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METRIC GRAPHS, CROSS RATIOS, AND RAYLEIGH’S LAWS

ROBIN DE JONG AND FARBOD SHOKRIEH

We systematically study the notion of cross ratios and energy pairings on metric graphs and electrical
networks. We show that several foundational results on electrical networks and metric graphs immediately
follow from the basic properties of cross ratios. For example, the projection matrices of Kirchhoff have
natural (and efficiently computable) expressions in terms of cross ratios. We prove a generalized version
of Rayleigh’s law, relating energy pairings and cross ratios on metric graphs before and after contracting
an edge segment. Quantitative versions of Rayleigh’s law for effective resistances, potential kernels, and
cross ratios will follow as immediate corollaries.

1. Introduction

Let I' be a metric graph (i.e., a length metric space homeomorphic to a topological graph) which is
compact and connected. We may think of " as a (resistive) electrical network. We are interested in
the j-function on I' defined informally as follows: for x, y, z € I, let j,(x, y; I') denote the electric
potential at x when one unit of current enters the network I' at y and exits at z, with z “grounded”
(i.e., having zero potential). The effective resistance between two points x, y € I' is then defined as
r(x,y; )= jy(x, x; I).

More formally, the j-function is the kernel of integration that inverts the (distributional) Laplacian
operator A. As such, it appears naturally in the harmonic analysis of I". We observe that there is an
alternative interpretation of j-functions in the language of Gromov hyperbolic spaces: let (x|y), denote
the Gromov product on I with respect to the effective resistance distance function r: I' x I' — R (see
Section 4B). Then (x|y), = j.(x, y; [') (see Lemma 4.4 and Example 6.5).

Motivated by this latter point of view, and following [5, Remark B.12], we define the cross ratio
function & on I' as follows: fix a pointg € I'. For x, y,z, w € I, let

Ex,y,z,wy )= g (x, 2 D) + jg (v, wi T) — jg(x, wi ) — jg (v, 23 T).

The resulting function is easily seen to be independent of the base point ¢ (see Lemma 6.2). The
j-function and the r-function are themselves evaluations of the cross ratio function:

Jo, ;D) =&, z,y,z2T) and r(x,y;T)=&x,y,x,y; ).
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The cross ratio function is, in turn, an evaluation of the so-called energy pairing. Let DMeasy(I")
denote the real vector space of discrete measures on I with zero total mass. For vy, v, € DMeasy(I"), the
energy pairing is defined by

v = [ g Ceyi T) dvi () dia(y).
I'xT
which is, again, independent of the base point ¢ € I'. One can easily check that the following identity holds:
.z, wi T) = (8x = 8y, 8. = Su)ey.

In this paper, we argue that cross ratios and the energy pairing play a foundational role in the study of
electrical networks and metric graphs (abstract tropical curves). We show that many important and well-
known results in the theory of electrical networks are immediate consequences of their basic properties.
For example, the “reciprocity theorem” in electrical networks can be seen as a consequence of the
fact that cross ratios are independent of the choice of base points (see Example 6.7). We will actually
show that, more generally, the energy pairing can be computed using any generalized inverse of the
Laplacian operator. This fact gives more flexibility in proofs and computations, and can be seen as a vast
generalization of the reciprocity theorem (see Proposition 5.2, Example 6.7, and Remark 6.8).

We remark that our notion of cross ratios is closely related to the notion of transpedance introduced
and studied by Brooks, Smith, Stone, and Tutte in the seminal paper [11] (see Remark 6.4).

Kirchhoff’s projection matrices. As another example of our point of view, we show in an elementary
way that Kirchhoff’s famous projection matrices in electrical network theory have a simple and convenient
description in terms of cross ratios. Let G be a model of I', which is a finite graph together with a length
function £ on its edge set. Fix an orientation O on G. The space of 1-chains Ci(G, R) >~ @, Re is
endowed with a canonical bilinear form: for distinct e, f € O, we let [e, e] = £(e) and [e, f]=0. The first
homology group H;(G, R) is naturally a subspace of the inner product space C; (G, R). As is well known,
the theory of electrical networks is essentially the study of the orthogonal projections (see Section 7A):

ng: Ci(G,R) - Hi (G, R),
n;: C1(G,R) — Hi(G,R)*.

Let m denote the number of edges of G, and let E be the m x m matrix of cross ratios:

E = (5(6_7 e+7 f_’ f+))e,fe©-
Let D be the m x m diagonal matrix whose diagonal entries are £(e) for e € O, and let I be the identity
matrix. We have the following elementary result:

Theorem A (see Theorem 7.8). In the basis given by O, the matrix of ng is I — D' &, and the matrix
of nj; is D7'E.

Theorem A is proved by a very straightforward linear algebra argument. We would like to mention
though that the simple expression of Kirchhoff’s projection matrices in terms of cross ratios is quite useful
for applications. For example, unlike Kirchhoff’s classical description in terms of a certain average over
spanning trees (reviewed below in Section 7), the description provided by Theorem A is very efficient for
computations. Indeed, both 77 and 7(; can be computed in time at most O (n®), where n is the number
of vertices of G and w is the exponent for the matrix multiplication algorithm (see Remark 7.9). By
contrast, note that a given graph G can have a super-exponential number of spanning trees.
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Rayleigh’s laws. As a further illustration of our point of view, we revisit Rayleigh’s laws. The classical
Rayleigh monotonicity law is the statement that if the resistances in an electrical network are decreased,
the effective resistance between any two points can only decrease.

We will show the following quantitative Rayleigh’s law for energy pairings. Let I' again be a metric
graph. For an edge segment e of I, let I' /e denote the network obtained by “short-circuiting” e.

Theorem B (see Theorem 8.2). Let e be an edge segment of T' with endpoints de = {e™, e*}, and let
V1, vy € DMeasy(I'"). Then

]"/e _ r (Ulv 8€+ - 8€7>£n <8€+ - 867’ v2>(l;n

Vi, vV = (v, v —
(Wi, V2)en” = (V1, V2)gy e et )

From this, one immediately obtains Rayleigh’s laws for cross ratios, j-functions, and r-functions:

— o+ -
(1-1) E(x, v, 20w T/e) = £(x, y, 2, w; ) — 2y € i DE@ w e, i 1)

r(e=,et;T)
o o Ex,z e, e D E(, z,e7, e D)
(1_2) ]Z(x’ y; F/e)_]z(x7 y’F)_ r(e—,e+;F) ’
o o EGy.eT et D)
(1_3) r(xd’, F/e)_r(x’y’ F)_ r(e‘,e"’;F)

We remark that one can find expressions equivalent to (1-1), (1-2), and (1-3) in the paper [11]
mentioned before. Note that (1-3) may be thought of as a quantitative version of the classical Rayleigh’s
monotonicity law, and it is equivalent to a quantitative version of the classical statement that edges in a
uniform spanning tree are negatively correlated (see, e.g., [20, §4.2]). As such, (1-3) is also a special case
of the transfer—current theorem (see Section 7D(iv)).

Structure of the paper. In Section 2, we set the notation and terminology for graphs and electrical
networks and discuss their correspondences. In Section 3, various notions of Laplacian operators and
their compatibilities are reviewed. The notion of j-functions and their relation to Gromov products are
discussed in Section 4. In Section 5, we study the notions of energy and Dirichlet pairings and discuss
their relationship. We show, in particular, that energy pairings can be computed using any generalized
inverse of the Laplacian matrix. In Section 6, cross ratios are defined and some of their basic properties
are established. In Section 7, we will review Kirchhoff’s classical work on projection matrices arising
in electrical networks. We then present our description of Kirchhoff’s projection matrices in terms of
cross ratios (Theorem A). In Section 8, we state and prove our generalized and quantitative versions of
Rayleigh’s law (Theorem B).

2. Graphs and networks

2A. Weighted graphs. By a weighted graph we mean a finite weighted connected multigraph G with
no loop edges. We denote the set of vertices of G by V(G) and the set of edges of G by E(G), and let
n=1|V(G)| and m = |E(G)|. We assume both V(G) and E(G) to be nonempty, and this gives n > 2.
The weights of edges are determined by a length function

L E(G) = R
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We let E(G) = {e, e : e € E(G)} denote the set of oriented edges. We have e = e. An orientation 0 on G
is a partition E(G) =0U 0, where 0 = { : e € 0}. We have an obvious extension of the length function

L:E(G) = Ryp
by requiring £(e) = £(e). There is a map E(G) — V(G) x V(G), sending an oriented edge e to (e™, 7).

2B. Metric graphs and models. A metric graph is a pair (I, £) consisting of a compact connected
topological graph I', together with an inner metric £. We will always assume I" is not a single point. In
this case, one can alternatively define a metric graph as a compact connected metric space I" such that
every point has a neighborhood isometric to a star-shaped set, endowed with the path metric. We often
assume £ is implicitly defined, and refer to I" as the metric graph.

The points of I" that have valency different from 2 are called the branch points of I'. A vertex set for I'
is a finite set V C I containing all branch points such that each connected component ¢ of I'" \ V has the
property that the closure of ¢ in I' is isometric with a closed interval. Each vertex set V of I" naturally
determines a weighted graph G with nonempty set of vertices V(G) = V and with nonempty set of
edges E(G) given by the connected components of "\ V. We call such a weighted graph G determined
by a vertex set a model of T.

Given a vertex set V of ', the closure ¢ in I" of a connected component of I' \ V is called an edge
segment of I". Note that there is a natural bijective correspondence between the set of edge segments
determined by V and the edge set E(G) of the associated weighted graph. Given an edge segment e of ",
we denote by de = {e~, et} C V the set of boundary points of e. We use the notation de = {e¢~, e} for
the set of boundary points even when there is no orientation present. We hope that this does not lead to
confusion.

2C. Electrical networks. Let I" be a metric graph and G be a model of I'. We will think of I (or G) as
an electrical network in which each edge e € E(G) is a resistor having resistance £(e). The vertex set
corresponding to G may be thought of as the set of access points of the network, i.e., the points at which
the external current or voltage sources can be attached or measurements can be done. See Figure 1.

When studying the “potential theory” on a metric graph I', it is convenient to always fix an (arbitrary)
model G, and think of it as an electrical network as above. This will often allow us to give concrete
linear algebraic formulas for quantities and functions of interest. We refer to [9, Chapter II] and [8] for
an introduction to the theory of electrical networks from this point of view.

r (G,0) N

Figure 1. A metric graph I', a model G with an orientation O, and the corresponding
electrical network N.
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3. Laplacian operators

3A. Distributional Laplacians on metric graphs. Let I' be a metric graph. We let PL(I") be the real
vector space consisting of all continuous piecewise affine real valued functions on I' that can change
slope finitely many times on each closed edge segment. Let A be the Laplacian operator in the sense of
distributions; for ¢ € PL(I"), its Laplacian A(¢) is the discrete measure
A(g) = . 0p(P)dp,
pel

where §, is the usual delta (Dirac) measure centered at p, and 0, (¢) is the sum of incoming slopes of ¢
in all tangent directions at p.

Let DMeasg(I") denote the real vector space of discrete measures v on I' with v(I") = 0. Any
v € DMeasy(I") is of the form v = Zper apé,, where a, € R, all but finitely many a,’s are zero, and
> per dp = 0. One can easily check A(¢) € DMeaso(I'). Let R C PL(I') dewnote the space of constant
functions on I'. Then A induces an isomorphism of vector spaces PL(I")/R— DMeasy(I").

3B. Combinatorial Laplacians on weighted graphs. Let G be a weighted graph. We denote by
M(G) =Hom(V (G), R) = C°%G, R) the real vector space of R-valued functions on V (G). Let A be the
(combinatorial) Laplacian operator; for ¢ € MM(G), its Laplacian A(yr) is the measure

AW) =) Ap(¥)d),

pel’
where

Ap(W):= 3 (P (p)—v(e))/t(e).

et=p
eclE(G)

Let DMeaso(G) denote the real vector space of discrete measures v on V(G) with v(V(G)) = 0.
Any v € DMeasy(G) is of the form v = }° () apdp, with a, € Rand }_ ) ap = 0. One can
easily check that A(y) € DMeasg(G). Let R C JL(G) denote the space of constant functions on V (G).
Then A induces an isomorphism of vector spaces M(G)/ R=> DMeasy(G).

3C. Compatibilities and Laplacian matrices. The (distributional) Laplacian A and the (combinatorial)
Laplacian A are compatible in the following sense. Let ¢ € PL(I"), and let G be a model of I" such
that V(G) contains all those points of I" at which ¢ changes slopes. Let ¢ € M(G) denote the function
obtained from ¢ by restriction. Then o,(¢) = A, (V).

The (combinatorial) Laplacian operator on a weighted graph G can be conveniently presented by its

Laplacian matrix. Let {vy, ..., v,} be a labeling of V (G). The Laplacian matrix Q associated to G is
the n x n matrix Q = (g;;), where for i # j,
—qij = > 1/€(e).

e={v;,v;}€E(G)
The diagonal entries are determined by forcing the matrix to have zero-sum rows:
gi=—.¢qij= > 1/€(e).
j#i e={v;,v}€E(G)
It is well known that the symmetric matrix @ has rank n — 1 and that its kernel consists of constant
functions (see, e.g., [8]).
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Let H C R" be the subspace of vectors (x1, ..., x,) such that Z?:l x; = 0. The labeling {vy, ..., v,}
allows one to fix isomorphisms

[-1: M(G) = R" and [-]:DMeaso(G) — H.

Then for all ¢ € JM(G), we have
[AW)] = Qly].

The Laplacian matrix of G can also be expressed in terms of the incidence matrix of G. Let {vy, ..., v,}
be a labeling of V(G) as before. Fix an orientation O = {ey, ..., e;;} on G. The incidence matrix B
associated to G and O is the n x m matrix B = (b;;), where

+1, e;.r =,

bij=1-1, ¢ =u,
0, otherwise.

Let D denote the m x m diagonal matrix with diagonal entries £(¢;) for e; € 0. We have
(3-1) Q0=BD 'BT,

where (-)T denotes the usual matrix transpose operation.

4. Potential kernels

4A. The j-function. A fundamental solution of the Laplacian is given by j-functions. We follow the
notation of [13]. See also [2; 4; 6; 22; 25] for more details and formulas.

Let I' be a metric graph and fix two points y, z € I'. We denote by j.(-, y; I') the unique function in
PL(T") satisfying:

1) AG(-,y; ) =68y -4,
(i) jz(z,y; ) =0.

If the metric graph I' is clear from the context, we will write j,(x, y) instead of j.(x, y; I'). Observe
that j.(-, y) is a harmonic function on I' \ {y, z}. It follows from (i) that the j-function is the kernel of
integration that inverts the Laplacian operator.

Remark 4.1. If we think of I as an electrical network, the function j,(x, y) has a nice interpretation
(Figure 2): it denotes the electric potential at x if one unit of current enters the network at y and exits
at z, with z “grounded” (i.e., has zero potential). See Section 7A.3.

,;\/ \/,,
O—Cg y l
MRS G)Y

iy e Y
_. .

Figure 2. Electrical network interpretation of the j-function.
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It follows directly from electrical network theory that j.(-,y; ') € PL(I") exists and is unique.
For a modern exposition, as well as an explicit integral formula for the j-function, see [22, §3.3]
and Remark 7.16.

Remark 4.2. The following properties of the j-function are expected from the electrical network inter-
pretation and are easy to prove (see, e.g., [13, Lemma 2.10]):

(i) j.(x,y) is jointly continuous in all three variables x, y,z € I".
(i) j:(x, y) = jz(y, x).
(i) 0 =< jz(x, y) < jz(x, x).
(iv) Jz(x, x) = jx (2, 2).

4B. Effective resistance and Gromov products. Following the electrical network interpretation, it
makes sense to make the following definition:

Definition 4.3. The effective resistance between two points x, y € I is

r(x,y) = jy(x,x)=jx(y,y).

If we want to clarify that the effective resistance is measured on I, we will use the notation r(x, y; I')
instead.

Let X be asetand letd : X x X — R be a symmetric map. For x, y, z € X, one defines (see, e.g., [10,
Definition 1.19]) the Gromov product (x|y), of x and y relative to z by the formula

(xy): = 2(d(x,2) +d(y,2) —d(x, y)).

Note that d satisfies the triangle inequality if and only if for all x, y, z € X the Gromov product (x|y); is
nonnegative.

Lemma 4.4. Let I" be a metric graph, and letr : ' x I' — R be the effective resistance function. Then
Jz-(x,¥) is precisely the Gromov product (x|y), applied to the pair (T, r).

Proof. For “tripods”, the equality j,(x, y) = (x]y), is immediate (as observed in [5, Remark B.7]) — see
Figure 3. The general case follows from the tripod version by applying standard “circuit reduction’
techniques (see, e.g., [16, §5.5]). O

bl

Remark 4.5. We will give a direct proof (avoiding circuit reductions) of Lemma 4.4 using cross ratios in
Example 6.5.

Figure 3. A “tripod” with edge lengths a, b, c. Clearly r(x,z) =a+c, r(y,z) =b+c,
r(x,y)=a+b,and j,(x,y) =c.
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Remark 4.6. By Remark 4.2(iii) we have j,(x,y) > 0. Therefore, Lemma 4.4 has the immediate
corollary that the effective resistance function satisfies the triangle inequality. The maximum principle for
harmonic functions together with Remark 4.2(iii) furthermore implies that r(x, y) > 0 with equality if
and only if x = y. We obtain the well-known fact (see, e.g., [19]) that the effective resistance is a distance
function on I'.

4C. Computing j-functions. Let G be an arbitrary model of I'. One can explicitly compute the
quantities j,(p, v) € R for g, p, v € V(G) using linear algebra (see [6, §3]) as follows: fix a labeling
of V(G) as before, and let Q be the corresponding Laplacian matrix. Let Q, be the (n — 1) x (n — 1)
matrix obtained from @ by deleting the row and column corresponding to g € V (G) from Q. It is well
known that the matrix Q, is invertible, see, e.g., Remark 7.6(ii). Let L, be the n x n matrix obtained
from Q;l by inserting zeros in the row and column corresponding to g. One can easily check that

4-1) OL,=1+R,,
where I is the n x n identity matrix and R, has all —1 entries in the row corresponding to ¢ and has
zeros elsewhere. It follows from (4-1) and the compatibility of various Laplacians in Section 3 that

L, = (jy(p,v))pvevc)-

Remark 4.7. (i) In Corollary 7.13 we give another explicit formula for computing the j-function on
weighted graphs.

(i1) Clearly R; Q =0, where 0 is the n x n zero matrix. Therefore, L, is a generalized inverse of @, in
the sense that QL, Q = Q.

(iii) Computing L, takes time at most O (n”), where w is the exponent for the matrix multiplication
algorithm (currently, w < 2.38).

5. Energy pairings

In this section, we briefly study two useful pairings. We remark that both pairings can be defined and
studied on larger vector spaces (see, e.g., [4] for more general statements). Here we restrict our attention
to those spaces that are relevant to our work, and give more explicit descriptions, statements, and proofs.

Definition 5.1. Let I" be a metric graph. The energy pairing
(-, )en : DMeasyg(I") x DMeasy(I") — R
is defined by
rvaden = [y e, y) dvi (o) dva ().
I'<I’
for a fixedg € I.

If we want to clarify I', we will use the notation (vy, vz)gn instead.
It follows from Proposition 5.2 below that the energy pairing is indeed independent of the choice of ¢.
A closely related concept is the Dirichlet pairing

(-, )pir : PLA") x PL(I') - R
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defined by
(b1, )i = /F b1 Alg) = /F b2 A(d).

If vi = A(¢1) and v, = A(¢»), then

(vi, v2)en = (@1, P2)Dir-

Note that this equality does not depend on the choice of ¢ and ¢,, which are well defined only up to
constant functions.

The energy pairing (and the Dirichlet pairing) can be computed using linear algebra: let G be a
model of I" such that v, v, € DMeasy(G). Then (vy, 1)y can be computed using the (combinatorial)
energy pairing

(-, )en : DMeasg(G) x DMeasy(G) — R
defined by
(5-1) Wiveni= 2 vi(p)jg(p, v)12(v) =[] Ly[val.
pweV(G)

Likewise, let G be a model of I" such that V (G) contains all those points of I" at which ¢; or ¢, changes
slopes. Let ¢; € M(G) denote the function obtained from ¢; by restriction. Then (¢, ¢2)pir can be
computed using the (combinatorial) Dirichlet pairing

(-, )pir : M(G) x M(G) — R
defined by
(W1, ¥2)oir = [Y11" Q2]

Proposition 5.2. Let G be a weighted graph. Fix a labeling of V (G) and let L be any generalized inverse
of the Laplacian matrix Q (i.e., QL Q = Q). Then the symmetric bilinear form on DMeaso(G) defined by

(v, 12)en = (V11T L12]
is independent of the choice of the generalized inverse L and is positive definite.

Proof. Independence from L follows from the fact that if [v;] = Q[v;], then

(w1, v2)en = [V11" L2l = [Y11T QL Q[¥2] = [¥1]1" Q[¥2] = (Y1, ¥2)ir-

Positive definiteness follows from the factorization (3-1) (see also [6, Lemma 3.5]). Let [v] = Q[v]. Then

(v, V)en = [¥1" QL1 = ID~'B [y ]ll2.
The kernel of D~/2BT is the space of constant functions in JM(G). [l

Remark 5.3. A canonical choice for the generalized inverse of @ in Proposition 5.2 is the “Moore—
Penrose pseudoinverse” Q. In fact, it is straightforward to check Q% = (1/n) 3" () Lq (see [6,
Constructions 3.2-3.3]). In what follows, we find it more natural to work with L,’s directly.

The energy and Dirichlet pairings have the following interpretation in the language of electrical
networks: consider v € DMeas((G) as an external “current source” attached to the network G. Then
(v, v)en 18 precisely the total energy dissipated (per unit time) in G.
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6. Cross ratios

In this section, we introduce the notion of cross ratios for metric graphs. We remark that this notion is
already mentioned (in passing) in [5, Remark B.12]. We establish some basic properties of these cross
ratios and provide some basic examples.

Definition 6.1. Let I" be a metric graph and fix g € . We define the cross ratio function (with respect to
the base point g) &, : ' — R by

Eg(x, y, 2, w) 1= Jg(x, 2) + jg (v, w) — jg (x, w) — Jg (¥, 2) .
If we want to clarify I, we will use the notation &, (x, y, z, w; I') instead.
Lemma 6.2. (a) &§(x,y,z, w) :=&,(x,y, 2, w) is independent of the choice of q.
() £(x, y,z, w) =&(z, w, x,y).
© &, x,z, w) =—E(x, y,z, w).

Proof. Parts (b) and (c) are immediate from Definition 6.1.
Let G be a model for I" such that x, y, z, w, g1, g2 € V(G). Note that (see (5-1))

Sqi (x,y,z, w) = (& _(Syy 8, —uwen-

Part (a) then follows from the fact that the energy pairing is independent of the choice of the base point ¢;,
see Proposition 5.2. See also [5, Remark B.12] for an outline of a different proof of part (a). (|

Remark 6.3. (i) Yet another proof of Lemma 6.2 (a) can be obtained from Lemma 4.4 and an explicit
computation. Namely, one finds the relation

(6'1) _Z‘i:q(-xvyvz» U)) ZF(X,Z)+r(y’ w)—r(x, U))—”()’,Z)-

(i1) As is evident from the proof of Lemma 6.2, we could define the cross ratio with the more canonical

expression
E(x,y,z,w) = (d, _Sy’ d; —dw)en-

See also Corollary 7.12 and Remark 7.16 for other explicit formulas for computing cross ratios on
weighted graphs and on metric graphs.

Remark 6.4. Our notion of cross ratio is related to that of transpedance (or generalized transfer impedance)
introduced and studied by Brooks, Smith, Stone, and Tutte in the seminal paper [11] (see also [24, §VL.5]).
Let G be a model of I" whose vertex set contains x, y, z, w € I'. Fix a labeling {vy, ..., v,} of vertices
of G and assume x = v;, y = vj, 2 = Vg, w = v;,. The transpedance [xy, zw] for x # y and z # w is
defined to be (—1)'*¢ times the (j, h)-cofactor in the matrix obtained from the Laplacian matrix Q by
removing row i and column g. They separately define [xy, zw]=0if x =y or z = w.
It is easy to show (see, e.g., [11, (2.13)] and Example 6.6) that

[xy, zw]

w'(G) '
where w’'(G) is the coweight of G (see Section 7B.2). We remark that both w’(G) and [xy, zw] depend
on the choice of the model G, whereas £(x, y, z, w) only depends on I".

E(x,y,z,w) =
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{ (

| <+

Figure 4. Reciprocity theorem for electrical networks: (left) V = (j,(x, z) — j,(x, w))1,
(right) V = (juw(x, 2) — ju(y, 2)I.

Example 6.5 (proof of Lemma 4.4 using cross ratios). Let us compute the cross ratio £(x, y, x, y) with
respect to two different base points:

Ex(x, y,x,y) = jx(x, X) + jx (y, ¥) — Ju(x, ) = ju (¥, X) = jx (3, ¥) = r(x, y),
Sz(x’ Y, X, y) = jz(X, x) +.]Z(yv y) _jz(x’ y) _jZ(y9x) :r(xv Z) +V(y, Z) _zjz(xv )’)
By Lemma 6.2 (a), we must have &, (x, y, x, y) =&,(x, y, x, y), and therefore,
Jo( ) = 30r(x, 2) +r(y.2) —r(x, y)).

Example 6.6. Let us compute the cross ratio £(x, y, z, w) with respect to w as the base point:

E(x,y, 2, w) =&p(x, ¥, 2, w) = Jux, 2) + ju(y, w) = julx, w) = ju(y, 2) = juw(x, 2) = ju(y, 2).

This means &(x, y, z, w) can be interpreted as the potential difference between x and y when a unit of
current enters the network at z and exits the network at w.

Example 6.7 (reciprocity theorem in electrical networks). By Lemma 6.2 (a), we have &, (x, y, z, w) =
&y (x,y, z, w). Therefore,
Jy(z, x) = jy(w, x) = ju(x, 2) — juw(y, 2).

This is the celebrated “reciprocity theorem” for electrical networks (see, e.g., [21, §5.3], [16, §17.2], [23,
Theorem 4], [2, Theorem 8]): informally, the location of the current source and the resulting voltage may
be interchanged without a change in voltage. See Figure 4.

Remark 6.8. One may think of Proposition 5.2 as a vast generalization of the reciprocity theorem.

7. Projections

Throughout this section, we fix a model G for a metric graph I" and fix an orientation O on G. It is
convenient to define the real 1-chains by

Deck(c) Re ~ DRe

(e+e:ec0) oo

So, for e € E(G), the above presentation implies ¢ = —e inside C(G, R). Note that O is a basis
for C1(G, R).

Ci1(G,R):=

Definition 7.1. For any subset s{ C E(G), we define its associated 1-chain as

Ya= > e=> sign(d,e)e.
ecd eeO



1414 ROBIN DE JONG AND FARBOD SHOKRIEH

where
+1, ifeed,
sign(d,e) =4 —1, ifeed,
0, otherwise.

We will work with the usual definition of real 0-chains:

Co(G,R):= & Ruv.
veV(G)

Let O ={ey, ..., ey} be alabeling of the orientation O of G. The real vector space C1(G, R) has a
canonical inner product

[+,-]1:Ci(G,R) x C;(G,R) > R

defined by [e;, e;] = 8;(j)€(e;).
Consider the usual boundary map 9 : C1(G, R) — Co(G, R) defined by d(e) = e™ — e~. The first
homology group coincides with the space of 1-cycles

H,(G, R) = Ker .

The inner product [ -, - ] restricts to an inner product, also denoted by [ -, - ], on H{ (G, R). It is easy to
check that the pair (H,(G, R), [, -]) is a canonical inner product space associated to I'; it is independent
of the choice of the model G.

Remark 7.2. (i) The labeling 0 = {ey, ..., e,} fixes an isomorphism
[-1: Ci1(G,R)—R".
(i1) The incidence matrix B in Section 3C is precisely the matrix of d with respect to bases O for
C1(G,R), and V(G) for Cy(G, R).

(iii)) The matrix D in Section 3C is precisely the Gram matrix associated to the pair (C;(G, R), [, - ]),
with respect to the basis O.

We are interested in the two orthogonal projection maps
7:Ci(G,R) - H{(G, R),
7' C1(G, R) - H\ (G, R)*

and their matrix representations. Here, H;(G, R)* denotes the orthogonal complement of H;(G, R) C
C1(G, R) with respectto [ -, - .

7A. Electrical network problems. The original motivation for computing projection matrices comes
from electrical network theory.

7A.1. The Kirchhoff problem. Consider the Kirchhoff problem: Given ¢ € C1(G, R), find i € H| (G, R)*
such that ¢ —i € H;(G, R). Here, ¢ should be thought of as an external current source, and i should be
thought of as the induced internal current.
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The condition ¢ —i € H| (G, R) is precisely the Kirchhoff’s current law. The condition i € H| (G, R)+
is precisely the Kirchhoff’s voltage law. These laws are equivalent to computing the orthogonal decompo-
sition ¢ =1+ (¢ — 1), so the solution is provided by computing

i=7n'(c).

Remark 7.3. The contribution of the external current source ¢ only depends on its boundary dc. It is
customary to only refer to dc as the external current source. See, e.g., Remark 4.1.

7A.2. Coboundaries and Ohm’s law. The space of coboundaries is, by definition,
Im(d : C°(G,R) — C'(G, R)).

We may define an isomorphism from C; (G, R) to C!(G, R) using the bilinear form [ - , - ]. More precisely,
we may think of C!(G, R) ~ € Re* with e*(e) = 1. The isomorphism is defined by e/£(e) > e*. Under
this isomorphism H; (G, R) is identified with the space of coboundaries.

Under this identification i corresponds to a coboundary element v, referred to as internal voltage.
Explicitly, the internal voltage v =), v(e) e* is identified with ), _q v(e)/(e)e =i=)_,qi(e)e,
so v(e) = £(e)i(e). This is Ohm’s law.

7A.3. The Dirichlet problem. Since v in Section 7A.2 is a coboundary, v = dv for some ¥ € C%(G, R)
(well-defined up to a constant function). The O0-cochain ¥ is called the potential associated to v. One
might be interested to directly compute this i given the external source dc. It is easy to check that this
problem boils down to solving the Dirichlet problem

A(Y) = d.

Here, A is as in Section 3B and dc is thought of as a discrete measure on V(G), after identifying
v € Co(G, R) with §, € DMeas(G). The j-function defined in Section 4A provides the fundamental
solutions for this Dirichlet problem: if d¢c = Zvev(a) ay8,, then ¥ = Zvev(c) ay jq (-, v) for any
fixed g € V(G).

7B. Projections using spanning trees. Before presenting the projection formulas in terms of cross
ratios, we will review Kirchhoff’s beautiful description of these projections (in the basis O) as a certain
average over spanning trees. This was introduced in the seminal paper [18].

Recall that a spanning tree T of G is a maximal subset of E(G) that contains no circuit (closed simple
path). Equivalently, 7" is a minimal subset of E(G) that connects all vertices.

7B.1. Fundamental circuits and cocircuits. Let T be a spanning tree of G. Each (unoriented) edge e ¢ T
determines a fundamental circuit, i.e., a unique circuit €(7', ¢) C E(G) in T Ue. Let e also denote the
oriented edge in the fixed orientation O corresponding to the (unoriented) edge e. Note that every edge in
%(T, e) comes with a preferred choice of orientation, namely the orientations that agree with the direction
of the oriented edge e € O as one travels along the circuit.

Definition 7.4. (i) For e ¢ T, we let circ(T, e¢) be the associated 1-chain of €(T, ¢) endowed with its
preferred orientation (Definition 7.1). For e € T we define circ(T, e) = 0.

(i1) We let My be the m x m matrix whose columns are [circ(T, ¢)] for e € O, where [-] is as in
Remark 7.2(1).
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It is well known (and easy to check) that {circ(7T, e) : e ¢ T'} forms a basis for H; (G, R).

Each (unoriented) edge e € T determines a fundamental cocircuit, i.e., the unique minimal subset
R(T, e) € (E(G)\T)Ue such that E(G)\B(T, e) is disconnected. Let e also denote the oriented edge in
the fixed orientation O corresponding to the (unoriented) edge e. Note that every edge in B(7, ¢) comes
with a preferred choice of orientation, namely the orientation that agrees with the direction of e € O in the
cut-set B(T, e).

Definition 7.5. (i) For e € T, we let cocirc(T, ¢) be the associated 1-chain of B(T, ¢) endowed with
its preferred orientation (Definition 7.1). For e € T we define cocirc(7T, e) =0

(i1) We let Ny be the m x m matrix whose columns are [cocirc(7, e)] for e € O, where [-] is as in
Remark 7.2(1).

7B.2. Weights and coweights. The weight of a spanning tree T of G is the product w(T) :=[] edT L(e).
The coweight of a spanning tree 7' of G is the product w'(T) := ][], £(e)~!. The weight and coweight
of G are

w(G):=Y w(T) and w'(G):=Y w'(T),
T T

where the sums are over all spanning trees of G.

Remark 7.6. (i) For any spanning tree T of G we have w(T)/w(G) = w'(T)/w’(G). Moreover, the
quantity w(G) depends only on the underlying metric graph I". This is not true of w’(G).

(i1) By (Tutte’s version of) Kirchhoff’s matrix tree theorem ([24, Theorem VI1.27]), both w(G) and w'(G)
can be expressed in terms of certain determinants. For example, w'(G) = det(Q,), where Q, is
as defined in Section 4C. These are simple consequences of the “Cauchy-Binet formula” for
determinants. See [1, Section 5] for more details and for a geometric (or tropical) proof.

7B.3. Kirchhoff’s projection formulas. Consider the following matrix averages:

« w(@) , e w(D)
Z—w(G My and P _XT:w/(G)NT’

the sums being over all spanning trees 7" of G.
Theorem 7.7 (Kirchhoff). (a) The matrix of = : C1(G, R) - H{(G, R), with respect to O, is P.
(b) The matrix of 1’ : C1(G, R) - H (G, R)*, with respect to 0, is (P")T.
Proof. By [8, Proposition 15.2], we know the matrix of 7’ is D~ P'D. Since D~' P’ is symmetric ([8,

Proposition 15.1]), we have

D'P’D=(P)'D'D=(P)".
This proves part (b). Part (a) follows from part (b) and the fact that I — (P’ )T = P. See the computation
in the first paragraph of [8, §16]. ]

We note that a given graph G can have many (super-exponential number of) spanning trees. This
makes the computation of projection matrices using Theorem 7.7 quite inefficient. The situation is better
if one uses cross ratios, as we propose in the next section.
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7C. Projections using cross ratios. We now show that Kirchhoff’s projection matrices have expressions
in terms of cross ratios. They are efficient for computations, and useful for proving theorems.
Let E be the m x m matrix of cross ratios:

E:=@ e [T e peo
It follows from Proposition 5.2 and Remark 6.3(ii) that
(7-1) =E=BTLB
for any generalized inverse L of the Laplacian matrix Q.
Theorem 7.8. Let D be as in Section 3C.
(a) The matrix of m : C1(G, R) — H{(G, R), with respect to O, is I — D 'E.
(b) The matrix of v’ : C1(G, R) = H{(G, R)*, with respect to 0, is D™ E.

Remark 7.9. One can compute E and both these projection matrices in time at most O (n®), where w is
the exponent for the matrix multiplication algorithm (currently w < 2.38). See Remark 4.7(iii).

Proof. 1t suffices to prove (b), which follows from a straightforward linear algebraic argument. We
identify C;(G, R) with R™ using 0. Recall H; (G, R) = Ker d = Ker B. Therefore, see Remark 7.2, we
have H,(G,R)* =Im D~ 'BT.

Forb € R™, let b= D~' BTx denote its orthogonal projection onto Im D~'BT. From b —beKer B we
obtain the Dirichlet problem Qx = Bb which has x = L,Bb as a solution (see Section 7A.3). Therefore,
by (7-1), we have b= D~'B"L,Bb= D'Eb. O

The following is a restatement of Theorem 7.8 in a more canonical language:
Corollary 7.10. For any f € 0, we have
@) w(f)=D_,c0Fle, fle, where

Fle, f) = {1 (e, en/te), ife=f.
VT e et T D e, fe# fe
(b) 7'(f) =) ,c0 F'(e, f)e, where
Fle, =68, et 7, fH/ete).

7D. Relations and consequences. The two different descriptions of projection matrices (Theorem 7.7
and Theorem 7.8) have some important consequences.

(i) We have the equalities
(7-2) P=I-D'2 and P =D

(i1) Using (7-1) and (7-2) we obtain
P =BTLBD'.

This refines (and generalizes) the “canonical factorization™ of Biggs in [8, §8 and §15].
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(iii)) The Foster coefficient of e € O is, by definition,
Fle):=F(e,e)=1—r(e",e)/l(e).

Clearly F(e) = F(e), so the Foster coefficient is also defined for e € E(G). It measures the probability
Pr{e ¢ T}, where T is a weighted uniform spanning tree. It is easy to see that ), _ £ Fle) =
dimg H,(G, R). In fact, both sides of this equality represent the trace of the orthogonal projection
matrix P. This is the theorem of Ronald Foster in [15]. See also [14], [23, Theorem 6], and [3,
Corollary 6.5].

(iv) Recall, by Example 6.6, that we have
Ep-(e et [ f D =jp-(eh, [y —jp(e7, f).

Therefore, F'(e, f) can be interpreted as the current that flows across e when a unit current is imposed
between the endpoints of f. In this way, we recover the well-known description as a “transfer-current
matrix” for 7z’ in probability theory (see, e.g., [12], [20, §2.4, §4.2], [17, §4.3.2], [7, §4]). The
“transfer-current theorem” states that the weighted uniform spanning tree of G is a determinantal
point process on E(G) with kernel 7'

7E. Energy pairing and cross ratios using projections. We have already seen the entries of projection
matrices are computed from certain cross ratios. We now show that an arbitrary cross ratio can be
computed using these projection matrices.

A path y in G is an alternating sequence of distinct vertices v; and oriented edges e;,

Vo, €0, V1, €1, U2, ..., Vk—1, €k—1, Uk
such that e; = v; and el.+ = v;+1. A closed path is one that starts and ends at the same vertex. One can
associate a 1-chain y to the path y by applying Definition 7.1 to the set of oriented edges {eg, ..., ex—1}.

By construction, we have 0y = 8,, — 8y,.

More generally, for any v € DMeasy(G), it is easy to see there exists y € C1(G, R), well-defined up
to an element of H;(G, R), such that a(y) = v. To see this, let v = ZUGV(G) a,8y. Then for any fixed
q € V(G), we have v = Zvev(c) ay(8y, —84). Let Yqv be an arbitrary path in G from ¢ to v. Then

y = Zvev(G) ayy 4, has the property that 9(y) = v.

Proposition 7.11. Let vy, v, € DMeaso(I"). Fix a model G compatible with vy, vy, and let y|,y, €
C1(G, R) be such that 9(y;) = v;. Then

(V1, V2)en = [71» 77/(}’2)]-

Here, v’ : C\(G, R) — H{(G, R)* denotes the orthogonal projection as before.
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Proof. We use the basis 0 and do the computations with the help of corresponding matrices:
1, 7' @)1= 1" DI’ (yy)]  (Remark 7.2(iii)
=[y,I"DD7'E[y,] (Theorem 7.8)
=ly\I"B'LBly,] (7))

=[3y,1"L[3y,] (Remark 7.2(ii))
= [n]"L[v]
= (V1, V2)en (Proposition 5.2). O

Corollary 7.12. Fix arbitrary paths in G from y to x, and from w to z. Let y ,, and y . denote their
associated 1-chains. Then

S(X’ Y, 2, w) = [ny’ T[/(ywz)]-
Proof. This follows from Proposition 7.11, applied to vi =8, —§, and v =8, —§,,. See Remark 6.3(ii). [

An explicit integral formula for j-functions is given in [22, Proposition 3.17]. The following is a
discrete version of that result:

Corollary 7.13. Fix arbitrary paths from z to x, and from z to y. Let y ., and y ., denote their associated
1-chains. Then

jz(.X, y) = [nys T[/(yzy)l
Proof. This follows from Corollary 7.12, applied to §(x, z, y, 7) = j(x, ¥). U

Corollary 7.14. Fix two arbitrary paths from y to x. Let y . and y/yx denote the associated 1-chains. Then

r(x,y) =[5 7'yl
Proof. This follows from Corollary 7.12, applied to §(x, y, x, y) =r(x, y). O

Remark 7.15. Since 7'? = 7’ and 7’ is self-adjoint with respect to [ -, - |, one can write the expression
in Corollary 7.14 as r(x, y) = [n’(yyx), n’(yyx)]. So r(x, y) is the norm squared of the projected vector
7’ (yyx). This is equivalent to Thomson’s principle for electrical networks (see [8, §18]). Proposition 7.11
may be thought of as a generalized version of Thomson’s principle.

Remark 7.16. Corollary 7.12 can easily be proved assuming Corollary 7.13 (using Definition 6.1).
Similarly, one can use the explicit integral formula for j-functions in [22, Proposition 3.17] to write down
an explicit integral formula for cross ratios on metric graphs. Namely, for all x, y, z, w € I, we have

(7_3) $(x7 Y, Z, w) = (C‘)ywz - ”(a)ywz))-

Yyx
Here 7 : Q1(I") — %(T") denotes the orthogonal projection from the space of piecewise constant 1-forms
to the subspace of harmonic 1-forms on I'. For p, g € T, the I-form w, is associated to a piecewise
linear path from p to g. We refer to [22, §3] for more details.
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8. Rayleigh’s law

8A. Contractions. Let I' be a metric graph. Let e C I' be an edge segment with boundary points
de = {e”, e*}. We denote by I' /e the quotient metric graph whose equivalence classes are e and all one
point subsets {x} for x ¢ e. Geometrically, one is contracting (collapsing) e to a single point p.. From
the point of view of electrical networks, it is best to think of setting £(e) = 0, which can be interpreted as
“short-circuiting” the segment e.

Let G be amodel of I' so that e € E(G). Possibly upon making a refinement of the vertex set underlying
G we can take V/{e™, et} as a vertex set of I'/e, yielding a model G /e of ' /e with the property that
E(G/e) is canonically identified with E(G)\e. We consider C|(G/e, R) as a subspace of C;(G, R) via
the natural map

t:C1(G/e,R) — Ci(G, R).

Let;;: C1(G, R)— Hi(G,R)*" and 7rj; ,: C1(G /e, R) — H1(G /e, R)™ denote the orthogonal projections.
Let W be the orthogonal complement of n(’; (e) inside H,(G, R)*:

W = span{rj;(e)}* N Hi (G, R)*.

Let Proj : H;(G, R)* — W denote the corresponding orthogonal projection map.

Proposition 8.1. The map « restricts to an isomorphismT: H,(G /e, R)~=W. Moreover, the following
diagram commutes:

Ci1(GJe,R)——= C|(G,R)

!’

(8-1) TG e H\(G,R)*
iProj
H\(G/e, R)* - w

Proof. Letm, : C1(G, R) - C1(G/e, R) denote the canonical projection, and observe that Ker i, = span{e}.
Write K = Ker(Proj on/G) = span{e} + H{(G, R) and L = n;lHl (G/e, R). The map m, induces an iso-
morphism H (G, [RR):> H,(G/e, R) upon restriction. Since clearly K € L anddim K =m—n+2=dim L,
we find the equality K = L. As ¢ splits m,, we have : 'K = 'L = H{(G/e,R). This shows
that the inclusion ¢ : C1(G/e, R) — C;(G, R) induces an injective map ¢ : H{(G /e, R): < W. As
dim H(G/e,R)* =n—2=dim W, we conclude that 7 is an isomorphism. This proves the proposition. [J

8B. Generalized Rayleigh’s law. We are now ready to prove our version of Rayleigh’s law for energy
pairings.

Theorem 8.2 (Rayleigh’s law for energy pairings). Let I' be a metric graph. Let e be an edge segment
of I, and let v, v, € DMeasy(I"). Then

r <U1, 5€+ - 8e—>£n <8€+ - 8€‘v VZ)gn

r(e=,et;I)

r
(v, V)ele = (vr, V)b, —

I'/e

In particular, for v e DMeaso(I"), we have (v, V)l < (v, V)L

en*
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Proof. Let G be a model of I' determined by a vertex set V so that e € E(G) and V/{e™, e™} is a vertex
set of I' /e (see Section 8A). Assume, moreover, that V' is taken fine enough so that vy, v, € DMeasg(G).
We choose an orientation O = {ey, ..., e,;}. Let e also denote the corresponding oriented edge in 0. Let
V1,72 € C1(G, R) be such that d(y;) = v;. We have a well-defined model G/e of I'/e.

By Proposition 7.11, we know that

(8-2) i)l =1, 75 (¥2)]-

By Proposition 8.1, we know that 7, corresponds to Proj o 7 via t.
For e; € 0, we have:

[ (e), mi(e))] [e, 5 (e))]

Projorg (e)) =g (e)) = =g M6 @) = ma (e = T (@)

g (e)

, F'(e,ej)t(e) F( )
=716~ s iy 0 =) ~ e S F

, E(e; e}, ‘,e+)§(e ,e ,ef,e*)
=ng(ej) — o eﬂz @) S J e;.

We used Corollary 7.10 for the third, fourth, and ﬁfth equalities.

It follows from this computation that the matrix of 7 Je = Proj o r;, with respect to the basis 0, is
given by

1 1 1= =
(8-3) S=D'8- —— D (E[eD)(Ele])T.
r(e=, et) )
Recall from Remark 7.2(i) that [e] denotes the column vector with a 1 on the row corresponding to e,
and 0’s everywhere else. The result now follows from (8-2) and the following straightforward matrix
computation:

Y176,y )] = [, 1" D(S[y1))

= [y, 1" Ely,] — [y 17 (EleD(Ele]) "[¥,]

r(e=,et)

=[y,1"B"LB[y,] - (ly,1"B"LBle])(le]" B"LB[y,])

_r
r(e”,et)
1
= il" L2l = ———< (11" L[S+ — 80~ 1) ([8e+ — 8- 1" L[v2])
r(e=,e")
1
= (V1, V2)en — W((Vl’ Je+ — 8e=)en (Je+ — Be—, V2)en)-
We used Remark 7.2(iii), (8-3), (7-1), Remark 7.2(ii), Proposition 5.2, and Remark 6.3(ii) in this
computation. ([
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