR satisfying constraints given in Appendix VI-D. For our
purposes it suffices that uk ∈ [−1, 1], see [3] for details. The
term ’Open-loop (super) martingale’ below denotes a (super)
martingale when the control input uk = 0 for k = 0, 1, . . ..

The following is the main result:

Theorem 1: Given the discrete time density operator
evolution (2) and any target state |b̄r⟩ , r ∈ {1, . . . , d}, there
exists a control sequence {uk}k∈N generated by the machine
such that the human psychological state ρk converges to
|b̄r⟩ ⟨b̄r| with probability one for any initial ρ0 ∈ D.

Proof: We will follow the formulation developed in [3].
First with βk = {ak, T}, rewrite (2) as

ρk+T = Muk

βk
ρk =

Muk

βk
ρk M

uk†
βk

Tr(Muk

βk
ρk M

uk†
βk

)
(5)

We define the following Lyapunov function, which forms
a supermartingale under both open-loop (zero-input) and
closed-loop (feedback control (uk)) conditions for the pro-
cess (5):

Vϵ(ρ) :=

d∑
r=1

σr ⟨br| ρ |br⟩ −
ϵ

2

d∑
r=1

⟨br| ρ |br⟩2 (6)

where σr is non-negative ∀r ∈ {1, . . . , d} and ϵ is strictly
positive. The set {σr}dr=1 and ϵ are chosen according to [3]
such that the Lyapunov function Vϵ(ρk) > 0 ∀ ρk ∈ D and ρk
converges to the intended subspace |b̄r⟩ ⟨b̄r| with probability
1. By [3] and [2], ⟨br| ρ |br⟩ is an open-loop martingale
given the density operator evolution (5) (see Appendix VI-
E for proof). Vϵ is a concave function of the open-loop
martingales ⟨br| ρ |br⟩ and therefore is an open-loop (uk = 0)
supermartingale given the process (5).

E[Vϵ(ρk+T )| ρk, uk = 0]− Vϵ(ρk) ≤ 0
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The following feedback control mechanism is used

uk := argmin
u∈[−1,1]

E[Vϵ(ρk+T )|ρk, u]

to get E[Vϵ(ρk+T )|ρk, uk] ≤ E[Vϵ(ρk+T )|ρk, u = 0]. Here
the expectation is taken with respect to βk,

E[Vϵ(ρk+T )|ρk, u] = E[Vϵ(Mu
βk
ρk)] =

∫
Ω

Vϵ(Mu
βk(ω)ρk)dω

where Ω is the sample space under which the process is
induced. Define Q̃(ρk) := E[Vϵ(ρk+T )|ρk, uk] − Vϵ(ρk) ≤
E[Vϵ(ρk+T )|ρk, uk = 0]−Vϵ(ρk) ≤ 0. Vϵ(ρ) is a continuous
function, so using [18, Chapter 8], we have the T -step control
sequence {ρk+iT }i∈N that converges to the set D∞ := {ρ :
Q̃(ρ) = 0} with probability one.
We will first show that the set D∞ is restricted to our desired
state {|b̄r⟩ ⟨b̄r|}, then that the entire sequence {ρk}k∈N
converges to this set. The former is proved in Lemma 2 of
[3]; For any target subspace |b̄r⟩ ⟨b̄r|, the set {σr}dr=1 can
be chosen in such a way that D∞= |b̄r⟩ ⟨b̄r|. The idea is
the following: A state ρk is in the limit set D∞ iff for all
u ∈ [−1, 1],

E[Vϵ(ρk+T )|ρk, u]− Vϵ(ρk) ≥ 0 (7)

Also, since Vϵ is an open-loop supermartingale, ∀ρk ∈ D:

E[Vϵ(ρk+T )|ρk, u = 0]− Vϵ(ρk) ≤ 0 (8)

By Lemma 2 of [3], given any r̄ ∈ {1, . . . , d} and fixed
ϵ > 0, the weights σ1, . . . , σd can be chosen so that Vϵ

satisfies the following property: ∀r ∈ {1, . . . , d}, u 7→
E[Vϵ(ρk+T ) |ρk = |br⟩ ⟨br| , uk = u] has a strict local
minimum at u = 0 for r = r̄ and a strict local maximum
at u = 0 for r ̸= r̄. This combined with (8) ensures that
for any r ̸= r̄,∃u ∈ [−1, 1] such that E[Vϵ(ρk+T ) | ρk =
|br⟩ ⟨br| , uk = u]− Vϵ(|br⟩ ⟨br|) < 0. Therefore, by (7), we
have that |br⟩ ⟨br| is in the limit set l∞ if and only if r = r̄.

We now show that P[limk→∞ ρk = |b̄r⟩ ⟨b̄r|] = 1, i.e. the
entire sequence converges to the target state with probability
one. This utilizes Theorem 2 which is developed in Section
IV. We have shown that P[ limi→∞ ρk+iT = |b̄r⟩ ⟨b̄r|] =
P[∃K ∈ N : ρk+iT = |b̄r⟩ ⟨b̄r| ∀i ≥ K] = 1. The set {σr}
was chosen such that E[Vϵ(ρk+T ) |ρk = |br⟩ ⟨br| , uk = u]
has a strict local minimum at u = 0 for r = r̄ so uk+iT =
argmin
u∈[−1,1]

{E[Vϵ(ρk+(i+1)T )|ρk+iT , u]} = 0 ∀ i ≥ K. So, for

q ∈ {1, . . . , T}, E[Vϵ(ρk+(i+q+1)T )|ρk+(i+q)T , u = 0] =
E[Vϵ(M0

βk
ρk+(i+q)T )] ≤ Vϵ(ρk+(i+q)T ) since Vϵ is an open-

loop supermartingale. We now know ∃K ∈ N such that
E[Vϵ(ρk+T )|ρk, uk] ≤ Vϵ(ρk) ∀ k ≥ K. Since there exists a
unique mapping from elements of D to elements of IR2d2

,
we apply Theorem 2 to prove P[limk→∞ ρk = |b̄r⟩ ⟨b̄r|] = 1.

Since ∀aj ∈ A,∃ a set {|bj1⟩ , . . . , |bjn⟩} = aj ⊗ X ,
the convergence to any |b̄r⟩ ⟨b̄r| , |b̄r⟩ ∈ aj ⊗X , implies the
convergence to aj ∈ A.

To summarize, we showed that for the discrete time psy-
chological state evolution of (2), there exists a control policy
which allows the machine to guide the human decisions such
that a target decision is made asymptotically, almost surely.

IV. FINITE STEP STOCHASTIC LYAPUNOV STABILITY

The purpose of this section is two-fold. First, we gener-
alize Theorem 1 of Qin et. al. [25] to the case when the
finite step size can be a random variable. Our main result
below is Theorem 2. Recall that we used this result in Section
III to prove stability of the human-decision system. Second,
Theorem 4 below is of independent interest.

Consider the discrete time stochastic system described by

xk+1 = f(xk, yk+1), k = 0, 1, 2, . . . (9)

Here xk ∈ IRn, and {yk : k = 0, 1, 2, . . .} is a IRd valued
stochastic process on the probability space (Ω,F ,P). Con-
sider the filtration (increasing sequence of σ-fields) defined
by F0 = {∅,Ω}, Fk = σ(y1, . . . , yk) for k ≥ 1. We choose
x0 ∈ IRn as a constant with probability one. Thus {xn} is
an IRn-valued stochastic process adapted to Fk.

Theorem 2: For the discrete-time stochastic system (9),
let V : IRn → IR be a continuous non-negative and radially
unbounded function. Suppose we have the condition:
(a) There exists a random variable T : Ω → N such that
for any k, E[V (xk+T )|Fk] − V (xk) ≤ −φ(xk), where φ :
IRn → IR is continuous and satisfies φ(x) ≥ 0 for any x ∈
IRn. Then for any initial condition x0 ∈ IRn, xk converges
to D1 := {x ∈ IRn : φ(x) = 0} with probability one.

This Theorem follows from Theorems 3 and 4; proofs
are given for both of these.

Theorem 3: For the discrete-time stochastic system (9),
let V : IRn → IR be a continuous non-negative and radially
unbounded function. Define the set Qλ = {x : V (x) < λ}
for some positive λ, and assume that:
(a) E[V (xk+1)|Fk] − V (xk) ≤ 0 for any k such that
xk ∈ Qλ

(b) There exists an integer T ≥ 1, independent of ω ∈ Ω,
such that for any k,E[V (xk+T )|Fk] − V (xk) ≤ −φ(xk),
where φ : IRn → IR is continuous and satisfies φ(x) ≥ 0
for any x ∈ Qλ

Then for any initial condition x0 ∈ Qλ, xk converges to
D1 := {x ∈ Qλ : φ(x) = 0} with probability at least
1− V (x0)/λ

Proof: We have

E[V (xk+T )|Fk]− V (xk) ≤ −φ(xk) ≤ 0,∀xk ∈ Qλ (10)

where φ(x) is continuous. Now, Kushner [18, p.196] has
shown that if we start with x0 ∈ Qλ then the probability of
staying in Qλ during the entire resultant trajectory is at least
1− V (x0)/λ, i.e.

P[sup
k∈N

V (xk) ≥ λ] ≤ V (x0)/λ (11)

Next construct T subsequences of {Xk} as
follows: {X(0)

i } = {X0, XT , . . . }, {X(1)
i } =

{X1, XT+1, . . . }, . . . , {X(T−1)
i } = {XT−1, X2T−1, . . . }.

Suppose φ(x) ≥ 0 ∀x : Then for all k ∈ K :=

{0, . . . , T−1}, {V (X
(k)
i )} is a non-negative supermartingale

process by (10), and thus by Doob’s convergence
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theorem converges to a limit with probability 1.
From (10) we have for all k ∈ K and n ∈ N∑n

l=1 E(V (X
(k)
l )) − E(V (X

(k)
l−1)) ≤ −E(

∑n−1
l=0 φ(X

(k)
l ))

and 0 ≤ E(V (X
(k)
n )) ≤ E(V (X

(k)
0 )) − E(

∑n−1
l=0 φ(X

(k)
l )).

We use Fatou’s Lemma to obtain E(
∑∞

l=0 φ(X
(k)
l )) < ∞

and by Borel-Cantelli we have P[limn→∞ φ(X
(k)
n ) = 0] =

1 ∀ k ∈ K. Now suppose φ(x) ≥ 0 only for x ∈ Qλ. Stop
{X(k)

n } on first leaving Qλ. Then for x /∈ Qλ, φ(x) = 0 for
this stopped set. This stopped process is a supermartingale
and the proof is the same as above.
It is now apparent that limn→∞ φ(X

(k)
n (ω)) = 0 ∀k ∈ K

and ω ∈ Ω̄ = {ω ∈ Ω : xn(ω) ∈ Qλ ∀n ∈ N}, so we have
P[limn→∞ φ(Xn(ω)) = 0] ≥ 1 − V (x0)/λ by the analysis
in Appendix VI-A and (11).

Theorem 4: Theorem (3) holds when T is an integer-
valued random variable T : Ω → N, where Ω is the
underlying sample space and T is independent of the
process X

(k)
l .

Proof: This follows from the previous proof,
with expectations conditioned on T (ω) = τ , the set of
sequences with interval length τ ∈ N:

∑n
l=1 E(V (X

(k)
l ))−

V (X
(k)
l−1)|T = τ) ≤ −E(

∑n−1
l=0 φ(X

(k)
l )|T = τ).

Applying Fatou’s Lemma yields E(
∑∞

l=0 φ(X
(k)
l )|T =

τ) < ∞ and so by Borel-Cantelli we have
P[limn→∞ φ(X

(k)
n ) = 0|T = τ ] = 1 ∀k ∈ K. The

same arguments from the proof of Theorem (3) yield
P[limn→∞ φ(Xn(ω)) = 0|T = τ ] ≥ 1 − V (x0)/λ.
So, P[limn→∞ φ(Xn(ω)) = 0|T = τ ]P(T = τ) ≥
(1 − V (x0)/λ)P(T = τ) =⇒ P[limn→∞ φ(Xn(ω)) =
0] =

∑
τ∈N P[limn→∞ φ(Xn(ω)) = 0|T = τ ]P(T = τ) ≥∑

τ∈N(1− V (x0)/λ)P(T = τ) = 1− V (x0)/λ
To summarize, this section provided a generalization of the

finite-step Lyapunov function result of Qin. et. al. [25]. We
applied this to show stability of the Lindbladian dynamics
to prove almost sure convergence of the density operator
(psychological state), but the generalization is of independent
interest.

V. CONCLUSION AND EXTENSIONS

Our main result, Theorem (1), showed that for a human-
machine decision system modeled as a controlled quantum
decision system, there exists an optimal control policy under
which the human’s action choice can be guided to an arbi-
trary target action with probability one. This can be useful in
tense or stressful decision situations when the human is sub-
ject to cognitive bias and irrational preferences; The machine
can act as a rational Bayesian expected utility maximizer and
control the human’s preference to a Bayesian optimal choice.
In proving this we have utilized a novel random finite-step
Lyapunov function result, which we present and prove in
Sec. (IV), and which stands as an independent result. There
are several simplifying assumptions we have made, which
warrant further investigating. For one, we have assumed
that the machine knows the (α, λ, ϕ) parametrization of the
human’s Lindbladian mental operator. It would be interesting

to see what the analysis yields when these are only estimates
with some distribution. It is worthwhile extending our results
to more general human-machine decision systems.

VI. APPENDIX

A. Convergence of constructed subsequences implies conver-
gence of sequence

We have limn→∞ φ(X
(k)
n (ω)) = 0 ∀ω ∈ Ω̄. Let ω ∈ Ω̄

and φ
(k)
n denote φ(X

(k)
n (ω)) and φn denote φ(Xn(ω)).

We have: ∀ ϵ > 0 ∃Nk such that φ(k)
n < ϵ ∀n > Nk. Take

N∗ = maxk∈{0,...,T−1} Nk. Suppose limn→∞ φn ̸= 0:
Then ∃ ϵ > 0 such that ∀ N ∈ N ∃ n0 > N with
φn0 > ϵ. Since the subsequences are exhaustive, i.e. for
any φn ∃ k,m, such that φn = φ

(k)
m , we know that for any

ϵ > 0, φn < ϵ ∀n > N∗ so such a n0 does not exists for
N∗ and thus by contradiction we have limn→∞ φn = 0.

B. Lindbladian Psychological Model Construction

Let psychological state space S := H({|El,Aj⟩} 1≤l≤n
1≤j≤m

)

be a Hilbert space. Here H is defined in Notation (2). Each
|El⟩ is an n-dimensional complex vector indexed by the state
l, and |Aj⟩ is an m-dimensional complex vector indexed by
the action j. The evolution of the density operator is given
by dρ

dt = L(α,λ,ϕ) ρ where

L(α,λ,ϕ) ρ = −i(1− α)[H, ρ]

+ α
∑
m,n

γ(m,n)

(
L(m,n) ρL

†
(m,n) −

1

2
{L†

(m,n)L(m,n), ρ}
)

(12)

Here [A,B] = AB − BA, {A,B} = AB + BA, A∗ is
complex conjugate of A, H = diag(1m, · · · , 1m)mn×mn

with 1m an m×m matrix of ones. L(m,n) = |m⟩ ⟨n| is the
jump operator, which represents the jump from mth cognitive
state to nth cognitive state. γ(m,n) := [C(λ, ϕ)]m,n =
[(1 − ϕ)ΠT (λ) + ϕKT ]m,n. For utility function u : A ×
X → IR, p(aj |El) =

u(aj |El)
λ∑m

j=l u(aj |El)λ
we define P (El) :=[

p(a1|El) p(a2|El) · · · p(am|El)
]
⊗ 1n×1 and Π(λ) =

diag(P (E1), · · · , P (En)) where 1n×1 is a vector with all
1’s and, A ⊗ B is the kronecker product of A and B.
Define ηk(s) = p(s|uk, yk) given the noisy observation
yk and input signal uk, with s ∈ X . We define K :=[
ηk(E1) ηk(E2) · · · ηk(En)

]
⊗1m×1⊗Im×m. α ∈ [0, 1]

represents the amount of quantum behavior in the evolution
of the density operator. λ ∈ [0,∞) can be thought of as
the agent’s ability to discriminate between the profitability
of different actions. ϕ ∈ (0, 1) represents the relevance of
discrimination between underlying states {E1, . . . , En}.

When we consider the closed-loop feedback control mech-
anism, the scalar control input uk directly parametrizes
the structure of the cognitive matrix, so that we can have
Cuk

(λ, ϕ). We leave this as a parameter and do not define
the specific effect of uk on Cuk

(λ, ϕ), as long as uk satisfies
the constraints (i)− (iv) of Section VI-D.
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C. Discrete time representation of Lindblad Equation

We time discretize the Lindbladian dynamics by
representing it using Kraus operators to get (2), see
[23]. We discretize the evolution in equation (12) in
multiples of ∆t in order to incorporate T time steps and
rewrite it as ρk+T =

∑
a K

uk

ak,T
ρk K

uk†
ak,T

where Kuk

0,T =[
I− T∆t(i (1− α)H + 1

2

∑
m,n αγuk

m,nL
†
(m,n)L(m,n))

]
and Kuk

a̸=0,T =
√

T∆ tαγuk
m,nL(m,n), T ∈ N. When

the human chooses action a, the psychological state
is projected into the respective action subspace
a ⊗ X . The psychological state evolves as: ρk+T =

Pak
(
∑

ν Kν,T ρk K†
ν,T )P †

ak

Tr(Pak
(
∑

ν Kν,T ρk K†
ν,T )P †

ak
)

where ak is a random variable

taking values in {1, . . . ,m}, with probability given by
P(ak) = Tr(Pak

(
∑

ν Kν,T ρk K
†
ν,T )P

†
ak
) from (3). Pak

represents the projection into the subspace corresponding
to the action taken, i.e. the action acts as a quantum
measurement on the psychological state. Now letting
Mu

ak,T
= Pak

(
∑

ν K
u
ν,T ) we obtain (2).

D. Control Input Constraints

(i): For each uk,
∑

a M
uk†
a Muk

a = I for general quantum
measurements a.
(ii): For uk = 0, all M0

a are diagonal in the same
orthonormal basis {|n⟩ |n ∈ {1, . . . , d}} : M0

a =∑d
n=1 ca,n |n⟩ ⟨n| , ca,n ∈ C

(iii): For all n1 ̸= n2 in {1, . . . , d}, ∃ a ∈ {1, . . . , d} such
that |ca,n1 |2 ̸= |ca,n2 |2.
(iv): All Muk

a are C2 functions of uk

E. Martingale Proof

We prove that under the evolution of (2), ⟨br| ρk |br⟩ is a
martingale, i.e. E[⟨br| ρk+T |br⟩ |Bk] = ⟨br| ρk |br⟩ ∀T ∈ N
where the filtration Bk = σ(⟨br| ρ1 |br⟩ , . . . , ⟨br| ρk |br⟩).
Denote Mak

ρk = M0
ak,T=1ρk =

M0
ak,1 ρk M0†

ak,1

Tr(M0
ak,1 ρk M0†

ak,1)
. Since

⟨br| ρk |br⟩ = Tr(|br⟩ ⟨br| ρk), E[Tr(|br⟩ ⟨br| ρk+1)|ρk, u] =∑m
ak=1 Tr(Mak

ρk M
†
ak
) Tr(|br⟩ ⟨br| Mak

ρk) =∑m
ak=1 Tr(|br⟩ ⟨br| Mak

ρk M
†
ak
) =

Tr(
∑m

ak=1 Mak
M†

ak
|br⟩ ⟨br| ρk) = Tr(|br⟩ ⟨br| ρk).

Thus ⟨br| ρk |br⟩ is a martingale.
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