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Abstract
We introduce the notion of semibreak divisors on metric graphs and prove that every effec-
tive divisor class (of degree at most the genus) has a semibreak divisor representative. This
appropriately generalizes the notion of break divisors (in degree equal to genus). We pro-
vide an algorithm to efficiently compute such semibreak representatives. Semibreak divisors
provide the tool to establish some basic properties of effective loci inside Picard groups of
metric graphs. We prove that effective loci are pure-dimensional polyhedral sets. We also
prove that a ‘generic’ divisor class (in degree at most the genus) has rank zero, and that the
Abel-Jacobi map is ‘birational’ onto its image. These are analogues of classical results for
Riemann surfaces.
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664 A. Gross et al.

1 Introduction

Metric graphs, in many respects, are tropical (or non-Archimedean) analogues of Riemann
surfaces. For example, there is a well-behaved theory of divisors and Jacobians for metric
graphs (see e.g. [2, 7, 14, 25]). There is also an interesting interaction between the theories of
divisors on metric graphs and on algebraic curves, with numerous applications in algebraic
geometry (see e.g. [4, 6, 8, 10, 12, 13, 19, 20]). The purpose of this work is to study tropical
effective loci and establish some of their basic properties.

Let� be a compactmetric graph of genus g. Fix an integer 0 ≤ d ≤ g. There is a canonical
(Abel-Jacobi) map S(d) : Divd+(�) → Picd(�) taking an effective divisor D of degree d on
� to its linear equivalence class [D]. The image of this map, denoted by Wd , is the locus of
effective divisor classes. In the language of chip-firing games on metric graphs, this is the
collection of chip configuration classes (up to chip-firing moves) which are ‘winnable’.

We provide nice representatives for equivalence classes [D] ∈ Wd . In the case d = g,
this is done by Mikhalkin and Zharkov in [25] using the theory of tropical theta functions.
They introduce the notion of ‘break divisors’, and prove that every [D] ∈ Wg = Picg(�) has
a unique break divisor representative. The notion of break divisors is further studied in [2]
from a more combinatorial point of view, related to orientations on graphs.

A break divisor can be described as follows: pick g disjoint open edge segments in �

so that, if we remove them from �, the remaining space becomes contractible (see the gray
edges in Fig. 1). A break divisor is a divisor obtained by picking one point from the closure
of each of these open edge segments (see Fig. 1a, b). So a break divisor has degree equal to
g by construction.

We define a semibreak divisor to be a divisor obtained from a break divisor after removing
some points in its support. So a semibreak divisor is an effective divisor ‘dominated’ by a
break divisor (see Fig. 1c, d). In particular, a break divisor is a semibreak divisor in degree g.

We remark that a seemingly different generalization of the notion of break divisors appears
in [1].

Most of our work is devoted to proving the following result.

Theorem A For 0 ≤ d ≤ g, there exists a semibreak divisor in each [D] ∈ Wd.

See Theorem 6.2.
Our proof relies on the theory of submodular functions. We apply the theory directly to

the setting of metric graphs. We remark that one also finds submodularity in [2] and in [1],

(a)

2

(b) (c) (d)

Fig. 1 Semibreak divisors on a metric graph of genus 3. a A ‘generic’ break divisor. b A break divisor with
some endpoints of open edge segments. c A semibreak divisor in degree 2 dominated by the break divisor in
a. d A semibreak divisor in degree 1 dominated by the break divisor in b
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Effective divisor classes on metric graphs 665

where the theory is applied to finite (discrete) graphs. We rely mostly on the geometry and
topology of � and its subspaces, and avoid the use of tropical theta functions, orientations,
semimodels, reduced divisors, etc.

We start by a key result which states that a given divisor is a break divisor if and only if a
certain inequality holds for every ‘admissible’ subset of � (see Proposition 4.2 for a precise
statement). This characterization relates break divisors to submodular functions. In its core,
our approach resembles classical combinatorial proofs using submodularity. However, we
exploit these ideas directly in a ‘continuous setting’. We find it remarkable that the ‘discrete
theory’ of submodular functions fits naturally into our tropical setting.

Having this characterization, the naive strategy to prove Theorem A is straightforward:
given an effective divisor D, we should first find a linearly equivalent divisor D′ that satisfies
all the desired inequalities. We then would like to add points to D′ carefully in a way that
all the desired inequalities are preserved. This process should eventually stop and output a
break divisor that dominates a semibreak divisor linearly equivalent to D. It turns out that
the construction of a suitable break divisor is more subtle than by simply adding points to
D′. The process will rely on understanding certain canonical subsets I(E) � � attached to
effective divisors E . In a key result (Proposition 5.8) we will describe exactly how various
invariants change as points are moved in relation to I(E).

We then turn our attention to the question of uniqueness. As mentioned earlier, it is proved
in [2, 25] that there is a unique break divisor in each [D] ∈ Wg . We give a new proof of
this fact which is based on a ‘maximum principle’ (see Lemma 6.4 and Proposition 6.5). If
d < g there can be distinct semibreak divisors in [D] ∈ Wd (see Figure 3). However, if �

is sufficiently connected, then there is a unique semibreak divisor in each [D] ∈ Wd (see
Proposition 6.7).

Wewill then prove that an ‘integral’ version of TheoremA also holds. A finite unweighted
graphG may be thought of as ametric graphwhose edges have length 1.We define an integral
divisor to be a divisor supported on the vertices of G.

Theorem B Let � be a metric graph all of whose edges have length 1. Let [D] ∈ Wd and
assume D is integral. Then there exist an integral semibreak divisor in [D]. Moreover, every
semibreak divisor in [D] is also integral.
See Proposition 6.9 for a precise statement.

The fact that there exists an integral semibreak divisor in [D] is immediate from our
method of proof of Theorem A. More work is needed to show that all semibreak divisors in
the equivalence class are indeed integral. We note that the ‘existence’ part of Theorem Bmay
be stated purely in terms of finite graphs (avoiding metric graphs, and working only with
divisors supported on vertices). One could give another combinatorial proof of the ‘existence’
part by using the theory of partial orientations in [3] and results in [2] (see Remark 6.10).
We also remark that one could modify our proof to give a purely combinatorial proof of the
finite graph version of Theorem B.

In the case that the input data can be given by rational numbers, our proof of Theorem A
yields an effective algorithm:

Theorem C Given an effective divisor D ≥ 0, there is an efficient algorithm that computes a
semibreak divisor D′ ∈ [D].
See Theorem 7.1 for the precise statement.

Our algorithm uses submodular set function minimization [18, 26] as a subroutine. We
remark that, for break divisors onfinite graphs, an algorithm is presented in [3, Sect. 7] relating
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666 A. Gross et al.

the computation to the max-flow min-cut problem in graph theory. One could also modify
Backman’s algorithm [3,Algorithm4.7] to find semibreak representatives for effective divisor
classes on finite graphs.

Finally we apply the theory of semibreak divisors to prove the following tropical (non-
Archimedean) analogues of some classical results on Riemann surfaces.

Theorem D Let 0 ≤ d ≤ g.

(a) Wd is a purely d-dimensional polyhedral subset of Picd(�).
(b) The tropical (Abel–Jacobi) map S(d) : Divd+(�) → Picd(�) is ‘birational’ onto its image.
(c) There exists an open dense subset Ud ⊆ Wd such that r(D) = 0 whenever [D] ∈ Ud.

See Theorems 8.3 and 8.5 for precise statements.
The analogous statements for Riemann surfaces essentially follow from simple linear

algebraic facts applied to ‘Brill–Noether’ matrices (see e.g. [15, p. 245]). The situation in
tropical geometry is different. While the fact that Wd is a d-dimensional polyhedral subset
of Picd(�) is elementary and well-known, the pure-dimensionality of Wd is more subtle
(see Remark 8.4(i)) and we could not find a proof in the literature. We remark, however,
that one could give a highly non-constructive proof of pure-dimensionality by appealing to
Berkovich’s theory of non-Archimedean analytic spaces [11] and combining the results in
[8, 16] (see Remark 8.4(ii)).

The statement analogous to Theorem D(c) for Riemann surfaces (see e.g. [15, p. 245]) is
usually stated as r(D) = 0 for a generic effective divisor D. In algebraic geometry, this is
equivalent to saying r(D) = 0 for a generic effective divisor class [D]. In tropical geometry
these two statements are not equivalent and, in fact, the former statement is not true (see
Remark 8.6).

Structure of the paper. In Sect. 2 we will review some basic definitions and set our notations
and terminology. In Sect. 3 we establish a few basic topological facts about metric graphs.
In Sect. 4 we will state and prove a key result (Proposition 4.2) characterizing break divisors
in terms of certain inequalities arising from the topology of ‘admissible’ subsets of the
metric graph. In Sect. 5 we study the functions and subsets related to the inequalities in
Proposition 4.2. In Sect. 6 the notion of semibreak divisors is introduced. The existence of
semibreak divisors (Theorem A) is proved. We will also discuss the uniqueness issues and
consider the integral version of semibreak divisors (Theorem B). In Sect. 7 we show how one
can efficiently compute a semibreak divisor linearly equivalent to a given rational effective
divisor (Theorem C). In Sect. 8 we apply the theory of semibreak divisors to prove basic
generic properties of tropical effective loci (Theorem D).
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Effective divisor classes on metric graphs 667

2 Definitions and background

2.1 Metric graphs and vertex sets

A metric graph (or an abstract tropical curve) is a pair (�, d) consisting of a compact
connected topological graph �, together with an inner metric d . If � is not a single point,
one can alternatively define a metric graph as a compact connected metric space such that
every point has a neighborhood isometric to a star-shaped set, endowed with the path metric.

As all of our results are easy to show for metric circles, we will always assume that � is
neither a point nor a circle.

The points of � that have valency different from 2 are called branch points of �. A vertex
set for � is a finite set of points of � containing all the branch points. We denote the minimal
vertex set (i.e. the set of branch points) of� by V� . Note that V� is finite because� is assumed
to be compact. Also, V� is nonempty, because � is not a circle.

We denote the set of components of �\V� by E� and call its elements the open edges of
�. By a closed edge we mean the closure ē of an open edge e ∈ E� . An open connected
subset of an open edge of� is called an open edge segment, and the closure of such a segment
is called a closed edge segment. If e is a (closed or open) edge segment, the points in the
topological boundary ∂e of e are called its endpoints. Every edge has either 1 or 2 endpoints.

Every finite combinatorial graph G whose edges are labeled with positive real numbers
naturally determines a metric graph �G , where the edge labels give the lengths of the edges.
A model of a metric graph � is a finite combinatorial weighted graph G, together with an

isometry �G
φ−→ �. Up to isomorphisms, the model G is completely determined by the set

φ(V (G)), which is a vertex set for �, and conversely every vertex set determines a unique
(up to isomorphism) model. IfG is the model of� corresponding to the vertex set V = V (G)

(the isometry φ being implicit), then we call the elements of the set E(G) of components of
�\V the open edges of G. Of course, every open edge of G is an open edge segment of �.
Note that open edge segments of � may be thought of as open edges of some model of �.

2.2 Divisor theory onmetric graphs

Let Div(�) denote the free abelian group generated by the points of�. Denoting the generator
corresponding to p ∈ � by (p), an element of Div(�), called a divisor on �, can be uniquely
represented as

D =
∑

p∈�

ap(p) ,

where ap ∈ Z and all but finitely many of the ap are zero. It is convenient to denote the
coefficient ap in D by D(p). The support of D is supp(D) = {p ∈ � : D(p) �= 0}. A
divisor D ∈ Div(�) is called effective if D(p) ≥ 0 for all p ∈ �. For D, E ∈ Div(�),
we write E ≤ D if D − E is effective. The degree of a divisor D on � is defined as
deg(D) = ∑

p∈� D(p). More generally, the degree of a divisor D on a subset S is

deg(D|S) =
∑

p∈S
D(p) .

The set of divisors of a given degree d is denoted by Divd(�). The set of effective divisors
of a given degree d is denoted by Divd+(�).
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668 A. Gross et al.

Let R(�) be the group of continuous piecewise affine functions with integer slopes. These
are continuous functions φ : � → R such that for every isometric map γ : [0, ε] → �, the
pullback φ◦γ is piecewise-linear with integral slopes in the usual sense. They are the tropical
analogues of meromorphic functions on Riemann surfaces [25]. Note that such a function φ

can only change its slope finitely many times on each closed edge.
Let

div : R(�) → Div(�)

denote the Laplacian operator in the sense of distributions; for φ ∈ R(�), we have

div(φ) =
∑

p∈�

σp(φ)(p) ,

where σp(φ) is the sum of incoming slopes of φ at p. It is easy to check that the group of
principal divisors Prin(�) = div(R(�)) is contained in Div0(�).

Two divisors D1 and D2 are called linearly equivalent, written D1 ∼ D2, if there exists
φ ∈ R(�) such that D1−D2 = div(φ). It is immediate that∼ defines an equivalence relation.
We denote the equivalence class of a divisor D by [D]. The complete linear system |D| is
the set of all effective divisors linearly equivalent to D.

Remark 2.1 Given an effective divisor D, it is useful to think of D(p) as the number of chips
placed at the point p ∈ �. For a closed path-connected subset S of � and (sufficiently small)
ε > 0, the rational function

φS,ε : � → R, x �→ min{ε, d(x, S)} ,

where d is the metric on �, has value 0 on S and ε outside an ε-neighborhood of S, with
slope 1 in each outgoing direction from S. Replacing D with D + div(φS,ε) has the effect of
moving a chip to distance ε along each outgoing direction from S. This is often called ‘firing’
the subset S to distance ε. One can check that every element of R(�) can be written as a
finite integer linear combination of functions of the form φS,ε . Therefore, one can describe
linear equivalence of divisors on � in terms of ‘chip-firing games’.

3 Convex hulls and admissible subsets

Definition 3.1 Let S be a subset of a metric graph �. The convex hull of S, denoted by
conv(S), is defined to be the union of S and all closed edge segments whose endpoints are
contained in S. A set S ⊆ � is called convex, if conv(S) = S.

In other words, if a closed edge of � contains at least two points from S, then conv(S)

will contain the segment connecting those two points. See Fig. 2.
It is not difficult to see that one obtains�\conv(S) by removing all connected components

of �\S that are contained in some open edge of �.

Remark 3.2 One could consider a different notion of convexity by requiring that a set contains
all shortest paths between any two of its points. This is not equivalent to our definition: our
definition only depends on the topology of the metric graph, and not on the metric data.

We also define the convex hull with respect to a model G. If S is a subset of the metric
graph �, and G is a model of �, then let convG(S) be the union of all closed edge segments
of G whose endpoints are contained in S.
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Effective divisor classes on metric graphs 669

(a) (b) (c)

Fig. 2 a A closed set S and b its convex hull conv(S). The gray nodes on (c) are the vertices of a model G
and (c) shows convG (S) for this model

Definition 3.3 We call a subset S ⊆ � admissible if it has only finitely many path-connected
components.

Remark 3.4 (i) A subset S ⊆ � is admissible if and only if there is a model G of � such
that S is a finite union of vertices and open edges of G.

(ii) The collection of admissible sets is closed under finite unions, intersections, and com-
plements.
Let S be a closed admissible subset of � and let p ∈ S. For any sufficiently small star-

shaped open neighborhood B of p, the set B\S is a disjoint union of finitely many open
edge segments, the number of which only depends on p. We denote this number by valS(p).
Informally, this is the number of edges emanating from the admissible set S at a point p.
Clearly valS(p) = 0 if p /∈ ∂S, where ∂S denotes the topological boundary of S.

Definition 3.5 Let S be an admissible subset of a metric graph �.

(i) The arithmetic genus of S is defined as pa(S) = 1 − χ(S), where χ(S) is the usual
topological Euler characteristic of S. If Hi (S; R) denotes the i-th singular cohomology
group of S with real coefficients, χ(S) = dim H0(S; R) − dim H1(S; R)

(ii) The genus contribution of S is defined as ψ(S) = pa(�)− pa(�\S) = χ(�\S)−χ(�).

Remark 3.6 (i) A graph theorist might want to think of H1(S; R) as the vector space of
R-valued flows on S. Moreover, dim H0(S; R) is the number of connected components
of S.

(ii) There is a more graph theoretic definition for the arithmetic genus. For an admissible
subset S of �, we call a model G fine for S, if each component of S contains at least
one vertex. Then pa(S) is equal to the number of closed edges of G lying entirely inside
S, minus the number of vertices of G lying inside S, plus 1. It is easy to check that by
refining the model G, the quantity “number of closed edges of G lying entirely inside S,
minus the number of vertices of G lying inside S, plus 1” can only decrease, and after
our model becomes fine, it does not change anymore by refining.

(iii) Recall that the geometric (or topological) genus of S is defined as pg(S) = dim H1(S; R).
Clearly, pg(S) = pa(S) if and only if S is connected. If S is connected, we will refer to
pg(S) = pa(S) as the genus of S.

Example 3.7 For the thickened set S on the left panel of Fig. 2, we have χ(S) = 4, pa(S) =
−3, pg(S) = 0, and ψ(S) = 6.

We will need the following well-known property of the Euler characteristic.
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670 A. Gross et al.

Lemma 3.8 If S1 and S2 are two open subsets of �, then the Euler characteristic obeys the
following version of the inclusion–exclusion principle:

χ(S1 ∪ S2) = χ(S1) + χ(S2) − χ(S1 ∩ S2) .

Proof This follows from the Mayer–Vietoris sequence. ��
Definition 3.9 Let S be an admissible subset of �. We define e(S) to be the number of open
edge segments in �\S whose endpoints are contained in S.

Remark 3.10 If S1 and S2 are admissible and convex, then e(S1 ∪ S2) is precisely the number
of open edge segments contained in �\(S1 ∪ S2) that have one endpoint in S1\S2 and one
endpoint in S2\S1.
Lemma 3.11 Let � be a metric graph. Let S be a closed admissible subset of �. Then we
have

ψ(conv(S)) = ψ(S) − e(S) .

Proof As noted after Definition 3.1, one obtains �\conv(S) from �\S by removing from it
all connected components that are contained in an open edge. These connected components
are precisely the open edge segments in �\S whose endpoints are contained in S, so there
are e(S) of them. The topological Euler characteristic of each open edge segment is 1. So by
the additivity of the topological Euler characteristic on disjoint unions of closed admissible
subsets, we have χ(�\conv(S)) = χ(�\S) − e(S). Now the statement follows from the
definition of ψ (Definition 3.5 (ii)). ��
Example 3.12 For the set S in Fig. 2, we have ψ(S) = 6, e(S) = 2, and ψ(conv(S)) = 4.

Our final result in this section established the (sub)modularity of ψ .

Lemma 3.13 Let � be a metric graph. For any two closed admissible subsets S1 and S2 of �
we have

(a)

ψ(S1) + ψ(S2) = ψ(S1 ∩ S2) + ψ(S1 ∪ S2) .

(b)

ψ(S1) + ψ(S2) = ψ(S1 ∩ S2) + ψ(conv(S1 ∪ S2)) + e(S1 ∪ S2)

Proof For part (a), by Definition 3.5, it suffices to show that

χ (�\S1) + χ (�\S2) = χ (�\(S1 ∩ S2)) + χ (�\(S1 ∪ S2)) .

This follows fromLemma3.8 applied to the pair of open subsets (�\S1, �\S2) of�\(S1∩S2).
Now part (b) follows from Lemma 3.11. ��

4 Break divisors

The notion of break divisors was introduced by Mikhalkin and Zharkov in [25], and further
studied in [2].
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Effective divisor classes on metric graphs 671

Definition 4.1 Let � be a metric graph of genus g. A divisor D on � is called a break
divisor if there exist g disjoint open edge segments e1, . . . , eg and points pi ∈ ei such that
D = (p1) + · · · + (pg) and �\⋃g

i=1 ei is contractible.

One can alternatively think of �\ ⋃g
i=1 ei in Definition 6.1 (i) as a spanning tree of some

model G of the metric graph �.
The following characterization of break divisors is known to experts in the context of finite

graphs (see, for example, [2, Proposition 4.11] and [21, Theorem 3.4]). It can be proved in
the metric graph setting in an analogous way.

Proposition 4.2 Let � be a metric graph of genus g, and let D ∈ Divg(�). The following are
equivalent:

(i) D is a break divisor.
(ii) deg(D|S) ≥ pa(S) for all open admissible subsets ∅ �= S ⊆ �.
(iii) deg(D|S) ≤ ψ(S) for all closed admissible subsets S � �.

5 Error functions and error sets

Motivated by Proposition 4.2 we make the following definitions.

Definition 5.1 Let � be a metric graph of genus g. Let D ∈ Divd+(�), with 0 ≤ d ≤ g.

(i) For a closed admissible subset S ⊆ � we define the D-error of S as the integer

Err(D, S) = deg(D|S) − ψ(S) .

(ii) The D-max error is defined to be the integer

ME(D) = max{Err(D, S) : S � � closed and admissible} .

(iii) A D-max error set is a closed and admissible (not necessarily proper) subset S ⊆ � with
Err(D, S) = ME(D).

Lemma 5.2 Let � be a metric graph of genus g. Let D ∈ Divd+(�), with 0 ≤ d ≤ g.

(a) For any two closed admissible subsets S1 and S2 of � the following hold:

Err(D, S1) + Err(D, S2) = Err(D, S1 ∩ S2) + Err(D, S1 ∪ S2) .

Err(D, S1) + Err(D, S2) + e(S1 ∪ S2) ≤ Err(D, S1 ∩ S2) + Err(D, conv(S1 ∪ S2)) .

(b) We haveME(D) ≥ 0.
(c) D is a break divisor if and only if deg(D) = g andME(D) = 0.
(d) Err(D, �) > ME(D) if and only if D is a break divisor.

Proof The equality in part (a) is a combination of Lemma 3.13 (a) and the obvious fact that

deg(D|S1) + deg(D|S2) = deg(D|S1∩S2) + deg(D|S1∪S2) .

To prove the inequality we use the same fact about degrees and combine it with
Lemma 3.13 (b) and the fact that deg(D|conv(S1∪S2)) ≥ deg(DS1∪S2) because D is effec-
tive.
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672 A. Gross et al.

Part (b) follows from Err(D,∅) = 0.
Part (c) follows Proposition 4.2 and part (b).
For part (d), we first note that Err(D, �) = d − g + 1. If D is a break divisor, we have

Err(D, �) = 1 but ME(D) = 0 by part (c). Conversely, if Err(D, �) > ME(D), then the
nonnegativity of ME(D) implies that d − g+ 1 ≥ 1. This implies that d = g, and hence that
ME(D) = 0. By part (c), we conclude that D is a break divisor. ��
Lemma 5.3 Let � be a metric graph of genus g. Let D ∈ Divd+(�), with 0 ≤ d ≤ g. Assume
ME(D) > 0.

(a) If S is a D-max error set, then S is convex.
(b) If S1 and S2 are two D-max error sets, then S1 ∪ S2 and S1 ∩ S2 are also D-max error

sets. Moreover e(S1 ∪ S2) = 0.

Proof (a) If S is not convex, then ψ(conv(S)) < ψ(S) by Lemma 3.11. Since S ⊆ conv(S)

we always have deg(D|conv(S)) ≥ deg(D|S). It follows that
Err(D, conv(S)) > Err(D, S) = ME(D) .

If conv(S) �= � this is a contradiction (see Definition 5.1 (ii)). If conv(S) = � then

1 ≥ Err(D, �) > ME(D) > 0 ,

which, again, is a contradiction.
(b) First, we observe that Err(D, S1 ∪ S2) ≤ ME(D). If S1 ∪ S2 �= � this follows directly

from Definition 5.1 (ii). If S1 ∪ S2 = �, then it follows from Lemma 5.2 (d) and the fact that
D is not a break divisor by assumption.

Together with Definition 5.1 (ii) and Lemma 5.2 (a), it follows that

2ME(D) ≥ Err(D, S1 ∩ S2) + Err(D, S1 ∪ S2)

= Err(D, S1) + Err(D, S2)

= 2ME(D) .

Therefore, Err(D, S1 ∩ S2) = Err(D, S1 ∪ S2) = ME(D), that is S1 ∩ S2 and S1 ∪ S2 are
D-max error sets. By part (a), it follows that S1 ∪ S2 is convex and hence that e(S1 ∪ S2) = 0.
��
Proposition 5.4 Let � be a metric graph of genus g. Let D ∈ Divd+(�), with 0 ≤ d ≤ g.
Then there exists a unique smallest (with respect to inclusion) D-max error set in �. If G is
the model corresponding to the vertex set V (G) = V� ∪ supp(D), then this smallest D-max
error set is of the form

I ∪
⋃

e∈J

ē (1)

for some I ⊆ V (G) and J ⊆ E(G).

Proof If ME(D) = 0 then the empty set is the unique smallest D-max error set. Suppose
that ME(D) > 0, and let S be a D-max error set. Suppose ∂S � V (G), i.e., there exists a
point in the boundary ∂S of S that is contained in an open edge e ∈ E(G). Since S is convex,
e\S is either an open edge segment or a disjoint union of two open edge segments. So, by
Lemma 3.8 applied to S1 = �\S and S2 = e, we have

χ(�\(S\e)) = χ(�\S) + χ(e) − χ(e\S) ≤ χ(�\S)
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and hence ψ(S\e) = χ(�\(S\e)) − χ(�) ≤ χ(�\S) − χ(�) = ψ(S). As we also have
deg(D|S) = deg(D|S\e) by definition of G, we see that Err(D, S\e) ≥ Err(D, S) and hence
that S\e is a D-max error set. This shows that every D-max error set contains a D-max error
set of the form (1). As there are only finitely many sets of this form, we see that every D-max
error set contains an inclusion minimal D-max error set, and that all of these are of the form
(1). By Lemma 5.3 (b), the intersection of all minimal D-max error sets is also a D-max
error set, hence this is the unique smallest D-max error set. ��
Definition 5.5 We will denote the unique minimal D-max error subset of � (as in Proposi-
tion 5.4) by I(D).

Remark 5.6 I(D) is always a proper subset of �, as the maximum error is taken for proper
(admissible) subsets. We have ME(D) = 0 if and only if I(D) = ∅.

We recall two standard notations. Let (X , d) be a metric space.

• For two nonempty subsets A, B ⊆ X , one defines

dist(A, B) = inf{d(x, y) : x ∈ A, y ∈ B} .

• For a nonempty subset A ⊆ X , one defines its ε-fattening by

Aε =
⋃

x∈A

{z ∈ X : d(z, x) ≤ ε} .

Lemma 5.7 Let � be a metric graph of genus g. Let D ∈ Divd+(�), with 0 ≤ d ≤ g. Let
S = I(D). Then for every p ∈ S we have valS(p) ≤ D(p).

Proof If p /∈ ∂S we have valS(p) = 0 and there is nothing to prove. Let p ∈ ∂S. Let B be a
sufficiently small open neighborhood of p, isometric to a star-shaped set and not containing
any point in V� ∪ supp(D) aside from p.

By the minimality of S, we know S\B is not a D-max error set, so

Err(D, S) ≥ Err(D, S\B) + 1 . (2)

By the choice of B, we have

deg(D|S\B) = deg(D|S) − D(p) . (3)

Furthermore, by Lemma 3.8 applied to �\S and B, we have

χ(�\(S\B)) = χ(�\S) + χ(B) − χ(B\S)

which equals χ(�\S) + 1 − valS(p) by the choice of B. Therefore,

ψ(S\B) = ψ(S) + 1 − valS(p) . (4)

Combining (2), (3), and (4), we obtain

Err(D, S) ≥ Err(D, S\B) + 1

= deg(D|S\B) − ψ(S\B) + 1

= (
deg(D|S) − D(p)

) − (
ψ(S) + 1 − valS(p)

) + 1

= Err(D, S) − D(p) + valS(p) ,

from which we deduce that valS(p) ≤ D(p). ��
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Proposition 5.8 Let � be a metric graph of genus g. Let D ∈ Divd+(�), with 0 ≤ d ≤ g. Let
S = I(D), and assume thatME(D) > 0.

(a) Let ε = dist (S, V�\S). Let D1 be the divisor obtained from D by ‘firing’ S to distance
ε. In other words, D1 = D + div(φS,ε), where φS,ε is as in Remark 2.1. Then

(i) D1 is effective.
(ii) ME(D1) ≤ ME(D).
(iii) IfME(D1) = ME(D), then Sε ⊆ I(D1).

(b) Let e− ∈ ∂S and e+ ∈ V�\S be endpoints of an open edge segment e ⊆ �\S. Let
D2 be the divisor obtained from D by moving a chip from e− to e+. In other words,
D2 = D + (e+) − (e−). Then

(i) D2 is effective.
(ii) ME(D2) ≤ ME(D).
(iii) IfME(D2) = ME(D), then S ∪ {e+} ⊆ I(D2).

Proof We observe that neither can S be empty, since ME(D) > 0, nor can it contain V� , as
this would imply S = conv(S) = �, a contradiction (see Remark 5.6).

(a) Note that ε = dist (S, V�\S) is well-defined because S and V�\S are nonempty. For
any p ∈ S, we have D1(p) = D(p) − valS(p). So the effectiveness of D1 follows directly
from Lemma 5.7.

Let U denote the the set of all closed edge segments e of length ε with endpoints ∂e =
{e−, e+} such that e− ∈ S and dist(e+, S) = ε. ‘Firing’ S to distance ε has the effect of
sending one chip from e− to e+ for each e ∈ U. So, for any admissible subset R ⊆ � we
have

deg(D1|R) = deg(D|R) − |{e ∈ U : e− ∈ R, e+ /∈ R}|
+|{e ∈ U : e− /∈ R, e+ ∈ R}| . (5)

Let R = I(D1). By Lemma 5.2 (a) and (5) we have:

Err(D, S ∩ R) + Err(D, conv(S ∪ R)) ≥ Err(D, S) + Err(D, R) + e(S ∪ R)

≥ Err(D, S) + Err(D1, R) + e(S ∪ R) − |{e ∈ U : e− /∈ R, e+ ∈ R}| ,
(6)

with equality only if {e ∈ U : e− ∈ R, e+ /∈ R} = ∅.
We claim that

|{e ∈ U : e− /∈ R, e+ ∈ R}| ≤ e(S ∪ R). (7)

Indeed, for any e ∈ U with e− /∈ R and e+ ∈ R we have e\{e−} � R because R is closed.
Since R is also convex (Lemma 5.3 (a)), e contains a unique connected component of the
complement of S ∪ R in its interior. This component is an open edge segment which has
one endpoint in S\R and one endpoint in R\S. It therefore contributes with 1 to e(S ∪ R),
proving (7).

By (6), (7), and the fact that Err(D, conv(S ∪ R)) ≤ ME(D) (see proof of Lemma 5.3
(b)), we obtain:

2ME(D) ≥ Err(D, S ∩ R) + Err(D, conv(S ∪ R))

≥ Err(D, S) + Err(D1, R)

= ME(D) + ME(D1) .
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It follows that ME(D1) ≤ ME(D). In case of equality, R is also a D-max error set and thus,
by Lemma 5.3 (b), so is S ∩ R. Because S = I(D), we must have S ⊆ R. And since (6) is
an equality, we have {e ∈ U : e− ∈ R, e+ /∈ R} = ∅. Therefore, R must contain all points of
� that have distance ε to S. By the convexity of R (Lemma 5.3 (a)), it follows that R does in
fact contain all points of distance at most ε to S.

(b) It follows directly from Lemma 5.7 that D2 is also effective. Let Q = I(D2). We have
four cases:

Case 1: e−, e+ ∈ Q. We have

ME(D2) = Err(D2, Q) = Err(D, Q) ≤ ME(D) .

In case of equality Q is D-max error set and thus contains both e+ and S.
Case 2: e−, e+ /∈ Q. As Q does not contain S, it is not a D-max error set. Therefore,

ME(D2) = Err(D2, Q) = Err(D, Q) < ME(D) .

Case 3: e− ∈ Q, e+ /∈ Q. We have

ME(D2) = Err(D2, Q) = Err(D, Q) − 1 < ME(D) .

Case 4: e− /∈ Q, e+ ∈ Q. We have ME(D2) = Err(D2, Q) = Err(D, Q) + 1. Since Q is
closed, the open edge segment e is not contained in S∪Q. It follows that e contains
a connected component of �\(S ∪ Q). As such an edge segment is automatically
an open edge segment with endpoints in S ∪ Q, we have e(S ∪ Q) > 0 and hence

Err(D, S ∩ Q) + Err(D, conv(S ∪ Q)) ≥ Err(D, S) + Err(D, Q) + e(S ∪ Q)

≥ ME(D) + ME(D2) − 1 + 1 .

From this and the fact Err(D, conv(S ∪ Q)) ≤ ME(D) (see proof of Lemma 5.3
(b)), we conclude

2ME(D) ≥ Err(D, S ∩ Q) + Err(D, conv(S ∪ Q)) ≥ ME(D) + ME(D2) .

It follows that ME(D2) ≤ ME(D). Equality is not possible in this case because Q
does not contain S.

��

6 Semibreak divisors in effective divisor classes

Definition 6.1 Let � be a metric graph of genus g. A semibreak divisor is an effective divisor
E such that E ≤ D for some break divisor D.

Note that a break divisor is also a semibreak divisor.

6.1 Existence of semibreak divisors

We are now ready to prove our main theorem about the existence of semibreak divisors in
effective classes.

Theorem 6.2 Let � be a metric graph of genus g. Let D ∈ Divd(�), with 0 ≤ d ≤ g, and
assume |D| �= ∅. Then |D| contains a semibreak divisor.
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Proof The result is straightforward for metric circles so, as before, we will assume � is not
homeomorphic to a circle. Since |D| �= ∅, we may also assume that D is effective.

Let E be any effective divisor of degree g − d . If ME(D + E) = 0, we are done by
Lemma 5.2 (c). If ME(D + E) > 0, let S = I(D + E). We will show how to construct a
pair (D′, E ′) of effective divisors such that

– D′ ∼ D and
– either ME(D′ + E ′) < ME(D + E), or ME(D′ + E ′) = ME(D + E) and I(D′ + E ′)

contains more branch points of � than S.

Since � has only finitely many branch points, and a convex subset of � containing all its
branch points must be equal to �, this will prove the theorem. We consider two cases:

(1) supp(E) ∩ ∂S �= ∅. Then there exists an open edge segment e ⊆ �\S with endpoints
e− ∈ supp(E) ∩ ∂S and e+ ∈ V�\S. Set D′ = D and E ′ = E − (e−) + (e+). Both
D′ and E ′ are effective by construction, and D′ ∼ D. By Proposition 5.8 (b), we have
ME(D′ + E ′) ≤ ME(D + E), and if there is equality, then I

(
D′ + E ′) contains more

branch points of � than S.
(2) supp(E)∩ ∂S = ∅. Let ε = dist (S, V�\S), and consider the divisor obtained from D+E

by ‘firing’ S to distance ε, i.e. D+E+div(φS,ε) (see Remark 2.1). By Proposition 5.8 (a),
D + E + div(φS,ε) is effective. Since ∂S ∩ supp(E) = ∅, this implies that D′ =
D + div(φS,ε) is also effective. Let E ′ = E . Then, again by Proposition 5.8 (a), we have
ME(D′ + E ′) ≤ ME(D + E), and if there is equality, then I

(
D′ + E ′) contains more

branch points of � than S.

��

6.2 Uniqueness issues

The existence of semibreak divisors (Theorem6.2) is sufficient for the applications considered
in Sect. 8. However, it is natural to wonder about uniqueness of such representatives. This is
investigated in this section.

By a cut C in a metric graph � we mean a disjoint union of finitely many open edge
segments that is a cut on some model of �. More precisely, there has to exist a model G and a
subset S ⊂ V (G) such the components of C are precisely the open edges of G that have one
endpoint in S and one in V (G)\S. The size of a cut C , denoted by size(C), is the number of
connected components (maximal open edge segments) of C . If S ⊆ � is a closed admissible
subset then, for sufficiently small ε > 0, the set {x ∈ �\S : dist(x, S) < ε} forms a cut. We
say that such a cut is determined by S. The size of a cut determined by S does not depend on
any choices, and will be denoted by c(S). We say that a cut determined by S is a proper cut,
if both S and �\S contains a branch point.

We start with two useful lemmas.

Lemma 6.3 Let � be a metric graph, and let S ⊆ � be a closed admissible set. Then

c(S) = ψ(S) − pa(S) + 1 .

Proof Let C be a cut determined by S. Because all components of C are open edge segments
we have

χ(C) = c(S) . (8)

123



Effective divisor classes on metric graphs 677

Let S′ = S∪C . Then S is a deformation retract of the open and admissible set S′. Therefore

χ(S) = χ(S′) . (9)

Applying Lemma 3.8 to the pair (S′, �\S) yields

χ(C) = χ(S′) + χ(�\S) − χ(�) . (10)

The result follows from (8), (9), and (10). ��
The following result is a generalized version of the ‘maximum principle’ (see e.g. [9,

Lemma 3.7])

Lemma 6.4 Let � be a metric graph and φ ∈ R(�). Let S be the subset of � where φ attains
its minimum. Then

(a) S is closed and admissible.
(b) For any p ∈ S we have −div(φ)(p) ≥ valS(p).

Proof Part (a) follows from the fact that φ is continuous, and only changes its slope finitely
many times on each closed edge. For part (b), note that if p, q ∈ S thenφ(p) = φ(q)whereas
if p ∈ S but q ∈ Sε\S (for a sufficiently small ε), then the outgoing slope of φ from p to q
is at least 1. Therefore −div(φ)(p) ≥ valS(p). ��
It is known that there is a unique break divisor representative in any equivalence class of
divisors in degree g [2, 25]. Here we give a new proof of this fact, which is better suited for
the study of semibreak divisors.

Proposition 6.5 Let � be a metric graph of genus g. If D, D′ ∈ Divg(�) are two distinct
break divisors then D � D′.

Proof Suppose, for a contradiction, that there exist two distinct linearly equivalent break
divisors D and D′. Then D′ = D + div(φ) for some φ ∈ R(�). Let S be the closed
admissible subset of � where φ attains its minimum, and let C be a sufficiently small cut
determined by S such that

C ∩ supp(D) = ∅ , C ∩ supp(div(φ)) = ∅ . (11)

Let S′ = S ∪ C . Then S is a deformation retract of the admissible open set S′, and in
particular pa(S′) = pa(S). By (11) and Proposition 4.2 we obtain

deg(D′|S) = deg(D′|S′) ≥ pa(S
′) = pa(S) .

By the definition of S and Lemma 6.4 we have

− deg(div(φ)|S) ≥ c(S) .

Together with Lemma 6.3, we conclude:

deg(D|S) = deg(D′|S) − deg(div(φ)|S) ≥ pa(S) + ψ(S) − pa(S) + 1 ≥ ψ(S) + 1 ,

This implies, byProposition 4.2 (iii), that D cannot be a breakdivisor,which is a contradiction.
��

The above argument does not guarantee the uniqueness of semibreak representatives even
for degree g − 1. Notice that indeed, an effective divisor class can have more than one
semibreak divisor (see Fig. 3).
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Fig. 3 Linearly equivalent semibreak divisors: (u) ∼ (v)

Lemma 6.6 Let � be a metric graph, and let D and D′ be distinct effective divisors on � with
D ∼ D′. Then there exists a closed admissible subset S of � such that for every p ∈ S we
have D(p) ≥ valS(p). In particular, we have deg(D|S) ≥ c(S). If D and D′ are semibreak
divisors, then S can be chosen such that it determines a proper cut.

Proof By assumption, we have D′ = D + div(φ) for some φ ∈ R(�). Let S be the closed
admissible subset of � where φ attains its minimum. By the definition of S and Lemma 6.4,
for any p ∈ S we have

−div(φ)(p) ≥ valS(p) .

As D′ is effective, it follows that

D(p) + div(φ)(p) = D′(p) ≥ 0 .

Consequently,

D(p) ≥ −div(φ)(p) ≥ valS(p) .

Summing over all p ∈ S we obtain

deg(D|S) ≥
∑

p∈S
valS(p) = c(S) .

Now assume that D and D′ are semibreak divisors. Since semibreak divisors cannot
contain two chips on the same open edge, neither S nor �\S can be a subset of an open edge.
Therefore, S determines a proper cut. ��

Proposition 6.7 Let � be a metric graph of genus g. Fix 0 ≤ d ≤ g. Assume for each proper
cut C of � we have size(C) ≥ d +1. If D, D′ ∈ Divd(�) are two distinct semibreak divisors
then D � D′.

Proof Suppose, for the sake of contradiction, that there exist two linearly equivalent semi-
break divisors D and D′ of degree d . Then by Lemma 6.6, there exists a closed admissible
subset S determining a proper cut C with deg(D|S) ≥ c(S). As

c(S) = size(C) ≥ d + 1 ,

this contradicts D being of degree d . ��

Remark 6.8 Proposition 6.7 should be compared with [7, Theorem 1.8]. In fact, in the proof,
we only use the fact that D and D′ are effective. In other words, we are precisely proving the
metric graph analogue of [7, Theorem 1.8].
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6.3 Integral semibreak divisors

Let G = (V (G), E(G)) be a finite (unweighted) graph. Let � be a metric graph of genus g,
obtained from G by turning each edge to an edge segment of length 1. Let Divd(G) denote
those elements of Divd(�) that are supported on V (G). We will refer to such divisors as
integral. Let |D|G denote the set of all effective integral divisors linearly equivalent to D. It
is known that, for an integral divisor D, we have |D|G �= ∅ if and only if |D| �= ∅ [17, 24].

The following result implies that there is an entirely integral version of Theorem 6.2.

Proposition 6.9 Let D ∈ Divd(G), with 0 ≤ d ≤ g, and assume |D|G �= ∅. Then there exists
an integral semibreak divisor in |D|. Moreover, each semibreak divisor in |D| is integral.

Proof The existence part follows from the proof of Theorem 6.2: we can choose E such
that supp(E) ⊆ V (G). Then D + E is still integral. To obtain our semibreak divisor, we
successively apply steps (1) or (2). It is enough to show that in the above case these both
give integral break divisors. For step (1), this is trivial. For step (2), notice that for an integral
divisor D + E , the set ∂I (D + E) is contained in supp(D + E), and hence is contained in
V (G). It follows that ε = dist (S, V�\S) is an integer and hence that D′ and E ′ will still be
integral divisors, proving the existence part of the statement.

Let us suppose for a contradiction that there also exists a non-integral break divisor D′′
in |D|. This means that there exists p /∈ V (G) such that D′′(p) > 0, which implies that
D′′(p) = 1, as D′′ is a semibreak divisor. Let us suppose that the two vertices of the edge of
p are u and v. Take some φ ∈ R(�) such that D′′ = D′ + div(φ). Without loss of generality
we can assume that φ(u) = k is an integer. Then D′′(p) = 1 implies that the slope of the
segment between u and p and the slope of the segment between p and v differ by one. Let us
suppose that the slope of the segment between u and p is t ∈ Z, and let dist(u, p) = a (which
is not an integer). Then φ(p) = k + at and φ(v) = k + at + (1− a)(t − 1) = k + t − 1+ a.
Hence φ(v) is not an integer. Let S = {w ∈ V (G) : φ(w) ∈ Z}. Then S � V (G). Let C be
the cut determined by S, i.e., the set of edges of G where exactly one endpoint is from S. As
S is a proper subset of V (G) andG is connected,C is nonempty. If div(φ) is constant zero on
an edge of G, then the value of φ on the two endpoints differ by an integer, since the slopes
are integer and the length of each edge is one. Hence each edge of the cut C needs to have
an interior point q where div(φ)(q) �= 0. As D′ is integral, this means that div(φ)(q) > 0 on
each of these points, and thus D′′ has positive number of chips in the interior of each edge
of C , contradicting the fact that D′′ is a semibreak divisor. ��

Remark 6.10 It follows fromProposition 6.9 that there is an entirely finite graph version of the
theory of semibreak divisors. For example, any effective divisor of degree at most the genus
on a finite graph G is linearly equivalent to some semibreak divisor. One could directly
use a combinatorial analogue of our constructions to prove this (slightly weaker) result.
Alternatively, one can give a completely combinatorial proof using the theory of orientations
on graphs as described in [2] and [3] (see loc. cit. for the notation and terminology): let
D ∈ Divd+(G) with 0 ≤ d ≤ g. Pick a point q ∈ �. By [3, Theorem 5.7] we have
D − (q) ∼ DO for some ‘q-connected partial orientation’O. For any unoriented edge inO,
pick an arbitrary orientation to obtain a (full) q-connected orientation O′. By construction
DO ≤ DO′ . Let E = DO′+(q). This is a breakdivisor by [2,Lemma3.3]. Let D′ = DO+(q)

which is dominated by E .
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7 Computational aspects

In this sectionwe show that for an effective divisor,we canfind a linearly equivalent semibreak
divisor in polynomial time if the input data can be given by rational numbers.

Suppose that the metric graph � has rational edge lengths. We call a divisor D rational, if
for all p with D(p) �= 0, the distance of p from each branch point is rational.

We will encode a rational number a/b by the pair (a, b), where a and b are integers, but
they need not be relatively prime. We encode a metric graph in the following way: For each
branch point we write down the list of edges incident to it, along with the edge lengths. We
encode a point of an edge by writing down which edge it is on, and what is its distance from
one of the endpoints. We encode a divisor D by writing down D(p) along with the encoding
of p for each point p ∈ � such that D(p) �= 0.We only work with effective divisors of degree
at most g, hence we can suppose that D(p) ≤ g for each p. We might need more space for
encoding a divisor than for encoding the graph if the distance of some p with D(p) �= 0
has a large denominator. However, as the numbers D(p) are at most g, this is the only factor
that can make the code of a divisor large. We will need to encode closed convex sets. Let the
spanning set of a closed convex set S be the following:

spset(S) =
⋃

e∈E�

{∂(e ∩ S)},

where ∂∅ = ∅. Then spset(S) is a finite set of points, and S = conv(spset(S)). We encode S
by giving the points of spset(S).

Theorem 7.1 If � is a metric graph with rational edge lengths, and D is an effective rational
divisor, then a semibreak divisor linearly equivalent to D can be found in polynomial time.

Proof The trivial case of � being a circle can once again be excluded.
We need to be able to do the procedure in Theorem 6.2 algorithmically: at the first step,

we can choose E = (g − d) · p where d = deg(D) and p is an arbitrary branch point of �.
Then D + E is still rational, and the largest denominator in the encoding did not grow.

The next step is to find ME(D+ E) and S = I(D+ E). We address this issue later. If we
have I(D+E), we have to decide whether supp(E)∩∂S �= ∅. This can be done since ∂S has
at most |E�| points. If supp(E) ∩ ∂S �= ∅, the operations of case (1) can be trivially done in
polynomial time and the resulting D and E are rational. Moreover, the largest denominator in
the encoding does not grow. If supp(E)∩∂S = ∅, thenwe need to find ε = dist(S, V�\S). For
this, we need to check distances along polynomially many edges. Note that ∂S is contained
in supp(D + E), hence all the distances between ∂S and V�\S are rational. Thus, ε is also
rational, and so are the updates D′ and E ′. The effect of the firing can also be computed in
polynomial time, and as we only add or subtract distances, the largest denominator in the
encoding of D + E does not grow.

We need to update the divisors D and E polynomially many times (i.e., the loop in the
proof of Theorem 6.2 is executed polynomially many times): after any update, ME(D + E)

does not increase, and if it does not decrease, then the number of branch points in I(D + E)

increases. At the beginning, ME(D + E) is at most g, as deg(D|S) ≤ deg(D) ≤ g, and
ψ(S) ≥ 0. Hence there are at most g · |V�| updates.

It is left to show that one can find ME(D + E) and I(D + E) in polynomial time. For
any divisor D + E and convex set S, Err(D + E, S) can be computed in polynomial time,
hence it is enough to find I(D + E), and then ME(D + E) = Err(D + E, I(D + E)).
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For finding I(D + E), we will use submodular minimization. For a finite set A, a set
function f : 2A → R is called submodular if

f (X ∩ Y ) + f (X ∪ Y ) ≤ f (X) + f (Y ),

for all subsets X and Y of A. It is known [18, 26] (see also [27, Chapter 45]) that, if f takes
rational values and for any set X ⊆ A the value of f (X) can be computed in polynomial time,
then a set minimizing f can be found in polynomial time. Schrijver and Iwata–Fleischer–
Fujishige give combinatorial strongly polynomial algorithms [18, 26] that achieve this goal.

By Lemma 5.2 (a), for two closed convex sets S1 and S2,

Err(D + E, S1 ∩ S2) + Err(D + E, conv(S1 ∪ S2)) ≥ Err(D + E, S1) + Err(D + E, S2).

This essentially means that (−1) · Err(D + E, .) is a submodular set function, and we need
to find a smallest minimizing set for it. Though Err is defined for infinitely many sets, we
show how to turn the problem into a finite setting, and then we can apply a submodular
minimization algorithm.

Let us take a more refined modelG of�, where V (G) = V� ∪supp(D+E). Then |V (G)|
is still polynomial in the input size. By Proposition 5.4, I(D + E) is a convex set which is
the union of vertices and closed edges of G, hence it is enough to look for I(D + E) among
these sets.

For a set S which is the union of vertices and closed edges ofG, let spsetG(S) = S∩V (G).
Notice that if S is convex in G, and it is the union of vertices and closed edges of G, then
S = convG(spsetG(S)). Also, if S1 ⊆ S2, then convG(S1) ⊆ convG(S2).

Let us define the set function

f : 2V (G) → R, X �→ (−1) · Err(D + E, convG(X)) .

By the argument above, I(D+E) = conv(X) for the smallest f -minimizing set X .We claim
that f is submodular. This can be proved in the same way as Lemma 5.2 (a), by replacing
conv with convG , and using the elementary fact that

convG(X ∪ Y ) = convG(convG(X) ∪ convG(Y )), and

convG(X ∩ Y ) = convG(X) ∩ convG(Y )

for all subsets X and Y of V (G).
A submodular minimization algorithm only gives us a minimizing set, and not necessarily

a smallest one. To solve this problem, take f ′(X) = f (X)+ |X |
2|V (G)| . Then only the fractional

part of f ′(X) depends on the additional term, hence a set minimizing f ′ is a minimizing
set for f , and an inclusion-minimal (and hence smallest by Proposition 5.4) among those.
It is easy to check that f ′ is also submodular, and the values of f ′ are still computable in
polynomial time. ��

8 Generic effective divisor classes

8.1 Effective loci

Let � be a metric graph of genus g. Recall, for D ∈ Div(�), its rank r(D) is defined by the
properties that r(D) = −1 if |D| = ∅, and r(D) ≥ s ≥ 0 if for all E ∈ Divs+(�) we have
|D − E | �= ∅. Clearly, the rank of a divisor D only depends on its linear equivalence class
[D].
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The tropical Riemann-Roch theorem of [14, 25] (see also [7]) states that

r(D) − r(K − D) = deg(D) − g + 1 ,

where K = ∑
p∈� (val(p) − 2)(p).

The tropical Jacobian of � can be defined as the g-dimensional real torus

Jac(�) = H1(�, R)/H1(�, Z) .

For each choice of a base point q ∈ �, there is a natural, continuous map 
q : � → Jac(�)

sending q to 0, the Abel-Jacobi map (cf. [5, 25]). This map is piecewise linear, which means
that locally on � it factors through a piecewise linear map to the vector space H1(�, R). As
Jac(�) is a topological group, we may use its addition and the map 
q to define maps


(d)
q : Divd(�) → Jac(�)

for d ≥ 0. Of course, the composite �d → Divd(�) → Jac(�) will still be piecewise
linear. As �d is compact and Jac(�) is Hausdorff, it follows from closed map lemma (see
e.g. [22, Lemma A.52]) that �d → Jac(�) is a closed map. In particular, the effective locus
W̃d = 


(d)
q (Divd+(�)) is a closed polyhedral subset of Jac(�). It follows from the tropical

Riemann-Roch theorem that, for d ≥ g, we have W̃d = Jac(�).
If we denote

Picd(�) = Divd(�)/Prin(�) ,

then it is the content of the tropical Abel-Jacobi theorem that
(d)
q factors through the natural

map S(d) : Divd(�) → Picd(�), and that the induced morphism Picd(�) → Jac(�) is a
bijection ( [25]). We endow Picd(�) the topology inherited from this bijection. Under this
bijection, the effective locus W̃d corresponds to the locus of effective divisors classes Wd ,
i.e. those divisors classes [D] ∈ Picd(�) in degree d such that |D| �= ∅.

8.2 Generic semibreak divisors in effective loci

We are interested in generic properties ofWd , i.e. properties that hold on a dense open subset
of Wd .

Let 0 ≤ d ≤ g. The set Divd+(�) is endowed with the quotient topology coming from its
identification with �d modulo the action of the symmetric group Sd .

Let SBd ⊆ Divd+(�) denote the set of all semibreak divisors of degree d . Its preimage in
�d is the union of all sets of the form e1 ×· · ·× ed , where e1, . . . , eg are distinct open edges
of � such that �\⋃g

i=1 ei is connected. Therefore, the set SBd is closed in Divd+(�). Let �d

denote the relative interior of SBd . The preimage of �d in �d is the union of all sets of the
form e1 × · · · × ed , with e1, . . . , eg as above. In particular, �d is open in SBd .

Lemma 8.1 For any D ∈ �d , we have |D| = {D} and r(D) = 0.

Proof Let S be a closed admissible subset of �, and let C be a cut determined by S. Because
�\C is disconnected, there exists a component e of C such that D(p) = 0 for all p ∈ e. In
particular, for the unique point p ∈ e∩S we have D(p) < valS(p). The statement |D| = {D}
now follows from Lemma 6.6. If q /∈ supp(D), it follows from |D| = {D} that we must have
|D − (q)| = ∅ and therefore r(D) = 0. ��
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Remark 8.2 One can alternatively show, using the burning algorithm (see e.g. [24]), that any
D ∈ �d is universally reduced (i.e. q-reduced for all q ∈ �) which is equivalent to having
|D| = {D} (see [2, Lemma 4.19]).

Theorem 8.3 Let � be a metric graph of genus g, and fix 0 ≤ d ≤ g.

(a) The tropical Abel–Jacobi map S(d) : Divd+(�) → Picd(�) is ‘birational’ onto its image.
More precisely, there exists an open dense subset Ud ⊆ Wd such that the induced map
(S(d))−1(Ud) → Ud is a homeomorphism.

(b) Wd ⊆ Picd(�) is of pure dimension d.

Proof (a) Let Ud = S(d)(�d). It follows from Lemma 8.1 that (S(d))−1(Ud) = �d . By
Theorem 6.2 the induced map

SBd → Wd

is surjective. It is also a closed map (by the closed map lemma), because SBd is compact and
Wd is Hausdorff. In particular, the topology on Wd coincides with the quotient topology.

As �d is dense in SBd , it follows from the closedness of the map that Ud = S(d)(�d) is
dense inWd . It is a direct consequence of Lemma 8.1 that�d = (S(d))−1(Ud) and�d → Ud

is a bijection. Since�d is open in SBd , this implies that thatUd is open as well. As closedness
is local on the target, the induced map �d → Ud is closed again. And as a continuous and
closed bijection it must be a homeomorphism.

For part (b), note that �d , and hence Ud , are purely d-dimensional; every component
of �d can be identified with a d-dimensional open polyhedron in �d under the quotient
map �d → Divd+(�). It follows immediately that the closure Wd of Ud is also purely d-
dimensional. ��
Remark 8.4 (i) As Wd is the d-fold sum of W1, which is easily seen to be purely 1-

dimensional, it follows directly from the subadditivity of dimensions of sums thatWd is at
most d-dimensional. With the additional ingredient thatWg = Picg(�) is g-dimensional
it even follows that the dimension of Wd is equal to d (cf. [23, Proposition 3.6]). Note
that this argument does not immediately imply thatWd is purely d-dimensional, as sums
of pure-dimensional polyhedral sets are not pure-dimensional in general.

(ii) Another way to prove the pure-dimensionality of Wd is by tropicalization. It is well-
known that there exists a Mumford curve C whose Berkovich analytification has � as its
skeleton. Combining the results [8, Theorem 1.3] and [16, Theorem 6.9] then yields the
statement. Of course, this approach is highly non-constructive.

Theorem 8.5 Let � be a metric graph of genus g and let d be a nonnegative integer. Then
there exists an open dense subset Ud ⊆ Wd of the effective locus such that, for [D] ∈ Ud,
we have

r(D) =
{
d − g if d > g,

0 if 0 ≤ d ≤ g.

Proof The case d > g is an elementary consequence of the tropical Riemann-Roch Theorem:

• If d ≥ 2g − 1 we can take

Ud = Wd = Picd(�) .

Since deg(K ) = 2g − 2, for every degree d divisor D we have r(K − D) = −1, hence
r(D) = d − g by the tropical Riemann-Roch.
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• If g < d ≤ 2g − 2 we can take

Ud = Picd(�) −
(
S(2g−2)(K ) − W2g−2−d

)
.

We claim Ud is a dense open subset of Wd = Picd(�). This follows from the fact that
W2g−2−d is a closed polyhedral subset of Picd(�), of dimension at most 2g−2−d < g.
This certainly follows from Theorem 8.3 (b), but it is more elementary and follows
directly from definitions.
If [D] ∈ Ud then, by definition of Ud , K − D is not equivalent to an effective divisor.
Therefore, r(K − D) = −1 and r(D) = d − g by the tropical Riemann-Roch Theorem.

Assume d ≤ g. In this case, we may take Ud = S(d)(�d) which is open and dense in Wd

by Theorem 8.3. If [D] ∈ Ud , then D is linear equivalent to some D′ ∈ �d . It follows from
Lemma 8.1 that r(D′) = 0, finishing the proof. ��
Remark 8.6 Unlike in algebraic geometry, a property that holds generically on Wd does not
automatically hold generically for Divd+(�). This is because the tropical Abel-Jacobi map
S(d) may contract facets of Divd+(�).
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