2022 58th Annual Allerton Conference on Communication, Control, and Computing (Allerton) | 979-8-3503-9998-1/22/$31.00 ©2022 IEEE | DOI: 10.1109/ALLERTON49937.2022.9929427
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Abstract—This paper considers quickest detection
scheme where the change in an underlying parame-
ter influencing human decisions is to be detected by
only observing the human decisions. Stemming from
behavioral economics and mathematical psychology, we
propose two generative models for the human decision
maker. Namely, we consider an anticipatory decision
making model and a quantum decision model. From a
decision theoretic point of view, anticipatory models
are time inconsistent, meaning that Bellman’s prin-
ciple of optimality does not hold. The appropriate
formalism is thus the subgame Nash equilibrium. We
show that the interaction between anticipatory agents
and sequential quickest detection results in unusual
(nonconvex) structure of the quickest change detection
policy. In contrast the quantum decision model, de-
spite its mathematical complexity, results in the typical
convex quickest detection policy. The optimal quickest
detection policy is shown to perform strictly worse
than classical quickest detection for both models, via a
Blackwell dominance argument. The model and struc-
tural results provided contribute to an understanding
of the dynamics of human-sensor interfacing.

I. INTRODUCTION

In this paper we construct and analyze a sequential
quickest detection framework which aims to detect a
change in an underlying state by observing human de-
cisions that are influenced by the state. The problem
of ’quickest detection’ [1] is fundamental to statistical
signal processing and has applications in a wide variety
of sectors [2]. Bayesian quickest detection utilizes a prior-
posterior updating scheme and an assumed distribution
for the change point. In this paper, we consider Bayesian
quickest detection, in which the observed signals are hu-
man decisions. This problem of detecting a state change
from the observation of human decisions is widespread,
and includes contexts such as detecting a market shock
by observing individual financial investment decisions,
sentiment change through social media monitoring, or
adversarial group strategy change through individual de-
cision monitoring. We provide several structural results
which characterize the optimal detection performance of
the analyst who attempts to detect an underlying state
change by observing human decisions, in the context of two
specific decision making models: the anticipatory model of
[3] and the quantum decision model of [4].
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A. Anticipatory Decision Making

Anticipatory decision making has applications in cyber-
physical systems such as human-sensor, human-robot and
command-control systems [5]. In behavioral economics,
Caplin & Leahy [3] propose a model for anticipatory
human decision making via a horizon-2 decision process:
the first stage involves choosing an action to minimize
an anticipatory psychological reward (involving the prob-
abilities of choosing actions at stage 2), while at the
second stage the agent realizes its actual reward. Such
anticipatory models mimic important features of human
decision making:

(i) Extensive studies in psychology and neuroscience [6]
show that humans are anticipation-driven, and even simple
decisions involve sophisticated multi-stage planning.

(ii) Anticipatory agents act to reduce anxiety. [7] pre-
sented experimental results where people chose a larger
electric shock than waiting anxiously for a smaller shock.
(iii) Anticipative agents often deliberately avoid infor-
mation. [8] reports that giving patients more information
before a stressful medical procedure raised their anxiety.

An important aspect of anticipatory decision making is
time-inconsistency. The dependence of the current reward
on future plans results in a deviation between planning and
execution. This phenomenon is called time-inconsistency’
[9] and Bellman’s principle of optimality no longer holds.
Time inconsistency results in the planning fallacy of
Kahneman & Tversky [10]: people tend to underestimate
the time required to complete a future task. Compared
to rational agents, optimistic agents take higher risk of
making the wrong decision but have higher anticipatory
reward. [11] show that it is optimal for agents with an-
ticipatory reward to take irrational beliefs (referred to as
subjective beliefs) deliberately. As will be discussed below,
the appropriate concept of optimality for time-inconsistent
problems is the subgame Nash equilibrium.

B. Quantum Decision Theory

In psychology, Quantum Decision Theory ( [12], [13] and
references therein) has emerged as a new paradigm which
is capable of generalizing current models and accounting
for certain violations of axiomatic assumptions. For ex-
ample, it has been empirically shown that humans rou-
tinely violate Savage’s ’Sure-Thing Principle’ [14], which
is equivalent to violation of the law of total probability,
and that human decision making is affected by the order

In game-theoretic terms, time-inconsistency arises when the op-
timal policy to the current multi-stage decision problem is sub-game
imperfect.
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of presentation of information [15] ("order effects"). These
violations are natural motivators for treating the decision
making agent’s mental state as a quantum state in Hilbert
Space; The mathematics of quantum probability was de-
veloped as an explanation of observed self-interfering and
non-commutative behaviors of physical systems, directly
analogous to the findings which Quantum Decision Theory
(QDT) aims to treat. Indeed, the models of Quantum
Decision Theory have been shown to reliably account for
violations of the ’Sure-Thing Principle’ and order effects
[12], while models relying on classical probabilistic struc-
tures cannot.

Remark: Quantum Decision Theory does not claim that
the human mind is acting in a quantum manner in any
physical sense, but simply uses the mathematical struc-
ture of quantum probability as a parsimonious generative
blackbox model for human decision making.

We utilize the quantum probabilistic model of [4], which
provides a generalized decision making process that can
account for certain empirically observed decision making
phenomena and provides a quantitative way of reasoning
about effects of cognitive biases and suboptimalities, such
as bounded rationality, through a free-parametrization.
We have also recently utilized this model within a human-
machine assisted decision making scheme, in which a
machine provides input signals to a human to dynamically
steer the human’s decisions towards optimality [16].

C. Quickest Detection Framework

The quickest detection framework of this paper is
schematically illustrated in Fig. 1. An underlying state
changes at a geometrically distributed unknown time. At
each time instant, a sensor obtains a noisy measurement
of the underlying state, computes the posterior probability
of the state, and provides this information to a human
decision maker (e.g. as a recommendation). The human
uses this information to choose an action at each time
instant according to the anticipatory or quantum decision
model. These human decisions are monitored by a Quick-
est Change Detector, which computes a belief in the un-
derlying state by exploiting knowledge of the anticipatory
model structure or quantum decision parameters. Based
on the computed belief, the Quickest Detector then decides
to continue or declares that a change has occurred, in
which case the problem terminates. Note that the quickest
detector assumes the decisions are output from either the
anticipatory or quantum model, and this assumption is
fixed for all time. Thus we characterize the structure of
the detector’s optimal policy under each assumption.

IT. ANTICIPATORY DECISION MAKING
This section defines time inconsistent decision problems
and reviews the influential behavioral economics model [3]
for human decision making with anticipatory feelings. This
model will be used in Sec.V to formulate our human sensor
interactive quickest change detection problem.

A. Anticipatory Model of Caplin & Leahy [3]

We now review the time inconsistent model for anticipa-
tory human decision making in Caplin & Leahy’s paper [3];

see also [17]. A key step in the formulation below is the
anticipatory state (2) at time 1 which depends on the
probability of future actions (at time 2); this gives the
model its anticipatory property.

1) Anticipatory Model and Time Inconsistency: The
anticipatory decision model in [3] comprises two time
steps indexed by k = 1,2. The physical state s € S,
k = 1,2, where S denotes the state space, evolves with
Markov transition kernel p(sa|si). Let a3 € A; and
as € Ay denote the actions taken by the agent (human)
at time 1 and 2. These actions are determined by the non-
randomized policies p1 and po where

ar = pi(s1), a2 = pa(s2, a1). (1)
The first key idea in Caplin & Leahy [3] is to define the
anticipatory (psychological) state z, k = 1,2:

21 = ¢(s1,a1,{plag = als1, a1, p12),a € As}),

_ (2)
22 = (82, a2,a1),
for some pre-defined function ¢. Note ps is a deterministic
function that parametrizes p(as = als1, a1, u2). In [3], 2k
models the human decision maker’s state of mind (anxi-
ety). More generally, z; can model any anticipatory plan,
such as for example in situation awareness systems. Note
that the anticipatory state z; depends on the set of condi-
tional probabilities {p(as = a|s1, a1, pu2),a € As}. These
conditional probabilities model anticipation (anxiety)? of
the decision maker at time 1 about possible actions it can
make at time 2. The anticipation is resolved at time 2 when
physical state ss is observed and all uncertainty is resolved;
hence the anticipatory state zo only contains physical state
S9 and realized action as.
The next key idea in [3] is that the anticipatory agent
makes decisions by maximizing the 2-stage anticipatory
utility

sup J(p1, p2) = Epy o {ri(21) +r2(22)} (3)
K102

Here 74(2) € R denote the reward functions. The 2-stage
anticipatory utility, called psychological utility in [3], (3)
looks just like a standard time separable utility except for
the presence of the anxiety term {p(az = alsi,a1,p2),a €
Ao} in ri(z1). This ps dependency gives rise to time
inconsistency in decision making. As in [3], we assume
that the agent knows all the parameters in the above
anticipatory model. The key point is that the reward at
time 1 depends on the psychological (anticipatory) state
which in turn depends on the probability of future actions
and states.

2As discussed in [3], introducing anticipatory emotions explains
why changing an outcome from zero to a small positive number
can have a large effect on anticipation. Human decision makers
are sensitive to the possibility rather than probability of negative
outcomes [?]. A terrorist attack (unlikely event) worries people a lot
more than a car crash (high probability event).
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2) Subgame Perfect Nash Equilibrium: Caplin & Leahy
[3] ‘solve’ the time inconsistent decision problem (3) using
the extended Bellman equation, such that the optimal
policy at time 2 is defined as:

(4)

w5 (s2,a1) = argmax ro(se, az,a1)
az
Note that by definition (1), p5 depends on a; and sa.
To specify the optimal policy at time 1, we first intro-
duce the following compact notation. Define

defn

Aa / I(s2 : p5(s2,a1) = a)p(s2|s1) dsa,
s

A= {)\ma S AQ}

()

At time 1, due to time inconsistency, the agent chooses
a time consistent policy p] based on extended Bellman
equation [3]:

(6)

i (s1) = argmax Jy(s1, a1, 13),
ai

Vl(Sl) = H;&X Jl(slaalnu;)7
1

Bayesian parametrization of transition kernel and re-
ward: Recall r is the reward at time 2; see (2), (3). In the
rest of the paper, we will parametrize ro and the transition
kernel p(sa|s1) by a Bayesian parameter. The parame-
terized reward and transition kernel are constructed as
follows: Define the reward ro(se,as, a1, ) and transition
kernel p(sz|s1, ) which now also depends on a state of na-
ture (ground truth) x. The process x € X = {1,2,...,m}
will be formally defined in Sec.V to model change in
quickest detection. Then define the parametrized reward
T2 and transition kernel p,(sa|si) as

T’r],2(827 az, CLl) = Z TQ(SQ? a2, ala‘r) 77@)
reX

Po(sals1) = Y plsals1, @) n(x)

reX

(8)

Here 7 is an m-dimensional Bayesian belief (posterior)
vector that lies in the unit m — 1 dimensional simplex IT
of probability mass functions: n = [n(1),...n(m)] € II,
where

= {n:n@) €01, > n@)=1} 9)

i=1
Ji(s1,a1, p43) =11 (¢(317a17)\)) + E{ro(s2,az,a1)|s1,a1, us} The posterior n will be formally defined in (18) and

=r1(¢(s1,a1,))) +/87‘2(52”&3(827al),al)P(Sz\Sl)d52

Recall p(s2|s1) is the transition kernel of the physical state.

(ii) The anticipatory (psychological) state z; in (2)
consisted of the set of conditional probabilities {p(as =
alsi, a1, p2),a € As}. More generally, one can formulate
the anticipatory state with these conditional probabilities
replaced by

{E{\IJ(CLQ = a,52)|31,a1,,u2},a € A2}

for some pre-defined function W.

(iii) We mentioned previously that the subgame Nash
equilibrium approach to time inconsistency disregards the
fact that w3 is no longer optimal at time 1. Another
insightful way of viewing this is that since the estimated
anticipatory reward 71 (¢(s1,a1,\)) requires the agent to
extrapolate what might happen at the second stage, plans
are not optimal once an action is taken. As an example,
people tend to assign higher future workload than what
they will actually take on.

(7)

B. Characterizing the Nash Equilibrium Policy of Antici-
patory Decision Maker

The previous section gave a general setup of the an-
ticipatory decision making model and associated subgame
Nash equilibrium policy. However, the Nash equilibrium
(6) is the solution of the extended Bellman equation
(integral equation) and is difficult to compute in general.
In this section, we make specific assumptions on the
anticipatory model to give a useful characterization of the
Nash equilibrium. Specifically, these assumptions result in
a bang-bang and threshold structure for the subgame Nash
equilibrium policy (Theorem 1 below).

appears naturally in the quickest change detection for-
mulation in Sec.V (where the underlying state of nature
2 jump changes). In this section, 7 is simply a fixed
probability vector in the two-stage anticipatory decision
model discussed above.

1) Structural Characterization of Nash equilibrium:
With 7, o defined in (8), for notational convenience, define

Ay (s2,a1) = 1y 2(82,2,a1) — 1 2(82,1,a1) (10)

We make the following assumptions on the anticipatory
decision model of Sec.II-A:

(A1) The action spaces are A; = [0, 1], Ag = {1,2}. Recall
the actions a1 € A; and as € As.
The state space is S = [0, 1]. Recall 51,52 € S.
Tn,2(82,a2,a1) is convex in a;.
A, (s2,a1) defined in (10) is increasing in sp. Equiva-
lently, r,, 2(s2, a2, a1) is supermodular in (sg, az).

(A4) The solution s3(a1) of Ay(s2,a1) = 0 exists for a; €
(0,1) and is continuously differentiable on (0,1).

A5) 284 %A, AN, d*A,, >0

( ) day 0s20a;  0Osz 0al =

(A6) The anticipatory reward is r1(z1) = Sz1 where 8 >0

and the psychological state (see (7)) is
21 = max{E{¥(as = a, s2)|s1,a1,p2},a € Az}

U(ag = 1,52) py(s2|s1) is increasing in so
U(as = 2, s2) pp(s2|s1) is decreasing in s,.
The observation likelihoods B, (19) are TP2 (totally
positive of order 2); that is, Bz yBsy < Bz yBzg,
>,y >y.
ro(s2,a2,a1,x) (see (8)) is supermodular in (z,as),
i.e., r2(82,a2,a1,T) — 12(82, a2, a1, ) is increasing in
as.

The following structural result characterizes the struc-
ture of the subgame Nash equilibrium. For subsequent
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reference, we will denote the explicit dependence of ] and
s on Bayesian parameter 7 (see (9)) as pj , and p3 .

Theorem 1. Consider the anticipatory decision model of
Sec.II-A with action and state spaces specified by (Al).
Then
1) Under (A3), (A4), the subgame perfect Nash equi-
librium policy pb specified by (4) has a threshold
structure:

Mz,n(sz,al) = {

L ifsg <s5,(a1) (1)

2 59> sg,n(al)
for some threshold state s3 , (a1) € [0, 1] which depends
on the Bayesian parameter 1.

2) Under (A4), (A5), threshold state s3,(a1) is convex
inai.

3) Under (A2)-(A7), the utility-to-go Ji(s,a1,us) de-
fined in (6) is convex in ay. Therefore, the subgame
Nash equilibrium policy pi has the following bang-
bang® structure:

N 1
Ml,n(sl) = {O

for some positive constant 5*. (B is defined in (AG).)

if 8> 8"

12
otherwise (12)

Proof. See Appendix of arXiv paper [18]. O

ITII. QUANTUM MODEL OF MARTINEZ ET AL [4]

This section presents the open-quantum system model
that we will use to represent the decision preference evolu-
tion of the human decision maker. We define the evolution
of the density operator of the decision maker using the
open-system Quantum Lindbladian Equation, proposed in
[4] and implemented in [19]. For our purposes we abstract
away from the time-evolution such that decisions are made
from the steady-state distribution, the existence of which
is proved in [4]. This steady-state represents the ceasing
of any deliberation.

A. Modeling Psychological State via Quantum Probability

Suppose there are n underlying states in the state space
X, and A actions in the action space A. For each state
i € {1,...,n} construct a corresponding unit complex
vector £ € C™ such that {&;}}; are orthonormal. For
each action 7 € {1,..., A}, construct a complex vector
a; € C# such that {a;}7, are orthonormal. Denote Hy =
span{&,...,En}, Ha = span{ay,...,as}, and form the
tensor product Hilbert space H = Hxy ® H 4. The agent’s
psychological state is represented by a density operator p;
which acts on the Hilbert space p; : H — H. Specifically,

pr = 320 |[¥;) (| with 3. p; = 1, [¢;) € H Vj The

3The phrase “bang-bang controller” comes from classical optimal
control theory. It characterizes a control policy with continuous-
valued actions that switches between two extremes.

psychological state p; evolves according to the Lindbladian
operator L4, x,¢) by the ordinary differential equation®

o _

- 13
n (@,)0) Pt (13)

where (a, A, ¢) are free parameters which govern the evo-
lution, each having a psychological interpretation, see [4].
Implicit in L4, 5,¢) is a belief n(z) in the underlying state
z €{1,...,n} and a utility function u : A x X — R. The
psychological state p; encodes a time dependent probabil-
ity distribution I'(a,t) over actions a € A in the following
way. Let P; be the projector on to the subspace spanned
by action vector a; € H, then I'(a;,t) = Tr(PiptPiT)7 where
P;r is the adjoint of P;.

For the sake of brevity, we refer the reader’s to [4] for
the construction of the Lindbladian operator L4 x, ¢)-

B. Practicality in Human Decision Making

The above quantum model for human decision-making
accounts for violations of the sure-thing principle (STP),
which we now describe. Suppose there exists an action
a and two states &;,&. Suppose I' is a non-degenerate
posterior belief (strictly in the interior of the unit simplex)
of the underlying state. The violation of the sure-thing
principle occurs when P(a|I") is not a convex combination
of P(a|&1) and P(a|&2), i.e.

P(a|T') # ¢ P(al€1) + (1 — €) P(a] &) Ve € (0,1)

Pothos and Busemeyer [20] (see also [14]) review empirical
evidence for the violation of STP and show how quantum
models can account for it by introducing quantum interfer-
ence in the probability evolution. Note that this violation
cannot be accounted for by traditional models which rely
on classical probability, as the sure-thing principle follows
directly as a consequence of the law of total probability.

C. Decision making protocol

Each quantum decision maker (human) in the sequential
decision process behaves as follows. The agent has initial
psychological state py and utility v : A x X — TR.
An underlying state distribution 7n(z) is provided by a
Bayesian inference machine (Sensor). u and n(x) pa-
rameterize L, x ¢), along with psychological parameters
a, \,¢. The psychological state at time ¢, p:, evolves
according to (13) and induces a distribution I'?(a,t) over
the action space as

I'"(a,t) = Tr(Pyp: P)) (14)
By [4], we are guaranteed the existence of a steady-state
distribution

I'(a) = tliglo I'(a,t)

We assume action a,, is taken probabilistically according to
the steady-state distribution I'”(a) which is independent

4The reader may be familiar with the Schrédinger equation which
governs the time evolution of closed quantum systems. The Lindbla-
dian equation is a generalization which governs the time evolution
of open quantum systems (i.e. those that interact with an external
dissipative environment). The recent literature in psychology uses
the Linbladian framework to model human decision making.
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from the initial state pg. This represents the action choice
occurring after deliberation has ended, and the steady
state is typically reached relatively quickly®. We can then
abstract away from the time dependence to get the map

Liarg) : (), u(z,a)) = 1" (a) (15)

At each discrete time point of the quickest detection
protocol, the agent:

« consists of initial psychological state pg, utility u :
A x X — R, and parametrization (a, A, ¢). Note
that these quantities are time independent and thus
constant for all discrete time steps.

e is provided state information in the form of a Bayesian
posterior 0, (z) by the Sensor.

o deliberates until reaching a steady-state action distri-
bution I'""(a), from map (15).

« takes action a,, probabilistically from I'™ (a)

IV. QUICKEST CHANGE DETECTION WITH
ANTICIPATORY AND QUANTUM DECISION MAKERS

We now introduce the quickest change detection pro-
tocol and the formulation of an optimal policy for such
a protocol. The aim of quickest detection is to determine
the jump time 7° of the state of nature {z,} i.e., evaluate
the optimal stationary policy p* of the global decision
maker that minimizes the Kolmogorov-Shiryaev criterion
for detection of disorder:

Jyu(m) =inf J, (7
(1) = inf 7, (), "
Ju(m) = dB,[(1 = 7°) "] + fPu (1 < 7°)
where 7 = inf{n : u,, = 1} is the time at which the global
decision maker announces the change. The parameters d
and f specify the delay penalty and false alarm penalty,
respectively.

The optimal policy p*(m) (16) can be formulated as the
solution of a stochastic dynamic programming equation.
The quickest detection problem (16) is an example of a
stopping-time partially observed Markov decision process
(POMDP) with a stationary optimal policy.

We now introduce some notation, then describe the
protocol in detail.

i) The state of nature {z, € {1,2},n > 0} models the
change event which we aim to detect. z,, starts in
state 2 and jumps to state 1 at a geometrically dis-
tributed random time 7° with E[r°] = ﬁ for some

€ [0,1). So, {z,} is a 2-state Markov chain with
absorbing transition matrix and initial probability

-l el

with change time 70 = inf{n : z,, = 1}.

ii) The (anticipatory / quantum) decision agents act se-
quentially. A sensor observes the state of nature x,, in
noise and computes a Bayesian posterior distribution
n(z) of the underlying state. This is given to the

(17)

5See [4] for a proof of the steady state and a discussion of relaxation
times of this evolution

human, who then makes a local decision a,, according
to
a) Anticipatory: the subgame Nash equilibrium of
Theorem 1
b) Quantum: the steady-state action distribution
I'(a;) induced by the Lindbladian operator
L(ax6n) and map (15).
iii) Based on the history of local actions aq,...,a,, the
global decision maker chooses action

un, = {1(stop and announce change), 2(continue)}

iv) Define the public belief 7, and private belief 7, at
time n as the posterior distributions initialized with
no =mo = [0,1]":

Rl a’n)v €T = 17 2

<y Ap—1, yn)7

T (x) =Pz, = |ay,..
n( ) ( n | 1 (18)
() = P(a, = z|a, ..
where y,, is the private observation recorded by agent
n. We have 7, (), n,(x) € II, the unit one-simplex.

State of nature x,, jump changes at time 0

Yn ~ P(Ynlan)

(Un—1,Tn—1) (un,7n)

Sensor

\\fn

Decision Maker n

Nn = T (=1 Yn )

(np

— Global Observer

Figure 1: Sequential Quickest Change Detection with decision mak-

ing agents. The underlying state of nature z, jump changes at time

70 ~Geo(1-p), where p is known. At each time n a sensor observes

yn ~ P(y|z), and the public belief signal m,—1 from the previous time
point. The sensor outputs a private belief 7, (obtained via Bayesian
update) in the underlying state to the decision maker. The decision maker
chooses action a,, either by the Anticipatory subgame Nash Equilibrium of
Theorem 1 or probabilistically from the distribution I'7 (a) induced by the
Quantum map (15). The quickest detector sees a,, and outputs its public
belief 7, and signal u,, according to (22) and (25). Note that we assume
the quickest detector has knowledge of the decision maker’s process (either
anticipatory or quantum).

A. Change Detection Protocol

We now detail the multi-agent quickest change detection
protocol; see also [21].

i) Sensor obtains public belief m,_; and signal w,_1
from global decision maker. The process only contin-
ues if u,_1 = 2.

ii) Let ) denote the observation space. The sensor
records noisy observation y, € ) of state of nature
T, with conditional density

By = p(Yn = ylan = ) (19)

iii) Private Belief. The sensor evaluates the Bayesian
private belief
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B,P'n
n — T —1, 5 T 5 = y77 20
n (Tn—1,Yn) (m,y) U(ﬂ‘,y) (20)
o(m,y) = llByP/Wa B, = diag(B1 B2 ) (21)

and feeds this to the human agent.
iv) Local decision. State posterior 7, and physical state
sn are observed by the agent.

)

Anticipatory: The agent’s private belief 7, affects
its reward and transition kernel of physical state
process {s,,n > 1} as in (8):

rn2(82,a2,a1) = Z r2(82, a2, a1, ) 1(x)

reX
(8 repeated)
Py(s2]s1) = Z p(s2]s1, ) n(z)
reX

The agent uses n,, s, to make anticipatory deci-
sions a,, = (an,1,an,2) via (12), (11) in Theorem 1.
Quantum: The agent’s private belief 7, parame-
terizes the Lindbladian operator L, x,¢). This in-
duces a steady-state action probability distribution
I'(a;) via the map (15), and the action a,, is taken
probabilistically according to I'".

v) Quickest Detector. Based on the decisions a,, of local
decision maker n, the quickest detector:

i)

ii

~—

iii)

Updates the public belief from 7, 1 to m, as

T = T(Tp_1,0n, Sn) (22)
T(m,a,s) = M, a(m,a,s) =1RI(s)P'r
o(m,a,s)

where R} (s) = ding(R] o (5). ,4(s)).
RI,,(5)

T,
The action probabilities R7 , are computed as

P(an = a|xn =T, MTp—-1,5n = S) (23)

RT (s) / Plalm,s,y)Buydy  (24)
Yy

where P(alm,s,y) = I(p5 1 (8 0n1) = an2)
when the anticipatory decision model is assumed,
and P(a|r,s,y) = [7(a) when the quantum de-
cision model is assumed. Recall a,, = (an,1,0n,2)
and p3, is the anticipatory decision maker’s sub-
game Nash equilibrium policy (11), and f‘; is the
quantum decision maker’s induced action distribu-
tion (15) given public belief 7 and observation y.
Specifically, f;’ is the output of the map (15), with
input n(z) = T(rm,y),u(x,a) and parametrization
(o, A\, ¢). Note that in the quantum decision-making
protocol, the action a, is independent from the
state s,, so likewise the value of R} ,(s), and
therefore T(r, a, s), does not depend on s.
Chooses global action u,, using optimal policy p*:

Up, = p*(my,) € {1(stop), 2(continue)}.  (25)
Is u, = 2, then set n to n + 1 and go to step 1. If
Uy = 1, then stop and announce change.

B. Quickest Detector Optimal Policy [17]

Considering the aim of quickest detection, characterized
by (16), we now outline the details of the optimal policy
stochastic dynamic programming formulation.

1) Costs: To present the dynamic programming equation
we first formulate the false alarm and delay costs (16)

incurred by the global decision maker in terms of the
public belief.

i)

ii)

False alarm penalty: If global decision w,, = 1 (stop)
is chosen before the change point 79, then a false
alarm penalty is incurred. The false alarm event
{z, = 2,u, = 1} represents the event that a change
is announced before the change happens at time
9. Recall (17) the jump change occurs at time 7°
from state 2 to state 1. Then recalling f > 0 is
the false alarm penalty in (16), the expected false
alarm penalty is

SPu(r < ) = JESE[ (2n = 2, un = 1)[Gn]}
G, = o-algebra generated by (ay,...,a,)
(26)
Clearly E[I(z, = 2,u, = 1)|G,] can be expressed
in terms of the public belief 7,(2) P(x,
2lay,...,ay,) as

C(mn,up = 1) = fehm,, where ex =[0,1] (27)

Delay cost of continuing: If global decision u,, = 2 is
taken then Protocol 1 continues to the next time. A
delay cost is incurred when the event {x,, = 1,u,, =
2} occurs, i.e. no change is declared at time n. The
expected delay cost is dE[I(X,, = 1,u, = 2)|G,]
where d > 0 denotes the delay cost. In terms of the
public belief, the delay cost is

C(mn, up = 2) = dem,, where e; = [1,0]

(28)

We can re-express Kolmogorov-Shiryaev criterion

(16) as =1
Ty =E > C(rpn,2) +C(nr, 1)} (29)

n=0
where 7 = inf{n u, = 1} is adapted to

the o-algebra G,. Since C(w,1),C(m,2) are non-
negative and bounded for all # € II, stopping is
guaranteed in finite time.

2) Bellman’s equation for Quickest Detection Policy
Consider the costs (27), (28) defined in terms of the
public belief 7. Then the optimal stationary policy
¢*(m,s) defined in (25), (16). and associated value
function V(m,s) are the solution of Bellman’s dy-
namic programming functional equation [21]

Q(r,5,1) <" O(r, 1),
defn

Q(m,s,2) = C(m,2)
+/S > V(T(r,a,5),5) 5(r a,5) p(3|s)} ds

a€ A1 x Az
¢*(m, s) = argmin{Q(7, s,1), Q(r,s,2)},

V(m,s) = min{Q(r,s,1),Q(m,s,2)} = J5(m,s)
(30)
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The public belief update 7' and normalization mea-
sure ¢ were defined in (22). Recall (25) that u, =
@*(mn, sn) is the global decision maker’s action
whether to continue or stop. Note that in the case
of the quantum decision protocol, since T(w,a,s) is
independent from s, the value function V(7,s) and
associated terms in (30) have no dependence on s.

The goal of the global decision-maker is to solve
for the optimal quickest change policy ¢* in (30) or
equivalently, determine the optimal stopping set S

S={ms:¢"(m,s) =1} ={m,s: Q(m,s,1) < Q(m,s,2)} 71 (2) <75 (2) - <7y (2)

(31)

3) Value Iteration Algorithm
The optimal policy ¢*(m, s) and value function V(m, s)
can be constructed as the solution of a fixed point
iteration of Bellman’s equation (30) — the resulting
algorithm is called the value iteration algorithm. The
value iteration algorithm proceeds as follows: Initial-
ize Vo(m,s) = 0 and for iterations k =1,2,...

Vit1(m, s) = min Qgy1(m, s, u),
uel

)
Gryq(m,s) = argmin Qpy1(m, s,u) w € Il,
ueld

Qk+1(7rvs’1) = C(T‘—vl)a Qk+1(ﬂ—7872) = C(W’2)
+/ > W (T(m,5,0),5) 5(r,5,a) p(s|s)ds,

S ac A x Az
(32)

Let B denote the set of bounded real-valued func-
tions on II. For any V,V € B and n € II, define
the sup-norm metric sup |V(x,s) — V(r,s)||, s € S.
Since C(m, 1), C(n,2), = € II, are bounded, the
value iteration algorithm (32) generates a sequence
of lower semi-continuous value functions {V,} C B
that converge pointwise as k — oo to V(w, s) € B, the
solution of Bellman’s equation [22].

V. CHARACTERIZING THE STRUCTURE OF THE
QUICKEST DETECTOR

In this section we analyze several structural properties
of the quickest detection protocol detailed in Sec. IV.
Our results in this section are structured as follows: In
Section V-A we prove that the optimal policy (30) has a
single threshold structure for the quantum decision model
and that the structure for the anticipatory model may
exhibit multiple thresholds. In Section V-B we provide a
lower bound on the optimal cost incurred by the quickest
detector via the policy of Sec. IV. Specifically, this lower
bound is given by the optimal cost incurred within the
classical quickest change detection protocol, i.e. without
intermediate human decisions.

A. Threshold Structure of Optimal Policy

1) Anticipatory Decision Model: We assume in this
section that the observation space and action space of the
anticipatory agent are Y = {1,...,Y}, Ay = {1,2}. The
purpose of this section is to show that even though the

public belief 7 € II is continuum, there are only Y + 1
possible distinct action likelihood probability matrices.

Specifically, define the following Y points in the one-
dimensional simplex II:

7, ={m: (r1 — r2)’B,P'm =0},

Y y=1,...,Y

Note that 7; = [1 — 7(2), m,(2)]" depends on ay, s.

Theorem 2. Under (A8), (A9), it follows that
(33)

Thus the belief space TI = [0,1] can be partitioned into
at most Y + 1 non empty intervals denoted Pi,...,Pyi1
where

P1=1[0,71(2)], P2 = (71 (2),m3(2)], ..., Pys1 = (W*y(2ga 1])

34
On each such interval, the action likelihood R™ (23) is a
constant with respect to belief w. Specifically, for fized aq, s

-1 Y
1B, Y By
R™(s) = Zzio 14 1=l g , T e P, 35
) lzi_é By > B L)
Proof. See Appendix of arXiv paper [18]. O

The following Theorem uses this result to show that the
optimal detection policy given the anticipatory decision
model need not consist of only a single threshold. This is
similar to the multi-threshold policies in [23].

Theorem 3. Given the anticipatory decision making
quickest change detection protocol detailed in Section II-A,
it is not guaranteed that the quickest detector’s optimal
policy p* (16) may not exhibit a single threshold state '

such that
. 2, w<n
H (77) - {17 T 2 71'/
Proof. See Appendix of arXiv paper [18]. O

2) Quantum Decision Model: We will show that, given
the quantum decision making quickest change detection
protocol detailed in Section IV-A, the quickest detector’s
optimal policy (16) exhibits a single-threshold behavior.
In contrast, the optimal policy induced by anticipatory
decision making can exhibit multiple thresholds

Theorem 4. Given the quantum decision making quickest
change detection protocol detailed in Section III-C, the
quickest detector’s optimal policy u* (16) exhibits a single
threshold state ©' such that

‘() 2, w<n

m) =

K 1, 7>

Proof. See Appendix of arXiv paper [18]. O
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B. Lower Bound on Performance

First define the optimal policy and cost in classical
quickest change detection. Similar to (30), the optimal
policy ¢*(m) and cost V(7) incurred in classical quickest
detection, satisfy the following stochastic dynamic pro-
gramming equation:

¢* () = axgmin Q(r, ), V() = min Q(r,w),  (36)
where Q(m,2) = C(m,2) + Y V(T(w,y)) o(r,y),
yeY

Q(m, 1) = C(m, 1), L (m) = V().

Here T'(m,y) is the Bayesian filter update defined in (20)
and J,.(m) is the cumulative cost of the optimal policy
starting with initial belief 7. Note that unlike Protocol
1, in classical quickest detection, there is no public belief
update (22) or interaction between the public and private
beliefs.

The following theorem says that for any initial belief
7, the optimal detection policy with either anticipative
or quantum-decision agents acting sequentially (Protocol
1) incurs a higher cumulative cost than that of classical
quickest detection.

Theorem 5. Consider the quickest change detection
problem involving either anticipatory or quantum-decision
agents described in Protocol 1 and associated value func-
tion V(m,s) in (30). Consider also the classical quickest
detection problem with value function Y(m) in (36). Then
for any initial belief m € 11, the optimal cost incurred by
classical quickest detection is smaller than that of quickest
detection with anticipatory agents. That is, V() < V(7 s)
forallmelIl,s € S.

Proof. See Appendix of arXiv paper [18]. O

VI. CONCLUSION

In this work we have presented the framework of quick-
est change detection using human decisions, incorporating
a time-inconsistent anticipatory model and a quantum
decision model. The anticipatory model accounts for a
decision-maker’s tendency to plan for future events while
making current decisions, and the quantum model uti-
lizes the generalized structure of quantum probability
to account for a wider range of human decision-making
phenomena. Structural Results for the detector’s optimal
policy were obtained, which reveal that the anticipatory
model can result in a counter-intuitive non-convex optimal
stopping region. In contrast, while the quantum decision
model is mathematically more complex, it results in the
standard convex (single-threshold) optimal stopping re-
gion. We also show that the optimal detection performance
(given by the value function) with both models is lower
bounded by that of classical quickest detection, indicating
that the intermediate human decisions strictly hinder
detection performance.
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