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Abstract—This paper considers quickest detection
scheme where the change in an underlying parame-
ter influencing human decisions is to be detected by
only observing the human decisions. Stemming from
behavioral economics and mathematical psychology, we
propose two generative models for the human decision
maker. Namely, we consider an anticipatory decision
making model and a quantum decision model. From a
decision theoretic point of view, anticipatory models
are time inconsistent, meaning that Bellman’s prin-
ciple of optimality does not hold. The appropriate
formalism is thus the subgame Nash equilibrium. We
show that the interaction between anticipatory agents
and sequential quickest detection results in unusual
(nonconvex) structure of the quickest change detection
policy. In contrast the quantum decision model, de-
spite its mathematical complexity, results in the typical
convex quickest detection policy. The optimal quickest
detection policy is shown to perform strictly worse
than classical quickest detection for both models, via a
Blackwell dominance argument. The model and struc-
tural results provided contribute to an understanding
of the dynamics of human-sensor interfacing.

I. Introduction

In this paper we construct and analyze a sequential
quickest detection framework which aims to detect a
change in an underlying state by observing human de-
cisions that are inĆuenced by the state. The problem
of Šquickest detectionŠ [1] is fundamental to statistical
signal processing and has applications in a wide variety
of sectors [2]. Bayesian quickest detection utilizes a prior-
posterior updating scheme and an assumed distribution
for the change point. In this paper, we consider Bayesian
quickest detection, in which the observed signals are hu-
man decisions. This problem of detecting a state change
from the observation of human decisions is widespread,
and includes contexts such as detecting a market shock
by observing individual Ąnancial investment decisions,
sentiment change through social media monitoring, or
adversarial group strategy change through individual de-
cision monitoring. We provide several structural results
which characterize the optimal detection performance of
the analyst who attempts to detect an underlying state
change by observing human decisions, in the context of two
speciĄc decision making models: the anticipatory model of
[3] and the quantum decision model of [4].

Vikram Krishnamurthy, School of Electrical and Computer En-
gineering, Cornell University. Email: vikramk@cornell.edu. This re-
search was supported by the U.S. Army Research Office under grant
W911NF-19-1-0365, U.S. Air Force Office of ScientiĄc Research un-
der grant FA9550-22-1-0016, and National Science Foundation under
grant CCF-2112457.

A. Anticipatory Decision Making

Anticipatory decision making has applications in cyber-
physical systems such as human-sensor, human-robot and
command-control systems [5]. In behavioral economics,
Caplin & Leahy [3] propose a model for anticipatory
human decision making via a horizon-2 decision process:
the Ąrst stage involves choosing an action to minimize
an anticipatory psychological reward (involving the prob-
abilities of choosing actions at stage 2), while at the
second stage the agent realizes its actual reward. Such
anticipatory models mimic important features of human
decision making:
(i) Extensive studies in psychology and neuroscience [6]
show that humans are anticipation-driven, and even simple
decisions involve sophisticated multi-stage planning.
(ii) Anticipatory agents act to reduce anxiety. [7] pre-
sented experimental results where people chose a larger
electric shock than waiting anxiously for a smaller shock.
(iii) Anticipative agents often deliberately avoid infor-
mation. [8] reports that giving patients more information
before a stressful medical procedure raised their anxiety.

An important aspect of anticipatory decision making is
time-inconsistency. The dependence of the current reward
on future plans results in a deviation between planning and
execution. This phenomenon is called time-inconsistency1

[9] and BellmanŠs principle of optimality no longer holds.
Time inconsistency results in the planning fallacy of
Kahneman & Tversky [10]: people tend to underestimate
the time required to complete a future task. Compared
to rational agents, optimistic agents take higher risk of
making the wrong decision but have higher anticipatory
reward. [11] show that it is optimal for agents with an-
ticipatory reward to take irrational beliefs (referred to as
subjective beliefs) deliberately. As will be discussed below,
the appropriate concept of optimality for time-inconsistent
problems is the subgame Nash equilibrium.

B. Quantum Decision Theory

In psychology, Quantum Decision Theory ( [12], [13] and
references therein) has emerged as a new paradigm which
is capable of generalizing current models and accounting
for certain violations of axiomatic assumptions. For ex-
ample, it has been empirically shown that humans rou-
tinely violate SavageŠs ŠSure-Thing PrincipleŠ [14], which
is equivalent to violation of the law of total probability,
and that human decision making is affected by the order

1In game-theoretic terms, time-inconsistency arises when the op-
timal policy to the current multi-stage decision problem is sub-game
imperfect.
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of presentation of information [15] ("order effects"). These
violations are natural motivators for treating the decision
making agentŠs mental state as a quantum state in Hilbert
Space; The mathematics of quantum probability was de-
veloped as an explanation of observed self-interfering and
non-commutative behaviors of physical systems, directly
analogous to the Ąndings which Quantum Decision Theory
(QDT) aims to treat. Indeed, the models of Quantum
Decision Theory have been shown to reliably account for
violations of the ŠSure-Thing PrincipleŠ and order effects
[12], while models relying on classical probabilistic struc-
tures cannot.

Remark: Quantum Decision Theory does not claim that
the human mind is acting in a quantum manner in any
physical sense, but simply uses the mathematical struc-
ture of quantum probability as a parsimonious generative
blackbox model for human decision making.

We utilize the quantum probabilistic model of [4], which
provides a generalized decision making process that can
account for certain empirically observed decision making
phenomena and provides a quantitative way of reasoning
about effects of cognitive biases and suboptimalities, such
as bounded rationality, through a free-parametrization.
We have also recently utilized this model within a human-
machine assisted decision making scheme, in which a
machine provides input signals to a human to dynamically
steer the humanŠs decisions towards optimality [16].
C. Quickest Detection Framework

The quickest detection framework of this paper is
schematically illustrated in Fig. 1. An underlying state
changes at a geometrically distributed unknown time. At
each time instant, a sensor obtains a noisy measurement
of the underlying state, computes the posterior probability
of the state, and provides this information to a human
decision maker (e.g. as a recommendation). The human
uses this information to choose an action at each time
instant according to the anticipatory or quantum decision
model. These human decisions are monitored by a Quick-
est Change Detector, which computes a belief in the un-
derlying state by exploiting knowledge of the anticipatory
model structure or quantum decision parameters. Based
on the computed belief, the Quickest Detector then decides
to continue or declares that a change has occurred, in
which case the problem terminates. Note that the quickest
detector assumes the decisions are output from either the
anticipatory or quantum model, and this assumption is
Ąxed for all time. Thus we characterize the structure of
the detectorŠs optimal policy under each assumption.

II. Anticipatory Decision Making
This section deĄnes time inconsistent decision problems

and reviews the inĆuential behavioral economics model [3]
for human decision making with anticipatory feelings. This
model will be used in Sec.V to formulate our human sensor
interactive quickest change detection problem.

A. Anticipatory Model of Caplin & Leahy [3]

We now review the time inconsistent model for anticipa-
tory human decision making in Caplin & LeahyŠs paper [3];

see also [17]. A key step in the formulation below is the
anticipatory state (2) at time 1 which depends on the
probability of future actions (at time 2); this gives the
model its anticipatory property.

1) Anticipatory Model and Time Inconsistency: The
anticipatory decision model in [3] comprises two time
steps indexed by k = 1, 2. The physical state sk ∈ S,
k = 1, 2, where S denotes the state space, evolves with
Markov transition kernel p(s2♣s1). Let a1 ∈ A1 and
a2 ∈ A2 denote the actions taken by the agent (human)
at time 1 and 2. These actions are determined by the non-
randomized policies µ1 and µ2 where

a1 = µ1(s1), a2 = µ2(s2, a1). (1)

The Ąrst key idea in Caplin & Leahy [3] is to deĄne the
anticipatory (psychological) state zk, k = 1, 2:

z1 = ϕ
(

s1, a1, ¶p(a2 = a♣s1, a1, µ2), a ∈ A2♢
)

,

z2 = (s2, a2, a1),
(2)

for some pre-deĄned function ϕ. Note µ2 is a deterministic
function that parametrizes p(a2 = a♣s1, a1, µ2). In [3], zk

models the human decision makerŠs state of mind (anxi-
ety). More generally, zk can model any anticipatory plan,
such as for example in situation awareness systems. Note
that the anticipatory state z1 depends on the set of condi-
tional probabilities ¶p(a2 = a♣s1, a1, µ2), a ∈ A2♢. These
conditional probabilities model anticipation (anxiety)2 of
the decision maker at time 1 about possible actions it can
make at time 2. The anticipation is resolved at time 2 when
physical state s2 is observed and all uncertainty is resolved;
hence the anticipatory state z2 only contains physical state
s2 and realized action a2.

The next key idea in [3] is that the anticipatory agent
makes decisions by maximizing the 2-stage anticipatory
utility

sup
µ1,µ2

J(µ1, µ2) = Eµ1,µ2
¶r1(z1) + r2(z2)♢ (3)

Here rk(zk) ∈ IR denote the reward functions. The 2-stage
anticipatory utility, called psychological utility in [3], (3)
looks just like a standard time separable utility except for
the presence of the anxiety term ¶p(a2 = a♣s1, a1, µ2), a ∈
A2♢ in r1(z1). This µ2 dependency gives rise to time
inconsistency in decision making. As in [3], we assume
that the agent knows all the parameters in the above
anticipatory model. The key point is that the reward at
time 1 depends on the psychological (anticipatory) state
which in turn depends on the probability of future actions
and states.

2As discussed in [3], introducing anticipatory emotions explains
why changing an outcome from zero to a small positive number
can have a large effect on anticipation. Human decision makers
are sensitive to the possibility rather than probability of negative
outcomes [?]. A terrorist attack (unlikely event) worries people a lot
more than a car crash (high probability event).
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2) Subgame Perfect Nash Equilibrium: Caplin & Leahy
[3] ŚsolveŠ the time inconsistent decision problem (3) using
the extended Bellman equation, such that the optimal
policy at time 2 is deĄned as:

µ∗
2(s2, a1) = argmax

a2

r2(s2, a2, a1) (4)

Note that by deĄnition (1), µ∗
2 depends on a1 and s2.

To specify the optimal policy at time 1, we Ąrst intro-
duce the following compact notation. DeĄne

λa
defn
=

∫

S

I(s2 : µ∗
2(s2, a1) = a) p(s2♣s1) ds2,

λ = ¶λa, a ∈ A2♢

(5)

At time 1, due to time inconsistency, the agent chooses
a time consistent policy µ∗

1 based on extended Bellman
equation [3]:

µ∗
1(s1) = argmax

a1

J1(s1, a1, µ
∗
2), (6)

V1(s1) = max
a1

J1(s1, a1, µ
∗
2),

J1(s1, a1, µ
∗
2) = r1

(

ϕ(s1, a1, λ)
)

+ E¶r2(s2, a2, a1)♣s1, a1, µ
∗
2♢

= r1

(

ϕ(s1, a1, λ)
)

+

∫

S

r2

(

s2, µ
∗
2(s2, a1), a1

)

p(s2♣s1) ds2

Recall p(s2♣s1) is the transition kernel of the physical state.

(ii) The anticipatory (psychological) state z1 in (2)
consisted of the set of conditional probabilities ¶p(a2 =
a♣s1, a1, µ2), a ∈ A2♢. More generally, one can formulate
the anticipatory state with these conditional probabilities
replaced by

¶E¶Ψ(a2 = a, s2)♣s1, a1, µ2♢, a ∈ A2♢ (7)

for some pre-deĄned function Ψ.

(iii) We mentioned previously that the subgame Nash
equilibrium approach to time inconsistency disregards the
fact that µ∗

2 is no longer optimal at time 1. Another
insightful way of viewing this is that since the estimated
anticipatory reward r1

(

ϕ(s1, a1, λ)
)

requires the agent to
extrapolate what might happen at the second stage, plans
are not optimal once an action is taken. As an example,
people tend to assign higher future workload than what
they will actually take on.

B. Characterizing the Nash Equilibrium Policy of Antici-
patory Decision Maker

The previous section gave a general setup of the an-
ticipatory decision making model and associated subgame
Nash equilibrium policy. However, the Nash equilibrium
(6) is the solution of the extended Bellman equation
(integral equation) and is difficult to compute in general.
In this section, we make speciĄc assumptions on the
anticipatory model to give a useful characterization of the
Nash equilibrium. SpeciĄcally, these assumptions result in
a bang-bang and threshold structure for the subgame Nash
equilibrium policy (Theorem 1 below).

Bayesian parametrization of transition kernel and re-
ward: Recall r2 is the reward at time 2; see (2), (3). In the
rest of the paper, we will parametrize r2 and the transition
kernel p(s2♣s1) by a Bayesian parameter. The parame-
terized reward and transition kernel are constructed as
follows: DeĄne the reward r2(s2, a2, a1, x) and transition
kernel p(s2♣s1, x) which now also depends on a state of na-
ture (ground truth) x. The process x ∈ X = ¶1, 2, . . . ,m♢
will be formally deĄned in Sec.V to model change in
quickest detection. Then deĄne the parametrized reward
rη,2 and transition kernel pη(s2♣s1) as

rη,2(s2, a2, a1) =
∑

x∈X

r2(s2, a2, a1, x) η(x)

pη(s2♣s1) =
∑

x∈X

p(s2♣s1, x) η(x)
(8)

Here η is an m-dimensional Bayesian belief (posterior)
vector that lies in the unit m − 1 dimensional simplex Π
of probability mass functions: η = [η(1), . . . η(m)]′ ∈ Π,
where

Π = ¶η : η(i) ∈ [0, 1],
m

∑

i=1

η(i) = 1♢ (9)

The posterior η will be formally deĄned in (18) and
appears naturally in the quickest change detection for-
mulation in Sec.V (where the underlying state of nature
x jump changes). In this section, η is simply a Ąxed
probability vector in the two-stage anticipatory decision
model discussed above.

1) Structural Characterization of Nash equilibrium:
With rη,2 deĄned in (8), for notational convenience, deĄne

∆η(s2, a1) = rη,2(s2, 2, a1) − rη,2(s2, 1, a1) (10)

We make the following assumptions on the anticipatory
decision model of Sec.II-A:

(A1) The action spaces are A1 = [0, 1], A2 = ¶1, 2♢. Recall
the actions a1 ∈ A1 and a2 ∈ A2.
The state space is S = [0, 1]. Recall s1, s2 ∈ S.

(A2) rη,2(s2, a2, a1) is convex in a1.
(A3) ∆η(s2, a1) deĄned in (10) is increasing in s2. Equiva-

lently, rη,2(s2, a2, a1) is supermodular in (s2, a2).
(A4) The solution s∗

2(a1) of ∆η(s2, a1) = 0 exists for a1 ∈
(0, 1) and is continuously differentiable on (0, 1).

(A5)
∂∆η

∂a1

∂2∆η

∂s2∂a1

−
∂∆η

∂s2

∂2∆η

∂a2

1

≥ 0

(A6) The anticipatory reward is r1(z1) = βz1 where β > 0
and the psychological state (see (7)) is

z1 = max¶E¶Ψ(a2 = a, s2)♣s1, a1, µ2♢, a ∈ A2♢

(A7) Ψ(a2 = 1, s2) pη(s2♣s1) is increasing in s2

Ψ(a2 = 2, s2) pη(s2♣s1) is decreasing in s2.
(A8) The observation likelihoods Bx,y (19) are TP2 (totally

positive of order 2); that is, Bx̄,yBx,ȳ ≤ Bx,yBx̄,ȳ,
x̄ > x, ȳ > y.

(A9) r2(s2, a2, a1, x) (see (8)) is supermodular in (x, a2),
i.e., r2(s2, a2, a1, x̄) − r2(s2, a2, a1, x) is increasing in
a2.

The following structural result characterizes the struc-
ture of the subgame Nash equilibrium. For subsequent
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reference, we will denote the explicit dependence of µ∗
1 and

µ∗
2 on Bayesian parameter η (see (9)) as µ∗

1,η and µ∗
2,η.

Theorem 1. Consider the anticipatory decision model of
Sec.II-A with action and state spaces specified by (A1).
Then

1) Under (A3), (A4), the subgame perfect Nash equi-
librium policy µ∗

2 specified by (4) has a threshold
structure:

µ∗
2,η(s2, a1) =

{

1 if s2 ≤ s∗
2,η(a1)

2 s2 > s∗
2,η(a1)

(11)

for some threshold state s∗
2,η(a1) ∈ [0, 1] which depends

on the Bayesian parameter η.
2) Under (A4), (A5), threshold state s∗

2,η(a1) is convex
in a1.

3) Under (A2)-(A7), the utility-to-go J1(s, a1, µ
∗
2) de-

fined in (6) is convex in a1. Therefore, the subgame
Nash equilibrium policy µ∗

1 has the following bang-
bang3 structure:

µ∗
1,η(s1) =

{

1 if β > β∗

0 otherwise
(12)

for some positive constant β∗. (β is defined in (A6).)

Proof. See Appendix of arXiv paper [18].

III. Quantum Model of Martinez et al [4]

This section presents the open-quantum system model
that we will use to represent the decision preference evolu-
tion of the human decision maker. We deĄne the evolution
of the density operator of the decision maker using the
open-system Quantum Lindbladian Equation, proposed in
[4] and implemented in [19]. For our purposes we abstract
away from the time-evolution such that decisions are made
from the steady-state distribution, the existence of which
is proved in [4]. This steady-state represents the ceasing
of any deliberation.

A. Modeling Psychological State via Quantum Probability

Suppose there are n underlying states in the state space
X , and A actions in the action space A. For each state
i ∈ ¶1, . . . , n♢ construct a corresponding unit complex
vector Ei ∈ C

n such that ¶Ei♢
n
i=1 are orthonormal. For

each action i ∈ ¶1, . . . , A♢, construct a complex vector
ai ∈ C

A such that ¶ai♢
A
i=1 are orthonormal. Denote HX =

span¶E1, . . . , En♢, HA = span¶a1, . . . , aA♢, and form the
tensor product Hilbert space H = HX ⊗ HA. The agentŠs
psychological state is represented by a density operator ρt

which acts on the Hilbert space ρt : H → H. SpeciĄcally,
ρt =

∑

j pj ♣ψj⟩ ⟨ψj ♣ with
∑

j pj = 1, ♣ψj⟩ ∈ H ∀j The

3The phrase Şbang-bang controllerŤ comes from classical optimal
control theory. It characterizes a control policy with continuous-
valued actions that switches between two extremes.

psychological state ρt evolves according to the Lindbladian
operator L(α,λ,φ) by the ordinary differential equation4

dρt

dt
= L(α,λ,φ)ρt (13)

where (α, λ, ϕ) are free parameters which govern the evo-
lution, each having a psychological interpretation, see [4].
Implicit in L(α,λ,φ) is a belief η(x) in the underlying state
x ∈ ¶1, . . . , n♢ and a utility function u : A × X → IR. The
psychological state ρt encodes a time dependent probabil-
ity distribution Γ(a, t) over actions a ∈ A in the following
way. Let Pi be the projector on to the subspace spanned
by action vector ai ∈ H, then Γ(ai, t) = Tr(PiρtP

†
i ), where

P
†
i is the adjoint of Pi.
For the sake of brevity, we refer the readerŠs to [4] for

the construction of the Lindbladian operator L(α,λ,φ).

B. Practicality in Human Decision Making

The above quantum model for human decision-making
accounts for violations of the sure-thing principle (STP),
which we now describe. Suppose there exists an action
a and two states E1, E2. Suppose Γ is a non-degenerate
posterior belief (strictly in the interior of the unit simplex)
of the underlying state. The violation of the sure-thing
principle occurs when P (a♣Γ) is not a convex combination
of P (a♣E1) and P (a♣E2), i.e.

P (a♣Γ) ̸= ϵ P (a♣E1) + (1 − ϵ)P (a♣ E2) ∀ ϵ ∈ (0, 1)

Pothos and Busemeyer [20] (see also [14]) review empirical
evidence for the violation of STP and show how quantum
models can account for it by introducing quantum interfer-
ence in the probability evolution. Note that this violation
cannot be accounted for by traditional models which rely
on classical probability, as the sure-thing principle follows
directly as a consequence of the law of total probability.

C. Decision making protocol

Each quantum decision maker (human) in the sequential
decision process behaves as follows. The agent has initial
psychological state ρ0 and utility u : A × X → IR.
An underlying state distribution η(x) is provided by a
Bayesian inference machine (Sensor). u and η(x) pa-
rameterize L(α,λ,φ), along with psychological parameters
α, λ, ϕ. The psychological state at time t, ρt, evolves
according to (13) and induces a distribution Γη(a, t) over
the action space as

Γη(a, t) = Tr(PaρtP
†
a ) (14)

By [4], we are guaranteed the existence of a steady-state
distribution

Γη(a) = lim
t→∞

Γη(a, t)

We assume action an is taken probabilistically according to
the steady-state distribution Γη(a) which is independent

4The reader may be familiar with the Schrödinger equation which
governs the time evolution of closed quantum systems. The Lindbla-
dian equation is a generalization which governs the time evolution
of open quantum systems (i.e. those that interact with an external
dissipative environment). The recent literature in psychology uses
the Linbladian framework to model human decision making.
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from the initial state ρ0. This represents the action choice
occurring after deliberation has ended, and the steady
state is typically reached relatively quickly5. We can then
abstract away from the time dependence to get the map

L(α,λ,φ) : (η(x), u(x, a)) → Γη(a) (15)

At each discrete time point of the quickest detection
protocol, the agent:

• consists of initial psychological state ρ0, utility u :
A × X → IR, and parametrization (α, λ, ϕ). Note
that these quantities are time independent and thus
constant for all discrete time steps.

• is provided state information in the form of a Bayesian
posterior ηn(x) by the Sensor.

• deliberates until reaching a steady-state action distri-
bution Γηn(a), from map (15).

• takes action an probabilistically from Γηn(a)

IV. Quickest Change Detection with
Anticipatory and Quantum Decision Makers

We now introduce the quickest change detection pro-
tocol and the formulation of an optimal policy for such
a protocol. The aim of quickest detection is to determine
the jump time τ0 of the state of nature ¶xn♢ i.e., evaluate
the optimal stationary policy µ∗ of the global decision
maker that minimizes the Kolmogorov-Shiryaev criterion
for detection of disorder:

Jµ∗(π) = inf
µ
Jµ(π),

Jµ(π) = dEµ[(τ − τ0)+] + fPµ(τ < τ0)
(16)

where τ = inf¶n : un = 1♢ is the time at which the global
decision maker announces the change. The parameters d
and f specify the delay penalty and false alarm penalty,
respectively.

The optimal policy µ∗(π) (16) can be formulated as the
solution of a stochastic dynamic programming equation.
The quickest detection problem (16) is an example of a
stopping-time partially observed Markov decision process
(POMDP) with a stationary optimal policy.

We now introduce some notation, then describe the
protocol in detail.

i) The state of nature ¶xn ∈ ¶1, 2♢, n ≥ 0♢ models the
change event which we aim to detect. xn starts in
state 2 and jumps to state 1 at a geometrically dis-
tributed random time τ0 with E[τ0] = 1

1−p
for some

p ∈ [0, 1). So, ¶xn♢ is a 2-state Markov chain with
absorbing transition matrix and initial probability

P =



1 0
1 − p p



, π0 =



0
1



(17)

with change time τ0 = inf¶n : xn = 1♢.
ii) The (anticipatory / quantum) decision agents act se-

quentially. A sensor observes the state of nature xn in
noise and computes a Bayesian posterior distribution
η(x) of the underlying state. This is given to the

5See [4] for a proof of the steady state and a discussion of relaxation
times of this evolution

human, who then makes a local decision an according
to

a) Anticipatory: the subgame Nash equilibrium of
Theorem 1

b) Quantum: the steady-state action distribution
Γη(ai) induced by the Lindbladian operator
L(α,λ,φ,η) and map (15).

iii) Based on the history of local actions a1, . . . , an, the
global decision maker chooses action

un = ¶1(stop and announce change), 2(continue)♢

iv) DeĄne the public belief πn and private belief ηn at
time n as the posterior distributions initialized with
η0 = π0 = [0, 1]′ :

πn(x) = P(xn = x♣a1, . . . , an), x = 1, 2

ηn(x) = P(xn = x♣a1, . . . , an−1, yn),
(18)

where yn is the private observation recorded by agent
n. We have πn(x), ηn(x) ∈ Π, the unit one-simplex.

Figure 1: Sequential Quickest Change Detection with decision mak-
ing agents. The underlying state of nature xn jump changes at time
τ0 ∼Geo(1-p), where p is known. At each time n a sensor observes
yn ∼ P (y♣x), and the public belief signal πn−1 from the previous time
point. The sensor outputs a private belief ηn (obtained via Bayesian
update) in the underlying state to the decision maker. The decision maker
chooses action an either by the Anticipatory subgame Nash Equilibrium of
Theorem 1 or probabilistically from the distribution Γη(a) induced by the
Quantum map (15). The quickest detector sees an and outputs its public
belief πn and signal un according to (22) and (25). Note that we assume
the quickest detector has knowledge of the decision maker’s process (either
anticipatory or quantum).

A. Change Detection Protocol

We now detail the multi-agent quickest change detection
protocol; see also [21].

i) Sensor obtains public belief πn−1 and signal un−1

from global decision maker. The process only contin-
ues if un−1 = 2.

ii) Let Y denote the observation space. The sensor
records noisy observation yn ∈ Y of state of nature
xn with conditional density

Bx,y = p(yn = y♣xn = x) (19)

iii) Private Belief. The sensor evaluates the Bayesian
private belief

Authorized licensed use limited to: Cornell University Library. Downloaded on June 26,2023 at 21:27:43 UTC from IEEE Xplore.  Restrictions apply. 
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ηn = T (πn−1, yn), T (π, y) =
ByP

′π

σ(π, y)
, (20)

σ(π, y) = 1
′ByP

′π, By = diag(B1,yB2,y) (21)

and feeds this to the human agent.
iv) Local decision. State posterior ηn and physical state

sn are observed by the agent.

a) Anticipatory: The agentŠs private belief ηn affects
its reward and transition kernel of physical state
process ¶sn, n ≥ 1♢ as in (8):

rη,2(s2, a2, a1) =
∑

x∈X

r2(s2, a2, a1, x) η(x)

pη(s2♣s1) =
∑

x∈X

p(s2♣s1, x) η(x)
(8 repeated)

The agent uses ηn, sn to make anticipatory deci-
sions an = (an,1, an,2) via (12), (11) in Theorem 1.

b) Quantum: The agentŠs private belief ηn parame-
terizes the Lindbladian operator L(α,λ,φ). This in-
duces a steady-state action probability distribution
Γη(ai) via the map (15), and the action an is taken
probabilistically according to Γη.

v) Quickest Detector. Based on the decisions an of local
decision maker n, the quickest detector:

i) Updates the public belief from πn−1 to πn as

πn = T̄ (πn−1, an, sn) (22)

T̄ (π, a, s) =
Rπ

a(s)P ′π

σ̄(π, a, s)
, σ̄(π, a, s) = 1

′Rπ
a(s)P ′π

where Rπ
a(s) = diag(Rπ

1,a(s), Rπ
2,a(s)),

Rπ
x,an

(s) = P(an = a♣xn = x, πn−1, sn = s) (23)

The action probabilities Rπ
x,a are computed as

Rπ
x,a(s) =

∫

Y

P (a♣π, s, y)Bx,ydy (24)

where P (a♣π, s, y) = I(µ∗
2,T (π,y)(s, an,1) = an,2)

when the anticipatory decision model is assumed,
and P (a♣π, s, y) = Γ̄π

y (a) when the quantum de-
cision model is assumed. Recall an = (an,1, an,2)
and µ∗

2,η is the anticipatory decision makerŠs sub-

game Nash equilibrium policy (11), and Γ̄π
y is the

quantum decision makerŠs induced action distribu-
tion (15) given public belief π and observation y.
SpeciĄcally, Γ̄π

y is the output of the map (15), with
input η(x) = T (π, y), u(x, a) and parametrization
(α, λ, ϕ). Note that in the quantum decision-making
protocol, the action an is independent from the
state sn, so likewise the value of Rπ

x,a(s), and

therefore T̄ (π, a, s), does not depend on s.
ii) Chooses global action un using optimal policy µ∗:

un = µ∗(πn) ∈ ¶1(stop), 2(continue)♢. (25)

iii) Is un = 2, then set n to n + 1 and go to step 1. If
un = 1, then stop and announce change.

B. Quickest Detector Optimal Policy [17]

Considering the aim of quickest detection, characterized
by (16), we now outline the details of the optimal policy
stochastic dynamic programming formulation.

1) Costs: To present the dynamic programming equation
we Ąrst formulate the false alarm and delay costs (16)
incurred by the global decision maker in terms of the
public belief.

i) False alarm penalty: If global decision un = 1 (stop)
is chosen before the change point τ0, then a false
alarm penalty is incurred. The false alarm event
¶xn = 2, un = 1♢ represents the event that a change
is announced before the change happens at time
τ0. Recall (17) the jump change occurs at time τ0

from state 2 to state 1. Then recalling f ≥ 0 is
the false alarm penalty in (16), the expected false
alarm penalty is

fPµ(τ < τ0) = fEµ¶E[I(xn = 2, un = 1)♣Gn]♢

Gn = σ-algebra generated by (a1, . . . , an)
(26)

Clearly E[I(xn = 2, un = 1)♣Gn] can be expressed
in terms of the public belief πn(2) = P (xn =
2♣a1, . . . , an) as

C(πn, un = 1) = fe′
2πn, where e2 = [0, 1]′ (27)

ii) Delay cost of continuing: If global decision un = 2 is
taken then Protocol 1 continues to the next time. A
delay cost is incurred when the event ¶xn = 1, un =
2♢ occurs, i.e. no change is declared at time n. The
expected delay cost is dE[I(Xn = 1, un = 2)♣Gn]
where d > 0 denotes the delay cost. In terms of the
public belief, the delay cost is

C(πn, un = 2) = de′
1πn, where e1 = [1, 0]′ (28)

We can re-express Kolmogorov-Shiryaev criterion
(16) as

Jµ = Eµ¶
τ−1
∑

n=0

C(πn, 2) + C(πτ , 1)♢ (29)

where τ = inf¶n : un = 1♢ is adapted to
the σ-algebra Gn. Since C(π, 1), C(π, 2) are non-
negative and bounded for all π ∈ Π, stopping is
guaranteed in Ąnite time.

2) Bellman’s equation for Quickest Detection Policy
Consider the costs (27), (28) deĄned in terms of the
public belief π. Then the optimal stationary policy
ϕ∗(π, s) deĄned in (25), (16). and associated value
function V (π, s) are the solution of BellmanŠs dy-
namic programming functional equation [21]

Q(π, s, 1)
defn
= C(π, 1),

Q(π, s, 2)
defn
= C(π, 2)

+

∫

S

∑

a∈ A1× A2

V
(

T̄ (π, a, s̄), s̄
)

σ̄(π, a, s̄) p(s̄♣s)♢ ds̄

ϕ∗(π, s) = arg min¶Q(π, s, 1), Q(π, s, 2)♢,

V(π, s) = min¶Q(π, s, 1), Q(π, s, 2)♢ = J∗
φ(π, s)

(30)
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The public belief update T̄ and normalization mea-
sure σ̄ were deĄned in (22). Recall (25) that un =
ϕ∗(πn, sn) is the global decision makerŠs action
whether to continue or stop. Note that in the case
of the quantum decision protocol, since T̄ (π, a, s) is
independent from s, the value function V (π, s) and
associated terms in (30) have no dependence on s.
The goal of the global decision-maker is to solve
for the optimal quickest change policy ϕ∗ in (30) or
equivalently, determine the optimal stopping set S

S = ¶π, s : ϕ∗(π, s) = 1♢ = ¶π, s : Q(π, s, 1) ≤ Q(π, s, 2)♢
(31)

3) Value Iteration Algorithm
The optimal policy ϕ∗(π, s) and value function V(π, s)
can be constructed as the solution of a Ąxed point
iteration of BellmanŠs equation (30) Ű the resulting
algorithm is called the value iteration algorithm. The
value iteration algorithm proceeds as follows: Initial-
ize V0(π, s) = 0 and for iterations k = 1, 2, . . .

Vk+1(π, s) = min
u∈U

Qk+1(π, s, u),

ϕ∗
k+1(π, s) = argmin

u∈U
Qk+1(π, s, u) π ∈ Π,

Qk+1(π, s, 1) = C(π, 1), Qk+1(π, s, 2) = C(π, 2)

+

∫

S

∑

a∈ A1× A2

Vk

(

T̄ (π, s̄, a), s̄
)

σ̄(π, s̄, a) p(s̄♣s)ds̄,

(32)

Let B denote the set of bounded real-valued func-
tions on Π. For any V, Ṽ ∈ B and π ∈ Π, deĄne
the sup-norm metric sup ∥V(π, s) − Ṽ(π, s)∥, s ∈ S.
Since C(π, 1), C(π, 2), π ∈ Π, are bounded, the
value iteration algorithm (32) generates a sequence
of lower semi-continuous value functions ¶Vk♢ ⊂ B
that converge pointwise as k → ∞ to V(π, s) ∈ B, the
solution of BellmanŠs equation [22].

V. Characterizing the Structure of the
Quickest Detector

In this section we analyze several structural properties
of the quickest detection protocol detailed in Sec. IV.
Our results in this section are structured as follows: In
Section V-A we prove that the optimal policy (30) has a
single threshold structure for the quantum decision model
and that the structure for the anticipatory model may
exhibit multiple thresholds. In Section V-B we provide a
lower bound on the optimal cost incurred by the quickest
detector via the policy of Sec. IV. SpeciĄcally, this lower
bound is given by the optimal cost incurred within the
classical quickest change detection protocol, i.e. without
intermediate human decisions.

A. Threshold Structure of Optimal Policy

1) Anticipatory Decision Model: We assume in this
section that the observation space and action space of the
anticipatory agent are Y = ¶1, . . . , Y ♢, A2 = ¶1, 2♢. The
purpose of this section is to show that even though the

public belief π ∈ Π is continuum, there are only Y + 1
possible distinct action likelihood probability matrices.

SpeciĄcally, deĄne the following Y points in the one-
dimensional simplex Π:

π∗
y = ¶π : (r1 − r2)′ByP

′π = 0♢, y = 1, . . . , Y

Note that π∗
y = [1 − π∗

y(2), πy(2)]′ depends on a1, s.

Theorem 2. Under (A8), (A9), it follows that

π∗
1(2) ≤ π∗

2(2) · · · ≤ π∗
Y (2) (33)

Thus the belief space Π = [0, 1] can be partitioned into
at most Y + 1 non empty intervals denoted P1, . . . ,PY +1

where

P1 = [0, π∗
1(2)],P2 = (π∗

1(2), π∗
2(2)], . . . ,Py+1 = (π∗

Y (2), 1]
(34)

On each such interval, the action likelihood Rπ (23) is a
constant with respect to belief π. Specifically, for fixed a1, s

Rπ(s) =



∑l−1
i=0 B1i

∑Y
i=l B1i

∑l−1
i=0 B1i

∑Y
i=l B1i

]

, π ∈ Pl (35)

Proof. See Appendix of arXiv paper [18].

The following Theorem uses this result to show that the
optimal detection policy given the anticipatory decision
model need not consist of only a single threshold. This is
similar to the multi-threshold policies in [23].

Theorem 3. Given the anticipatory decision making
quickest change detection protocol detailed in Section II-A,
it is not guaranteed that the quickest detector’s optimal
policy µ∗ (16) may not exhibit a single threshold state π′

such that

µ∗(π) =

{

2, π < π′

1, π ≥ π′

Proof. See Appendix of arXiv paper [18].

2) Quantum Decision Model: We will show that, given
the quantum decision making quickest change detection
protocol detailed in Section IV-A, the quickest detectorŠs
optimal policy (16) exhibits a single-threshold behavior.
In contrast, the optimal policy induced by anticipatory
decision making can exhibit multiple thresholds

Theorem 4. Given the quantum decision making quickest
change detection protocol detailed in Section III-C, the
quickest detector’s optimal policy µ∗ (16) exhibits a single
threshold state π′ such that

µ∗(π) =

{

2, π < π′

1, π ≥ π′

Proof. See Appendix of arXiv paper [18].
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B. Lower Bound on Performance

First deĄne the optimal policy and cost in classical
quickest change detection. Similar to (30), the optimal
policy ϕ∗(π) and cost V(π) incurred in classical quickest
detection, satisfy the following stochastic dynamic pro-
gramming equation:

ϕ∗(π) = arg min
u∈U

Q(π, u), V(π) = min
u∈U

Q(π, u), (36)

where Q(π, 2) = C(π, 2) +
∑

y∈Y

V (T (π, y))σ(π, y),

Q(π, 1) = C(π, 1), Jµ∗(π) = V(π).

Here T (π, y) is the Bayesian Ąlter update deĄned in (20)
and Jµ∗(π) is the cumulative cost of the optimal policy
starting with initial belief π. Note that unlike Protocol
1, in classical quickest detection, there is no public belief
update (22) or interaction between the public and private
beliefs.

The following theorem says that for any initial belief
π, the optimal detection policy with either anticipative
or quantum-decision agents acting sequentially (Protocol
1) incurs a higher cumulative cost than that of classical
quickest detection.

Theorem 5. Consider the quickest change detection
problem involving either anticipatory or quantum-decision
agents described in Protocol 1 and associated value func-
tion V(π, s) in (30). Consider also the classical quickest
detection problem with value function V(π) in (36). Then
for any initial belief π ∈ Π, the optimal cost incurred by
classical quickest detection is smaller than that of quickest
detection with anticipatory agents. That is, V(π) ≤ V(π, s)
for all π ∈ Π, s ∈ S.

Proof. See Appendix of arXiv paper [18].

VI. Conclusion

In this work we have presented the framework of quick-
est change detection using human decisions, incorporating
a time-inconsistent anticipatory model and a quantum
decision model. The anticipatory model accounts for a
decision-makerŠs tendency to plan for future events while
making current decisions, and the quantum model uti-
lizes the generalized structure of quantum probability
to account for a wider range of human decision-making
phenomena. Structural Results for the detectorŠs optimal
policy were obtained, which reveal that the anticipatory
model can result in a counter-intuitive non-convex optimal
stopping region. In contrast, while the quantum decision
model is mathematically more complex, it results in the
standard convex (single-threshold) optimal stopping re-
gion. We also show that the optimal detection performance
(given by the value function) with both models is lower
bounded by that of classical quickest detection, indicating
that the intermediate human decisions strictly hinder
detection performance.
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