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AbstractÐ Inverse reinforcement learning (IRL) deals with
estimating an agent’s utility function from its actions. In this
paper, we consider how an agent can hide its strategy and
mitigate an adversarial IRL attack; we call this inverse IRL
(I-IRL). How should the decision maker choose its response to
ensure a poor reconstruction of its strategy by an adversary
performing IRL to estimate the agent’s strategy? This paper
comprises four results: First, we present an adversarial IRL
algorithm that estimates the agent’s strategy while controlling
the agent’s utility function. Then, we propose an I-IRL result
that mitigates the IRL algorithm used by the adversary. Our
I-IRL results are based on revealed preference theory in micro-
economics. The key idea is for the agent to deliberately choose
sub-optimal responses so that its true strategy is sufficiently
masked. Third, we give a sample complexity result for our
main I-IRL result when the agent has noisy estimates of the
adversary-specified utility function. Finally, we illustrate our I-
IRL scheme in a radar problem where a meta-cognitive radar
is trying to mitigate an adversarial target.

I. INTRODUCTION

This paper studies the interaction between two entities - a

smart decision maker and an adversary that aims to estimate

the plan of the decision maker; see Fig. 1 for a schematic

representation. The adversary sends adversarial probes to

the decision maker and controls the decision maker’s utility

function. In turn, the decision maker’s response maximizes

its utility function subject to the decision maker’s budget

constraint. The adversary’s intent is to estimate the budget

constraints of the decision maker. If the decision maker

knows of the adversarial attack, how should the decision

maker tweak its responses to mitigate the adversary?

We formulate this interaction between the decision maker

and adversary as an inverse-inverse reinforcement learning

problem. Reinforcement learning (RL) [1], [2] deals with

learning the optimal decision strategy by observing the

response to a control input. Inverse reinforcement learning

(IRL) [3], [4], [5], [6] is the problem of reconstructing the

utility function of a decision maker by observing its actions.

Inverse IRL (I-IRL) is a natural extension of IRL: If a

decision maker knows that an adversary is using an IRL

algorithm to reconstruct its strategy by observing its utility

function, how should the decision maker deliberately tweak

its response to mitigate the IRL algorithm?
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Outline and Main Results. This paper considers a revealed

preference-based adversarial IRL scheme to estimate the

decision maker’s strategy.1 Sec. II covers the key results from

revealed preference theory in micro-economics. Revealed

preference studies non-parametric detection of constrained

utility maximization behavior. Theorem 1 in Sec. II presents a

feasible test for identifying constrained utility maximization

behavior, and generates a set-valued estimate of the decision

maker’s utility function. Before we address the problem

of I-IRL for hiding strategy, we state Theorem 2, an IRL

algorithm for estimating the strategy (budget constraint) of

a decision maker when its utility function is known to the

adversary. While Theorem 1 is well known in literature for

estimating a utility function, Theorem 2 is new. Next, in

Sec. III, we state our main result, Theorem 3. If the decision

maker knows an adversary is using Theorem 2 to reconstruct,

it deliberately chooses sub-optimal responses that minimally

violate its strategic constraints using the I-IRL scheme of

Theorem 3 to obfuscate the adversarial attack. Sec. III also

presents a finite sample complexity result, Theorem 4 that

upper bounds the probability that the I-IRL scheme of Theo-

rem 3 fails when the decision maker has noisy measurements

of the adversary specified utility functions. Finally, Sec. IV

illustrate our I-IRL result for hiding strategy in a radar

problem, wherein a cognitive radar is trying to mitigate an

adversarial target.

Related Work. Our I-IRL result is based on adversarial

obfuscation in machine learning. [10] provide a comprehen-

sive list of adversarial attacks and robustness to adversarial

attacks in machine learning. Our recent work [11] presents

a cognition-masking scheme for a cognitive radar when the

adversary has accurate measurements of the radar’s response.

This paper generalizes [11] in two major ways: First, we de-

velop IRL results for estimating the decision maker’s strategy

followed by I-IRL result for masking strategy. Second, we

analyze the performance of our I-IRL result in noisy settings

via a finite sample complexity test.

This paper comprises a numerical example involving a

cognitive radar trying to mitigate an adversarial target. A

1Revealed preference-based IRL [3], [7] is more fundamental than IRL
in popular machine learning literature [5], [6], [8]. IRL in machine learning
implicitly assumes the decision maker is optimal and then reconstructs its
reward (utility). Revealed preference first identifies utility maximization
behavior, and if so, generates a set-valued utility estimate. Indeed, one can
impose additional constraints on the forward problem, and generate a more
precise estimate of the decision maker’s utility; one notable example being
that of max-entropy IRL [8]. Another heuristic for a point-valued estimate
is to extract the interior-most point from the set of feasible rewards using
the concept of margins (for example, max-margin IRL [9]) which we also
consider in this paper for inverse IRL.
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Fig. 1. Schematic of the I-IRL scheme for masking the strategy of a cognitive decision maker from adversarial IRL.
Naive response strategy (Left): The adversary sends a sequence of probe signals to the decision maker and records its responses. The probe signal
parameterizes the decision maker’s utility function. If the decision maker chooses the naive response that maximizes its utility function subject to its
capability constraint, its capability can be estimated by the adversary using Theorem 2.
Adversarial inverse IRL strategy (Right): If the decision maker is aware that the adversary is trying to estimate its capability, the decision maker deliberately
chooses sub-optimal responses via Theorem 3 to mitigate the adversary. The key idea is to ensure a poor reconstruction of the decision maker’s constraint
by the adversary by minimally perturbing its naive responses.

cognitive radar [12], [13], [14] uses the perception-action

cycle of cognition to sense the environment and learn from

it relevant information about the target and the environment.

I-IRL for a cognitive radar can be viewed as a form of

meta-cognition. Meta-cognition is a sophisticated form of

electronic counter countermeasure (ECCM)[15], [16], [17],

[18] to electronic countermeasures (ECM) in electronic war-

fare. However, meta-cognitive strategies involving deliberate

violation of strategy to confuse the adversary’s ECM have

not been explored previously.

II. BACKGROUND. REVEALED PREFERENCE FOR

ADVERSARIAL IRL

We start by briefly reviewing the key result in the area

of revealed preference in microeconomics theory. Revealed

preference studies non-parametric detection of utility maxi-

mization behavior. A utility maximizer is defined as:

Definition 1 ([19]): An agent is a utility maximizer2 if for

every constraint gk(β) ≤ 0, the response βk ∈ R
m
+ satisfies:

βk ∈ argmaxu(β), gk(β) ≤ 0 (1)

where u(β) is a monotone utility function.

Definition 1 rationalizes consumer behavior in economics.

The constraint gk(β) ≤ 0 in (1) is the budget faced by the

consumer and βk is the consumer’s consumption vector. In

the special case when gk(β) is linear, that is, gk(β) = α′
kβ−

1, αk can be interpreted as the price vector faced by the

consumer; then α′
kβ ≤ 1 is a natural budget constraint for

a consumer with 1 dollar. Given a dataset of budget and

consumption vectors, the aim in revealed preference is to

determine if the consumer is a utility maximizer (rational)

that satisfies (1). Indeed, the budget constraint α′
kβ ≤ 1 is

without loss of generality, and can be replaced by α′
kβ ≤ c

for any positive scalar c.

2In machine learning literature for IRL, the decision maker typically
maximizes its expected cumulative discounted reward in a Markov decision
process (MDP) subject to an entropic constraint on its response (policy). Our
radar-adversary interaction is a one-shot process - the adversary transmits a
batch of probe signals, and then the radar responds with a batch of responses
that masks its strategy. Hence, the forward optimization process for the
decision maker is expressed as a utility maximization problem (1) subject
to a resource constraint.

A. Adversarial IRL for Identifying Utility Function

The key result in revealed preference is Afriat’s theorem

[3], [7]. Afriat’s theorem assumes a linear budget and spec-

ifies a set of linear inequalities that are both necessary and

sufficient for a time series of constraints and responses to

be consistent with utility maximization behavior (1). [19]

propose a utility maximization test that generalizes Afriat’s

Theorem to non-linear budgets and is the key IRL algorithm

used by the adversary in this paper:

Theorem 1 (Test for utility maximization [19]): Given a

sequence of constraints and responses D = {(gk(β) ≤
0, βk)}

K
k=1. Suppose the constraint is active at βk (gk(βk) =

0 ∀k). Then, the following statements are equivalent:

1) There exists a monotone, continuous utility function that

satisfies (1).

2) There exist positive reals {ut, λt}
K
t=1 such that the

following inequalities are feasible:

us − ut − λtgt(βs) ≤ 0 ∀t, s ∈ {1, . . . ,K}. (2)

The IRL estimate of the decision maker’s utility is:

u(β) = min
t∈{1,2,...,K}

{ut + λtgt(β)} (3)

constructed using feasible ut and λt (2) rationalizes D.

3) The data set D satisfies the Generalized Axiom of

Revealed Preference (GARP), namely, for any k ∈
{1, 2, . . . ,K}, the following implication holds:

gt(βt+1) ≤ gt(βt) ∀t ≤ k−1 =⇒ gk(β1) ≥ gk(βk).
(4)

Theorem 1 tests for economics-based rationality; its remark-

able property is that it gives a necessary and sufficient

condition for a agent to be a utility maximizer based on the

agent’s input-output response. The feasibility of the set of

inequalities (2) can be checked using a linear programming

solver; alternatively GARP can be checked using Warshall’s

algorithm with O(K3) computations [20], [21]. Theorem 1

can be viewed as set-valued system identification of an

argmax system; set-valued since (3) yields a set of utility

functions that rationalize the finite dataset D.

Key Idea for I-IRL: Manipulating the Goodness-of-fit of

revealed preference test (2). Theorem 1 also constructs a set-

valued estimate (3) of the utility function u using the solution
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of the set of feasibility inequalities (2). The estimated utility

function (3) is ordinal since any positive monotone increasing

transformation of (3) also satisfies Theorem 1. We make two

observations here that are crucial for our I-IRL results in

Sec. III:

1. Since the feasibility of (2) is necessary for utility max-

imization, the scalars u(βk), λk satisfy the revealed prefer-

ence test of (2), where λk solves λk∇gk(βk) = ∇u(βk).
Due to the monotonicity of u, gk and the assumption that

the constraint is active (gk(βk) = 0 ∀k), λk is well-defined.

2. The reconstructed utility function (3) is a point-wise

minimum of monotone functions parameterized by positive

reals {uk, λk} that satisfy (2). Hence, one can at best recover

a lower envelope of the true utility function u that matches

the function value and gradient value at the points βk, k =
1, 2, . . . ,K using Theorem 1. In other words, the closest

approximation ubest to the decision maker’s utility u via the

reconstruction procedure of (3) is given by:

ubest(β) = min
k∈{1,2,...,K}

{u(βk) + λkgk(β)}, (5)

where λk∇gk(βk) = ∇u(βk).

Also, one can show that ubest (5) is the least squares estimate

of u:

{u(βk), λk} = argmin
λ̄k,uk≥0

∫

S

(

u(β)−min
t
{ut + λ̄tgt(β)}

)2

dβ,

(6)

for any compact set S ⊆ R
K
+ , where λk is defined in (5).

Our key idea for I-IRL is to perturb the response sequence

{βk} so that the closest IRL estimate (5) of the decision

maker’s system parameters passes the revealed preference

test of (2) by a low margin, where the margin is defined by:

Mu({βk, gk}) = max
j,k

u(βj)− u(βk)− λkgk(βj), (7)

where λk∇gk(βk) = ∇u(βk). The margin (7) is a measure

of goodness-of-fit [22] of the revealed preference inequalities

(2). Hence, a utility function that passes (2) with a large

margin is a high-confidence point utility estimate for the

adversary and vice versa.

Below, we present a revealed preference test, Theorem 2,

that tests for feasible budget constraints estimating the de-

cision maker’s budget constraint when its utility function

is known. The aim of our key I-IRL result of Theorem 3

in Sec. III is to ensure that the closest IRL estimate of

the decision maker’s constraint sequence {gk(·)} passes the

revealed preference test of Theorem 2 by a low margin (7).

B. Adversarial IRL for Identifying Strategy

Theorem 1 achieves IRL when an adversarial learner wants

to estimate the decision maker’s utility function and knows

the decision maker’s budget constraint sequence (strategy).

We now consider the scenario where the adversary’s probes

parametrize the decision maker’s utility, and the adversary’s

aim is to estimate the unknown budget constraint sequence

{gk(β) ≤ 0} (strategy) of the decision maker. Below,

we present Theorem 2, a revealed preference test for the

existence of feasible budget constraints when the utility

function and decision maker’s response is observed by the

adversary.

Theorem 2 (IRL for Identifying Strategy): Given a time

sequence of adversary controlled utility functions and de-

cision maker’s responses D = {(uk, βk)}
K
k=1. Suppose

the decision maker faces a budget constraint of the form

g(β) − γk ≤ 0 for every k. Then, the following statements

are equivalent:

1) There exists a sequence of monotone continuous capa-

bility constraints {gk(β) ≤ 0} that satisfy (1):

βk = argmax uk(β), gk(β) ≤ 0 (8)

2) There exist positive reals {ḡk, λk}
K
k=1 such that the

following inequalities are feasible:

ḡs − ḡt − λt (ut(βs)− ut(βt)) ≥ 0, ∀t, s. (9)

The sequence of monotone constraints {g(β)− ḡk ≤ 0}
rationalizes D (1), where budget g is given by:

g(β) = max
t∈{1,2,...,K}

{ḡt + λt (ut(β)− ut(βt))}. (10)

3) The data set {ut(βt)− ut(·), βt} satisfies GARP (4).

The proof of Theorem 2 is omitted for brevity; see [23] for a

more elaborate discussion. At first sight, Theorem 2 appears

to be a dual statement to the optimization in Theorem 1. In-

stead of testing for a rationalizing utility given a sequence of

known budget constraints, Theorem 2 tests for a rationalizing

sequence of budget constraints given the utility function and

does not use duality in the proof.

In complete analogy to Theorem 1, the feasibility in-

equality of (9) is necessary and sufficient for the existence

of a sequence of constraints that rationalizes the sequence

of utility functions and responses. In complete analogy to

(5), we now define gbest, the closest approximation (upper

envelope) to the true budget g reconstructed via (9):

gbest(β) = max
k∈{1,2,...,K}

{γk + λk(uk(β)− uk(βk))}, (11)

where λk∇gk(βk) = ∇u(βk). Analogous to (7), we define

the margin with which the true budget g passes the revealed

preference test (9) of Theorem 2:

Mg({βk, uk, γk}) =min
j,k

g(βj)− g(βk)− λk (uk(βj)

−uk(βk)), where λk∇uk(βk) = ∇g(βk). (12)

In our I-IRL results in the next section, our key objective

will be to minimally perturb the response sequence {βk} so

that Mg(·) lies below a pre-specified threshold.

Theorem 2 assumes the elements in the sequence of

constraints {g(β) − γk} differ only by a scalar shift. This

assumption can indeed be relaxed to allow any sequence of

budget constraints. But the reconstructed constraints (10) are

restricted to the space of monotone piece-wise linear convex

functions identical up to a constant. Hence, any constraint

that lies outside this space is non-identifiable.
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III. INVERSE IRL (I-IRL) FOR MASKING DECISION

MAKER’S STRATEGY

Sec. II presents IRL algorithms that an adversary uses to

estimate the decision maker’s strategy. If the decision maker

is aware of the adversarial attack, how should it choose its re-

sponses to mask the strategy from the adversary? In Sec. III-

A below, we present our main I-IRL result, Theorem 3. In

Sec. III-B, we give a finite sample result for Theorem 3 that

upper bounds the probability the I-IRL scheme of Theorem 3

fails when the decision maker’s utility function is corrupted

by additive noise.

A. Main Result. I-IRL for Adversarial IRL in Theorem 2

Theorem 3 (I-IRL for Masking Strategy): Let β∗
k denote

the radar’s naive response that maximizes adversary-specified

utility uk subject to constraint g(β) ≤ γk for time k =
1, 2, . . . ,K. Suppose the adversary uses Theorem 2 to re-

construct the decision maker’s budget constraint g(·). Then,

the I-IRL response sequence {β̃∗
k} that masks g(·) from IRL

(Theorem 2) is given by:

β̃∗
k = argmaxβ uk(β), gk(β) ≤ γ∗

k , (13)

where the violated budget thresholds {γ∗
k} solve the follow-

ing optimization problem:

{γ∗
k} = argmin

γ̃1:K

K∑

k=1

∥γ̃k − γk∥
2
2, (14)

Mg({β̃k, uk,γ̃k}) ≤ (1− η) Mg({β
∗
k , uk, γk}), (15)

β̃k = argmaxβ uk(β), g(β) ≤ γ̃k. (16)

In (15), η ∈ [0, 1] is a pre-defined scalar that parameterizes

the extent of strategy masking for I-IRL.

Theorem 3 is the main I-IRL result of this paper. Simply

put, the decision maker’s response is the solution to the op-

timization problem (1) with purposefully distorted resource

thresholds γk (1). Indeed, the decision maker’s performance

is degraded due to the violated constraints, but it is the price

the decision maker pays for stealth - to mask its resource

constraint g from adversarial IRL of Theorem 2.

Discussion.

• The I-IRL algorithm (13) computes the smallest perturba-

tion needed in the decision maker’s resource constraints that

ensures a sufficiently poor resource constraint estimate (10)

of the decision maker’s budget constraint g (low margin

of IRL feasibility test (9) parametrized by scalar η (15)).

Hence, (14) computes the minimum violation that reduces

the margin with the I-IRL response passes the feasibility test

of (9) by a factor of 1/(1− η).
• Computational Burden for I-IRL. If η = 0 (no I-IRL),

the decision maker simply solves (16) for its true resource

thresholds γk. However, for η ∈ (0, 1], the decision maker

needs to solve a two-stage optimization problem - it first

generates the set of all feasible resource thresholds for which

the optimal response (16) passes the IRL feasibility test with

sufficiently low margin (15) (parametrized by η), and then

minimizes the deviation from the true resource thresholds

over this feasible set.

• It is straightforward to show the minimum violation of

constraints (14) is monotone in the parameter η. If η = 0,

the I-IRL response {β̃∗
k} is identical to the naive response

{β∗
k} and the minimum violation of budget is 0. On the other

extreme, setting η = 1 requires maximal violation of the

budget constraints {g(β) ≤ γk} since Mg({β̃k, uk, γ̃k}) ≤ 0
(15) implies the I-IRL response and decision maker’s budget

fail the revealed preference test of Theorem 2.

We illustrate the I-IRL result in the next section via a radar

example; see Fig. 2 for the simulation result.

B. Finite Sample Complexity for I-IRL in Theorem 3

In the previous sections, we assumed both the adversary

and the decision maker had accurate measurements of the

response and the utility functions. In this section, we assume

the decision maker’s measurements of the utility function

is noisy, and the noise is modeled as a random linear

perturbation. The key question we address is:

Given a finite sequence of I-IRL responses to noisy utility

functions uk(β) + δ′kβ, what is probability that the decision

maker effectively masks its strategy from the adversary?

Let us now formalize the above question. Let Mtrue
g =

Mg({β
∗
k , uk, γk}) (12) denote the margin with which the

naive response sequence {β∗
k} (1) passes the revealed pref-

erence test of Theorem 2. We want to bound the following

error probability for I-IRL in Theorem 3:

Perr = Pδ1:K

(

Mg({β̃
∗
k , uk(·) + δ′k(·), γ

∗
k}) ≥ (1− η) Mtrue

g

)

(17)

Recall from Theorem 3 that our I-IRL aim is to ensure

the margin of the revealed preference test (9) lies under

a threshold. In (17), Perr is the probability with which the

constraint (14) in Theorem 3 fails. In simple terms, Perr is

the probability of the event that the margin with which the

I-IRL response satisfies the inequalities (9) in Theorem 2

exceeds the margin threshold (1− η)Mtrue
g .

We assume the following for Theorem 4:

(A1) The adversary controlled utility function uk is mono-

tone, concave and Lipschitz continuous with Lipschitz

constant L.

(A2) The decision maker has a noisy estimate ûk = uk(β)+
δk(β) of the adversary controlled utility function uk(β).
The linear perturbation vector δk is a Gaussian zero

mean random vector with covariance Σ.

(A3) Let ∆(g, {βk, uk, γk}) denote the range with which

g, {βk, uk, γk} pass the revealed preference test of (9):

∆(g, {βk, uk, γk}) = max
j,k

ϵj,k −min
j,k

ϵj,k, where

ϵj,k = γj − γk − λk (uk(βj)− uk(βk)),

λk∇uk(βk) = ∇g(βk).

The random variable ∆(g, {β̂k, ûk, γ̂k}) ≤ ∆max a.s. ,

where β̂k and γ̂k are the decision maker’s I-IRL re-

sponse (13) and constraint threshold (14) due to noisy

utility function ûk measured by the decision maker.
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(A4) The random variable
maxk{||∇uk(β̂k)||

2

2
/||∇g(β̂k)||2}

minj,k{||∇uk(β̂k)−∇uk(β̂j)||22}
is

upper bounded almost surely by κ > 0.

We are now ready our finite sample complexity result for

I-IRL (Theorem 3); see the appendix for the proof.

Theorem 4 (Finite Sample Complexity for I-IRL):

Consider the decision maker choosing I-IRL responses

according to (13) in Theorem 3 in response to noisy utility

functions controlled by the adversary. Let β∗
k denote the

decision maker’s naive response at time k that maximizes the

noise-less utility uk subject to budget constraint g(β) ≤ γk.

Suppose assumptions (A1)-(A4) hold. Then:

Perr ≤ φK

(

2L∆maxκ
√

Tr(Σ)

)

(18)

where Perr is the error probability for I-IRL (Theorem 3) (17)

and φ(·) is the cdf of the standard normal distribution.

IV. EXAMPLE. I-IRL FOR META-COGNITIVE RADAR

Theorem 3 specified the procedure for a decision maker to

effectively mask its cognition from an adversary. Here, we

apply our I-IRL result to the problem of a cognitive radar

optimizing waveform based on the SINR of the adversarial

target measurement [24]:

βk ∈ argmaxβ SINR(αk, β), p′β ≤ pk. (19)

In (19), p(i)β(i) is the cost of transmitting signal power β(i)
on the ith waveform. The radar’s SINR as a function of the

adversary’s probe and the radar’s response is defined as:

SINR(α, β) =
β

′

Qβ

β′P (α)β + ζ
, (20)

where ζ denotes the noise power. In (20), the radar’s signal

power and interference power are assumed to be quadratic

forms of positive definite matrices Q,P (α) respectively.

Clearly, the above setup falls under the non-linear utility

maximization setup in Definition 1. For appropriately chosen

matrices (see [24] for a detailed discussion), the utility in (19)

can be shown to be monotonically increasing in β.

Suppose an adversary’s aim is to learn the radar’s resource

constraint p (19).3 The radar knows of the adversary’s mo-

tives and wants to mask its plan p. Thus, the radar modifies

its strategy (19) as per the I-IRL scheme of Theorem 3

to mask its non-linear budget (19) from the adversary. We

illustrate the I-IRL performance via a simple numerical

example with the following parameters:

• Time horizon K = 100, Response dimension m = 6.

• Budget vector p = [p(1) . . . p(m)], p(i) ∼ Unif(1, 4).
• Extent of strategy masking η: Varied from 0.05 to 0.95.

3Since the adversary knows and also controls the radar’s utility function,
it can benefit from knowing the radar’s budget constraint. The adversary
can, via carefully chosen probes, dupe the radar by forcing the radar to
transmit low power signals (low tracking precision) on some time instants
when the target performs malicious maneuvers. [25] shows how a seller
can maximize its profit by effectively learning a consumer’s utility from
the consumer’s responses. In the radar context, [26] computes the optimal
probe sequence for an adversary that minimizes its IRL algorithm’s Type-II
error probability (incorrectly detecting utility maximization behavior).

Fig. 2. I-IRL for masking the strategy of a cognitive radar: Small
deliberate constraint violation of the radar (vertical axis) results in large
performance loss (extent of strategy masking η) of the adversarial IRL
algorithm (horizontal axis). The I-IRL constraint violation by the decision
maker increases with η. η = 0 corresponds to zero strategy masking, and
η = 1 corresponds to complete strategy masking by the decision maker.

• Matrix Q = [Qi,j ], where Qi,i = 5, Qi,j = 0 if j ̸=
i, and P (αk) = [Pi,j ], where Pi,i ∼ Unif(1, 3) and

Pi,j = −0.05 if j ̸= i, Noise power ζ = 1.

Our numerical results are shown in Fig. 2. Recall from

Theorem 3 that the scalar η parametrizes the extent of

masking of the radar’s resource constraint from adversarial

IRL of Theorem 2. The key observation from Fig. 2 is that

the radar’s deliberate performance degradation increases with

extent of cognition masking η. Also, we see that a small

constraint violation by the radar suffices to confuse the

adversary to a large extent, hence successfully masking the

radar’s strategy.

V. CONCLUSION AND EXTENSIONS

This paper focuses on masking a decision maker’s strategy

when probed by an adversarial inverse reinforcement learner.

We term this problem inverse-inverse reinforcement learning

(I-IRL). If the decision maker knows an adversary is trying to

reconstruct its strategy, how should it tweak its responses to

hide its strategy? Our main I-IRL result is Theorem 3. The

key idea is for the decision maker to deliberately choose

sub-optimal responses that violates its strategic resource

constraints while ensuring the adversary does a poor recon-

struction of the decision maker’s strategy. Our finite sample

result, Theorem 4, upper bounds the probability that our I-

IRL result is ineffective in noisy settings; when the decision

maker has noisy estimates of the adversary-specified utility

functions.

Finally, a useful extension of this paper would be to

study more general game-theoretic settings where even the

adversary knows the radar is trying to mask its cognition.

VI. APPENDIX

A. Proof of Theorem 4

We start by computing the margin with which the I-IRL

response of the decision maker passes the feasibility inequal-

ities (9) of Theorem 3. Let ûk(β) = uk(β) + δ′kβ denote

the noisy utility function estimate available to the decision

maker. Let {β̂k} and {γ̂k} denote the I-IRL responses and
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perturbed constraint thresholds computed via (13) and (14),

respectively, in response to noisy utility functions {ûk}. The

margin Mg(β̂k, uk, γ̂k) is defined as:

Mg(β̂
∗
k , uk, γ̂k) = min

j,k
γ̂j − γ̂k − λk(uk(β̂j)− uk(β̂j))
︸ ︷︷ ︸

=ϵj,k

,

(21)

where λk∇uk(β̂k) = ∇g(β̂k). If ûk were the true utility

function at time k generated by the adversary, the margin

definition in (21) changes to:

Mg(β̂k, ûk, γ̂k) = min
j,k

γ̂j − γ̂k − λ̂k(ûk(β̂j)− ûk(β̂j))
︸ ︷︷ ︸

=ϵ̂j,k

,

(22)

where λ̂kûk(β̂k) = ∇g(β̂k). Observe that by defini-

tion (14), Mg(β̂k, ûk, γ̂k) = (1 − η)Mtrue
g . Also, we

observe that the margin definitions in (21) and (22) dif-

fer only in the term involving the utility functions. Our

aim is to find necessary conditions for which the event

{Mg(β̂k, uk, γ̂k) ≥ (1 − η)Mtrue
g } holds, or equivalently,

the event {Mg(β̂k, ûk, γ̂k) ≤ Mg(β̂k, uk, γ̂k)} holds.

Due to assumption (A3), a necessary condition for the

event {Mg(β̂k, uk, γ̂k) ≥ (1 − η)Mtrue
g } to hold is {ϵj,k ≥

ϵ̂j,k−∆max, ∀j, k}. We wish to bound the term (ϵ̂j,k−ϵj,k):

ϵ̂j,k − ϵj,k = λk(uk(β̂j)− uk(β̂j))− λ̂k(ûk(β̂j)− ûk(β̂j))

=λk(uk(β̂j)− uk(β̂j))− (λk + (λ̂k − λk))(uk(β̂j)

− uk(β̂j) + δ′k(β̂j − β̂k))

=− (λ̂k − λk)(uk(β̂j)− uk(β̂k)−∇uk(βk)
′(β̂j − β̂k))

(since λk∇uk(β̂k) = λ̂k∇ûk(β̂k))

=(λ̂k − λk)(uk(β̂k) +∇uk(βk)
′(β̂j − β̂k)− uk(β̂j))

≥(λ̂k − λk)
1

2L
||∇uk(β̂k)−∇uk(β̂j)||

2
2 (Asmp. (A1))

(23)

From (21), (22), we rewrite λ̂k − λk in (23) as:

λ̂k − λk = λk
δ′k∇uk(β̂k)

||∇uk(β̂k)||22
=

δ′k∇g(β̂k)

||∇uk(β̂k)||22
(24)

Combining (23) and (24), the following inequality results:

ϵ̂j,k − ϵj,k ≤ ∆max

⇒δ′k∇g(β̂k) ≤
2L∆max||∇uk(β̂k)||

2
2

minj,k{||∇uk(β̂k)−∇uk(β̂j)||22}

{δ′k∇g(β̂k)} is a sequence of independent zero mean Gaus-

sian random variables with variance {Tr(Σ)||∇g(β̂k)||
2
2}

Also, notice how the LHS does not depend on the index

j. Thus, we express our error probability Perr as:

Perr =P(ϵ̂j,k − ϵj,k ≤ ∆max, ∀j, k) ≤
K∏

k=1

P

(

δ′k∇g(β̂k) ≤ πk

)

=

K∏

k=1

φ

(

2L∆max||∇uk(β̂k)||
2
2/||∇g(β̂k)||2

√

Tr(Σ)minj,k{||∇uk(β̂k)−∇uk(β̂j)||22}

)

≤φK

(

2L∆max maxk{||∇uk(β̂k)||
2
2/||∇g(β̂k)||2}

√

Tr(Σ)minj,k{||∇uk(β̂k)−∇uk(β̂j)||22}

)

=φK

(

2L∆maxκ
√

Tr(Σ)

)

(from (A4)) ■
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