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ABSTRACT
The Schelling model of segregation was introduced in economics to

show how micro-motives can influence macro-behavior. Agents on

a lattice have two colors and try to move to a different location if

the number of their neighbors with a different color exceeds some

threshold. Simulations reveal that even such mild local color pref-

erences, or homophily, are sufficient to cause segregation. In this

work, we propose a stochastic generalization of the Schelling model,

based on both race and wealth, to understand how carefully archi-

tected placement of incentives, such as urban infrastructure, might

affect segregation. In our model, each agent is assigned one of two

colors along with a label, rich or poor. Further, we designate certain

vertices on the lattice as “urban sites,” providing civic infrastructure

that most benefits the poorer population, thus incentivizing the

occupation of such vertices by poor agents of either color. We look

at the stationary distribution of a Markov process reflecting these

preferences to understand the long-term effects.

We prove that when incentives are large enough, we will have

"urbanization of poverty," an observed effect whereby poor people

tend to congregate on urban sites. Moreover, even when homophily

preferences are very small, if the incentives are large and there

is income inequality in the two-color classes, we can get racial

segregation on urban sites but integration on non-urban sites. In

contrast, we find an overall mitigation of segregation when the

urban sites are distributed throughout the lattice and the incentives

for urban sites exceed the homophily biases. We prove that in this

case, no matter how strong homophily preferences are, it will be

exponentially unlikely that a configuration chosen from stationarity

will have large, homogeneous clusters of agents of either color,

suggesting we will have racial integration with high probability.
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1 INTRODUCTION
Over fifty years ago, economist Thomas Schelling studied segre-

gation by modeling residents as colored particles on a chessboard.

Each particle is considered happy if its color agrees with more than

a fixed fraction of its neighbors and unhappy particles try to move

to new locations with more favorable neighborhoods [14]. Simula-

tions reveal even a mild preference for neighbors of one’s own color

is sufficient to cause segregation on a macroscopic scale [28]. Exten-

sive work has been done by economists and sociologists to expand

Schelling’s model using statistical analysis, simulation tools, and

enhancedmodels [2, 16, 18, 32]. This work primarily focuses on how

the dynamics determine the limiting distribution and try to connect

themodel to the real world population dynamics [7–9, 17, 25, 29, 33].

Recent work also seeks to understand the dual segregation of eth-

nicity and wealth with empirical studies [11, 24, 27].

Additional heuristical and rigorous studies on the implications

of Schelling-like dynamics have been undertaken in the theoreti-

cal computer science and statistical physics communities, where

the concept of micro-motives affecting macro-behavior such as

phase transitions is well-understood. For instance, Brandt et al.

[4, 12] rigorously determined the precise limiting distributions for

the Schelling model in one dimension. Additional rigorous anal-

ysis was provided for a modified Schelling model with simplified

neighborhood interactions [1, 26, 31] or with generalized local in-

teractions [3, 30]. Bhakta et al. [3] introduced a randomized variant

and proved that slight biases maintain well-integrated populations,

whereas stronger biases lead to segregation. Unlike Schelling’s

model where each person’s happiness has a deterministic thresh-

old regarding one’s tolerance for differently colored neighbors, the

model in [3] allows all particles to move stochastically and they

are increasingly inclined to move when they have more neighbors

of the opposite color. Improved bounds on the amount of bias that

leads to integration and segregation were given by Cannon et al.
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[5] for specific geometric incentive functions where the model can

be mapped onto problems of heterogeneous particle separation in

the programmable matter.

Most variants of the Schelling model assume that agents of each

race are homogeneous and have identical incentives influencing

where they prefer to live purely based on homophily, the desire for
each particle to have neighbors that are similar to oneself, regardless

of socio-economic status and location. However, such simplemodels

cannot explain two widely observed phenomena: centralization,
whereby one racial group clusters near the the city center, and

urbanization of poverty, whereby city centers and other areas dense

with public amenities and infrastructure disproportionately attract

the poorer populations. Centralization is widely-used to measuring

racial segregation in metropolitan areas [15, 22]. Urban economists

show that urbanization of poverty results from better access to

public transportation in central cities and other resources [13].

Such evidence shows us that socio-economic considerations such

as the spatial distributions of urban infrastructure are significant

factors influencing racial segregation but these are not captured

by any of the theoretical models. This motivated our work which

simultaneously considers both homophily and each individuals’

incentives according to their wealth level and their access to public

amentities. With our proposed newmodel, we are able to rigorously

explore the impact of wealth disparity on racial segregation, as well

as civic interventions to potentially help mitigate segregation.

1.1 The heterogeneous Schelling model
To better understand these socioeconomic distinctions and the ef-

fects of economic disparity within a city, we introduce a new hetero-
geneous Schelling model where individuals are each assigned a color

and designated rich or poor. We also distinguish some vertices on

the underlying lattice to be urban sites if they provide useful infras-

tructure (or resources) that is most beneficial to poor citizens. The

urban sites might be grouped centrally, for instance representing

a metropolitan city center, or distributed evenly throughout large

parts of the city, representing a vast public transportation network

or other distributed amenities (see Fig 1). While all individuals have

uniform homophily preferences, as in the standard Schelling model,

we add additional incentives that favor configurations with more

poor people residing on urban sites, capturing the presumption

that urban sites provide sufficient benefits to poor individuals to

incentivize their relaxing their racial biases. We are interested in

understanding when urban infrastructure can help mitigate racial

biases and lessen segregation for various placements of urban sites

for such a model.

Specifically, we represented the city by a finite torus on the

triangular lattice, with each site accommodating exactly one person.

Each person (or agent) is blue or red, representing race, and rich or

poor, representing wealth. The vertices U ⊆ V are the urban sites.
Each pair of neighbors has homophily (or racial) bias 𝜆, representing

howmuch they each prefer neighbors of their own color. Setting 𝜆 >

1 is the “ferromagnetic” setting corresponding to agents preferring

same-colored neighbors. Further, poor agents have an affinity for

urban sites with a wealth bias parameter𝛾 ; setting𝛾 > 1 biases poor

agents to prefer residing on urban sites. When 𝛾 = 1, we recover

the pure standard homophily model where wealth of individuals is

not considered. Let Ω = ({red, blue} × {rich, poor}) |𝑉 |
be the state

space. The stationary probability of any configuration 𝜎 ∈ Ω is

given by

𝜋 (𝜎) = 𝜆−ℎ (𝜎 )𝛾𝑝 (𝜎 )/𝑍,
where ℎ(𝜎) is the number of racially heterogeneous edges (whose

endpoints do not share the same color), 𝑝 (𝜎) is the number of poor

agents on urban sites, and

𝑍 =
∑︁
𝜎∈Ω

𝜆−ℎ (𝜎 )𝛾𝑝 (𝜎 )

is the normalizing constant.

A randomized algorithmM for sampling from 𝜋 can be described

as follows. At each time step, two random agents are selected, and

they swap locations with the appropriateMetropolis probabilities so

as to converge to 𝜋 . In particular, they aremore likely to swap if they

are each in less homogeneous neighborhoods, as previously studied

in [3, 5], with an additional bias toward keeping poor agents on

urban sites, so happier individuals are less likely to move. We note

that when there are no urban sites (or all vertices are urban sites),

then the wealth of individuals becomes irrelevant and we recover

the racial segregation model studied in [5], where the dichotomy

of the phase change between integration and segregation has been

proved. Here we are interested in the effects in heterogeneous

cases where both urban and non-urban sites are present. We also

require the size of the urban sites to be of a constant fraction of the

total sites. For topology, we study the impact of the centralized or

distributed placement of the urban sites on segregation.

1.2 Effects on wealth and racial segregation
First, we show that our model yields urbanization of poverty when

the wealth bias𝛾 is sufficiently large, with all but an arbitrarily small

fraction of urban sites being occupied by poor agents. Conversely,

we show that for any racial bias 𝜆 > 1, if the wealth bias 𝛾 > 1 is

small enough, then it is exponentially unlikely that poor agents

will be disproportionately concentrated on urban sites.

Moreover, when the urban sites are centralized and both racial

bias 𝜆 and wealth bias 𝛾 are large enough, urbanization of poverty
and racial segregation will occur simultaneously. However, when

there is significant inequality in the distribution of wealth and

many more poor people come from one race, then even when the

racial bias 𝜆 is small, as long as the wealth bias 𝛾 is large, we will

have racial segregation on urban sites and racial integration on the
non-urban sites. This suggests that the urbanization of poverty can

enhance racial segregation when the infrastructure is centralized,

such as with a dense city center with civic services and perhaps

subsidized housing, providing a primary location that incentivizes

occupation by poor people.

We show there will be a dramatically different outcome when

the urban sites are well-distributed throughout the city, such as

with public transportation stops that service the entire city. First,

we prove under income inequality, where one race has a higher

proportion of poor people, no matter how large racial bias 𝜆 is, as

long as the wealth bias 𝛾 exceeds racial bias 𝜆 sufficiently, both the

urban and non-urban sites will be integrated with high probability.

That is, the probability of large spatial clusters with predominantly

one race forming anywhere is exponentially small. This suggests

that distributing urban infrastructure equitably throughout the
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city will have a better effect on mitigating segregation when the

incentives are large enough compared to the inherent racial biases.

Our proofs build on Peierls arguments from statistical physics

for the integration and separation of heterogenous particles in

the context of programmable matter [5]. The essential idea is to

map the set of configurations not satisfying a target property to

a set of configurations that have exponentially larger probability

at stationarity, so that the inverse maps do not require significant

information, thus proving that configurations outside of the target

set must have small probability by evaluating “energy/entropy”

balancing the probabilities and the number of preimages. However,

the introduction of urban sites and wealth bias greatly complicates

the proofs as we have to keep the same number of people for each

pair of wealth level and race before and after the mapping 𝜈 = 𝑓 (𝜎) .
In our setting, all four groups may deviate under the maps and it

requires careful arguments to be able to restore the cardinalities of

all the sets without losing too much information about the inverse

map, which is significantly more challenging than earlier proofs

that only considered race.

2 PRELIMINARIES
The dynamics we study can be viewed as a Markov chain that con-

verges to a distribution reflecting the overall effects of individual

biases. We briefly review properties of Markov chains and summa-

rize techniques used to analyze their stationary distributions.

2.1 Markov chains
A Markov chain is a memoryless random process on a state space

Ω, which is is finite and discrete in our setting. We focus on discrete

time Markov chains, where one transition occurs per time step. The

transition matrix 𝑀 on Ω × Ω → [0, 1] is defined so that 𝑀 (𝑥,𝑦)
is the probability of transiting from state 𝑥 to state 𝑦 in one step,

for any pair 𝑥,𝑦 ∈ Ω. The 𝑡−step transition probability𝑀𝑡 (𝑥,𝑦) is
the probability of moving from 𝑥 to 𝑦 in exactly 𝑡 steps.

A Markov chain is irreducible if for all 𝑥,𝑦 ∈ Ω, there exists

a 𝑡 such that 𝑀𝑡 (𝑥,𝑦) > 0 and is aperiodic if for all 𝑥,𝑦 ∈ Ω,
g.c.d.{𝑡 : 𝑀𝑡 (𝑥,𝑦) > 0} = 1, where g.c.d. stands for the greatest

common divisor. A Markov chain is ergodic if it is irreducible and
aperiodic (see, e.g., [20]).

A stationary distribution of a Markov chain is a probability dis-

tribution 𝜋 over the state space Ω such that 𝜋𝑃 = 𝜋. Any finite,

ergodic Markov chain converges to a unique stationary distribution

given by 𝜋 (𝑦) = lim𝑡→∞ 𝑃𝑡 (𝑥,𝑦) for any 𝑥,𝑦 ∈ Ω; moreover, for

such chains the stationary distribution 𝜋 (𝑦) is independent of start-
ing state 𝑥 . To verify 𝜋

′
is the unique stationary distribution of a

finite ergodic Markov chain, it suffices to check the detailed balance
condition, i.e., 𝜋

′ (𝑥)𝑀 (𝑥,𝑦) = 𝜋
′ (𝑦)𝑀 (𝑦, 𝑥) and ∑

𝑥∈Ω 𝜋
′ (𝑥) = 1

for all 𝑥,𝑦 ∈ Ω (see [10]).

2.2 Peierls arguments
Peierls arguments are helpful in analyzing a chain’s limiting be-

havior by showing that the probability a sample drawn from the

stationary distribution 𝜋 of a Markov chain falls into some tar-

get set is exponentially small in 𝑛, indicating that 𝜋 (Ω𝑡 ) ≤ 𝜉𝑛 for

some constant 𝜉 ∈ (0, 1). The Peierls argument is based on a map

from configurations in the target set Ωt to configurations in the

configuration space Ω such that the map has an exponential gain

in probability. Thus the targeted configurations are exponentially

unlikely in Ω. Mathematically, the mapping 𝜈 = 𝑓 (𝜎) is defined
from 𝜎 ∈ Ωt to 𝜈 ∈ Ω, which yields

𝜋 (Ωt) =
∑︁
𝜎∈Ωt

𝜋 (𝜎) ≤
∑︁
𝜈∈Ω

∑︁
𝜎∈ 𝑓 −1 (𝜈 )

𝜋 (𝜎)

=
∑︁
𝜈∈Ω

𝜋 (𝜈)
∑
𝜎∈ 𝑓 −1 (𝜈 ) 𝜋 (𝜎)

𝜋 (𝜈) . (1)

In order to show 𝜋 (Ωt) ≤ 𝜉𝑛 , the mapping needs to be carefully

defined to get the upper bounds of the probability ratio
𝜋 (𝜎 )
𝜋 (𝜈 ) and

the number of the preimages |𝑓 −1 (𝜈) | for any given 𝜈 . A mapped

configuration 𝜈 with large probability ratio
𝜋 (𝜎 )
𝜋 (𝜈 ) can also have

many possible preimages, which necessitates carefully balancing

𝜋 (𝜎 )
𝜋 (𝜈 ) and |𝑓 −1 (𝜈) |, representing an energy/entropy tradeoff.
To facilitate the mapping operations 𝑓 (·) and the counting of

|𝑓 −1 (𝜈) |, certain bridge systems have been introduced in [5, 23] to

efficiently encode some information about mapped configurations

to facilitate inverting the map and help bound the number of preim-

ages. Unlike [5, 23], here the configuration space is enlarged by the

introduction of a wealth dimension, requiring extending the bridge

system to encode multi-dimensional information representing race

and wealth. Moreover, because the additional wealth term is re-

flected in the stationary distribution, more careful mapping rules

are required to account for tradeoffs between
𝜋 (𝜎 )
𝜋 (𝜈 ) and |𝑓 −1 (𝜈) |,

balancing the effects of both the wealth and homophily biases in

the probability measure.

3 THE HETEROGENEOUS SCHELLING MODEL
WITH INCENTIVES

In our proposed model, a city is represented by a finite toroidal

region of the triangular lattice 𝐺△ = (V, E), shown in Figure 1a.

Each vertex in V represents a potential residence or site. Two
adjacent vertices are neighboring sites, and each site has six nearest

neighbors on 𝐺△ . Some vertices U ⊆ V are designated urban sites.
We denote the set of agents as A and the poor agents as P ⊆ A .

Figure 1a shows an example of centralized placement of urban sites,

whereas Figure 1b shows the distributed placement, with urban

sites depicted as yellow hexagons.

We assume each agent 𝑖 is assigned a race 𝑟 (𝑖) ∈ {blue, red}
and wealth𝑤 (𝑖) ∈ {rich, poor}. Each site inV can accommodate

at most one agent. For simplicity of analysis, we assume that 𝑛

agents fully occupy all the sites on 𝐺△ , where |V| = 𝑛. The size

of the urban sites is assumed to be of a constant fraction of all the

sites, i.e., |U| = 𝑐 · 𝑛, where 𝑐 ∈ [0, 1] . As shown in Figure 1c, we

represent the race of an agent by color and the wealth of an agent

by the shade of each color; poor blue agents are referred to as cyan,
poor red agents are pink and blue and red are reserved for the rich

members of each color class.

Among the 𝑛 agents, P is the subset that are poor; the fraction

that are poor is denoted by 𝑝 , so |P | = 𝑝 ·𝑛. Similarly, the fraction of

red agents R is 𝑟 , with |R | = 𝑟 ·𝑛. Among the red agents, we further

denote the fraction of poor red agents Rp as 𝑟p, and the fraction of

rich red agentsRr as 𝑟r, so that |Rp | = 𝑟p𝑛, and |Rr | = 𝑟r𝑛. Similarly,
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(a) (b) (c)

Figure 1: A city lattice region 𝐺△ (a) with centralized urban sites (shaded in yellow), (b) with distributed urban sites, and (c)
centralized and fully occupied by the four types of agents.

we define the fraction of the blue B as 𝑏, the fraction of poor blue

Bp as 𝑏p, and the fraction of rich blue as Br as 𝑏r.

A configuration (or a state) 𝜎 is an assignment of the four types

(race and wealth) to each of the vertices of 𝐺△ . The state space (or
configuration space) Ω = ({red, blue} × {rich, poor}) |𝑉 |

is the set

of all possible configurations.

For a configuration 𝜎, we denote ℓ𝜎 (𝑖) ∈ V as the site where

agent 𝑖 resides. Agents living at adjacent sites are neighbors and
each agent has six neighbors. Each agent 𝑖 is assigned a race 𝑟 (𝑖),
wealth𝑤 (𝑖), and occupies a site ℓ𝜎 (𝑖), which it can recognize as an

urban site or not. We define an indicator function that takes agent 𝑖

as input and outputs true when 𝑖 is poor and currently on the urban

sites as the following:

𝑢𝜎 (𝑖) ≜
{
1, if 𝑖 ∈ P, ℓ𝜎 (𝑖) ∈ U
0, otherwise

For a configuration 𝜎, the number of agents that are both poor and

on the urban sites is defined to be 𝑝 (𝜎) ≜ ∑
𝑖∈A 𝑢𝜎 (𝑖) .

For each agent 𝑖 , let 𝑁𝜎 (𝑖) be the number of neighbors of 𝑖 that

share its color. An edge in a configuration 𝜎 with vertices occupied

by agents 𝑖 and 𝑗 is racially homogeneous if their colors agree (i.e.,
𝑟 (𝑖) = 𝑟 ( 𝑗)) and racially heterogeneous otherwise. We define the

total number of racially heterogeneous edges of a configuration 𝜎

as ℎ(𝜎), and the total number of racially homogeneous edges as

𝑒 (𝜎) .
TheMarkov chainM is defined so that it will converge to 𝜋 (𝜎) =

𝜆−ℎ (𝜎 )𝛾𝑝 (𝜎 )/𝑍 , which generalizes the Schelling probabilities to

reflect the additional contribution of urban sites. Each agent 𝑖 is able

to swap locations with any agent 𝑗 ∈ A, 𝑗 ≠ 𝑖 in the city𝐺△ , which
we denote it a swap move 𝑠𝑖 𝑗 . Beginning with any configuration

𝜎0 ∈ Ω, at each time step, the algorithm randomly picks two agents

𝑖 and 𝑗 at sites ℓ𝜎 (𝑖) ∈ V and ℓ𝜎 ( 𝑗) ∈ V and tries to swap their

positions with the appropriate Metropolis probabilities (so agents

are more likely to move if the move increases its number of racially

homogeneous neighbors, but with a dampening factor
1

𝛾 < 1 if the

agent is poor and currently at the urban site. Mathematically,

𝑃 (𝜎 : 𝑖 → 𝑗) = 𝜆−𝑁𝜎 (𝑖 )

𝛾𝑢𝜎 (𝑖 )
,

where 𝜆 > 1, and 𝛾 > 1. The probability of agents 𝑖 and agent 𝑗

swapping positions satisfies

𝑃 (𝜎 : 𝑠𝑖 𝑗 ) =
1

𝑛2
𝜆−𝑁𝜎 (𝑖 )−𝑁𝜎 ( 𝑗 )𝛾−

∑
𝑘∈{𝑖,𝑗 } 𝑢𝜎 (𝑘 ) . (2)

Algorithm 1 Markov Chain M.

Beginning at any configuration 𝜎0 with 𝑛 agents, repeat:
Choose two agents 𝑖 and 𝑗 uniformly at random in the current

configuration 𝜎 .

Choose 𝑞 ∈ (0, 1) uniformly at random.

if 𝑞 < 𝜆−𝑁𝜎 (𝑖 )−𝑁𝜎 ( 𝑗 )𝛾−
∑

𝑘∈{𝑖,𝑗 } 𝑢𝜎 (𝑘 ) then
agents 𝑖 and 𝑗 swap positions.

else
agents 𝑖 and 𝑗 keep their current locations.

end if

It is easy to see that the Markov chain M is ergodic on the

state space Ω, since swap moves of M suffice to transform any

configuration to any other configuration (irreducible) and there is

a non-zero self-loop probability for 𝜆 > 1 and 𝛾 > 1 (aperiodic).

Using detailed balance it is easy to confirm that the Markov chain

converges to

𝜋 (𝜎) = 𝜆−ℎ (𝜎 )𝛾𝑝 (𝜎 )/𝑍, (3)

with ℎ(𝜎) the number of racially heterogeneous edges in 𝜎 , 𝑝 (𝜎)
represent the number of poor people on the urban sites in 𝜎 , and

𝑍 =
∑
𝜎∈Ω 𝜆−ℎ (𝜎 )𝛾𝑝 (𝜎 ) the partition function that normalizes the

probability distribution. See Section 1.1 of Supplementary Informa-

tion (SI) for proof details.

4 URBANIZATION OF POVERTY
We begin by confirming the urbanization of poverty, whereby a

1 − 𝜖 fraction of the urban sites are occupied by poor agents, for

any constant 𝜖 > 0. We prove in Theorem 2 that under centralized
placement, for any 𝜆 and 𝜖 , and 𝛾 sufficiently large, urbanization

of poverty will occur at stationarity with high probability. See

Figure 2a for simulations. Further, in Corollary 3 we prove that

when urban sites are distributed throughout the lattice, for any

𝜖 and 𝜆 with 𝛾 > 𝜆, we again will have urbanization of poverty

(simulations in Figure 2b). Finally, we prove that for centralized

urban sites, if 𝛾 > 1 and 𝜖 > 0 are sufficiently small, then for any

𝜆 > 1, we are very unlikely to have urbanization of poverty, i.e.,

more than a 1 − 𝜖 fraction of urban sites will be occupied by rich

agents.

Definition 1. For any 𝜖 ∈ (0, 1
2
), a city is said to have 𝜖−urbaniza-

tion of poverty if the number of poor agents on the urban sites is at
least min{𝑐, 𝑝}𝑛 − 𝜖𝑛.
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(a) mixed urbanization and racial integration outside the centralized
urban sites, with 𝛾 = 200, 𝜆 = 1.01.

(b) urbanization of poverty and integration with distributed urban sites
with 𝛾 = 200, 𝜆 = 1.01.

Figure 2: Simulations ofM after five million iterations with 40% poor red(pink), 10% rich red (red), 40% rich blue (blue), and 10%
poor blue (cyan) and a 46% fraction of the urban sites.

The parameter 𝜖 captures the tolerance for allowing rich agents on

urban sites: smaller 𝜖 indicates a higher density of poor agents on

urban sites, whereas larger 𝜖 allows a larger fraction to be occupied

by rich agents. The term min{𝑐, 𝑝}𝑛 is the maximum possible occu-

pancy of poor agents on urban sites for given populations. Hence,

𝜖−urbanization of poverty requires that the maximum number of

poor agents occupy urban sites, leaving at most an 𝜖 fraction to be

occupied by rich agents.

First, we show in Theorem 2 and Corollary 3 that for either

centralized urban sites or distributed urban sites, if 𝛾 is sufficiently

large, then we are likely to observe urbanization of poverty at

stationarity.

Theorem 2 (Centralized Urbanization of Poverty). If 𝛾 >

16

3(3𝜖+2)
2𝜖2 and 𝜆 > 1, with the centralized urban sites, when 𝑛 is

sufficiently large, then forM, configurations drawn from distribution
𝜋 have 𝜖−urbanization of poverty with probability at least 1 − 𝜉𝑛

1
,

where 0 < 𝜉1 < 1.

To prove this theorem, we first define Ω¬urb to be the set of the con-
figurations that do not have 𝜖−urbanization of poverty. It suffices

to show 𝜋 (Ω¬urb) ≤ 𝜉𝑛
1
. We use Peierls argument using a mapping

from non-urbanized configurations to urbanized configurations,

along with appropriate bridging, to show that the image of the map

has an exponentially higher probability than their preimages. With

careful counting, this lets us conclude that non-urbanized config-

urations are exponentially less likely than urbanized ones, even

though there are many more non-urbanized configurations and

some of those configurations can have large probability weights in

terms of 𝜆−ℎ (𝜎 ) .
While similar to [5, 23], the addition of a wealth in the model

requires significantly modifying the bridge systems to encode both

race andwealth for each agent using a𝛿−race_wealth bridge system,

as specified in Section 1.2 of SI. Here we have to carefully account

for additional effects contributing the energy term because some

configurations with large probability 𝛾𝑝 (𝜎 )−𝑝 (𝜈 ) can be mapped to

configurations with small weight 𝜆−(ℎ (𝜎 )−ℎ (𝜈 ) )
. This necessitates

designingmore careful mapping rules to balance
𝜋 (𝜎 )
𝜋 (𝜈 ) and |𝑓

−1 (𝜈) |;
see Section 1.3-1.5 of SI for details of the mapping.

Proof of Theorem 2. For any 𝜎 ∈ Ω¬urb, we first construct a
𝛿−race_wealth bridge system (see Section 1.2 of SI for definition

and Figure 2a of SI for illustration) and define the mapping 𝑓 (𝜎) =
(𝑓5◦𝑓4◦𝑓3◦𝑓2◦𝑓1) (𝜎), where 𝜓 = 𝑓1 (𝜎) is the richness inversion

mapping (defined in Section 1.3 of SI and see Figure 2b in SI for

illustration), and 𝜏 = 𝑓2 (𝜓 ) is the color inversion mapping (defined

in Section 1.3 of SI and see Figure 2b in SI for illustration). 𝜏 =

(𝑓2◦𝑓1) (𝜎) eliminates the bridged racially heterogeneous edges and

the bridged poor agents. For (𝑓5◦𝑓4◦𝑓3) (𝜏) (defined in Section 1.4

of SI, we first assume the urban sites are centralized, under which

we recover the same ratios of each color and richness as in 𝜎 in the

centralized way defined in Section 1.5 of SI (also see Figure 3 in SI

for illustrations). Then the upper bounds ofℎ(𝜈)−ℎ(𝜎) ≤ 3𝛼
√
𝑛−𝑧c

and 𝑝 (𝜎) − 𝑝 (𝜈) ≤ −𝛿𝑛 and |𝑓 −1 (𝜈) | ≤ (𝑧c + 1)9𝛼
√
𝑛
4
( 3𝛿+1

4𝛿
) (𝑧c+3𝑛)

can be obtained from Claim 15 and 16 in Section 2 of SI. The color

contour length 𝑧c is defined in the bridge system (Section 1.2 of SI),

which is the sum of the length of the contours separating the red (or

pink) from the blue (or cyan) in 𝜎 with a no more than 𝛿−fraction
omission. Finally, substituting (3) and our other bounds into the

Peierls argument yields

𝜋 (Ω¬urb) =
∑︁

𝜎∈Ω¬urb

𝜋 (𝜎) ≤
∑︁
𝜈∈Ω

∑︁
𝜎∈ 𝑓 −1 (𝜈 )

𝜋 (𝜎)

=
∑︁
𝜈∈Ω

𝜋 (𝜈)
∑
𝜎∈ 𝑓 −1 (𝜈 ) 𝜋 (𝜎)

𝜋 (𝜈)

≤
∑︁
𝜈∈Ω

𝜋 (𝜈)
∑︁

𝜎∈ 𝑓 −1 (𝜈 )
𝜆ℎ (𝜈 )−ℎ (𝜎 )𝛾𝑝 (𝜎 )−𝑝 (𝜈 )

≤
∑︁
𝜈∈Ω

𝜋 (𝜈)
3𝑛∑︁

𝑧c=
√
𝑟 ·𝑛

𝑎(𝑛) (𝑧c + 1) ( 4
3𝛿+1
4𝛿

𝜆
)𝑧c ( 64

3𝛿+1
4𝛿

𝛾𝛿
)𝑛,

where 𝑎(𝑛) ≜ (3𝑛 + 1) · 9𝛼
√
𝑛𝑛6, 𝑧c ≤ 3𝑛 is because the color

contour length is upper bounded by the sum of all edges of 𝐺△ ,
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(a) urbanized segregation with 𝛾 = 200, 𝜆 = 2. (b) mitigation of segregation via distributing the urban sites, with 𝛾 =

200, 𝜆 = 2.

Figure 3: Simulations ofM after five million iterations with 40% poor red(pink), 10% rich red (red), 40% rich blue (blue), and 10%
poor blue (cyan) and a 46% fraction of the urban sites.

and 𝑧c ≥
√
𝑟 · 𝑛 is due to the triangular lattice geometry, which is

proved in Lemma 2.1 in [6].

If 𝜆 ≥ 4

3𝛿+1
4𝛿 , as long as 𝛾𝛿/3 > 4

3𝛿+1
4𝛿 , the sum will be exponen-

tially small for sufficiently large 𝑛. Or if 1 ≤ 𝜆 < 4

3𝛿+1
4𝛿 , the sum

further yields 𝜋 (Ω¬urb) ≤ 𝑛6 · (3𝑛 + 1) · 9𝛼
√
𝑛 · 3𝑛 · ( 16

3𝛿+1
4𝛿

𝜆𝛾𝛿/3
)3𝑛 . As

long as 𝛾𝛿/3 > 16

3𝛿+1
4𝛿 ≥ 16

3𝛿+1
4𝛿 /𝜆, the sum will still be exponen-

tially small for sufficiently large 𝑛. Combining the two cases, we

can see that as long as 𝛾𝛿/3 > 16

3𝛿+1
4𝛿 and 𝜆 > 1, 𝜋 (Ω¬urb) ≤ 𝜉𝑛

1
,

for 𝜉1 ∈ (0, 1) . Substituting 𝛿 = 𝜖/2 into 𝛾𝛿/3 > 16

3𝛿+1
4𝛿 yields

Theorem 2. □

In the above theorem, to realize the urbanization of poverty

under the centralized urban sites placement, it suffices to have

𝜆 · 𝛾𝛿/3 > 16

3𝛿+1
4𝛿 , where the wealth bias and the racial bias both

contribute to the urbanization of poverty. In contrast, when urban

sites are distributed, we find competing effects between 𝛾 and 𝜆,

whereby urbanization of poverty is achieved when 𝛾 is strictly

larger than 𝜆. See detailed proofs in Section 3 of SI.

Corollary 3 (Distributed Urbanization of Poverty). If 𝛾 >

4

3(3𝜖+2)
2𝜖2 · max{𝜆6/𝜖 , 4

3(3𝜖+2)
2𝜖2 } and 𝜆 > 1, with the distributed urban

sites, when 𝑛 is sufficiently large, then forM, configurations drawn
from distribution 𝜋 have 𝜖−urbanization of poverty with probability
at least 1 − 𝜉𝑛

1
, where 0 < 𝜉1 < 1.

On the other hand, when the incentives for the poor agents

to occupy urban sites are small, urbanization of poverty will not

occur. In particular, we prove in Theorem 4 that for any 𝜆 > 1, if

𝛾 > 1 but is smaller than a threshold, it is exponentially unlikely

we will observe urbanization of poverty at stationary under certain

demographic parameter choices. See the proof details in Section 4

of SI.

Theorem 4 (Dispersion of Poverty). Given centralized urban
sites, 𝑝 < 𝑐 < 𝑝 + 𝜖 , 𝑟p < 𝑟r − 𝛿 and 𝑏p < 𝑏r − 𝛿 , for any 𝜆 > 1, if

1 < 𝛾 < ( 𝑟−𝛿𝑟p )
𝑟p

𝑝 ( 𝑏−𝛿
𝑏p

)
𝑏p

𝑝 /2, when 𝑛 is sufficiently large, then for
M, configurations drawn from distribution 𝜋 have 𝜖−urbanization
of poverty with probability at most 𝜉𝑛

2
for some constant 0 < 𝜉2 < 1

and 𝛿 = 𝜖
2
.

5 URBANIZED RACIAL SEGREGATION
Next, we explore conditions that lead to urbanized racial segregation,
where the large regions in the urban sites are occupied by poor

agents of predominantly one race. We define (𝛽, 𝛿)−segregation
as follows.

Definition 5. For 𝛽 > 4

√
𝑟 and 𝛿 ∈ (0, 1

2
), a city configuration 𝜎 is

said to be (𝛽, 𝛿)−segregated if there exists a subset of agents 𝑅 such
that:

• there are at most 𝛽
√
𝑛 racially heterogeneous edges of 𝜎 with

exactly one endpoint in 𝑅;
• the number of red agents in 𝑅 is at least 𝑟𝑛 − 𝛿𝑛.

The parameter 𝛿 is the tolerance for having agents of the other

color within the red region 𝑅, with smaller 𝛿 corresponding to a

increased segregation. If one color class has fewer than 𝛿𝑛 agents,

then the entire configuration space will be (𝛽, 𝛿)−segregated, with
𝑅 = ∅, or 𝑅 = ∅.We require that each color class has more than 𝛿𝑛

agents and, accordingly, we need 𝛿 < 1/2. The parameter 𝛽 controls

how small the boundary is between the red region 𝑅 and the rest of

the configuration, and the minimal value 4

√
𝑟 corresponds to the

extremal casewhere the red region forms a homogeneous hexagonal

cluster. We say that a configuration 𝜎 is integrated if the city is

not (𝛽, 𝛿)-segregated for any 𝛽 and 𝛿 .

Definition 6. For 𝛽 > 4

√
𝑟, and 𝜖 ∈ (0, 1

2
), we say a city has

(𝛽, 𝜖)−urbanized segregation if it is both (𝛽, 𝜖)−segregated and
has 𝜖−urbanization of poverty.

Like Definition 5, 𝛽 here controls how small the boundary is be-

tween the red region 𝑅 and the rest of the city, while 𝜖 expresses the

tolerance for having agents of thewrong color within themonochro-

matic color regions or having rich agents on the urban sites. In the
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following theorem, we show that for large enough 𝜆 and 𝛾 , with

high probability,M leads to urbanized segregation. See Figure 3a

for simulated visualizations.

Theorem 7 (Urbanized Racial Segregation). With centralized ur-
ban sites, 𝜆 > 3

𝛼
𝛽
4

3𝛿+1
4𝛿 ,𝛾𝛿/3 > 4

3𝛿+1
4𝛿 , and𝑛 sufficiently large, configu-

rations fromM drawn from distribution 𝜋 have (𝛽, 𝜖)−urbanized seg-
regation with probability at least 1−𝜉

√
𝑛 for some constant 0 < 𝜉 < 1,

and 𝛿 = 𝜖
2
.

Proof of Theorem 7. First, we define 𝑈𝛽,𝜖 ⊂ Ω to be the con-

figurations that have (𝛽, 𝜖)−urbanized segregation. To prove Theo-

rem 7, it suffices to prove 𝜋 (Ω \𝑈𝛽,𝜖 ) ≤ 𝜉
√
𝑛, where 𝜉 ∈ (0, 1) . We

can further divide Ω \𝑈𝛽,𝜖 into two parts: Ω¬urb that do not have

𝜖−urbanization of poverty, and Ω
urb∧¬seg that have 𝜖−urbanization

of poverty and do not have (𝛽, 𝜖)−segregation. Thus it suffices to

prove 𝜋 (Ω¬urb) ≤ 𝜉𝑛
1
and 𝜋 (Ω

urb∧¬seg) ≤ 𝜉

√
𝑛

0
, for 0 < 𝜉1, 𝜉0 < 1.

It follows from the proof of Theorem 2 that if 𝜆 ≥ 4

3𝛿+1
4𝛿 , as long

as 𝛾𝛿/3 > 4

3𝛿+1
4𝛿 , 𝜋 (Ω¬urb) ≤ 𝜉𝑛

1
. It is proved in Claim 20 in Sec-

tion 5 of SI that If 𝜆 > 3

𝛼
𝛽
4

3𝛿+1
4𝛿 , 𝜋 (Ω

urb∧¬seg) ≤ 𝜉

√
𝑛

0
for some

𝜉0 ∈ (0, 1). Combining the two parts, to have 𝜋 (Ω \ 𝑆𝛽,𝜖 ) to be

exponentially small for large 𝑛, it suffices to have 𝜆 > 3

𝛼
𝛽
4

3𝛿+1
4𝛿 and

𝛾𝛿/3 > 4

3𝛿+1
4𝛿 . □

To complement Theorem 7, we prove that for large enough 𝛾

but 𝜆 > 1 below a threshold, we will likely observe urbanization of

poverty but racial integration outside the urban area under certain

demographic parameter choices. The proof technique is very similar

to the proof of Theorem 4. See Section 6 of SI for proof details. A spe-

cial case of Theorem 8 is shown in Remark 9, where segregation of

poor red agents occurs inside the urban area and racial integration

occurs outside. See Figure 3b for simulated visualizations.

Theorem 8 (Coexistence of Urbanization and Racial Integra-
tion). With the centralized urban sites, for the demographics choices
such that ( 𝑝−𝛿𝑟p

)𝑟p ( 1−𝑝−𝛿𝑟r
)𝑟r > 2

𝑟 , if 1 < 𝜆3 < ( 𝑝−𝛿
𝑏p

)𝑏p ( 1−𝑝−𝛿
𝑏r

)𝑏r/2𝑟 ,

and 𝛾𝛿/3 > 16

3𝛿+1
4𝛿 , when 𝑛 is sufficiently large, then for M, configu-

rations drawn from distribution 𝜋 have 𝜖−urbanization of poverty
and are integrated outside the urban area with probability at least
1 − 𝜉𝑛

3
for some constant 0 < 𝜉3 < 1 and 𝛿 = 𝜖

2
.

Remark 9. As a special case when the size of the urban sites can
roughly accommodate all of poor agents, where 𝑝 < 𝑐 < 𝑝 + 𝜖, if the
demographics satisfies Theorem 8 with 𝑏p ≤ 𝑚𝜖 , then under the same
bias parameter choices as Theorem 8, then with high probability the
stationary configuration will have urbanized segregation of poor red
agents, where the density of poor red on the urban sites is at least
1− (𝑚 + 1)𝜖, and racial integration of the rich outside the urban area.

Proof of Theorem 8. We define Ω
urb∧¬seg ⊂ Ω to be the con-

figurations that have 𝜖−urbanization of the poor and (𝛽, 𝛿)−integration
outside the urban area. It suffices to show that with all but exponen-

tially small probability, a sample drawn from (3) is not in Ω
urb∧¬seg:

𝜋 (Ω \ Ω
urb∧¬seg) ≤ 𝜉

√
𝑛

3
, where 𝜉3 ∈ (0, 1) and 𝑛 is sufficiently

large.

We can further divide the configuration space Ω \ Ω
urb∧¬seg

into two parts: the set of configurations Ω¬urb that do not have

𝜖−urbanization of poverty, and the set of configurations Ω
urb∧seg

that have 𝜖−urbanization of poverty and (𝛽, 𝛿)−segregation. Since
Ω\Ω

urb∧¬seg = Ω¬urb+Ωurb∧seg, to prove 𝜋 (Ω\Ω
urb∧¬seg) ≤ 𝜉

√
𝑛

3
,

it suffices to prove 𝜋 (Ω¬urb) ≤ 𝜉𝑛
1
and 𝜋 (Ω

urb∧seg) ≤ 𝜉

√
𝑛

0
, for some

constant 0 < 𝜉1, 𝜉0 < 1 and sufficiently large 𝑛.

It follows from Theorem 2 that for 𝛾𝛿/3 > 16

3𝛿+1
4𝛿 and 𝜆 > 1,

𝜋 (Ω¬urb) ≤ 𝜉𝑛
1
for some 𝜉1 ∈ (0, 1) . To prove the second part

𝜋 (Ω
urb∧seg) ≤ 𝜉

√
𝑛

0
, for each 𝜎 ∈ Ω

urb∧seg, we construct a 𝛿−color
bridge system (see Section 1.2 of SI for definition). Then we define

the mapping 𝑠 = (𝑠2 ◦ 𝑓2) (·): we do the color inversion and obtain

𝜏 = 𝑓2 (𝜎); next for 𝜏 , we randomly flip the cyan to pink until the

right number of the pink, and we randomly flip the blue to red until

the right number of the red and obtain 𝜈 = 𝑠2 (𝜏) .
Finally, we define a weighted bipartite graph 𝐺 (Ω

urb∧seg,Ω, 𝐸)
with an edge of weight 𝜋 (𝜎) between 𝜎 ∈ Ω

urb∧seg and 𝜈 ∈ Ω. The
total weight of edges is∑︁

𝜎∈Ωurb∧seg

𝜋 (𝜎) · |𝑆 (𝜎) |

≥ 𝜋 (Ω
urb∧seg) (

𝑝 − 𝛿

𝑟p
) (𝑟p−𝛿 )𝑛 ( 1 − 𝑝 − 𝛿

𝑟r
) (𝑟r−𝛿 )𝑛 . (4)

On the other hand, the weight of the edges is at most∑︁
𝜈∈Ω

∑︁
𝜎∈𝑠−1 (𝜈 )

max

𝜎∈Ωurb∧seg
𝜋 (𝜎)

=
∑︁
𝜈∈Ω

𝜋 (𝜈)
∑︁

𝜎∈𝑠−1 (𝜈 )

max𝜎∈Ωurb∧seg 𝜋 (𝜎)
𝜋 (𝜈) |𝑠−1 (𝜈) |

≤
∑︁
𝜈∈Ω

𝜋 (𝜈)
𝛽
√
𝑛∑︁

𝑧
c=

√
rn

𝑙 · 𝜆max(ℎ (𝜈 )−ℎ (𝜎 ) )𝛾max(𝑝 (𝜎 )−𝑝 (𝜈 ) )
4

3𝛿+1
4𝛿

𝑧c
2
𝑟𝑛

≤
𝛽
√
𝑛∑︁

𝑧c=𝛽min

√
𝑛

𝑙 · ( 4
3𝛿+1
4𝛿

𝜆
)𝑧c𝜆3𝑛2𝑟𝑛 . (5)

where 𝑙 ≜ (𝑧c + 1)3𝛼
√
𝑛
, and the inequalities in Claims 23-25 from

Section 6 of SI have been substituted in the above derivation. Com-

bining equations (4) and (5), we find

𝜋 (Ω
urb∧seg) (

𝑝 − 𝛿

𝑟p
) (𝑟p−𝛿 )𝑛 ( 1 − 𝑝 − 𝛿

𝑟r
) (𝑟r−𝛿 )𝑛

≤
𝛽
√
𝑛∑︁

𝑧c=𝛽min

√
𝑛

(𝑧c + 1)3𝛼
√
𝑛 ( 4

3𝛿+1
4𝛿

𝜆
)𝑧c𝜆3𝑛2𝑟𝑛 . (6)

For large enough 𝑛, to have 𝜋 (Ω
urb∧seg) ≤ 𝜉𝑛

3
for some 𝜉3 ∈ (0, 1),

it suffices to have

𝜆3𝑛2𝑟𝑛 < ( 𝑝 − 𝛿

𝑟p
) (𝑟p−𝛿 )𝑛 ( 1 − 𝑝 − 𝛿

𝑟r
) (𝑟r−𝛿 )𝑛

< ( 𝑝 − 𝛿

𝑟p
)𝑟p𝑛 ( 1 − 𝑝 − 𝛿

𝑟r
)𝑟r𝑛,

which can be rewritten as

𝜆3 < ( 𝑝 − 𝛿

𝑟p
)𝑟p ( 1 − 𝑝 − 𝛿

𝑟r
)𝑟r/2𝑟 .
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Since 𝜆 > 1, to make the right hand side of the above inequal-

ity greater than one, it suffices to have ( 𝑝−𝛿𝑟p
)𝑟p ( 1−𝑝−𝛿𝑟r

)𝑟r > 2
𝑟 .

Combining the above parameter choices with Theorem 2 requires

𝛾𝛿/3 > 16

3𝛿+1
4𝛿 and 𝜆 > 1, proving Theorem 8. □

6 INTEGRATION IN CITIES WITH
DISTRIBUTED URBAN SITES

As we’ve shown, when urban sites are centralized, the wealth and

homophily biases align to cause segregation, as shown in Theorem 7.

However, when the placement of urban sites is distributed, the racial
and wealth biases will work against each other, and we will get

integration if the influence of the wealth bias exceeds the homophily

bias. See Figure 3b for simulations.

Theorem 10. In a city with |U| = 𝑐𝑛 urban sites evenly partitioning
in the city (like we find with bus routes), a small number of poor blue
agents, with 𝑏p < ˆ𝑏p, and any 𝜆 > 1, if 𝛾 ˆ𝑏p−𝑏p > 𝜆2𝑐64

3𝛿+1
4𝛿 , and

𝑛 sufficiently large, then configurations drawn from distribution 𝜋

will be (𝛽, 𝛿)−segregated with exponentially small probability 𝜉𝑛
4
, for

some constant 0 < 𝜉4 < 1.

Hence, integration occurs because no matter how large the ho-

mophily bias weight 𝜆−(ℎ (𝜎 )−ℎ (𝜈 ) )
is, as long as the energy term

arising from the wealth bias 𝛾𝑝 (𝜎 )−𝑝 (𝜈 ) is larger, then the station-

ary distribution will be very unlikely to be segregated. See below

for the proof.

Proof of Theorem 10. We define the configuration space 𝑆𝛽,𝛿
to be the set of configurations that are (𝛽, 𝛿)−segregated. To prove

Theorem 10, it suffices to prove 𝜋 (𝑆𝛽,𝛿 ) ≤ 𝜉𝑛
4
, where 𝜉4 ∈ (0, 1) .

The bridging and the mapping 𝜈 = 𝑓 (𝜎) = (𝑓5◦𝑓4◦𝑓3◦𝑓3◦𝑓1) (𝜎) are
defined as the following: we first construct a 𝛿−race_wealth bridge

system for 𝜎 ∈ 𝑆𝛽,𝛿 (see Section 1.2 of SI for details). Then we do

richness inversion and color inversion like defined in 𝑓1 (·) and 𝑓2 (·).
Then we do the color and richness recovery 𝜈 = (𝑓5◦𝑓4◦𝑓3◦)(𝜏)
in the distributed way as specified in Section 1.5 of SI. After the

mapping, it is proved in Claim 26 of SI that for any 𝜎 ∈ 𝑆𝛽,𝛿 with a

given bridged color contour length 𝑧c, ℎ(𝜈) − ℎ(𝜎) ≤ 2𝑐𝑛 − 𝑧c and

𝑝 (𝜎) −𝑝 (𝜈) ≤ 𝑏p𝑛− ˆ𝑏p𝑛, where ˆ𝑏p ≜ min{𝑐, 𝑝} − (𝑟 +𝛿)𝑐 − 2𝛿. See

proof details of Claim 26 from Section 7 of SI.

For a given color contour length 𝑧c, for any 𝜈 = 𝑓 (𝜎), the num-

ber of preimages follows from Claim 16. Similarly, we use Peierls

argument (1), substituting the related bounds into which yields

𝜋 (𝑆𝛽,𝛿 ) ≤∑︁
𝜈∈Ω

𝜋 (𝜈)
𝛽
√
𝑛∑︁

𝑧c=
√
𝑟 ·𝑛

𝑛6 (3𝑛 + 1) (𝑧c + 1)9𝛼
√
𝑛 ( 4

3𝛿+1
4𝛿

𝜆
)𝑧c ( 𝜆

2𝑐
64

3𝛿+1
4𝛿

𝛾
ˆ𝑏p−𝑏p

)𝑛,

where 𝑧c ≥
√
𝑟 · 𝑛 is due to the triangular lattice geometry, which is

proved in Lemma 2.1 in [6], and 𝑧c ≤ 𝛽
√
𝑛 is due to 𝜎 ∈ 𝑆𝛽,𝛿 and the

definition of (𝛽, 𝛿)−segregation. If 𝑏p < ˆ𝑏p and 𝛾
ˆ𝑏p−𝑏p > 𝜆2𝑐64

3𝛿+1
4𝛿 ,

the sum will be exponentially small given large enough 𝑛, which

means 𝜋 (𝑆𝛽,𝛿 ) ≤ 𝜉𝑛
4
for some 𝜉4 ∈ (0, 1) . □

Remark 11. If the number of poor blue agents satisfies 𝑏p < ˆ𝑏p ≜
min{𝑐, 𝑝} − (𝑟 + 𝛿)𝑐 − 2𝛿, we can conclude the ratio between poor

blue and poor red agents is smaller than the ratio between the blue

and the red:
𝑏p
𝑟p

< 𝑏
𝑟 , which is understood as income inequality.

Proof. If 𝑐 ≤ 𝑝 , then it follows that 𝑏p < 𝑐 − (𝑟 + 𝛿)𝑐 − 2𝛿 =

(𝑏 −𝛿)𝑐 − 2𝛿 < (𝑏 −𝛿)𝑐 < (𝑏 −𝛿)𝑝 < 𝑏 · 𝑝 , which can be written as

𝑏p
𝑟p

<
𝑏 ·𝑝
𝑟p

= 𝑏 +𝑏 · 𝑏p𝑟p . Hence we can get

𝑏p
𝑟p

< 𝑏
𝑟 . If 𝑝 ≤ 𝑐 , it follows

that 𝑏p < 𝑝 − (𝑟 + 𝛿)𝑐 − 2𝛿 < 𝑝 − (𝑟 + 𝛿)𝑝 − 2𝛿 < 𝑝 (𝑏 − 𝛿) < 𝑏 · 𝑝 .
Hence the same conclusion

𝑏p
𝑟p

< 𝑏
𝑟 follows. □

Remark 12. Although Theorem 10 is proved under the lattice-shaped
urban sites shown in Figure 1b. But urban sites can also be distributed
in other ways and a similar proof will follow, like many (order of
O(𝑛)) small clusters of disconnected urban sites.

7 SIMULATIONS
We supplement the theorems with simulations of M, shown in

Figure 2, 3, and 4, for a city with income inequality starting from

random initial locations of agents. Figure 2 compares configurations

after runningM for the same number of iterations, varying only

the values of 𝜆, 𝛾 , and the placement of urban sites. Note that the

parameter settings for 𝜆 and 𝛾 in the simulations are better than in

our theorems, confirming that our bounds are likely not tight.

Figure 2a demonstrates Theorems 2 and 8 showing the coexis-

tence of urbanization of poverty and racial integration outside the

urban area under strong wealth bias but slight racial bias. Specially,

since the chosen urban area can accommodate all the poor agents

in a city and the city has severe income inequality, Figure 2a can

also be viewed as a verification of Remark 9, showing segregation

of poor red agents in the urban area and integration outside. Indi-

viduals in Figure 2a have small racial biases, so the wealth biases

can also drive racial segregation under the centralized placement of

urban sites. Figure 2b verifies Corollary 3, showing the urbanization

of poverty with distributed urban sites. Compared with Figure 2a,

the pink cluster gets dispersed via the distributed urban sites. Fig-

ure 3a verifies Theorem 7, showing the urbanized segregation. Due

to income inequality, where most of the poor agents are red, we

can see that the pink predominantly occupies the urban area. In

contrast, in Figure 5, when there is income equality across races,

we can see urbanized segregation and roughly the same amount of

poor red and poor blue agents occupying the urban sites. Figure 3b

demonstrates Theorem 10, showing the mitigation of segregation

via distributing the urban sites in the existence of agents’ strong

racial bias, which should lead to Figure 3a urban sites are not dis-

tributed. Compared with Figure 2b, whose segregation level is even

smaller, the difference is that agents in Figure 2b have little racial

bias, whereas in Figure 3b each agent has strong racial bias. Fig-

ures 4a and 4b provide baselines of the main work. Figure 4a shows

segregation under strong racial bias without wealth bias, which

was proved in [5, 21]. Figure 4b shows integration under little racial

and wealth bias, which is proved in Theorem 4.

8 CONCLUSIONS
In this work, we consider the interplay of race and socioeconomic

status by introducing a heterogeneous stochastic Schelling model

with urban sites as incentives for the poor individuals. We show
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(a) segregation no wealth bias when 𝛾 = 1, 𝜆 = 2. (b) integration with 𝛾 = 1.01, 𝜆 = 1.01.

Figure 4: Simulations ofM after five million iterations with 40% poor red(pink), 10% rich red (red), 40% rich blue (blue), and 10%
poor blue (cyan) and a 46% fraction of the urban sites.

that compact and centralized urban sites, like in a city center, en-

courage poor agents to cluster centrally, while infrastructure that

is well distributed, like a large grid of bus routes spanning the en-

tire city, tends to disperse the low-income agents. Understanding

the effects of these two scenarios on segregation can be helpful

for understanding how to best distribute public amenities to help

mitigate segregation.

We find that centralized infrastructure simultaneously causes an

“urbanization of poverty” (i.e., occupation of urban sites primarily

by poor agents) and segregation when both the homophily and in-

centives drawing poor agents to urban sites are large enough. More-

over, if there is income inequality where one race has a significantly
higher proportion of poor agents, when homophily preferences

are small and incentives drawing the poor individuals to urban

sites are sufficiently large, we get racial segregation on urban sites

and integration on non-urban sites, with high probability. However,

we find there is overall mitigation of segregation (on urban and

non-urban sites) whenever the urban sites are spatially distributed

Figure 5: Urbanized segregation without income inequality
under strong wealth and racial biases (𝛾 = 200, 𝜆 = 1.01). The
racial and wealth distribution is 25% poor red, 25% rich red,
25% rich blue, and 25% poor blue.

throughout the lattice and the incentives drawing poor agents to

the urban sites exceed the homophily preference. We prove that

in this case, no matter how strong homophily preferences are, it

will be exponentially unlikely that a configuration chosen from

stationarity will have large, homogeneous clusters of similarly col-

ored agents, thus promoting integration in the city. These findings

suggest that deliberate urban planning can mitigate or enhance

segregation.

We note that there are many limitations of the heterogeneous

Schelling model studied here, with many variants worth consider-

ing. For instance, in addition to amenities that are only preferred

by poor agents, we can introduce other amenities preferred by rich

agents [19], such as fine arts and various recreational services. We

intend to introduce such incentives for the rich in subsequent work.

Naturally, the model considered here is an abstraction that over-

simplifies biases and ignores many factors affecting segregation and

incentives in the real world. Many other important factors, such

as housing prices and individuals’ preferences for higher-income

neighbors, are not captured in our model. Nonetheless, we believe

that this simple model can provide insight into how socioeconomic

incentives might worsen or mitigate segregation through the allo-

cation of urban amenities. To supplement the theoretical findings

presented here, we also are exploring relevant demographic data

in cities across the United States [34]. After collecting national

data, we find some positive correlations between cities with more

distributed amenities and better racial integration, as found in our

model.
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