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Abstract. In this paper we consider feedback stabilization for parabolic variational inequalities of
obstacle type with time and space depending reaction and convection coefficients and show exponential
stabilization to nonstationary trajectories. Based on a Moreau–Yosida approximation, a feedback oper-
ator is established using a finite (and uniform in the approximation index) number of actuators leading
to exponential decay of given rate of the state variable. Several numerical examples are presented
addressing smooth and nonsmooth obstacle functions.
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1. Introduction

The goal of the paper is the stabilization to trajectories for parabolic variational inequalities (PVIs),
in particular towards the solution y to the obstacle problem

⟨ ∂∂ty + (−∆+ 1)y + ay + b · ∇y − f, v − y⟩ ≥ 0, ∀v ≤ ψ, t > 0, (1.1a)
y ≤ ψ, Gy |Γ = χ, t > 0, y(·, 0) = y◦, (1.1b)

in a bounded domain Ω ⊂ Rd with a regular enough boundary Γ := ∂Ω, where d is a positive integer.
The obstacle ψ = ψ(x, t) and the functions a = a(x, t) ∈ R, b = b(x, t) ∈ Rd, f = f(x, t) ∈ R,
χ = χ(x, t) ∈ R, v = v(x, t) ∈ R, and y◦ = y◦(x), are assumed to be sufficiently regular, for (x, x, t) ∈
Ω× Γ× (0,+∞); regularity details are specified later. The linear operator G is determined by either
Dirichlet or Neumann boundary conditions. In (1.1) and throughout the manuscript, 1 stands for the
identity operator z ↦→ 1z := z (for z on a suitable space).
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For some pairs (a, b), the solution w issued from a different initial condition w◦ ̸= y◦

⟨ ∂∂tw + (−∆+ 1)w + aw + b · ∇w − f, v − w⟩ ≥ 0, ∀v ≤ ψ, t > 0, (1.2a)
w ≤ ψ, Gw |Γ = χ, t > 0, w(·, 0) = w◦, (1.2b)

may not converge to y as time increases. Our goal is to show that, by means of a feedback control
input u = K(w − y), we can track y exponentially fast with an arbitrary exponential rate −µ < 0.
That is, we want to construct an input feedback operator K such that the solution of

⟨ ∂∂tw + (−∆+ 1)w + aw + b · ∇w − f −K(w − y), v − w⟩ ≥ 0, ∀v ≤ ψ, t > 0, (1.3a)
w ≤ ψ, Gw |Γ = χ, t > 0, w(·, 0) = w◦, (1.3b)

satisfies, for a suitable constant C ≥ 1,

|w(t)− y(t)|L2(Ω) ≤ Ce−µt |w◦ − y◦|L2(Ω) , for all (w◦, y◦) ∈ L2(Ω)× L2(Ω), t ≥ 0. (1.4)

Motivated by applications, we are interested in the case K : L2(Ω) → UM , where UM ⊂ L2(Ω) is a
finite-dimensional subspace, namely, given by the linear span of a finite set UM = {Ψi | 1 ≤ i ≤Mm} ⊂
L2(Ω) of actuators, where Mm := m(M) is a positive integer, defined through a suitable nondecreasing
function m : N → N which will be appropriately chosen later on. It follows that the control input will
be of the form

u(t) = K(w(t)− y(t)) =

Mm∑︂
i=1

ui(t)Ψi ∈ UM .

We consider the case in which the actuators are determined by indicator functions 1ωi of small sub-
domains ωi ⊂ Ω (cf. [17, Eq. (1.3)], [14, Eq. (2.2)], [15, Ex. III.5]),

Ψi(x) = 1ωi(x) =

{︄
1, if x ∈ ωi,

0, if x ∈ Ω \ ωi,
1 ≤ i ≤Mm.

Remark 1.1. Note that for simplicity we have taken the diffusion operator as −∆+1. One reason is
to facilitate the inclusion of Neumann boundary conditions in our investigation where, in particular,
we ask the operator to be injective. This is not a significant restriction, since we can always transform
a given dynamics ∂

∂ty − ν∆y + ˜︁ay + h = 0 into ∂
∂τ z + (−∆+ 1)z + (ν−1˜︁a− 1)z + ν−1h = 0 simply by

rescaling time, τ = νt, z(τ) = y(ν−1τ).

1.1. Main stabilizability result

Recall that for Dirichlet and Neumann boundary conditions, the operator G reads, respectively,

G = 1 and G = ∂
∂n = n · ∇,

where n = n(x) is the unit outward normal vector to Γ at x ∈ Γ. In either case we set L2(Ω) as a
pivot space, that is, we identify L2(Ω) with its own dual, L2(Ω)′ = L2(Ω).
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Depending on the choice of G, we define the spaces

V :=

{︄
H1

0 (Ω), if G = 1,

H1(Ω), if G = ∂
∂n ,

and the symmetric isomorphism

A : V → V ′, ⟨Ay, z⟩V ′,V := (∇y,∇z)L2(Ω)d + (y, z)L2(Ω). (1.5)

Under suitable assumptions on the spatial domain Ω, which we shall give in Section 2.2, we have that
the domain of A, defined as D(A) := {z ∈ L2(Ω) | Az ∈ L2(Ω)}, is given by

D(A) = {z ∈ H2(Ω) | Gz |Γ = 0}. (1.6)

It will also follow that A has a compact inverse, and that the restriction A|D(A) of A to D(A) ⊂ V

satisfies A|D(A) = −∆+ 1 : D(A) → L2(Ω).

We shall assume that V and D(A) are endowed, respectively, with the scalar products

(y, z)V := ⟨Ay, z⟩V ′,V and (y, z)D(A) := (Ay,Az)L2(Ω)

and associated norms. Note that (y, z)V = (y, z)H1(Ω) coincides with the usual scalar product ofH1(Ω).
Finally, we denote the increasing sequence of eigenvalues of A by (αi)i∈N, and a complete basis of
eigenfunctions by (ei)i∈N,

Aei = αiei, ei ∈ D(A), 0 < αi ≤ αi+1 → +∞.

Throughout this manuscript, for simplicity, we shall denote the Hilbert Sobolev spaces

Hs := Hs(Ω) =W s,2(Ω) for s > 0, and L2 := L2(Ω).

We consider sequences of sets of actuators and eigenfunctions EM of the diffusion operator under
homogeneous boundary conditions as follows, for some nondecreasing function m : N → N

(UM )M∈N, UM = {Ψi | 1 ≤ i ≤ m(M)} ⊂ L2(Ω), (1.7a)
(EM )M∈N, EM = {ei | i ∈ EM} ⊂ D(A) ⊂ L2(Ω), EM = {jMk | 1 ≤ k ≤ m(M} ⊂ N, (1.7b)

where N denotes the set of positive integers and the indices jMk are specified later. We denote

UM = spanUM , EM = spanEM , (1.7c)

and shall take pairs (UM , EM ) satisfying, in particular,

dimUM =Mm = dim EM , L2(Ω) = UM + E⊥
M , and UM

⋂︁
E⊥
M = {0}. (1.7d)

Due to (1.7d), the oblique projection P E⊥
M

UM
, in L2(Ω) onto UM along E⊥

M , is well defined as follows: we
can write an arbitrary h ∈ L2 in a unique way as h = hUM

+ hE⊥
M

with (hUM
, hE⊥

M
) ∈ UM × E⊥

M , then

we set P E⊥
M

UM
h := hUM

.
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Our results will follow under general conditions on the dynamics tuple (a, b, f, χ, ψ), for an appro-
priately constructed sequence (UM , EM )M∈N (explicitly given in Sect. 3.1). Such conditions will be
presented and specified later on. Without entering into more details at this point our main result is
the following, whose precise statement shall be given in Theorem 4.1.

Main Result. Let r = r(t) := min(t, 1) for t ≥ 0. Under sufficient regularity of the data and some
assumptions which will be specified in Section 2.2 we have the following:

(i) For every T > 0, there exists a unique solution y of (1.1), with y ∈ L2((0, T );H1), ∂
∂ty ∈

L2((0, T );V ′), ry ∈ L2((0, T );H2), and ∂
∂t(ry) ∈ L2((0, T );L2).

(ii) For every µ > 0, there are M and λ large enough such that, with Kλ
M := λP

E⊥
M

UM
AP

U⊥
M

EM , the
solution of the system(︂

∂
∂tw + (−ν∆+ 1)w + aw + b · ∇w − f +Kλ

M (w − y), v − w
)︂
L2

≥ 0, ∀v ≤ ψ, t > 0, (1.8a)

w ≤ ψ, w(0) = w◦, Gw |Γ = χ. (1.8b)

satisfies the inequality (1.4) with C = 1. Furthermore,⃓⃓⃓
Kλ
M

⃓⃓⃓
L(L2)

≤ λˆ︁αM ⃓⃓⃓
P

E⊥
M

UM

⃓⃓⃓2
L(L2)

and (1.9a)⃓⃓⃓
Kλ
M (w − y)

⃓⃓⃓
L2(R+,L2)

≤ λˆ︁αMµ−1
⃓⃓⃓
P

E⊥
M

UM

⃓⃓⃓2
L(L2)

|w◦ − y◦|L2 , (1.9b)

where ˆ︁αM = sup{αi | ei ∈ EM and Aei = αiei}.

1.2. Previous literature

The use of oblique projections has been introduced in Kunisch and Rodrigues [18], in the construc-
tion of explicit feedback operators for stabilization of linear parabolic-like systems under homogeneous
conditions (f, χ) = 0. Precisely, the feedback in [18] is given by

KM (t)(y) = P
E⊥
M

UM
(A+Arc(t)− λ1)y, (1.10)

where UM is the finite-dimensional actuators space and the auxiliary space EM is spanned by a suit-
able set of eigenfunctions of the diffusion-like operator A. Further Arc is a reaction-convection-like
operator. Appropriate variations of such feedback are used in Kunisch and Rodrigues [19] to stabilize
coupled parabolic-ode systems, and in Azmi and Rodrigues [1] to stabilize damped wave equations.
In Rodrigues [26], the analogous feedback

KM (t)(y) = P
E⊥
M

UM
(Ay +Arc(t)y +N (t, y)− λy), (1.11)

is used to semiglobally stabilize parabolic equations, where the dynamics includes a given nonlinear
term N (t, ·) and the number of actuators is large enough, depending on the norm |y0|V of the initial
state in a suitable Hilbert space V ⊆ L2.

In this paper we investigate the stabilizability of nonautonomous PVIs through a limiting argument
based on Moreau–Yosida approximations. The latter are semilinear parabolic equations and by this
reason we could try to use the feedback (1.11). However, due to the nonlinearity and structure of the



Stabilization for parabolic variational inequalities 5

approximation, the number of actuators required by that feedback may increase with the Moreau–
Yosida parameter. As a result, even if a limit feedback operator can be found, it could have an
infinite-dimensional range in which case it would be infeasible for real world applications. Therefore,
we will use a different feedback operator in (1.8), namely,

Kλ
M = −λP E⊥

M
UM

AP
U⊥
M

EM . (1.12)

We shall make use of the monotonicity of the nonlinear term associated with the Moreau–Yosida
approximation. Without such monotonicity we do not know whether the feedback in (1.12) is able
to stabilize parabolic systems for a general class of nonlinearities as in [26]. Moreover, it is also such
monotonicity which will allow us to take the pair (λ,M) in (1.12) independently of the Moreau–Yosida
parameter, and this is why we will be able to take such feedback in the limiting PVI.

This manuscript introduces the use of oblique projections in the construction of explicit feedback
operators which are able to stabilize PVIs. To the best knowledge of the authors, there are no
stabilization results available in the literature for such inequalities. In spite of this fact we would like
to refer the reader to previous works dealing with the control problems defined on a bounded time
interval. Feedback laws for optimal control of PVIs have been addressed in Popa [24] and robust
feedback laws in Maksimov [22]. In the first reference the author shows that the optimal control is
given by a feedback law constructed from the optimal value function. In the latter reference the author
considers a robust control problem in the case of distributed control actions and disturbances, and
establishes a feedback law using piecewise (in time) constant control functions being irrespective of
the unknown effective perturbation.

Concerning open-loop optimal control (still, in a bounded time interval), Wang [34] considers prob-
lems for systems governed by a PVI coupled with a semilinear parabolic differential equation, Ito
and Kunisch [13] consider strong and weak solution concepts, study existence, and derive the first
order optimality system in a Lagrangian framework. Sensitivity analysis is considered in Christof [8].
Elliptic-parabolic variational inequalities with time-dependent constraints are studied in Hofmann,
Kubo, and Yamakaki [12]. Wachsmuth [33] studies quasistatic plasticity with linear kinematic hard-
ening and derives optimality conditions. Chen, Chu, and Tan [7] analyze bilateral obstacle control
problems. Barbu [2], derives a variant of the maximum principle for time-optimal trajectories. Finally,
we mention Boukrouche and Tarzia [5], where PVIs of second kind have been addressed.

The rest of the paper is organized as follows. In Section 2 we analyze the Moreau–Yosida approxi-
mations. The stabilization of such approximations is addressed in Section 3. Section 4 is dedicated to
the proof of the main stabilization result for the PVI. Finally, in Section 5 several numerical examples
are presented for the case of a regular obstacle fulfilling the theoretical assumptions, and in Section 6
a less regular obstacle ψ is considered for the sake of comparison.

Notation: The subset of positive real numbers shall be denoted R+ := (0,+∞). For an open
interval I ⊆ R and two Banach spaces X, Y , we write W (I;X,Y ) := {y ∈ L2(I;X) | ẏ ∈ L2(I;Y )},
where ẏ := d

dty is taken in the sense of distributions. This space is a Banach space when endowed with
the natural norm |y|W (I;X,Y ) := (|y|2L2(I;X) + |ẏ|2L2(I;Y ))

1/2. We also denote the spaces L2
loc(R+;X) :=

{y : R+ → X | y ∈ L2((0, T );X) for all T ∈ R+} and Wloc(R+;X,Y ) := {y : R+ → X | y ∈
W ((0, T );X,Y ) for all T ∈ R+}.

In case we know that X ∩Y = {0}, we say that X +Y is a direct sum and we write X ⊕Y instead.
If the inclusion X ⊆ Y is continuous, we write X ↪−→ Y .
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The space of continuous linear mappings from X into Y is denoted by L(X,Y ). In case X = Y we
write L(X) := L(X,X). The continuous dual of X is denoted X ′ := L(X,R). The space of continuous
functions from X into Y is denoted by C(X,Y ). Given a subset S ⊂ H of a Hilbert space H,
with scalar product (·, ·)H , the orthogonal complement of S is denoted S⊥ := {h ∈ H | (h, s)H =
0 for all s ∈ S}. Given two closed subspaces F ⊆ H and G ⊆ H of the Hilbert space H = F ⊕ G,
we denote by PGF ∈ L(H,F ) the oblique projection in H onto F along G. That is, writing h ∈ H as
h = hF + hG with (hF , hG) ∈ F ×G, we have PGF h := hF . The orthogonal projection in H onto F is
denoted by PF ∈ L(H,F ). Notice that PF = PF

⊥
F . By C [a1,...,an] we denote a nonnegative function

that increases in each of its nonnegative arguments. Finally, C, Ci, i = 0, 1, . . . , stand for unessential
positive constants.

2. Existence, uniqueness, and approximation of the solution

The reaction term in (1.1) can be written as y ↦→ ay = (a1)(t)y, with (a1)(t)y(x) := a(x, t)y(x),
x ∈ Ω, where, for (almost) every t > 0, (a1)(t) ∈ L(L2). We consider here a more general version of
system (1.1), which will allow us to work with the controlled system (1.8) as well. Namely,(︁

∂
∂ty + (−∆+ 1)y +Qy − f, v − y

)︁
L2 ≥ 0, ∀v ≤ ψ, t > 0, (2.1a)

y ≤ ψ, Gy |Γ = χ, t > 0, y(·, 0) = y◦, (2.1b)

with Q = Q(t) in the form y = y(x) ↦→ Qy(x) := (B(t)y)(x) + b(x, t) · ∇y(x), where B(t) ∈ L(L2),
y ↦→ B(t)h. The precise regularity assumption on the family {B(t) | t > 0} and on the vector function b
shall be given in Section 2.2.

We show that there exists a solution of (2.1), which can be approximated by the sequence (yk)k∈N,
where yk is the solution of the system

∂
∂tyk + (−∆+ 1)yk +Qyk + k(yk − ψ)+ = f, yk(0) = y◦, Gyk |Γ = χ, (2.2)

with

v+(x) :=

{︄
v(x), if v(x) > 0,

0, if v(x) ≤ 0,
for v ∈ L2.

Remark 2.1. Let ytar be a target trajectory solving (1.1) with a given external forcing ftar. Note
that we obtain the free-dynamics system (1.1) by taking Q = a1+ b · ∇and f = ftar in (2.1), and we
obtain the controlled system (1.8) (with the targetet trajectory ytar) by taking Q = a1+ b · ∇+Kλ

M

and f = ftar −Kλ
Mytar.

2.1. Trace and lifting operators

For simplicity, we denote

W :=Wloc(R+;H
2, L2) and W0 :=Wloc(R+; D(A), L2) ⊂ W.

Let us define the trace spaces on the boundary

T := {Gh|Γ | h ∈ W} , T0 := {Gh|Γ | h ∈ W0} . (2.3)
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Recall that we have (cf. [21, Ch. 1, Thms. 3.2 and 9.6]) for the trace spaces at initial time,

W [t=0] := {y(0) | y ∈ W} = H1, W [t=0]
0 := {y(0) | y ∈ W0} = V.

Now for any finite time interval (t1, t2), with t2 > t1, we define the Hilbert spaces

W(t1,t2) :=W ((t1, t2);H
2, L2) (2.4)

and the corresponding traces are denoted by T(t1,t2) = W(t1,t2) |Γ.
Next for each positive integer j ∈ N we define the time interval Ij := (j − 1, j). Observe that for

any χ ∈ T we have χ|Ij ∈ TIj . We consider the extension (lifting) function defined, for ˜︁χ ∈ TIj by

Ej ˜︁χ ∈ WIj , (GEj ˜︁χ)|Γ = ˜︁χ, and Ej ˜︁χ ∈ W⊥
Ij ,0, with WIj ,0 := WIj

⋂︂
W0 |Ij ,

where the orthogonal space W⊥
Ij ,0

to WIj ,0 is taken with respect to the scalar product of WIj . This
defines the extension operator, Ej ∈ L(TIj ,WIj ), which is a right inverse for the trace operator
(G(·))|Γ ∈ L(WIj , TIj ). We endow TIj with the scalar product induced by the trace mapping

(χ1, χ2)TIj := (Ejχ1,E
jχ2)WIj

.

This allows to introduce the extension E : T → W defined by concatenation

Eχ(t) := (E⌈t⌉χ|I⌈t⌉)(t),

where ⌈t⌉ is the positive integer satisfying ⌈t⌉ − 1 < t ≤ ⌈t⌉.

Remark 2.2. Note that for any h ∈ W satisfying Gh|Γ = χ we have that Eχ− h ∈ W0. In particular
we have that Eχ(t)− h(t) ∈ V , for all t ≥ 0.

2.2. Assumptions on the data

We make the following regularity assumptions for the data.

Assumption 2.3. The subset Ω is bounded, open, and connected, located on one side of its bound-
ary Γ = ∂Ω. Furthermore, either Γ is a compact C2-manifold or Ω is a convex polygonal domain.

Under Assumption 2.3 we have the characterizations (1.6), this follows from [11, Thms. 2.2.2.3,
2.2.2.5, 3.2.1.3 and 3.2.1.3].

Assumption 2.4. The operator Q in (2.1) is a sum Q = B + b · ∇ with

B ∈ L∞(R+;L(L2)) and b ∈ L∞(Ω× R+)
d.

Assumption 2.4 is satisfied if, for example, B = a1 with a ∈ L∞(Ω× R+).

Assumption 2.5. The external forces f and χ, and initial condition y◦ in (2.1), satisfy

f ∈ L2
loc(R+;L

2), χ ∈ T , y◦ ∈ L2, and y◦ ≤ ψ(·, 0),

where T is the trace space as in (2.3).
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Assumption 2.6. The obstacle satisfies ψ ∈Wloc(R+;H
2, L2) and Gψ |Γ ≥ χ− η where:

(i) for Dirichlet boundary conditions, η = 0;
(ii) for Neumann boundary conditions, η ≥ 0 and η ∈W 1,2

loc (R+).
Remark 2.7. In Assumption 2.6, the function η in the inequality Gψ |Γ ≥ χ−η must be understood as
a function η(x, t) := η(t) independent of x. For Dirichlet boundary conditions, since we will be looking
for a solution satisfying y |Γ = χ and y ≤ ψ, then the requirement ψ |Γ ≥ χ is necessary. Instead, for
Neumann boundary conditions, we do not claim the necessity of the requirements in Assumption 2.6.
However, the relaxation of those requirements will, probably, involve extra technical difficulties.
Remark 2.8. Several existence results for PVIs can be found in the literature. However, though we
borrow some ideas and arguments from classic references (e.g, [3, 4, 6, 10]), we could not find in the
literature the existence results for obstacles as general as in Assumption 2.6. For example in [4, Ch. 3,
Sect. 2.2, Thm. 2.2], for Dirichlet boundary conditions it is assumed that the boundary trace of the
obstacle is static (independent of time). In [6, Sect. II] the triple (a, b, ψ) is time-independent.

2.3. On the Moreau–Yosida approximation

We present the main result concerning Moreau–Yosida approximations for PVIs. We start by
denoting, for a given function ϕ ∈ L2

loc(R+, L
2), the convex sets

Cϕ
T := {v ∈ L2((0, T );H1) | v ≤ ϕ}, for T > 0, (2.5a)

and

Cϕ
∞ := {v ∈ L2

loc(R+;H
1) | v ≤ ϕ}. (2.5b)

We set

Zr := {z ∈W ((0, T );H1, V ′) | rz ∈W ((0, T );H2, L2)},

where r(t) := min{t, 1}, for t ≥ 0.
Theorem 2.9. Let Assumptions 2.3–2.6 hold true, T > 0, and suppose (fk) ⊂ L2((0, T );L2) converges
weakly to some f in L2((0, T );L2). Then, for a given k ∈ N, there exists one, and only one, weak
solution yk ∈ Zr for

∂
∂tyk + (−∆+ 1)yk +Qyk + k(yk − ψ)+ = fk, Gyk |Γ = χ, yk(0) = y◦. (2.6)

Moreover, the sequence (yk) of solutions satisfy

yk − Eχ −−−−−−−⇀
L2((0,T );V )

y − Eχ, ∂
∂t(yk − Eχ) −−−−−−−−⇀

L2((0,T );V ′)

∂
∂t(y − Eχ), (2.7)

for some y ∈ Zr with

y ∈ Cψ
T , y(0) = y◦, Gy |Γ = χ, (2.8)

and, for an arbitrary v ∈ Zr
⋂︁
Cψ
T , with v − y ∈ C((0, T ];V ), we have

⟨ ∂∂ty + (−∆+ 1)y +Qy − f, v − y⟩V ′,V ≥ 0, almost everywhere in (0, T ). (2.9)
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Furthermore, we have

r(yk − Eχ) −−−−−−−−−⇀
L2((0,T );D(A))

r(y − Eχ), ∂
∂t(r(yk − Eχ)) −−−−−−−−⇀

L2((0,T );L2)

∂
∂t(r(y − Eχ)), (2.10)

and, for arbitrary v ∈ L2((0, T );L2),(︁
∂
∂ty + (−∆+ 1)y +Qy − f, v − y

)︁
L2 ≥ 0, almost everywhere in (0, T ). (2.11)

Finally, y is the only element in Zr satisfying (2.8) and (2.9), and we have

yk −−−−−−−−→
L2((0,T );L2)

y and r(yk − Eχ) −−−−−−−→
C([0,T ];L2)

r(y − Eχ). (2.12)

The proof of Theorem 2.9 is given in several steps, which we include in several lemmas.
Note that by direct computations we can see that

(h, h+)L2 =
⃓⃓
h+

⃓⃓2
L2 and (h+ − g+, h− g)L2 ≥ 0, for all (h, g) ∈ L2 × L2. (2.13)

Let us denote
CQ := |Q|L∞(R+,L(H1,L2)) . (2.14)

Lemma 2.10. Let Assumptions 2.3–2.6 hold true. Let us fix k ∈ N. There exists one, and only one,
solution yk ∈W ((0, T );H1, V ′) for (2.6), furthermore ryk ∈W ((0, T );H2, L2).

Proof. We sketch the proof which follows from standard arguments. By a lifting argument (cf. [25,
Def. 3.1]), that is, by setting zk := y−Eχ we reduce the problem to the case of homogeneous boundary
conditions. Then, as we briefly sketch next, we establish existence of weak solutions in W ((0, T ), V, V ′)
as a weak limit of suitable Galerkin approximations for the system

∂
∂tzk + (−∆+ 1)zk +Qzk + k(zk + Eχ− ψ)+ = fχk , Gzk |Γ = 0, zk(0) = z◦ := y◦ − Eχ(0),

with fχk := fk − ∂
∂tEχ ∈ L2((0, T );L2) ⊂ L2((0, T );V ′). Specifically, such weak (variational) solutions

are understood in the classical sense [20,32], and can be found as a weak limit of Galerkin approxima-
tions zNk taking values zNk (t) ∈ E f

N , where E f
N is the linear span of the first eigenfunctions of A. For

the nonlinear term we note that Eχ− ψ ∈ L2((0, T );L2) and that

2(k(zNk + Eχ− ψ)+, zNk )L2 ≤ 2k
⃓⃓
zNk + Eχ− ψ

⃓⃓
L2

⃓⃓
zNk

⃓⃓
L2 ≤ 3k

⃓⃓
zNk

⃓⃓2
L2 + k |Eχ− ψ|2L2

which, together with standard estimates for the linear terms and the forcing fχk , lead us to

d
dt

⃓⃓
zNk

⃓⃓2
L2 ≤ −2

⃓⃓
zNk

⃓⃓2
V
+ 2CQ

⃓⃓
zNk

⃓⃓
V

⃓⃓
zNk

⃓⃓
L2 + 2

⃓⃓
fχk

⃓⃓
V ′

⃓⃓
zNk

⃓⃓
V
+ 3k

⃓⃓
zNk

⃓⃓2
L2 + k |Eχ− ψ|2L2 .

Thus, by Young’s inequality we obtain

d
dt

⃓⃓
zNk

⃓⃓2
L2 ≤ −

⃓⃓
zNk

⃓⃓2
V
+ (C + 3k)

⃓⃓
zNk

⃓⃓2
L2 + k |Eχ− ψ|2L2 + C

⃓⃓
fχk

⃓⃓2
V ′ .

Following standard arguments (using the Gronwall’s inequality and time integration), such estimate
allows us to obtain estimates as

⃓⃓
zNk

⃓⃓
W ((0,T ),V,V ′)

≤ C1 with C1 ≥ 0 independent of N . Thus, the
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solution zk is obtained as a weak limit of zNk . The uniqueness of the solution follows by standard
arguments concerning the linear terms, together with the monotonicity of the nonlinearity (cf. (2.13)).
Indeed, if zk is another solution for the difference dk := zk − zk we will find

∂
∂tdk + (−∆+ 1)dk +Qdk = −k(zk + Eχ− ψ)+ + k(zk + Eχ− ψ)+,

and, with ξk := zk + Eχ− ψ and ξk := zk + Eχ− ψ,

d
dt |dk|

2
L2 ≤ C |dk|2L2 − 2k(ξ+k − ξ

+
k , dk)L2 = C |dk|2L2 − 2k(ξ+k − ξ

+
k , ξk − ξk)L2 ≤ C |dk|2L2 ,

which implies dk = 0, because dk(0) = 0.
Subsequently, the existence of strong solutions z ∈ W ((0, T ); D(A), L2) can be proven for more

regular initial conditions z◦ ∈ V , see [26, Sect.4.3]. For our initial conditions in z◦ ∈ L2 \ V , we can
use the smoothing property of parabolic-like equations to conclude that rzk ∈ W ((0, T ); D(A), L2),
see [32, Ch. 3, Thm. 3.10] and [23, Lem. 2.6]. Note that that wk := rzk solves

∂
∂twk + (−∆+ 1)wk +Qwk = fχ,rk , Gwk |Γ = 0, wk(0) = 0 ∈ V,

with fχ,rk := rfχk +( d
dtr)zk− rk(zk+Eχ−ψ)+ ∈ L2((0, T );L2). Recall that r(0) = 0, so that by usual

estimates (for Galerkin approximations) we obtain

d
dt

⃓⃓
wNk

⃓⃓2
V
≤ −1

2

⃓⃓
wNk

⃓⃓2
D(A)

+ C2

⃓⃓
wNk

⃓⃓2
V
+ C2

⃓⃓
fχ,rk

⃓⃓2
L2 ,

which leads to
⃓⃓
zNk

⃓⃓
W ((0,T );D(A),L2)

≤ C3 with C3 ≥ 0 independent of N . Taking a weak limit, we can
then conclude that the weak solution is indeed strong, satisfying a similar estimate. □

Lemma 2.11. Let Assumptions 2.3–2.6 hold true. Then, the solution yk for (2.6) satisfies

2k
⃓⃓
(yk − ψ)+

⃓⃓2
L2((0,T );L2)

+ |yk|2L∞((0,T );L2) + |yk|2L2((0,T );H1)

≤ C[︁
CQ,T

]︁ (︂|y◦|2L2 + |Eχ|2W(0,T )
+ |fk|2L2((0,T );L2) + |ψ|2W ((0,T );H1,V ′)

)︂
,

with C[︁
CQ,T

]︁ independent of k.

Proof. Recall that ψ ∈W ((0, T );H2, L2) by Assumption 2.6. Now we set

v := Eχ− (Eχ− ψ)+, (2.15)

which implies v ∈W ((0, T );H1, L2). Also, ψ − v ≥ 0, because

ψ − v = 0, if Eχ ≥ ψ,

ψ − v = ψ − Eχ, if Eχ ≤ ψ.

Furthermore under Dirichlet boundary conditions we also have that v |Γ = χ, because (Eχ−ψ)+ |Γ = 0,
due to χ ≤ ψ |Γ in Assumption 2.6. Hence, we have

pk := yk − v ∈W ((0, T );V, L2), v ≤ ψ, (2.16)
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and

ṗk +Apk +Qpk + k(yk − ψ)+ = hk, (2.17)

with

hk := fk − d
dtv − (−∆+ 1)v −Qv. (2.18)

By multiplying (2.17) with 2pk, we obtain

d
dt |pk|

2
L2 + 2 |pk|2V + 2k((yk − ψ)+, pk)L2 = 2⟨−Qpk + hk, pk⟩V ′,V .

Observe that, due to (2.16) we have pk ≥ yk − ψ and

((yk − ψ)+, pk)L2 ≥
⃓⃓
(yk − ψ)+

⃓⃓2
L2 ,

and by using Assumption 2.4, Young’s inequality and recalling (2.14), it follows that

d
dt |pk|

2
L2 + |pk|2V + 2k

⃓⃓
(yk − ψ)+

⃓⃓2
L2 ≤ 2C2

Q |pk|2L2 + 2 |hk|2V ′

≤ C[︁
CQ

]︁ (︂|pk|2L2 + |hk|2V ′

)︂
. (2.19)

By the Gronwall’s lemma it follows that

|pk|2L∞((0,T );L2) ≤ C[︁
CQ,T

]︁ (︂|pk(0)|2L2 + |hk|2L2((0,T );V ′)

)︂
, (2.20a)

and by integration of (2.19), and using (2.20a), we find

|pk|2L2((0,T );V ) + 2k
⃓⃓
(yk − ψ)+

⃓⃓2
L2((0,T );L2)

≤ C[︁
CQ,T

]︁ (︂|pk(0)|2L2 + |hk|2L2((0,T );V ′)

)︂
. (2.20b)

Now, note that from (2.16), (2.15), (2.18), and L2 ↪−→ V ′, we have

|hk|2L2((0,T );V ′) ≤ C[︁
CQ

]︁ (︂|fk|2L2((0,T );V ′) + |v|2W ((0,T );H1,V ′)

)︂
(2.21a)

≤ C[︁
CQ

]︁ (︂|fk|2L2((0,T );V ′) + |Eχ|2W(0,T )
+ |ψ|2W ((0,T );H1,V ′)

)︂
, (2.21b)

(cf. (2.4)), and

|yk|2L∞((0,T );L2) + |yk|2L2((0,T );H1)

≤ 2 |pk|2L∞((0,T );L2) + 2 |v|2L∞((0,T );L2) + 2 |pk|2L2((0,T );V ) + 2 |v|2L2((0,T );H1)

≤ C[︁
CQ,T

]︁ (︂|pk(0)|2H + |Eχ|2W(0,T )
+ |fk|2L2((0,T );V ′) + |ψ|2W ((0,T );H1,V ′)

)︂
. (2.21c)

Notice also that

|pk(0)|2H = |yk(0)− v(0)|2L2 ≤ 2 |y◦|2L2 + 2
⃓⃓
Eχ(0)− (Eχ(0)− ψ(0))+

⃓⃓2
L2 . (2.21d)

Hence, the result follows from (2.20) and (2.21). □
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The following lemma establishes that we are able to identify a pseudo-distance function with a
strictly negative normal derivative.
Lemma 2.12. Let Assumption 2.3 hold true. Then, there exists ξ ∈ H2(Ω)

⋂︁
C2(Ω)

⋂︁
C1(Ω) and

constant cξ < 0 satisfying

ξ(x) ≥ 0 for all x ∈ Ω, (2.22a)
∂
∂nξ |Γ (x) ≤ cξ for almost all x ∈ Γ. (2.22b)

Proof. In the case Ω is of class C2, we can choose ξ = ρdΓ as the product of the distance to the boundary
function, dΓ(x) = minz{|x− z|Rd min z ∈ Γ}, and of a suitable cut-off function ρ. From [9, Appendix,
Lem. 1 and Eq. (A7)], see also [16, Sect. 13.3.4], we know that dΓ ∈ C2(Γδ) for a suitable small
enough δ > 0 and Γδ := {x ∈ Ω | dΓ(x) ≤ δ}, and also that ∂dΓ

∂n = 1. For ρ we choose a smooth
function satisfying 0 ≤ ρ ≤ 1, such that ρ(x) = 0 for all x ∈ Ω \ Γ 2δ

3
, and ρ(x) = 1 for all x ∈ Γ δ

3
.

In the case Ω is a convex polygonal domain we can choose x0 ∈ Ω and

ξ(x) = − |x− x0|2Rd +max
z∈Ω

|z − x0|2Rd , x ∈ Ω,

It is clear that ξ ∈ C2(Ω) and that ξ ≥ 0. It remains to prove that ξ strictly decreases on Γ in the
direction of the outward normal n. To this purpose let x ∈ Γ and let F be a face of Γ contained in
the affine hyperplane H and such that x ∈ F . Up to an affine change of variables (a translation and
a rotation) we can suppose that 0 ∈ Ω and

x0 = 0 and H = {(s, x2, x3, . . . , xd) | (x2, x3, . . . , xd) ∈ Rd−1} with s > 0.

In this case, we find that

ξ(x) = − |x|2Rd +max
z∈Ω

|z|2Rd , n = (1, 0, 0, . . . , 0) and ∂
∂nξ |Γ = ∂

∂x1
ξ |Γ = −2x1.

Therefore at an arbitrary point x ∈ H we find that ∂
∂nξ |Γ (x) = −2x1 = −2s. Note that s is the

distance from 0 to H.
Therefore we can conclude that for every point x in the (boundary) interior of a face F we have

that ∂
∂nξ |Γ (x) = −2sF where sF > 0 is the distance from x0 to the hyperplane HF containing F .

Since the number of faces is finite, ∂
∂nξ |Γ ≤ max{−2sF | F is a face of Γ} =: cξ < 0, for all boundary

points living in one face only. Note that if x lives in the intersection of two faces then the normal
derivative is not well defined (not continuously, at least), however the set of such points has vanishing
(boundary) measure. That is, ∂

∂nξ |Γ (x) ≤ cξ < 0 for almost every boundary point x. □

Lemma 2.13. Let cξ < 0 and ξ ∈ H2 be as in Lemma 2.12, and η ≥ χ−Gψ |Γ be as in Assumption 2.6.
Then, for

ζk := yk − ψ + ηˆ︁ξ, with ˆ︁ξ := {︄
0, if G = 1,

−c−1
ξ ξ, if G = ∂

∂n ,
(2.23)

where yk is the solution for (2.6), we have that

( ∂∂nEχ, ζ
+
k )L2(Γ) − (ψ − ηˆ︁ξ, ζ+k )H1 ≤ 2

⃓⃓⃓
ψ − ηˆ︁ξ ⃓⃓⃓

H2

⃓⃓
ζ+k

⃓⃓
L2 , G ∈ {1, ∂

∂n}.
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Proof. Observe that

( ∂∂nEχ, ζ
+
k )L2(Γ) − (ψ − ηˆ︁ξ, ζ+k )H1

= ( ∂∂nEχ, ζ
+
k )L2(Γ) + ((∆− 1)(ψ − ηˆ︁ξ), ζ+k )L2 − ( ∂∂n(ψ − ηˆ︁ξ), ζ+k )L2(Γ)

= ( ∂∂nEχ− ∂
∂nψ + η ∂

∂n
ˆ︁ξ, ζ+k )L2(Γ) + ((∆− 1)(ψ − ηˆ︁ξ), ζ+k )L2 . (2.24)

Note that
ζ+k |Γ = 0, if G = 1, and ∂

∂nEχ = χ, if G = ∂
∂n . (2.25a)

Now, by using (2.22b) and (2.23),

∂
∂nEχ− ∂

∂nψ + η ∂
∂n

ˆ︁ξ = χ− ∂
∂nψ |Γ + η ∂

∂n
ˆ︁ξ |Γ ≤ χ− ∂

∂nψ |Γ − η ≤ 0, if G = ∂
∂n

(2.25b)

and, by (2.25), we have that

( ∂∂nEχ− ∂
∂nψ + η ∂

∂n
ˆ︁ξ, ζ+k )L2(Γ) ≤ 0, if G ∈ {1, ∂

∂n}, (2.26)

with an equality in the case G = 1. Thus, by (2.24) and (2.26) we obtain

( ∂∂nEχ, ζ
+
k )L2(Γ) − (ψ − ηˆ︁ξ, ζ+k )H1 ≤

⃓⃓⃓
(∆− 1)(ψ − ηˆ︁ξ)⃓⃓⃓

L2

⃓⃓
ζ+k

⃓⃓
L2 ≤ 2

⃓⃓⃓
ψ − ηˆ︁ξ ⃓⃓⃓

H2

⃓⃓
ζ+k

⃓⃓
L2 , (2.27)

which ends the proof. □

Lemma 2.14. Let Assumptions 2.3–2.6 hold true. Then, the solution yk for (2.6) satisfies

k2
⃓⃓
(yk − ψ)+

⃓⃓2
L2((0,T );L2(Ω))

+
⃓⃓
d
dt(yk − Eχ)

⃓⃓2
L2((0,T );V ′)

≤ C[︁
CQ,T

]︁ (︂|y◦|2L2 + |Eχ|2W(0,T )
+ |fk|2L2((0,T );L2) + |ψ|2W(0,T )

+ |η|2W 1,2(0,T )

)︂
,

with C[︁
CQ,T

]︁ independent of k.

Proof. Let us choose cξ < 0 and ξ as in Lemma 2.12 implying in particular that ξ ∈ H2. We also
have η ≥ χ− Gψ |Γ, due to Assumption 2.6. Then, we set ζk as in (2.23).

Observe that both ζk and ζ+k are in H1. Furthermore, in the case of Dirichlet boundary conditions
we also have ζ+k ∈ H1

0 as a corollary of Assumption 2.6. Therefore,

ζ+k ∈ V, for G ∈ { ∂
∂n ,1}. (2.28)

Let us denote now κk = yk − Eχ. We find

κ̇k +Aκk +Qκk + k(yk − ψ)+ = gk, κk(0) = κ◦, Gκk |Γ = 0, (2.29a)

with

κ◦ = y◦ − Eχ(0), gk := fk − d
dtEχ− (−∆+ 1)Eχ−QEχ. (2.29b)
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Testing the dynamics with ζ+k , gives us

0 = (κ̇k, ζ+k )L2 + (κk, ζ+k )V + k((yk − ψ)+, ζ+k )L2 + (Qκk − gk, ζ
+
k )L2

= (κ̇k + d
dtEχ− ψ̇ + η̇ˆ︁ξ, ζ+k )L2 + (κk + Eχ− ψ + ηˆ︁ξ, ζ+k )H1 + k((yk − ψ)+, ζ+k )L2

+ (Qκk − gk − d
dtEχ+ ψ̇ − η̇ˆ︁ξ, ζ+k )L2 + (−Eχ+ ψ − ηˆ︁ξ, ζ+k )H1

which is equivalent to

0 = (ζ̇k, ζ
+
k )L2 + (ζk, ζ

+
k )H1 + k((yk − ψ)+, ζ+k )L2

+ (Qκk − gk − d
dtEχ+ ψ̇ − η̇ˆ︁ξ, ζ+k )L2 + (−Eχ+ ψ − ηˆ︁ξ, ζ+k )H1 .

Then, using Stampacchia’s lemma [31, Lem. 1.1]) and Lions-Magenes’ lemma [32, Ch. 3, Sect. 1.4,
Lem. 1.2], we arrive at

d
dt

⃓⃓
ζ+k

⃓⃓2
L2 + 2

⃓⃓
ζ+k

⃓⃓2
V
+ 2k((yk − ψ)+, ζ+k )L2

= 2(−Qκk + gk +
d
dtEχ− ψ̇ + η̇ˆ︁ξ, ζ+k )L2 − 2(−Eχ+ ψ − ηˆ︁ξ, ζ+k )H1 .

Next, we use the relations in (2.29) to obtain

d
dt

⃓⃓
ζ+k

⃓⃓2
L2 + 2

⃓⃓
ζ+k

⃓⃓2
V
+ 2k((yk − ψ)+, ζ+k )L2

= 2(−Qyk + fk − (−∆+ 1)Eχ− ψ̇ + η̇ˆ︁ξ, ζ+k )L2 − 2(−Eχ+ ψ − ηˆ︁ξ, ζ+k )H1

= 2(−Qyk + fk − ψ̇ + η̇ˆ︁ξ, ζ+k )L2 − 2(ψ − ηˆ︁ξ, ζ+k )H1 + 2( ∂∂nEχ, ζ
+
k )L2(Γ) (2.30)

and, using Lemma 2.13 we find

d
dt

⃓⃓
ζ+k

⃓⃓2
L2 + 2

⃓⃓
ζ+k

⃓⃓2
V
+ 2k((yk − ψ)+, ζ+k )L2 (2.31)

≤ 2(−Qyk + fk − ψ̇ + η̇ˆ︁ξ, ζ+k )L2 + 4
⃓⃓⃓
ψ − ηˆ︁ξ ⃓⃓⃓

H2

⃓⃓
ζ+k

⃓⃓
L2 (2.32)

≤ 2
(︂⃓⃓⃓
−Qyk + fk − ψ̇ + η̇ˆ︁ξ ⃓⃓⃓

L2
+ 2

⃓⃓⃓
ψ − ηˆ︁ξ ⃓⃓⃓

H2

)︂ ⃓⃓
ζ+k

⃓⃓
H2 . (2.33)

Time integration of (2.33) gives us⃓⃓
ζ+k (T )

⃓⃓2
L2 −

⃓⃓
ζ+k (0)

⃓⃓2
L2 + 2

⃓⃓
ζ+k

⃓⃓2
L2((0,T );V )

+ 2k((yk − ψ)+, ζ+k )L2((0,T );L2) ≤ 2Ξ
⃓⃓
ζ+k

⃓⃓
L2((0,T );L2)

with

Ξ :=

(︃⃓⃓⃓
−Qyk + fk − ψ̇ + η̇ˆ︁ξ ⃓⃓⃓

L2((0,T );L2)
+ 2

⃓⃓⃓
ψ − ηˆ︁ξ ⃓⃓⃓

L2((0,T );H2)

)︃
,

from which, together with the fact that, due to Assumption 2.5, at time t = 0 we have ζ+k (0) =
(y◦ − ψ(0))+ = 0, we obtain

2k
⃓⃓
((yk − ψ)+, ζ+k )L2((0,T );L2)

⃓⃓
R = 2k((yk − ψ)+, ζ+k )L2((0,T );L2) ≤ 2Ξ

⃓⃓
ζ+k

⃓⃓
L2((0,T );L2)

,
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which, together with L2((0, T );L2) = (L2((0, T );L2))′, give us |(yk − ψ)+|L2((0,T );L2) ≤ k−1Ξ, thus

k
⃓⃓
(yk − ψ)+

⃓⃓
L2((0,T );L2)

≤ Ξ ≤ C[︁
CQ

]︁(︃|yk|L2((0,T );L2) + |fk|L2((0,T );L2) + |ψ|W(0,T ) +
⃓⃓⃓
ηˆ︁ξ ⃓⃓⃓

W(0,T )

)︃
. (2.34)

Next, from (2.29) we also find that

|κ̇k|2V ′ =
⃓⃓
Aκk +Qκk + k(yk − ψ)+ − gk

⃓⃓2
V ′

which together with (2.34), κk = yk − Eχ, and L2 ↪−→ V ′, give us

|κ̇k|2L2((0,T );V ′) ≤ C
(︂
|yk|2L2((0,T );H1) + |Eχ|2W(0,T ) + |fk|2L2((0,T );L2) + |ψ|2W(0,T ) + |η|2W 1,2(0,T )

)︂
.

with C = C[︂
CQ,

⃓⃓⃓ˆ︁ξ ⃓⃓⃓
H2

]︂. Finally, we can finish the proof by using Lemma 2.11. □

Remark 2.15. We can see that the constant C[︁
CQ,T

]︁ in the statement of the Lemma 2.14 will also

depend on
⃓⃓⃓ˆ︁ξ ⃓⃓⃓

H2
as C[︂

CQ,T,
⃓⃓⃓ˆ︁ξ ⃓⃓⃓

H2

]︂, but since essentially ˆ︁ξ depends only on the spatial domain Ω, we

omit the dependence on
⃓⃓⃓ˆ︁ξ ⃓⃓⃓

H2
in the statement of Lemma 2.14 and throughout the manuscript.

Lemma 2.16. Let Assumptions 2.3–2.6 hold true, with in addition y◦ − Eχ(0) ∈ V . Then the
solution yk for (2.6) satisfies

|yk|2L2((0,T );H2) + |yk|2L∞((0,T );H1)

≤ C
(︂
|y◦|2H1 + |Eχ|2W(0,T )

+ |fk|2L2((0,T );L2) + |ψ|2W(0,T )

)︂
, (2.35)

with a constant C[︁
T,CQ

]︁ independent of k.

Proof. Testing the dynamics in (2.29) with 2Aκk, where κk = yk − Eχ, it follows that

2 |κk|2D(A) +
d
dt |κk|

2
V = 2(gk −Qκk − k(yk − ψ)+, Aκk)L2 .

Then, the Young inequality gives us

|κk|2D(A) +
d
dt |κk|

2
V ≤

⃓⃓
gk −Qκk − k(yk − ψ)+)

⃓⃓2
L2 ,

and from the Gronwall’s lemma and integration over (0, T ) we obtain

|κk|2L2((0,T );D(A)) + |κk|2L∞((0,T );V ) ≤ |κ◦|2V +
⃓⃓
gk −Qκk − k(yk − ψ)+)

⃓⃓2
L2((0,T );L2)

.

Finally, we can conclude the proof by using Lemmas 2.11 and 2.14, and recalling the identities
in (2.29b). □
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In Lemma 2.17 we require the extra regularity for the initial condition in order to have strong solu-
tions for the parabolic equation. This extra requirement is needed due to the compatibility conditions
mentioned in Remark 2.2. However, due to the smoothing property of parabolic equations, it turns out
that for strictly positive time t > 0 we will have that yk(t) ∈ V when y◦ ∈ H. This fact is exploblue
in the following result.

Lemma 2.17. Let Assumptions 2.3–2.6 hold true and let yk solve (2.6). Then, it follows that

|ryk|2L2((0,T );H2) + |ryk|2L∞((0,T );H1) +
⃓⃓
d
dt(ryk)

⃓⃓2
L2((0,T );L2)

≤ C
(︂
|y◦|2L2 + |rEχ|2W(0,T )

+ |rfk|2L2((0,T );L2) + |rψ|2W(0,T )

)︂
,

with a constant C[︁
T,CQ

]︁ independent of k.

Proof. Multiplying the dynamics in (2.29) by 2r2Aκk, it follows that

d
dt |rκk|

2
V − ( d

dtr
2) |κk|2V + 2 |rκk|2D(A) = 2(rgk − rQκk − rk(yk − ψ)+, rAκk)L2 .

Then, the Young inequality together with max{|r|L∞(R+) , |ṙ|L∞(R+)} = 1 give us

|rκk|2D(A) +
d
dt |rκk|

2
V ≤

⃓⃓
gk −Qκk − k(yk − ψ)+)

⃓⃓2
L2 + |rκk|2V ,

and from the Gronwall’s lemma and integration over (0, T ) we obtain

|rκk|2L2((0,T );D(A)) + |rκk|2L∞((0,T );V ) ≤
⃓⃓
gk −Qκk − k(yk − ψ)+)

⃓⃓2
L2((0,T );L2)

.

Further we have that⃓⃓
d
dt(rκk)

⃓⃓2
L2 =

⃓⃓
Arκk +Qrκk + rk(κk − φ)+ − rgk − (ṙ)κk

⃓⃓2
L2 .

We can conclude the proof by using ryk = rκk + rEχ, (2.29b), and Lemmas 2.11 and 2.14. □

We are now ready to conclude the proof of Theorem 2.9.

Proof of Theorem 2.9. Existence: From Lemmas 2.11 and 2.17, there exists a subsequence yn(k) of yk,
such that the following weak limits hold

yn(k) − Eχ −−−−−−−⇀
L2((0,T );V )

y − Eχ, ẏn(k) − d
dtEχ −−−−−−−−⇀

L2((0,T );V ′)
ẏ − d

dtEχ, (2.36a)

r(yn(k) − Eχ) −−−−−−−−−⇀
L2((0,T );D(A))

z, d
dt(r(yn(k) − Eχ)) −−−−−−−−⇀

L2((0,T );L2)
ż, (2.36b)

for suitable y ∈ W ((0, T ),H1, V ′) and z ∈ W ((0, T ),D(A), L2). Necessarily we have z = r(y − Eχ)
and the strong limits

yn(k) −−−−−−−−→
L2((0,T );L2)

y, r(yn(k) − Eχ) −−−−−−−→
L2((0,T );V )

r(y − Eχ), (2.37a)

r(yn(k) − Eχ) −−−−−−−→
C([0,T ];L2)

r(y − Eχ), (2.37b)
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where we have used, in particular the Aubin-Lions-Simon’s lemma [30, Sect. 8, Cor. 4].
For the sake of simplicity, let us still denote the subsequence yn(k) by yk. By Lemma 2.11, it follows

that (k2 |(yk − ψ)+|2L2((0,T );L2))k∈N is bounded, thus⃓⃓
(y − ψ)+

⃓⃓2
L2((0,T );L2)

= lim
k→+∞

⃓⃓
(yk − ψ)+

⃓⃓2
L2((0,T );L2)

= 0

and, since y ∈ L2((0, T );H1), we obtain that y ∈ Cψ
T , see (2.5). Now, for an arbitrary v ∈ Cψ

T , we
find, for almost every t ∈ (0, T ),

(r
(︁
∂
∂tyk + (−∆+ 1)yk +Qyk − fk

)︁
, r(v − yk))L2

= −k
(︁
r(yk − ψ)+, r(v − yk)

)︁
L2

= k
(︁
(yk − ψ)+, r2(yk − ψ)

)︁
L2 + k

(︁
(yk − ψ)+, r2(ψ − v)

)︁
L2 ,

which gives us

(r
(︁
∂
∂tyk + (−∆+ 1)yk +Qyk − fk

)︁
, r(v − yk))L2 ≥ 0, (2.38)

because r2k(yk − ψ)+(yk − ψ) ≥ 0 and r2k(yk − ψ)+(ψ − v) ≥ 0, due to v ∈ Cψ
T .

Observe that, with qk := r(yk − Eχ) and q := r(y − Eχ), for the left-factor in (2.38), we find

r
(︁
∂
∂tyk + (−∆+ 1)yk +Qyk − fk

)︁
= q̇k +Aqk +Qqk − rfk + r( d

dt +A+Q)Eχ− (ṙ)(yk − Eχ),

and we have the weak limit in L2((0, T );L2) given by

q̇ +Aq +Qq − rf + r( d
dt +A+Q)Eχ− (ṙ)(y − Eχ) = r

(︁
∂
∂ty + (−∆+ 1)y +Qy − f

)︁
and also the strong limit for the right-factor in (2.38) as follows

qk −−−−−−−−→
L2((0,T );L2)

q.

These limits allow us to take the limit for the integrated product in (2.38), and obtain∫︂ T

0
(r

(︁
∂
∂ty + (−∆+ 1)y +Qy − f

)︁
, r(v − y))L2 dt

= lim
k→+∞

∫︂ T

0

(︁
r( ∂∂tyk + (−∆+ 1)yk +Qyk − fk), r(v − yk)

)︁
H

dt

≥ 0, for all v ∈ Cψ
T . (2.39)

Let us fix arbitrary v ∈ Cψ
T , t ∈ (0, T ), δ ∈ (0,min{t, T − t}). Note that the integrand ξv :=

(r
(︁
∂
∂ty + (−∆+ 1)y +Qy − f

)︁
, r(v− y))L2 is an integrable function, ξv ∈ L1(0, T ). By the Lebesgue

differentiation theorem [29, Ch. 7, Thm. 7.7], the set of Lebesgue points

Lv :=

{︄
t∗ ∈ (0, T ) | ξh(t∗) = lim

δ↘0

1

2δ

∫︂ t∗+δ

t∗−δ
ξv(t) dt

}︄
,
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has full measure. We define the functions

vt,δ :=

{︄
v, if t ∈ (t− δ, t+ δ)

y, if t ∈ (0, t− δ)
⋃︁
(t+ δ, T ).

We have vt,δ(t, x) ∈ Cψ
T . From (2.39), it follows that∫︂ t+δ

t−δ
ξv(t) dt =

∫︂ T

0
(r

(︁
∂
∂ty + (−∆+ 1)y +Qy − f

)︁
, r(vt,δ − y))L2(t) dt ≥ 0

and as a consequence we have

(r
(︁
∂
∂ty + (−∆+ 1)y +Qy − f

)︁
, r(v − y))L2(t

∗) ≥ 0, for all t∗ ∈ Lv,

which implies the inequality in (2.8), because r2 = min{t2, 1} > 0 for time t > 0.
Uniqueness: Let us assume that w ∈ Cψ

T

⋂︁
W ((0, T );H1, V ′), with rw ∈ W ((0, T );H2, L2) also

satisfies (2.8). In this case we find the relations

(ẏ + (−∆+ 1)y +Qy − f, w − y)L2 ≥ 0, (ẇ + (−∆+ 1)w +Qw − f, y − w)L2 ≥ 0,

which lead us to, with z := y − w,

(ż +Az +Qz, z)L2 ≤ 0, for almost all t ∈ (0, T ), z(0) = 0,

with z(t) ∈ V for all t ∈ [0, T ]. Thus

d
dt |z|

2
L2 + 2 |z|2V ≤ 2CQ |z|H1 |z|L2 ≤ |z|2V + C2

Q |z|2L2 , (2.40)

and the uniqueness follows from Gronwall’s lemma.
Convergence: Finally we show that the strong limits in (2.37) hold for the (entire) sequence yk.

We argue by contradiction. Let us denote S := {L2((0, T ), V ), C([0, T ], L2)}.

Suppose that r(yk − Eχ) −−−−→
S

r(y − Eχ) does not hold, for some S ∈ S. (2.41)

Under assumption (2.41), there would exist ε > 0 and a subsequence ys1(k) of yk such that⃓⃓
r(ys1(k) − Eχ)− r(y − Eχ)

⃓⃓
S ≥ ε. (2.42)

However since {yk} := {ys1(k)} is a subsequence of {yk} we would be able to follow the arguments
above and arrive to analogous limits as in (2.36) and (2.37), for a suitable subsequence {ys2(k)} of {yk}
and a limit y in the place of y. In particular, we would arrive to

ys2(s1(k)) −−−−→S
y,

where moreover y solves (2.8). By (2.42) we would have that y ̸= y, which contradicts the uniqueness
of the solution proven above. That is, the assumption in (2.41) leads us to a contradiction. Therefore,
we can conclude that (2.12) holds true. The proof is finished. □
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3. Stabilization of a sequence of parabolic equations

The solution of (1.1) can be approximated by the sequence (yk)k∈N as stated in Theorem 2.9,
where yk solves

∂
∂tyk − ν∆yk + ayk + b · ∇yk + k(yk − ψ)+ = f, (3.1a)
yk(0) = y◦, Gy |Γ = χ. (3.1b)

This follows from Theorem 2.9 with Q = a1+ b · ∇, and fk = f .
We investigate the stabilizability to trajectories for system (3.1). We consider the sequence (wk)k∈N,

where wk solves

∂
∂twk − ν∆wk + awk + b · ∇wk + k(wk − ψ)+ = f − λP

E⊥
M

UM
AP

U⊥
M

EM (wk − yk), (3.2a)
wk(0) = w◦, Gw |Γ = χ, (3.2b)

where PU⊥
M

EM ∈ L(L2) and PU⊥
M

EM ∈ L(L2) are suitable oblique projections in L2, which we shall construct

so that P E⊥
M

UM
AP

U⊥
M

EM ∈ L(L2). Then again from Theorem 2.9, with Q = a1+b·∇+λP
E⊥
M

UM
AP

U⊥
M

EM , and fk =

f +λP
E⊥
M

UM
AP

U⊥
M

EM yk, it follows that the solution of (1.3) can be approximated by the sequence (wk)k∈N.
At this point, it is important to underline that the triple (λ,UM , EM ) can be chosen independently
of k, as we shall show later on.

In this section we will see yk as our target solution and consider the difference zk := wk − yk from
the controlled solution wk to the target. With initial condition z◦ := w◦− y◦, we find that zk satisfies

∂
∂tzk − ν∆zk + azk + b · ∇zk + k

(︁
(zk + yk − ψ)+ − (yk − ψ)+

)︁
= −λP E⊥

M
UM

AP
U⊥
M

EM zk, (3.3a)
zk(0) = z◦, Gzk |Γ = 0. (3.3b)

For a given µ > 0, our goal here, see (1.4), is to find a scalar λ > 0, a space of actuators UM , and
an auxiliary space EM , such that

|wk(t)− yk(t)|L2 ≤ Ce−µt |w◦ − y◦|L2 , for all (w◦, y◦) ∈ L2 × L2, t ≥ 0 (3.4)

for a suitable C ≥ 1.

3.1. The oblique projections

We specify here how we can appropriately choose the spaces of actuators UM and auxiliary eigen-
functions EM , so that the feedback operator −λP E⊥

M
UM

AP
U⊥
M

EM is stabilizing for large enough λ > 0. Since
the stabilization results will hold for large enough M , we will rather consider a sequence of pairs of
subspaces (UM , EM )M∈N as in (1.7).

In the one-dimensional case, Ω1 = (0, L1) ⊂ R, L1 > 0, as actuators we take the indicator func-
tions 1ω1

j
(x1), j ∈ {1, 2, . . . ,M}, defined as follows,

1ω1
j
(x1) :=

{︄
1, if x1 ∈ Ω1

⋂︁
ω1
j ,

0, if x1 ∈ Ω1 \ ω1
j ,

ω1
j := (cj − rL1

2M , cj+
rL1
2M ), cj :=

(2j−1)L1

2M . (3.5)
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As eigenfunctions we take the first M eigenfunctions e1j of −ν∆ + 1 : D(A) → L2(Ω1) (i.e., the first
eigenfunctions of ∆),

(−ν∆+ 1)e1j = α1
je

1
j , Ge1i |Γ = 0, j ∈ {1, 2, . . . ,M}, (3.6)

where the α1
j s are the ordered eigenvalues, repeated accordingly to their multiplicity,

0 < 1 ≤ α1
1 < α1

2 < · · · < α1
j < α1

j+1 < . . . , j ∈ N.

In the higher-dimensional case, for nonempty rectangular domains Ω× =
d∏︁

n=1
(0, Ln) ⊂ Rd, Ln > 0

we take Cartesian product actuators of the above actuators 1ωn
j

and eigenfunctions enj as follows. We
define M := {1, 2, . . . ,M} and take

UM = span{1ω×
j
| j ∈ Md} and EM = span{e×j | j ∈ Md}, (3.7)

and ω×
j := {(x1, x2, . . . , xd) ∈ Ω× | xn ∈ ωnjn} and e×j (x1, x2, . . . , xd) :=

d∏︁
n=1

enjn(xn). Notice that we

can also write 1ω×
j
=

d∏︁
n=1

1ωn
jn
(xn).

It turns out that the Poincaré-like constant

βM+
:= min

{︂
|h|V
|h|L2

⃓⃓⃓
h ∈ U⊥

M

⋂︁
V, h ̸= 0

}︂
(3.8a)

satisfies

lim
M→+∞

βM+ = +∞. (3.8b)

Furthermore, we have

L2 = UM ⊕ E⊥
M and sup

M≥1

⃓⃓⃓
P

E⊥
M

UM

⃓⃓⃓
L(L2)

=: CP < +∞. (3.8c)

Finally, we define the following eigenvalue

ˆ︁αM := max{αi | there is φ ∈ EM such that Aφ = αiφ} (3.8d)

which we shall need later on.
For details concerning (3.8b) we refer to [27, Sect. 5]. Concerning (3.8c), for the one-dimensional

case we refer to [28, Thms. 4.4 and 5.2], for higher-dimensional rectangular domains see [18, Sect. 4.8.1].

Remark 3.1. For nonrectangular domains Ω ⊂ Rd, with d ≥ 2, we still do not know whether we can
choose the actuators (as indicator functions) so that the properties in (3.8) are satisfied. So we cannot
guarantee that an oblique projection based feedback will stabilize our system. In spite of this fact,
we refer the reader to [18, 19], where numerical simulations show the stabilizing performance of such
a feedback for equations evolving in a spatial nonrectangular domain.
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3.2. On the nonlinearity

We gather key properties of the nonlinear operator in (3.3).

Nk(z) ∈ C(L2, L2), Nk(z) := k
(︁
(z + yk − ψ)+ − (yk − ψ)+

)︁
. (3.9)

Lemma 3.2. The nonlinear operator (3.9) is bounded, as

|Nk(z1)−Nk(z2)|L2 ≤ k |z1 − z2|L2 , for all (z1, z2) ∈ L2 × L2.

Proof. With (z1, z2) ∈ L2 × L2, we find that

Nk(z1)−Nk(z2) = k
(︁
(z1 + yk − ψ)+ − (z2 + yk − ψ)+

)︁
. (3.10)

Note that h ↦→ h+ = max(h, 0) is a globally Lipschitz continuous functions with unitary Lipschitz
constant, and thus |h+1 − h+2 |L2 ≤ |h1 − h2|L2 for all h1, h2 ∈ L2. Therefore,

|Nk(z1)−Nk(z2)|L2 ≤ k|(z1 + yk − ψ)− (z2 + yk − ψ)|L2 = k|z1 − z2|L2 ,

which finishes the proof. □

Lemma 3.3. The nonlinear operator (3.9) is monotone,

(Nk(z1)−Nk(z2), z1 − z2)L2 ≥ 0, for all (z1, z2) ∈ L2 × L2.

Proof. By (2.13), the mapping z ↦→ G(z) := z+ is monotone in L2. Hence, z ↦→ G(z − ζ1)− ζ2 is also
monotone for arbitrary ζ1 and ζ2 in L2, which finishes the proof. □

3.3. Stabilizability result

For simplicity, let us denote

Arc := a1+ b · ∇, Crc := |Arc|L∞(R+,L(V,L2)) ,

Kλ
M := −λP E⊥

M
UM

AP
U⊥
M

EM . (3.11)

Theorem 3.4. Let Assumptions 2.3–2.6 hold true, with B = a1. Let the sequence (UM , EM )M∈N be
constructed as in Section 3.1. Then, for every given µ > 0, there are large enough constants λ > 0
and M ∈ N such that, for every k ∈ N, the system

żk +Azk +Arczk +Nk(zk) = Kλ
Mzk, zk(0) = z◦, (3.12[k])

is exponentially stable with rate −µ. For all z◦ ∈ L2, the solution satisfies

|zk(t)|L2 ≤ e−µ(t−s) |zk(s)|L2 , t ≥ s ≥ 0. (3.13)

Moreover, the feedback operator Kλ
M and control input Kλ

Mzk satisfy the estimate⃓⃓⃓
Kλ
M

⃓⃓⃓
L(L2)

≤ λˆ︁αMC2
P and

⃓⃓⃓
Kλ
Mzk

⃓⃓⃓
L2(R+,L2)

≤ λˆ︁αMµ−1C2
P |z◦|L2 , (3.14)
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where ˆ︁αM and CP are as in (3.8). Furthermore, we can choose

λ ∼ C [µ,Crc] and M ∼ C [µ,Crc]. (3.15)

Remark 3.5. Note that the feedback operator Kλ
M in (3.11) is independent of (k, ψ), because (λ,M)

in (3.15) can be chosen independently of (k, ψ). The upper bound in (3.14) for the norm of the control
input Kλ

Mzk is also independent of (k, ψ). The monotonicity stated in Lemma 3.3 plays a key role on
such independences on k.
Remark 3.6. Inequality (3.13) implies that t ↦→ |zk(t)|2L2 is strictly decreasing at time t = s,
if |zk(s)|2L2 > 0. Of course, if |zk(s)|2L2 = 0 then |zk(t)|2L2 = 0 for all t ≥ 0, see [27, Sect. 4].
Proof of Theorem 3.4. Following the arguments in [27, Sect. 4], we decompose the solution of sys-
tem (3.12[k]) into oblique components as

zk = θk +Θk, with θk := P
U⊥
M

EM zk and Θk := P EM
U⊥
M

zk.

Observe that form (3.12[k]), Lemma 3.3, and the Young inequality, we obtain that

d
dt |zk|

2
L2 = −2 |zk|2V − 2⟨Arczk, zk⟩V ′,V − 2 (Nk(zk), zk)L2 + 2

(︂
Kλ
Mzk, zk

)︂
L2

(3.16)

≤ −2 |zk|2V − 2⟨Arczk, zk⟩V ′,V − 2λ (Aθk, θk)L2 (3.17)

≤ −2 |zk|2V + γ1 |zk|2V + γ−1
1 C2

rc |zk|
2
L2 − 2λ |θk|2V ,

≤ −(2− γ1) |zk|2V + γ−1
1 C2

rc |zk|
2
L2 − 2λ |θk|2V , for all γ1 > 0. (3.18)

Now we observe that, by the young inequality, we obtain for all γ2 > 0

− |zk|2V = − |Θk + θk|2V = − |Θk|2V − |θk|2V − 2(Θk, θk)V

≤ − |Θk|2V − |θk|2V + γ2 |Θk|2V + γ−1
2 |θk|2V = −(1− γ2) |Θk|2V − (1− γ−1

2 ) |θk|2V . (3.19)

Combining (3.18) and (3.19) we obtain, for all (γ1, γ2) ∈ (0, 2)× R+,
d
dt |zk|

2
L2 ≤ −(2− γ1)(1− γ2) |Θk|2V −

(︁
2λ+ (2− γ1)(1− γ−1

2 )
)︁
|θk|2V + γ−1

1 C2
rc |zk|

2
L2

≤ −(2− γ1)(1− γ2) |Θk|2V −
(︁
2λ− (2− γ1)(γ

−1
2 − 1)

)︁
|θk|2V + 2γ−1

1 C2
rc(|Θk|

2
L2 + |θk|2L2)

Now, we can choose γ1 ∈ (0, 2) and γ2 ∈ (0, 1), and λ satisfying 2λ− (2− γ1)(γ
−1
2 − 1) > 0. For such

choices, using (3.8), we find
d
dt |zk|

2
L2 ≤ −(2− γ1)(1− γ2)βM+ |Θk|2L2 −

(︁
2λ− (2− γ1)(γ

−1
2 − 1)

)︁
α1 |θk|2L2

+ 2γ−1
1 C2

rc(|Θk|
2
L2 + |θk|2L2)

≤ −Ξ1(M) |Θk|2V − Ξ2(M) |θk|2V , (3.20)

where α1 := min
{︂

|h|V
|h|L2

⃓⃓⃓
h ∈ V \ {0}

}︂
, and

Ξ1(M) := (2− γ1)(1− γ2)βM+ − 2γ−1
1 C2

rc, (3.21a)
Ξ2(λ) :=

(︁
2λ− (2− γ1)(γ

−1
2 − 1)

)︁
α1 − 2γ−1

1 C2
rc. (3.21b)
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Recall that, due to (3.8) we have that lim
M→+∞

βM+ = +∞. Let us be given an arbitrary given µ > 0

and let us choose γ1 and γ2 as above, satisfying

γ1 ∈ (0, 2) and γ2 ∈ (0, 1). (3.22a)

Then, subsequently we can choose λ > 0 and M ∈ N large enough satisfying

2λ− (2− γ1)(γ
−1
2 − 1) > 0, Ξ2(λ) ≥ 4µ, and Ξ1(M) ≥ 4µ. (3.22b)

From (3.20), with the choices in (3.22), we arrive at

d
dt |zk|

2
L2 ≤ −4µ

(︂
|Θk|2L2 + |θk|2L2

)︂
≤ −2µ |zk|2L2 , (3.23)

which implies (3.13).
It remains to show the boundedness of the feedback control, with (γ1, γ2, λ,M) as in (3.22).
We see that P E⊥

M
UM

= P
E⊥
M

UM
PEM , because P E⊥

M
UM

h = P
E⊥
M

UM
(PEMh + PE⊥

M
h) = P

E⊥
M

UM
PEMh, for all h ∈ L2.

Here PEM := P EM⊥
EM stands for the orthogonal projection in L2 onto EM . Using (3.13) we obtain that

the feedback operator Kλ
M satisfies⃓⃓⃓

Kλ
M

⃓⃓⃓
L(L2)

= λ
⃓⃓⃓
P

E⊥
M

UM
AP

U⊥
M

EM

⃓⃓⃓
L(L2)

= λ
⃓⃓⃓
P

E⊥
M

UM
PEMAPEMP

U⊥
M

EM

⃓⃓⃓
L(L2)

≤ λ
⃓⃓⃓
P

E⊥
M

UM

⃓⃓⃓
L(L2)

|PEMAPEM |L(L2)

⃓⃓⃓
P

U⊥
M

EM

⃓⃓⃓
L(L2)

≤ λˆ︁αM ⃓⃓⃓
P

E⊥
M

UM

⃓⃓⃓2
L(L2)

(3.24a)

and corresponding control Kλ
Mzk⃓⃓⃓

Kλ
Mzk

⃓⃓⃓
L2(R+,L2)

≤ λˆ︁αM ⃓⃓⃓
P

E⊥
M

UM

⃓⃓⃓2
L(L2)

|zk|L2(R+,L2) ≤ λˆ︁αM ⃓⃓⃓
P

E⊥
M

UM

⃓⃓⃓2
L(L2)

|z◦|L2

∫︂ +∞

0
e−µt dt

= λˆ︁αMµ−1
⃓⃓⃓
P

E⊥
M

UM

⃓⃓⃓2
L(L2)

|z◦|L2 , (3.24b)

where ˆ︁αM is as in (3.8). Finally, with CP is as in (3.8), we also obtain the bounds⃓⃓⃓
Kλ
M

⃓⃓⃓
L(L2)

≤ λˆ︁αMC2
P , and

⃓⃓⃓
Kλ
Mzk

⃓⃓⃓
L2(R+,L2)

≤ λˆ︁αMµ−1C2
P |z◦|L2 . (3.25)

The proof is finished. □

4. Stabilization of the variational inequality

Here we prove the main result, which we can write now in a more precise form as follows.

Theorem 4.1. Let Assumptions 2.3–2.6 hold true, let µ > 0, and let the pairs (UM , EM ) be constructed
as in Section 3.1. Further let y ∈ Wloc(R+;H

1, V ′) with ry ∈ Wloc(R+;H
2, L2) solve (1.1). Then

for M and λ large enough the solution w of system (1.8) satisfies

|w(t)− y(t)|L2 ≤ e−µt |w◦ − y◦|L2 , t ≥ 0. (4.1)
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Furthermore, with ˆ︁αM and CP as in (3.8) the control satisfies⃓⃓⃓
Kλ
M

⃓⃓⃓
L(L2)

≤ λˆ︁αMC2
P and

⃓⃓⃓
Kλ
M (w − y)

⃓⃓⃓
L2(R+,L2)

≤ λˆ︁αMµ−1C2
P |w◦ − y◦|L2 , (4.2)

Proof. Let us fix λ > 0 and M ∈ N so that Theorem 3.4 holds true. Note that λ > 0 and M ∈ N are
independent of k.

Let yk and wk be the solutions of the Moreau–Yosida approximations (3.1) and (3.2), respectively.
For the difference between the solution w of (1.8) and the solution y of (1.1) we find

|w(t)− y(t)|L2 ≤ |w(t)− wk(t)|L2 + |wk(t)− yk(t)|L2 + |yk(t)− y(t)|L2 (4.3a)

Let us now be given arbitrary ϵ > 0, ϱ > 1, T > 0, and t ∈ [0, T ].
Now for the pair (yk, y) we apply Theorem 2.9 with (fk, Q) = (f, a1+b ·∇), and for the pair (wk, w)

we apply Theorem 2.9 with (fk, Q) = (f + Kλ
Myk, a1 + b · ∇ + Kλ

M ). In this way we obtain that, for
large enough k = k(ϵ, T ), we have

|r(yk − y)|C([0,T ],L2) ≤ ϵ and |r(wk − w)|C([0,T ],L2) ≤ ϵ, with r(t) = min{t, 1}. (4.3b)

and, since zk := wk − yk satisfies (3.3), that is (3.12[k]), by using Theorem 3.4, we obtain

|wk(t)− yk(t)|L2 ≤ e−µt |w◦ − y◦|L2 , for every k ∈ N. (4.3c)

Hence, by selecting k large enough, from (4.3) we obtain that, at time t = T > 0,

|w(T )− y(T )|L2 ≤ 2max{ 1
T , 1}ϵ+ e−µT |w◦ − y◦|L2 .

Choosing now ϵ := 1
2 min{T, 1}(ϱ− 1)e−µT |w◦ − y◦|L2 , we arrive at

|w(T )− y(T )|L2 ≤ (ϱ− 1)e−µT |w◦ − y◦|L2 + e−µT |w◦ − y◦|L2 = ϱe−µT |w◦ − y◦|L2 .

Furthermore, since T > 0 and ϱ > 1 are arbitrary we arrive at

|w(t)− y(t)|L2 ≤ e−µt |w◦ − y◦|L2 , t ≥ 0.

Finally proceeding as in (3.24), we find⃓⃓⃓
Kλ
M (w − p)

⃓⃓⃓
L2(R+,L2)

≤ λˆ︁αM ⃓⃓⃓
P

E⊥
M

UM

⃓⃓⃓2
L(L2)

|w − p|L2(R+,L2) ≤ λˆ︁αMµ−1C2
P |w◦ − y◦|L2 ,

with ˆ︁αM and CP as in (3.8), which finishes the proof. □

5. Numerical simulations

For simplicity, we restrict ourselves to one-dimensional PVIs in the spatial open interval Ω =
(0, 1) ⊂ R, and to the case of homogeneous Neumann boundary conditions. Namely, we consider the
Moreau–Yosida approximations

∂
∂tyk + (−ν∆+ 1)yk + ayk + b · ∇yk − f + k(yk − ψ)+ = 0, t > 0, (5.1a)
∂
∂nyk |Γ = 0, yk(·, 0) = y◦. (5.1b)
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For the parameters, we have chosen

ν = 0.1, f(x, t) = − sin(t)x, (5.2a)
a(x, t) = −6 + x+ 2 |sin(t+ x)|R , b(x, t) = cos(t)x2 (5.2b)

and
ψ(x, t) = 2 + cos(t) + cos

(︁
10πx(x− 1)(x− 1

4 cos(5t))
)︁
. (5.2c)

Recall that by Theorem 2.9, we have that yk gives us an approximation of the solution y of the PVI
with the same data parameters. See also Remark 1.1.

The targeted trajectory y is the one issued, at initial time t = 0, from the state

y(x, 0) = y◦(x) = 3 cos(πx), (5.3)

and we want to target such trajectory starting, again at time t = 0, from the state

w(x, 0) = w◦(x) = −1. (5.4)

Again by Theorem 2.9, we have that wk solving

∂
∂twk + (−ν∆+ 1)wk + awk + b · ∇wk − f −Kλ

M (wk − yk) + k(wk − ψ)+ = 0, t > 0, (5.5a)
∂
∂nwk |Γ = 0, wk(·, 0) = w◦, (5.5b)

gives us an approximation of the solution w of the controlled PVI with the same data parameters.
Initial states are plotted in Figure 1.
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Figure 1. Initial states.

For a fixed M ∈ N we take Mσ = M actuators as in [18] which are indicator functions 1ωM
j

of the
subdomains

ωMj = (2j−1
2M − 1

20M ,
2j−1
2M + 1

20M ), j ∈ {1, 2, . . . ,M}.
In particular, note that the total volume covered by the actuators is independent of M . It is given
by 1

10 , which is 10% of the total volume of the spatial domain.
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As auxiliary space of eigenfunctions we take the first eigenfunctions of the Laplace operator, under
the imposed Neumann boundary conditions, namely

eMj = cos((j − 1)πx), j ∈ {1, 2, . . . ,M}.

The obstacle ψ(·, t) satisfies ∂
∂nψ = 0 at every t ≥ 0. Recall that our Assumption 2.6 requires

that ∂
∂nψ ≥ −η for a suitable positive function −η ∈W 1,2

loc (R+) ≥ 0 hence it is satisfied.
Furthermore, we can see that Assumptions 2.3–2.6 are satisfied. Therefore all the hypotheses of

Theorems 3.4 are satisfied. Hereafter we present the results of simulations illustrating the stability
result stated in the thesis of Theorem 3.4.

As we have mentioned above, by solving systems (5.1) and (5.5), by Theorem 4.1, with a relatively
large Moreau–Yosida parameter k = kMY we expect to obtain a relatively good approximation of the
behavior of the limit solutions for the corresponding PVIs. Depending on the simulation example, we
have taken kMY in the interval [500, 20000].

For the discretization, we considered a finite element spatial approximation based on the classical
piecewise linear hat functions, where the closure [0, 1] of the spatial interval has been discretized with a
regular mesh with 2001 equidistant points. Subsequently the closure [0,+∞) of the temporal interval
has been discretized with a uniform time-step tstep > 0 and a Crank–Nicolson/Adams–Bashforth
scheme was used. Depending on the simulation we have taken tstep ∈ {10−4, 10−5}.

In the figures below we denote H := L2(Ω).

5.1. Stabilizing performance of the feedback control

In Figure 2 we can see that with 5 actuators and λ = 4 the explicit oblique projection feedback
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Figure 2. Norms of difference to target and control.

control we propose in this manuscript is able to stabilize the solution w = wk of the Moreau–Yosida
approximation, with k = kMY = 1000, to the corresponding targeted uncontrolled solution approx-
imation y = yk. The logarithm in the figures stand for the natural logarithm, log(es) := s, s ∈ R
(where e is the Napier’s constant, Euler’s number).

Time snapshots of the corresponding trajectories and control are shown in Figures 3. It is interesting
to observe, at time t = 0.05, the 5 bumps on the shape of the controlled solution, which are pointing
towards the targeted one. The spatial location of these bumps coincide with spatial location of the
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Figure 3. Time snapshots of trajectories and control. Larger time

actuators, and they show the action of the feedback control pushing the controlled solution towards
the targeted one.

5.2. On the Moreau–Yosida parameter kMY

The goal of this section is to show that it is very likely that the Moreau–Yosida approximation with
parameter kMY = 500 in the above simulation give us already a good approximation of the behavior
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of the limit solution of the PVI. Indeed, in Figure 4, we can see that the norm of the difference to the
target presents an analogous evolution for the considered parameters kMYs.
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Figure 4. Norms of difference to target and control

In Figure 5 we see that the obstacle constraint violation decreases as kMY increases, as we expect,
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Figure 5. Largest magnitude of obstacle constraint violation

since at the limit we must have a vanishing constraint violation. Furthermore, from Lemma 2.14 we
have that k |(yk − ψ)+|L2(Ω×(0,T )) ≤ C for a suitable constant C independent of k. Figure 5 shows
that the violation decreases (at each instant of time) as k increases.

In Figure 6 we see a time snapshot of the controlled trajectories and control, where we see a small
difference between the controlled trajectories for the several kMY s. A similar behavior was observed
for the corresponding targeted trajectories, for simplicity we plotted only the targeted trajectory y
corresponding to kMY = 500 (which, at that instant of time, is already almost indistinguishable form
the controlled states with the naked eye).

5.3. Necessity of both large M and large λ

From our result, for stability it is sufficient to take large M and large λ. Here, we present simulations
showing that such condition is also necessary.
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5.3.1. Necessity of large enough M
In Figure 7 we see that with a single actuator we cannot stabilize the system, even for the relatively

large λ = 50. Furthermore, for small time we cannot see a considerable change in the norm of the
difference to the target for the several λs. This allow us to extrapolate that one actuator is not enough
to stabilize the system.

In Figure 8 we present time snapshots of trajectories and control. We see that by taking a larger λ
we cannot see a strong enough influence on the evolution of the trajectory to expect (or, hope for) a
stabilization effect for large values of λ.

5.3.2. Necessity of large enough λ
In Figure 9 we see that with λ = 1 we cannot stabilize the system, even if we take 20 actuators.

Furthermore, for small time we cannot see a considerable change in the norm of the difference to the
target for the several Mσs. This allow us to extrapolate that it is necessary to take λ > 1 if we want
to stabilize the system.
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Figure 6. Time snapshots of trajectories and controls
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Figure 7. Norms of difference to targeted state and of control
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In Figure 10 we present time snapshots of trajectories and control. We see that with 10 and 20
actuators we cannot see a strong enough change on the evolution of the trajectory to expect (or, hope
for) a stabilization effect for large values of Mσ.

5.3.3. On the achievement of an arbitrarily small exponential decreasing rate −µ < 0

From our result we can reach an arbitrarily small exponential decreasing rate −µ, provided we take
both Mσ and λ large enough. This is shown in Figure 11, where we see that with (Mσ, λ) = (10, 6)
we obtain a smaller exponential rate than with (Mσ, λ) = (4, 3). We also observe that with (Mσ, λ) =
(2, 2) we are also able to stabilize the system, however this case does not fully confirm our result, where
we can also guarantee that the norm of the difference to the targeted trajectory is strictly decreasing.
In the zoomed subplot, in Figure 11, we can see that for small time the norm of the difference is not
strictly decreasing, for (Mσ, λ) = (2, 2).

The time snapshots in Figure 12 also confirm that with a pair (Mσ, λ) with larger coordinates, we
obtain a faster convergence of the controlled trajectory w to the targeted one y.

5.4. The uncontrolled dynamics

Here we show that the uncontrolled dynamics is unstable. That is, a control is necessary to stabilize
the system to the targeted trajectory. In Figure 13 the symbol FeedOn denotes the time interval where
the feedback control is switched on. Thus, outside this time interval the free (uncontrolled) dynamics
is followed. We see that the free dynamics is exponentially unstable, as the norm of the difference
to the target increases exponentially when the control is switched off. On the other hand, when the
control is switched on we see that such norm decreases exponentially, confirming again our theoretical
stabilizability results.

Time snapshots in Figure 14 show again that the trajectory w corresponding to the free dynam-
ics FeedOn = (0, 0) is not approaching the targeted one y as time increases (cf. Figure 1).

5.5. Evolution of the contact set and the Moreau–Yosida parameter

Here, we investigate the evolution of the contact (or, active) set. In Figure 15 we see that the
behavior of the norm of the difference to target and of the control is similar for the several Moreau–
Yosida parameters, with some differences for time t ≥ 1.5. So, the considered parameters give us
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Figure 8. Time snapshots of trajectories and controls
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Figure 9. Norms of difference to targeted state and of control
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Figure 10. Time snapshots of controlled state

already a good picture of the qualitative behavior of the limit difference and control as kMY diverges
to +∞.

The time snapshots in Figure 16 show that the smallest value of kMY already captures a good
picture of the likely limit behavior for the PVI.

From Figure 17 we can conjecture also that the magnitude of the violation of the obstacle constraint
converges to zero as kMY → ∞. That is, at the limit such magnitude will vanish, as we expect due to
the theoretical results.

Finally, in Figures 23 and 24 we can see the evolution of the obstacle constraint violation set. It is
interesting to observe that with the smallest value of kMY = 5000 considered, we can already capture
a good picture of the likely limit contact set evolution for the parabolic variational inequality. The
evolution is not simple, for example the number of contact connected components change with time,
this can simply be explained from the fact that the moving obstacle and its shape (cf. Figure 3 and
other time snapshots) are not simple themselves.
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Figure 12. Time snapshots of trajectories and controls

6. Numerical simulations for a nonsmooth obstacle. A conjecture.

Note that the stability result for the sequence of kMY-Moreau–Yosida approximations holds true for
obstacles which live in L2

loc(Ω×R+). In particular, we have a weak limit for the difference zk = yk−wk.
Thus, we may ask ourselves if yk and wk also converge separately and if each of these limits satisfy (a
weaker formulation of) the PVI. Next, we present results of simulations which suggest that this may
be indeed the case for obstacles in C1([0,+∞), L2(Ω)). This means that our result can probably be
extended to less regular obstacles. Such extension is an interesting problem for future investigation.
If possible, such extension is nontrivial and thus will likely require a considerably different proof.

The following simulations correspond to the setting as in (5.2) with the exception that we take a
nonsmooth obstacle. Namely, we modify the smooth obstacle in (5.2c), by changing it to constant
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Figure 14. Time snapshots of trajectories and controls

functions on the spatial set [0, 1
10 ]

⋃︁
[ 810 , 1]. More precisely, we take the obstacle

ψ(x, t) =

⎧⎪⎨⎪⎩
31
10 , if x ∈ [0, 1

10 ];

2 + cos(t) + cos
(︁
10πx(x− 1)(x− 1

4 cos(5t))
)︁
, if x ∈ ( 1

10 ,
8
10);

− 5
10 , if x ∈ [ 810 , 1].

In Figure 20 we cannot see a considerable difference in the behavior of the norm of the difference
to target and of the control for the several Moreau–Yosida parameters. The same holds for the time
snapshots in Figure 21. So we can conjecture that the considered parameters give us already a good
picture of the behavior of the limit difference and control as kMY diverges to +∞.

From Figure 22 we can conjecture also that the magnitude of the violation of the obstacle constraint
converges to zero as kMY → ∞.

All the above suggest that a PVI will be satisfied at a limit. But, this remains to be proven for
nonsmooth obstacles.

Finally, in Figures 23 and 24 we can see the evolution of the obstacle constraint violation sets.
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Figure 16. Time snapshots of trajectories and control

Again, the smallest value of kMY provides us already with good picture of such evolutions. However,
note that by taking the largest value we are able to “sharpen” the picture, in particular it confirms
that locally the contact is made at the single (discontinuity) point x = 0.8 during a suitable interval
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Figure 17. Largest magnitude of obstacle constraint violation
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Figure 18. Evolution of obstacle constraint violation set for targeted trajectory

of time, where t = 1.5 is included, as we see in the snapshot in Figure 21. We also observe that the
discontinuity of the obstacle at the spatial points x ∈ {0.1, 0.8} is somehow reflected in Figures 23
and 24.
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Figure 23. Evolution of obstacle constraint violation set for targeted trajectory

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

Figure 24. Evolution of obstacle constraint violation set for controlled trajectory

[17] A. Khapalov. Approximate controllability and its well-posedness for the semilinear reaction-diffusion equation with
internal lumped controls. ESAIM Control, Optim. Calc. Var., 4:83–98, 1999. doi:10.1051/cocv:1999104.

[18] K. Kunisch and S. S. Rodrigues. Explicit exponential stabilization of nonautonomous linear parabolic-like systems by
a finite number of internal actuators. ESAIM Control Optim. Calc. Var., 25, 2019. 67. doi:10.1051/cocv/2018054.

[19] K. Kunisch and S. S. Rodrigues. Oblique projection based stabilizing feedback for nonautonomous coupled parabolic-
ode systems. Discrete Contin. Dyn. Syst., 39(11):6355–6389, 2019. doi:10.3934/dcds.2019276.

[20] J.-L. Lions. Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod et Gauthier–Villars,
Paris, 1969.

[21] J.-L. Lions and E. Magenes. Non-Homogeneous Boundary Value Problems and Applications, vol. I. Number 181 in
Die Grundlehren Math. Wiss. Einzeldarstellungen. Springer-Verlag, 1972. doi:10.1007/978-3-642-65161-8.

[22] V. Maksimov. Feedback robust control for a parabolic variational inequality. In System modeling and optimization,
volume 166 of IFIP Int. Fed. Inf. Process., pages 123–134. Kluwer Acad. Publ., Boston, MA, 2005. doi:10.1007/
0-387-23467-5_7.

[23] D. Phan and S. S. Rodrigues. Stabilization to trajectories for parabolic equations. Math. Control Signals Syst., 30(2),
2018. 11. doi:10.1007/s00498-018-0218-0.

[24] C. Popa. Feedback laws for the optimal control of parabolic variational inequalities. In Shape optimization and
optimal design (Cambridge, 1999), volume 216 of Lecture Notes in Pure and Appl. Math., pages 371–380. Dekker,
New York, 2001.

https://doi.org/10.1051/cocv:1999104
https://doi.org/10.1051/cocv/2018054
https://doi.org/10.3934/dcds.2019276
https://doi.org/10.1007/978-3-642-65161-8
https://doi.org/10.1007/0-387-23467-5_7
https://doi.org/10.1007/0-387-23467-5_7
https://doi.org/10.1007/s00498-018-0218-0


Stabilization for parabolic variational inequalities 39

[25] S. S. Rodrigues. Local exact boundary controllability of 3D Navier–Stokes equations. Nonlinear Anal., 95:175–190,
2014. doi:10.1016/j.na.2013.09.003.

[26] S. S. Rodrigues. Semiglobal exponential stabilization of nonautonomous semilinear parabolic-like systems. Evol.
Equ. Control Theory, 9(3):635–672, 2020. doi:10.3934/eect.2020027.

[27] S. S. Rodrigues. Oblique projection exponential dynamical observer for nonautonomous linear parabolic-like equa-
tions. SIAM J. Control Optim., 59(1):464–488, 2021. doi:10.1137/19M1278934.

[28] S. S. Rodrigues and K. Sturm. On the explicit feedback stabilisation of one-dimensional linear nonautonomous
parabolic equations via oblique projections. IMA J. Math. Control Inform., 37(1):175–207, 2020. doi:10.1093/
imamci/dny045.

[29] W. Rudin. Real and Complex Analysis. McGraw-Hill, 3rd edition, 1987.
[30] J. Simon. Compact sets in the space Lp(0, T ;B). Ann. Mat. Pura Appl. (4), 146:65–96, 1987. doi:10.1007/

BF01762360.
[31] G. Stampacchia. Équations elliptiques du second ordre à coefficients discontinus. Séminaire Jean Leray, (3):1–77,

1963-1964. URL: http://www.numdam.org/item/SJL_1963-1964___3_1_0.
[32] R. Temam. Navier–Stokes Equations: Theory and Numerical Analysis. AMS Chelsea Publishing, Providence, RI,

reprint of the 1984 edition, 2001.
[33] G. Wachsmuth. Optimal control of quasistatic plasticity with linear kinematic hardening III: Optimality conditions.

Z. Anal. Anwend., 35(1):81–118, 2016. doi:10.4171/ZAA/1556.
[34] G. Wang. Optimal control problem for parabolic variational inequalities. Acta Math. Sci. Ser. B (Engl. Ed.),

21(4):509–525, 2001. doi:10.1016/S0252-9602(17)30440-X.

https://doi.org/10.1016/j.na.2013.09.003
https://doi.org/10.3934/eect.2020027
https://doi.org/10.1137/19M1278934
https://doi.org/10.1093/imamci/dny045
https://doi.org/10.1093/imamci/dny045
https://doi.org/10.1007/BF01762360
https://doi.org/10.1007/BF01762360
http://www.numdam.org/item/SJL_1963-1964___3_1_0
https://doi.org/10.4171/ZAA/1556
https://doi.org/10.1016/S0252-9602(17)30440-X

	1. Introduction
	1.1. Main stabilizability result
	1.2. Previous literature

	2. Existence, uniqueness, and approximation of the solution
	2.1. Trace and lifting operators
	2.2.  Assumptions on the data
	2.3. On the Moreau–Yosida approximation

	3. Stabilization of a sequence of parabolic equations
	3.1. The oblique projections
	3.2. On the nonlinearity
	3.3. Stabilizability result

	4. Stabilization of the variational inequality
	5. Numerical simulations
	5.1. Stabilizing performance of the feedback control
	5.2. On the Moreau–Yosida parameter kMY
	5.3. Necessity of both large M and large λ
	5.4. The uncontrolled dynamics
	5.5. Evolution of the contact set and the Moreau–Yosida parameter

	6. Numerical simulations for a nonsmooth obstacle. A conjecture.
	References

