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Abstract— Inverse reinforcement learning (IRL) deals with
estimating an agent’s utility function from its actions. In this
paper, we consider how an agent can hide its strategy and
mitigate an adversarial IRL attack; we call this inverse IRL
(I-IRL). How should the decision maker choose its response to
ensure a poor reconstruction of its strategy by an adversary
performing IRL to estimate the agent’s strategy? This paper
comprises four results: First, we present an adversarial IRL
algorithm that estimates the agent’s strategy while controlling
the agent’s utility function. Then, we propose an I-IRL result
that mitigates the IRL algorithm used by the adversary. Our
I-IRL results are based on revealed preference theory in micro-
economics. The key idea is for the agent to deliberately choose
sub-optimal responses so that its true strategy is sufficiently
masked. Third, we give a sample complexity result for our
main I-IRL result when the agent has noisy estimates of the
adversary-specified utility function. Finally, we illustrate our I-
IRL scheme in a radar problem where a meta-cognitive radar
is trying to mitigate an adversarial target.

I. INTRODUCTION

This paper studies the interaction between two entities - a
smart decision maker and an adversary that aims to estimate
the plan of the decision maker; see Fig.1 for a schematic
representation. The adversary sends adversarial probes to
the decision maker and controls the decision maker’s utility
function. In turn, the decision maker’s response maximizes
its utility function subject to the decision maker’s budget
constraint. The adversary’s intent is to estimate the budget
constraints of the decision maker. If the decision maker
knows of the adversarial attack, how should the decision
maker tweak its responses to mitigate the adversary?

We formulate this interaction between the decision maker
and adversary as an inverse-inverse reinforcement learning
problem. Reinforcement learning (RL) [1], [2] deals with
learning the optimal decision strategy by observing the
response to a control input. Inverse reinforcement learning
(IRL) [3], [4], [5], [6] is the problem of reconstructing the
utility function of a decision maker by observing its actions.
Inverse IRL (I-IRL) is a natural extension of IRL: If a
decision maker knows that an adversary is using an IRL
algorithm to reconstruct its strategy by observing its utility
function, how should the decision maker deliberately tweak
its response to mitigate the IRL algorithm?
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Outline and Main Results. This paper considers a revealed

preference-based adversarial IRL scheme to estimate the
decision maker’s strategy.! Sec. II covers the key results from
revealed preference theory in micro-economics. Revealed
preference studies non-parametric detection of constrained
utility maximization behavior. Theorem 1 in Sec. II presents a
feasible test for identifying constrained utility maximization
behavior, and generates a set-valued estimate of the decision
maker’s utility function. Before we address the problem
of I-IRL for hiding strategy, we state Theorem 2, an IRL
algorithm for estimating the strategy (budget constraint) of
a decision maker when its utility function is known to the
adversary. While Theorem 1 is well known in literature for
estimating a utility function, Theorem 2 is new. Next, in
Sec. III, we state our main result, Theorem 3. If the decision
maker knows an adversary is using Theorem 2 to reconstruct,
it deliberately chooses sub-optimal responses that minimally
violate its strategic constraints using the I-IRL scheme of
Theorem 3 to obfuscate the adversarial attack. Sec.III also
presents a finite sample complexity result, Theorem 4 that
upper bounds the probability that the I-IRL scheme of Theo-
rem 3 fails when the decision maker has noisy measurements
of the adversary specified utility functions. Finally, Sec.IV
illustrate our I-IRL result for hiding strategy in a radar
problem, wherein a cognitive radar is trying to mitigate an
adversarial target.
Related Work. Our I-IRL result is based on adversarial
obfuscation in machine learning. [10] provide a comprehen-
sive list of adversarial attacks and robustness to adversarial
attacks in machine learning. Our recent work [11] presents
a cognition-masking scheme for a cognitive radar when the
adversary has accurate measurements of the radar’s response.
This paper generalizes [11] in two major ways: First, we de-
velop IRL results for estimating the decision maker’s strategy
followed by I-IRL result for masking strategy. Second, we
analyze the performance of our I-IRL result in noisy settings
via a finite sample complexity test.

This paper comprises a numerical example involving a
cognitive radar trying to mitigate an adversarial target. A

IRevealed preference-based IRL [3], [7] is more fundamental than IRL
in popular machine learning literature [5], [6], [8]. IRL in machine learning
implicitly assumes the decision maker is optimal and then reconstructs its
reward (utility). Revealed preference first identifies utility maximization
behavior, and if so, generates a set-valued utility estimate. Indeed, one can
impose additional constraints on the forward problem, and generate a more
precise estimate of the decision maker’s utility; one notable example being
that of max-entropy IRL [8]. Another heuristic for a point-valued estimate
is to extract the interior-most point from the set of feasible rewards using
the concept of margins (for example, max-margin IRL [9]) which we also
consider in this paper for inverse IRL.
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Schematic of the I-IRL scheme for masking the strategy of a cognitive decision maker from adversarial IRL.

Naive response strategy (Left): The adversary sends a sequence of probe signals to the decision maker and records its responses. The probe signal
parameterizes the decision maker’s utility function. If the decision maker chooses the naive response that maximizes its utility function subject to its
capability constraint, its capability can be estimated by the adversary using Theorem 2.

Adversarial inverse IRL strategy (Right): If the decision maker is aware that the adversary is trying to estimate its capability, the decision maker deliberately
chooses sub-optimal responses via Theorem 3 to mitigate the adversary. The key idea is to ensure a poor reconstruction of the decision maker’s constraint

by the adversary by minimally perturbing its naive responses.

cognitive radar [12], [13], [14] uses the perception-action
cycle of cognition to sense the environment and learn from
it relevant information about the target and the environment.
I-IRL for a cognitive radar can be viewed as a form of
meta-cognition. Meta-cognition is a sophisticated form of
electronic counter countermeasure (ECCM)[15], [16], [17],
[18] to electronic countermeasures (ECM) in electronic war-
fare. However, meta-cognitive strategies involving deliberate
violation of strategy to confuse the adversary’s ECM have
not been explored previously.

II. BACKGROUND. REVEALED PREFERENCE FOR
ADVERSARIAL IRL

We start by briefly reviewing the key result in the area
of revealed preference in microeconomics theory. Revealed
preference studies non-parametric detection of utility maxi-
mization behavior. A utility maximizer is defined as:

Definition 1 ([19]): An agent is a utility maximizer? if for
every constraint g (/) < 0, the response 3y € R’ satisfies:

Br € argmaxu(fB), gr(B) <0 (D

where u(/3) is a monotone utility function.

Definition 1 rationalizes consumer behavior in economics.
The constraint g;(8) < 0 in (1) is the budget faced by the
consumer and fJj is the consumer’s consumption vector. In
the special case when g () is linear, that is, g5 (8) = a},5—
1, o can be interpreted as the price vector faced by the
consumer; then aﬁcﬁ < 1 is a natural budget constraint for
a consumer with 1 dollar. Given a dataset of budget and
consumption vectors, the aim in revealed preference is to
determine if the consumer is a utility maximizer (rational)
that satisfies (1). Indeed, the budget constraint a8 < 1 is
without loss of generality, and can be replaced by o). < c
for any positive scalar c.

’In machine learning literature for IRL, the decision maker typically
maximizes its expected cumulative discounted reward in a Markov decision
process (MDP) subject to an entropic constraint on its response (policy). Our
radar-adversary interaction is a one-shot process - the adversary transmits a
batch of probe signals, and then the radar responds with a batch of responses
that masks its strategy. Hence, the forward optimization process for the
decision maker is expressed as a utility maximization problem (1) subject
to a resource constraint.

A. Adversarial IRL for Identifying Utility Function

The key result in revealed preference is Afriat’s theorem
[31, [7]. Afriat’s theorem assumes a linear budget and spec-
ifies a set of linear inequalities that are both necessary and
sufficient for a time series of constraints and responses to
be consistent with utility maximization behavior (1). [19]
propose a utility maximization test that generalizes Afriat’s
Theorem to non-linear budgets and is the key IRL algorithm
used by the adversary in this paper:

Theorem 1 (Test for utility maximization [19]): Given a
sequence of constraints and responses D {(gr(B) <
0, Bk) }_,. Suppose the constraint is active at B (g (8k) =
0 Vk). Then, the following statements are equivalent:

1) There exists a monotone, continuous utility function that

satisfies (1).

2) There exist positive reals {us, A}, such that the

following inequalities are feasible:

us —ur — Mgt (Bs) <0V, s € {1,...,K}. 2)
The IRL estimate of the decision maker’s utility is:

= i A 3

u(B) te{lrg,l.r.l.,K}{Ut + Aege(B)} 3)

constructed using feasible u; and \; (2) rationalizes D.
3) The data set D satisfies the Generalized Axiom of

Revealed Preference (GARP), namely, for any k €

{1,2,..., K}, the following implication holds:

9t(Bes1) < 9e(B) VE<k—1 = gu(B1) = gr(Br)-
“)
Theorem 1 tests for economics-based rationality; its remark-
able property is that it gives a mnecessary and sufficient
condition for a agent to be a utility maximizer based on the
agent’s input-output response. The feasibility of the set of
inequalities (2) can be checked using a linear programming
solver; alternatively GARP can be checked using Warshall’s
algorithm with O(K?) computations [20], [21]. Theorem 1
can be viewed as set-valued system identification of an
argmax system; set-valued since (3) yields a set of utility
functions that rationalize the finite dataset D.
Key Idea for I-IRL: Manipulating the Goodness-of-fit of
revealed preference test (2). Theorem 1 also constructs a set-
valued estimate (3) of the utility function u using the solution
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of the set of feasibility inequalities (2). The estimated utility
function (3) is ordinal since any positive monotone increasing
transformation of (3) also satisfies Theorem 1. We make two
observations here that are crucial for our I-IRL results in
Sec. III:

1. Since the feasibility of (2) is necessary for utility max-
imization, the scalars u(8y), A satisfy the revealed prefer-
ence test of (2), where \p solves A\yVgir(8x) = Vu(Br).
Due to the monotonicity of u, gy and the assumption that
the constraint is active (gx(8x) = 0 Vk), Ay is well-defined.
2. The reconstructed utility function (3) is a point-wise
minimum of monotone functions parameterized by positive
reals {uy, A, } that satisfy (2). Hence, one can at best recover
a lower envelope of the true utility function u that matches
the function value and gradient value at the points SBg, k =
1,2,..., K using Theorem 1. In other words, the closest
approximation upes; to the decision maker’s utility v via the
reconstruction procedure of (3) is given by:

ubest(ﬁ) :ke{lrgln K}{u(ﬁk) + )\kgk(ﬁ)}7
where A\, Vg (Br) = Vu(B).

Also, one can show that upes (5) is the least squares estimate
of u:

(B M) = angmin [ (u(8) = mingus + Lan(9)}) d8,

Ak,ur >0
(6)

for any compact set S C RE where )\, is defined in (5).
Our key idea for I-IRL is to perturb the response sequence
{Br} so that the closest IRL estimate (5) of the decision
maker’s system parameters passes the revealed preference
test of (2) by a low margin, where the margin is defined by:

Mu({Br, gx}) = Hjlixu(ﬁj) —u(Br) — Agr(B5), (D

(&)

where A;Vgi(Br) = Vu(Bx). The margin (7) is a measure
of goodness-of-fit [22] of the revealed preference inequalities
(2). Hence, a utility function that passes (2) with a large
margin is a high-confidence point utility estimate for the
adversary and vice versa.

Below, we present a revealed preference test, Theorem 2,
that tests for feasible budget constraints estimating the de-
cision maker’s budget constraint when its utility function
is known. The aim of our key I-IRL result of Theorem 3
in Sec.IIl is to ensure that the closest IRL estimate of
the decision maker’s constraint sequence {gx(-)} passes the
revealed preference test of Theorem 2 by a low margin (7).

B. Adversarial IRL for Identifying Strategy

Theorem 1 achieves IRL when an adversarial learner wants
to estimate the decision maker’s utility function and knows
the decision maker’s budget constraint sequence (strategy).
We now consider the scenario where the adversary’s probes
parametrize the decision maker’s utility, and the adversary’s
aim is to estimate the unknown budget constraint sequence
{gr(B) < 0} (strategy) of the decision maker. Below,
we present Theorem 2, a revealed preference test for the

existence of feasible budget constraints when the utility
function and decision maker’s response is observed by the
adversary.

Theorem 2 (IRL for Identifying Strategy): Given a time
sequence of adversary controlled utility functions and de-
cision maker’s responses D = {(ux,SB%)} ;. Suppose
the decision maker faces a budget constraint of the form
9(8) — v < 0 for every k. Then, the following statements
are equivalent:

1) There exists a sequence of monotone continuous capa-

bility constraints {gx () < 0} that satisfy (1):

B = argmax ug(B), gr(B) <0 )

2) There exist positive reals {gk, \x}5_, such that the
following inequalities are feasible:

Gs — Gt — ¢ (ue(Bs) —ue(Be)) >0, VE,5. (9)

The sequence of monotone constraints {g(5) —gx < 0}
rationalizes D (1), where budget g is given by:

9(8) = max G+ e (u(8) —w(8)). (10)
3) The data set {u(8;) — us(-), B¢} satisfies GARP (4).
The proof of Theorem 2 is omitted for brevity; see [23] for a
more elaborate discussion. At first sight, Theorem 2 appears
to be a dual statement to the optimization in Theorem 1. In-
stead of testing for a rationalizing utility given a sequence of
known budget constraints, Theorem 2 tests for a rationalizing
sequence of budget constraints given the utility function and

does not use duality in the proof.

In complete analogy to Theorem 1, the feasibility in-
equality of (9) is necessary and sufficient for the existence
of a sequence of constraints that rationalizes the sequence
of utility functions and responses. In complete analogy to
(5), we now define gpey, the closest approximation (upper
envelope) to the true budget g reconstructed via (9):

s = A — , (11
Goest (B) ke{flf}.(.,x}{% + Ae(ur(B) — ur(Br))}, (D
where A\,Vgi(Br) = Vu(B). Analogous to (7), we define
the margin with which the true budget g passes the revealed
preference test (9) of Theorem 2:

Mo({Brs ur, yi}) =min g(8;) — g(Br) — A (ur(5;)
7uk(ﬂk)), where /\kVuk(ﬂk) = Vg(@k)

In our I-IRL results in the next section, our key objective
will be to minimally perturb the response sequence {fj} so
that M,(-) lies below a pre-specified threshold.

Theorem 2 assumes the elements in the sequence of
constraints {g(8) — %} differ only by a scalar shift. This
assumption can indeed be relaxed to allow any sequence of
budget constraints. But the reconstructed constraints (10) are
restricted to the space of monotone piece-wise linear convex
functions identical up to a constant. Hence, any constraint
that lies outside this space is non-identifiable.

12)
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III. INVERSE IRL (I-IRL) FOR MASKING DECISION
MAKER’S STRATEGY

Sec.II presents IRL algorithms that an adversary uses to
estimate the decision maker’s strategy. If the decision maker
is aware of the adversarial attack, how should it choose its re-
sponses to mask the strategy from the adversary? In Sec. III-
A below, we present our main I-IRL result, Theorem 3. In
Sec. III-B, we give a finite sample result for Theorem 3 that
upper bounds the probability the I-IRL scheme of Theorem 3
fails when the decision maker’s utility function is corrupted
by additive noise.

A. Main Result. I-IRL for Adversarial IRL in Theorem 2

Theorem 3 (I-IRL for Masking Strategy): Let [} denote
the radar’s naive response that maximizes adversary-specified
utility wy subject to constraint g(3) < 4 for time k =
1,2,..., K. Suppose the adversary uses Theorem 2 to re-
construct the decision maker’s budget constraint g(-). Then,
the I-IRL response sequence {3 } that masks g(-) from IRL
(Theorem 2) is given by:

62 = argmaxﬂ uk(ﬁ)a gk(ﬂ) S 7]:7 (13)

where the violated budget thresholds {~;} solve the follow-
ing optimization problem:

K
{75} = argmin > % — yxll3, (14)

Y1:K k=1
M!J({Bkauka’?k}) S (1 - 77) Mg({ﬁ;7uk7’yk}>7 (15)
B = argmax, up(B), 9(B) < . (16)

In (15), n € [0,1] is a pre-defined scalar that parameterizes
the extent of strategy masking for I-IRL.

Theorem 3 is the main I-IRL result of this paper. Simply
put, the decision maker’s response is the solution to the op-
timization problem (1) with purposefully distorted resource
thresholds v (1). Indeed, the decision maker’s performance
is degraded due to the violated constraints, but it is the price
the decision maker pays for stealth - to mask its resource
constraint g from adversarial IRL of Theorem 2.
Discussion.

e The I-IRL algorithm (13) computes the smallest perturba-
tion needed in the decision maker’s resource constraints that
ensures a sufficiently poor resource constraint estimate (10)
of the decision maker’s budget constraint g (low margin
of IRL feasibility test (9) parametrized by scalar n (15)).
Hence, (14) computes the minimum violation that reduces
the margin with the I-IRL response passes the feasibility test
of (9) by a factor of 1/(1 — 7).

o Computational Burden for I-IRL. If n = 0 (no I-IRL),
the decision maker simply solves (16) for its true resource
thresholds ~y,. However, for n € (0, 1], the decision maker
needs to solve a two-stage optimization problem - it first
generates the set of all feasible resource thresholds for which
the optimal response (16) passes the IRL feasibility test with
sufficiently low margin (15) (parametrized by 7), and then
minimizes the deviation from the true resource thresholds

over this feasible set.
e [t is straightforward to show the minimum violation of
constraints (14) is monotone in the parameter 0. If n = 0,
the I-IRL response {BZ} is identical to the naive response
{B;} and the minimum violation of budget is 0. On the other
extreme, setting 7 = 1 requires maximal violation of the
budget constraints {g(3) < &} since My ({ Bk, ur, % }) <0
(15) implies the I-IRL response and decision maker’s budget
fail the revealed preference test of Theorem 2.

We illustrate the I-IRL result in the next section via a radar
example; see Fig.2 for the simulation result.

B. Finite Sample Complexity for I-IRL in Theorem 3

In the previous sections, we assumed both the adversary
and the decision maker had accurate measurements of the
response and the utility functions. In this section, we assume
the decision maker’s measurements of the utility function
is noisy, and the noise is modeled as a random linear
perturbation. The key question we address is:

Given a finite sequence of I-IRL responses to noisy utility
functions uy(B) + 0;,8, what is probability that the decision
maker effectively masks its strategy from the adversary?

Let us now formalize the above question. Let Mg“e =
My ({85, uk,vi}) (12) denote the margin with which the
naive response sequence {f;} (1) passes the revealed pref-
erence test of Theorem 2. We want to bound the following
error probability for I-IRL in Theorem 3:

Pae = Poyie (My({B8, wn() + 0(), 5 1) = (1 = m) M=)

a7

Recall from Theorem 3 that our I-IRL aim is to ensure

the margin of the revealed preference test (9) lies under

a threshold. In (17), P, is the probability with which the

constraint (14) in Theorem 3 fails. In simple terms, P is

the probability of the event that the margin with which the

I-IRL response satisfies the inequalities (9) in Theorem 2

exceeds the margin threshold (1 — ) M.

We assume the following for Theorem 4:

(A1) The adversary controlled utility function wg is mono-
tone, concave and Lipschitz continuous with Lipschitz
constant L.

(A2) The decision maker has a noisy estimate iy = u(8)+
31 (B) of the adversary controlled utility function u(3).
The linear perturbation vector J; is a Gaussian zero
mean random vector with covariance X.

(A3) Let A(g,{Bk,ur,vr}) denote the range with which
9,{ Bk, uk, vk} pass the revealed preference test of (9):

A(gu {@c, Uky’)’k}) = Hjli}gxq,k - Djfllkn €j.k> where

€k =% — Y — A (u(B;) — uk(Br)),
A Vug(Be) = Vg(Br)-

The random variable A(g, {Bk,ﬂk,%}) < Apax a.s.,
where Bk and 4, are the decision maker’s I-IRL re-
sponse (13) and constraint threshold (14) due to noisy
utility function 4 measured by the decision maker.
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. max {||Vur (B)lI2/1|Va(Bi)ll2} -
(A4) The random variable minj,i‘{lHVu(k ( B);J;Q—/guk((ﬁj))llllﬁ}} is
upper bounded almost surely by x > 0.
We are now ready our finite sample complexity result for
I-IRL (Theorem 3); see the appendix for the proof.
Theorem 4 (Finite Sample Complexity for I-IRL):
Consider the decision maker choosing I-IRL responses
according to (13) in Theorem 3 in response to noisy utility
functions controlled by the adversary. Let [3; denote the
decision maker’s naive response at time k£ that maximizes the
noise-less utility uy, subject to budget constraint g(3) < .
Suppose assumptions (A1)-(A4) hold. Then:

2LA L axk
Tr(%)

where P, is the error probability for I-IRL (Theorem 3) (17)
and ¢ () is the cdf of the standard normal distribution.

Por < ¢ (18)

IV. EXAMPLE. I-IRL FOR META-COGNITIVE RADAR

Theorem 3 specified the procedure for a decision maker to
effectively mask its cognition from an adversary. Here, we
apply our I-IRL result to the problem of a cognitive radar
optimizing waveform based on the SINR of the adversarial
target measurement [24]:

Bi € argmax SINR(ay, 8), p'8 < pi.

In (19), p(7)B(7) is the cost of transmitting signal power 3(7)
on the 9™ waveform. The radar’s SINR as a function of the
adversary’s probe and the radar’s response is defined as:

5 Qp

SINR D) = 5p@a ¢
where ( denotes the noise power. In (20), the radar’s signal
power and interference power are assumed to be quadratic
forms of positive definite matrices @, P(a) respectively.
Clearly, the above setup falls under the non-linear utility
maximization setup in Definition 1. For appropriately chosen
matrices (see [24] for a detailed discussion), the utility in (19)
can be shown to be monotonically increasing in 5.

Suppose an adversary’s aim is to learn the radar’s resource
constraint p (19).3 The radar knows of the adversary’s mo-
tives and wants to mask its plan p. Thus, the radar modifies
its strategy (19) as per the I-IRL scheme of Theorem 3
to mask its non-linear budget (19) from the adversary. We
illustrate the I-IRL performance via a simple numerical
example with the following parameters:

o Time horizon K = 100, Response dimension m = 6.

o Budget vector p = [p(1)...p(m)], p(i) ~ Unif(1,4).

« Extent of strategy masking 7: Varied from 0.05 to 0.95.

19)

(20)

3Since the adversary knows and also controls the radar’s utility function,
it can benefit from knowing the radar’s budget constraint. The adversary
can, via carefully chosen probes, dupe the radar by forcing the radar to
transmit low power signals (low tracking precision) on some time instants
when the target performs malicious maneuvers. [25] shows how a seller
can maximize its profit by effectively learning a consumer’s utility from
the consumer’s responses. In the radar context, [26] computes the optimal
probe sequence for an adversary that minimizes its IRL algorithm’s Type-II
error probability (incorrectly detecting utility maximization behavior).

[6)] o
.
Ne

\

w

for I-IRL strategy masking

\

Optimal constraint violation

0 01020304 0506070809 1
Extent of I-IRL strategy masking 7

Fig. 2. I-IRL for masking the strategy of a cognitive radar: Small
deliberate constraint violation of the radar (vertical axis) results in large
performance loss (extent of strategy masking 7)) of the adversarial IRL
algorithm (horizontal axis). The I-IRL constraint violation by the decision
maker increases with . n = 0 corresponds to zero strategy masking, and
n = 1 corresponds to complete strategy masking by the decision maker.

o Matrix Q = [Q;;], where Q;; = 5, Q;; = 0 if j #
i, and P(ay) = [P;;], where P;; ~ Unif(1,3) and
P; ; = —0.05 if j # i, Noise power ¢ = 1.
Our numerical results are shown in Fig.2. Recall from
Theorem 3 that the scalar n parametrizes the extent of
masking of the radar’s resource constraint from adversarial
IRL of Theorem 2. The key observation from Fig.2 is that
the radar’s deliberate performance degradation increases with
extent of cognition masking 7. Also, we see that a small
constraint violation by the radar suffices to confuse the
adversary to a large extent, hence successfully masking the
radar’s strategy.

V. CONCLUSION AND EXTENSIONS

This paper focuses on masking a decision maker’s strategy
when probed by an adversarial inverse reinforcement learner.
We term this problem inverse-inverse reinforcement learning
(I-IRL). If the decision maker knows an adversary is trying to
reconstruct its strategy, how should it tweak its responses to
hide its strategy? Our main I-IRL result is Theorem 3. The
key idea is for the decision maker to deliberately choose
sub-optimal responses that violates its strategic resource
constraints while ensuring the adversary does a poor recon-
struction of the decision maker’s strategy. Our finite sample
result, Theorem 4, upper bounds the probability that our I-
IRL result is ineffective in noisy settings; when the decision
maker has noisy estimates of the adversary-specified utility
functions.

Finally, a useful extension of this paper would be to
study more general game-theoretic settings where even the
adversary knows the radar is trying to mask its cognition.

VI. APPENDIX
A. Proof of Theorem 4

We start by computing the margin with which the I-IRL
response of the decision maker passes the feasibility inequal-
ities (9) of Theorem 3. Let 4 (8) = ui(8) + J,,8 denote
the noisy utility function estimate available to the decision
maker. Let {3} and {4} denote the I-IRL responses and
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perturbed constraint thresholds computed via (13) and (14),
respectively, in response to noisy utility functions {tx}. The
margin M (B, ur, ) is defined as:

— A = M (un(B)) — ur(B))),

=€,k

Mg(BZa Uk, ’?k) = Iljllk:n ’S/j

(2D
where A\,Vug(Br) = Vg(Bk). If 4y were the true utility
function at time k generated by the adversary, the margin
definition in (21) changes to:

— A — A (By) — a(By)),

€4,k

M,y (Br, e, Ar) = Djf,likﬂ%

(22)
where Xkak(ék) = Vg(ﬁk). Observe that by defini-
tion (14), Mgy(By, tw,4x) = (1 — n)MIe. Also, we
observe that the margin definitions in (21) and (22) dif-
fer only in the term involving the utility functions. Our
aim is to find necessary conditions for which the event
{M, (Bk,uk,ﬁ/k) > (1 - n)M‘“‘"’} holds, or equivalently,
the event { M, (B, g, %) < My(Bk, ug,4%)} holds.

Due to assumption (A3), a necessary condition for the
event { M,y (Br, ur, %) > (1 — Mg} to hold is {e; ) >

€j.k —Amax, Vj, k}. We wish to bound the term (€; 1 —€;1):
€k = €k = Ak(?{k(ﬁj) — u(B5)) — (i (B;) — e (B)))
=X (un(B)) — w(B;)) — (A + (i — Ak)) ui(B))

(

*Uk(ﬂj)+6k(ﬂj Br))

— (A — ) (i (By) — wk(Br) — Vur(Br) (B; — Br))
(since A\ Vg (Br) = A Vi (Br))

Ak = M) (e (Br) + Vur(Br) (B — Br) — ur(B)))

R 1 R R
2(Ak = ) o [Vur(Br) — Vur(85)][3 (Asmp. (A1)
(23)
From (21), (22), we rewrite ;\k — A in (23) as:
j\k o /\]€ _ )\k 6gcvuk?A(ﬁk?)2 _ 6;€V9(A/8k)2 (24)
IVur(Be)llz [IVur(Be)ll3

Combining (23) and (24), the following inequality results:
€k — €5k < Amax
2L Asmas| [ Vur (Br) |3
min o {||Vur (Br) — Vur(5))|[3}
{6;6Vg(3k)} is a sequence of independent zero mean Gaus-
sian random variables with variance {Tr(X)||Vg(Bk)||3}

Also, notice how the LHS does not depend on the index
7. Thus, we express our error probability P, as:

=0, Vg(B) <

Perr
k=1

2LAmaX||vuk(Bk)||2/||Vg<Bk)|J2
VT () ming g {||Vur (Be) — Vur(35)]13}
2L A max maxy {||Vur (86)|13/1| Vg (B)ll2}
\/7m1nj)k{||Vuk( Br) — Uk(ﬂy)” }

i
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