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Abstract— We consider differentiability properties associated
to the problem of minimizing the accumulation of a granular
cohesionless material on a given surface. The design variable or
control is determined by source locations and intensity thereof.
The control problem is described by an optimization one in
function space constrained by a variational inequality or a
non-smooth equation. We address a regularization approach
via a family of nonlinear partial differential equations, and
provide a novel result of Newton differentiability of the control-
to-state map. Further, we discuss solution algorithms for the
state equation as well as for the optimization problem.

I. INTRODUCTION

The growth description of piles made of granular cohen-
sionless and homogeneous materials is a complex, nonconvex
and nonsmooth process. In this problem, we assume that
material is deposited by a known source on a supporting
structure u0 that may not be flat. The material is charac-
terized by its angle of repose α > 0: The steepest angle
at which a sloping surface formed from a point source of
material is stable. The source (assumed constant in time)
is given by g : Ω → R, where Ω ⊂ Rd with d = 1, 2,
and represents the (density) rate of a granular material being
deposited on the smooth supporting structure u0 : Ω → R
with u0|∂Ω = 0. The latter boundary condition translates
into the ability of material to escape the surface freely when
it reaches the boundary ∂Ω. In the limit time → ∞, the
function u : Ω → R describing the surface of the outmost
layer of material is approximated by the solution to the
stationary variational inequality: Find u ∈ K such that

⟨−ϵ∆u− f, v − u⟩H−1,H1
0
≥ 0, (1)

for all v ∈ K with

K := {v ∈ H1
0 (Ω) : |Dv| ≤ φ a.e.}

and where f = g+ ϵ∆u0, and H1
0 (Ω) is the space of L2(Ω)

functions such that their weak gradients belong to L2(Ω)d,
together with function values vanishing at the boundary ∂Ω
in the sense of the trace; see [1].

We assume that D is either the weak gradient or an
approximation thereof, and 0 < ϵ ≪ 1. The function
φ : Ω → R is strictly and uniformly above zero, i.e.,

φ(x) ≥ ν > 0, (2)
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for almost all x ∈ Ω. If the pile is homogeneous and
|∇u0| ≤ tan(α), then φ ≡ tan(α). In the case of an
inhomogeneous pile (if multiple materials are present), α
is not longer a constant and therefore neither is φ; see [2].
There is a further more complex case (not treated within
this paper) when |∇u0| > tan(α) on a positive measure set
within Ω; in this case φ is actually dependent on u and the
problem is a quasi-variational inequality. This approach was
pioneered by Prigozhin [3], [4], [5].

In the limiting case of ϵ ↓ 0, the process can be described
as follows. Initially, and provided that the slope of the
supporting structure is smaller than φ ( a material dependent
function) material accumulates there, friction forces keep the
pile connected. Material is only allowed to flow, as the pile
grows, when the slope of the pile reached the φ-bound and
then it flows in direction of steepest descent, and only on the
outermost layer. The latter can be seen as gravitational forces
overcoming frictional ones. A schematic of this situation can
be seen in Figure 1.
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Fig. 1. Two accumulation profiles u(f) associated to two instances of f ,
the intensity of material being poured. The lower f provides an u(f) closer
to ud as desired.

A control problem of interest associated to problem (1)
corresponds to the selection of a source of material f so
that the accumulation of material u = u(f) is close to some



desired surface structure ud while the amount of material
deposited is minimized in some sense. This leads to the
minimization of the functional

J(u(f), f) :=
1

2

∫︂
Ω

|u(f)− ud|2 dx+ λ∥f∥2Y ′ , (3)

for some space Y ′ ⊂ H−1(Ω) where H−1(Ω) is the
topological dual to H1

0 (Ω). In the same vein, the design of
algorithms for the minimization of (3) and the study of opti-
mality conditions require information on the differentiability
of the map f ↦→ u(f). This is an extremely complex task due
to the constraint K. In light of this, problem (1) is replaced
by the regularized version

−ϵ∆u+ γP(u) = f in H−1(Ω), (4)

for some P : H1
0 (Ω) → H−1(Ω) monotone, nonsmooth,

and vanishing at K, whose specific form is given later in
the paper. Further, we assume that γ > 0 and we recover
(in some sense explained later) the original problem when
γ → ∞.

The abstract version of the problem above can be for-
mulated as the following minimization problem with a non-
smooth equation as constraint:

Minimize J(u, f)

subject to A(u) + F (u) = f
(P)

for some objective function J : X×Y ′ → R, with Y ′ ⊂ X ′,
and where A : X → X ′ is a strongly monotone, and
continuously Fréchet differentiable operator. Additionally,
F : X → X ′ is monotone, and Newton differentiable (see
the next section for a definition). Existence of solutions to
(P) is available under mild conditions.

In this paper we study the Newton differentiability prop-
erties of the solution map f ↦→ u(f) associated to the
constraint in (P) and how this permeates to f ↦→ J(u(f), f).
In particular, the obtained results imply that (P) is suitable
to be tackled by semismooth Newton approaches.

The rest of the paper is organized as follows. In Section II
we study results involving differentiability and monotonicity,
and further establish an abstract result, Theorem 1, for the
characterization of the sensitivity of the control-to-state map.
Subsequently, in Section III, we apply the abstract results to
our specific application. There we improve known results
for the Newton differentiability of convex regularization of
gradient type constraints, and also consider analogous results
for operators approximating the gradient. Several lemmata
are proven that culminate in Theorem 2 which establishes
the control-to-state differentiability result for the application
example. The paper ends with a discussion on solution
algorithms and future research directions.

II. PRELIMINARIES AND THEORETICAL RESULTS

We assume throughout this section that X is a reflexive
and real Banach space, and additionally assume that the
control space Y ′ is such that Y ′ ⊂ X ′ for a reflexive and real
Banach space Y . The typical example of application here is
X = H1

0 (Ω) and Y ′ ≃ Y = L2(Ω).

We start with monotonicity definitions used throughout the
paper. We say that A : X → X ′ is strongly monotone if there
exist c > 0 and q > 1 such that

⟨A(u+ h)−A(u), h⟩ ≥ c∥h∥q, (5)

for all u, h ∈ X . Further, we say that it is monotone if (5)
holds for c = 0; see for example [6].

Two differentiability concepts are used in this work:
Fréchet, and Newton (or slant) differentiability. While for
the definition of Fréchet differentiability we refer the reader
to [7] or a nonlinear functional analysis textbook, we now
introduce the Newton differentiability concept; see [8] for a
solid introduction on the subject. Let X,Y be real Banach
spaces and D ⊂ X be an open set. Then F : D ⊂ X → Y
is called Newton differentiable at u if there exists an open
neighborhood N (u) ⊂ D and mappings

GF : N (u) → L(X,Y )

such that

lim
∥h∥X→0

∥F (u+ h)− F (u)−GF (u+ h)h∥Y
∥h∥X

= 0.

Note that Newton derivatives are in general not unique, and
it is direct to prove that if F : D ⊂ X → Y is continuously
Fréchet differentiable, then it is Newton differentiable.

In order to simplify notation, we use the Landau o nota-
tion: We denote ∥r(h)∥Y = o(∥h∥X) for a map r : X → Y
if

lim
∥h∥X→0

∥r(h)∥Y
∥h∥X

= 0,

i.e., ∥r(h)∥Y = o(∥h∥X) implies that r vanishes faster than
h as h → 0.

We start now with a result that establishes that for a
strongly monotone differentiable map, its derivative is also
strongly monotone under relatively mild conditions.

Lemma 1: Let A : D ⊂ X → X ′, with D open, satisfy
for some fixed c > 0 and 2 ≤ q < 3

⟨A(u+ h)−A(u), h⟩ ≥ c∥h∥q, (6)

for all u, u+ h ∈ D.
In addition, suppose that

⟨A(u+ h)−A(u), h⟩ = ⟨A′(u)h, h⟩+ ⟨w(u, h), h⟩ (7)

with ∥w(u, h)∥X∗ ≤ M∥h∥2X , for all u ∈ D, and all h ∈
Br(0, X) for some sufficiently small r = r(u) > 0.

Then for each u ∈ D, A′(u) is strongly monotone with
q = 2, i.e.,

⟨A′(u)h, h⟩ ≥ c̃∥h∥2X
for some c̃ > 0 and all h ∈ X .

Proof: Let u ∈ D be fixed. From (6) and (7) we obtain
for all h ∈ Bs(0, X) with s > 0 sufficiently small that

c∥h∥qX ≤ ⟨A′(u)h, h⟩+M∥h∥3X .

Let h = th̃ for some h̃ ∈ Bs(0, X) with ∥h̃∥X = s, and
t ∈ [0, 1], then

tq−2csq ≤ ⟨A′(u)h̃, h̃⟩+Mts3.



If q = 2, simply take t = 0 and the result follows. If
q ∈ (2, 3), define g(t) = tq−2csq − Mts3, and choose
s sufficiently small so that the positive maximum of g is
achieved in (0, 1); this can be done since q < 3. In fact,
since q ∈ (2, 3), the maximum value is given by g(t∗) = c̃s2

for some c̃ > 0 independent of s. Thus, c̃s2 ≤ ⟨A′(u)h̃, h̃⟩
and hence

c̃∥h̃∥2X ≤ ⟨A′(u)h̃, h̃⟩.

Scaling by γ > 0 and using that A′(u) is linear, completes
the proof.

A few words are in order on the assumption (7). This
condition is satisfied if A is twice Fréchet differentiable
on the open set D and its second order derivative A′′ is
uniformly bounded in D; the result follows from the Taylor
remainder theorem, see [9].

We show next that in some cases the Newton derivative
also inherits monotonicity properties of the original map. In
particular, this requires some continuity assumption on the
Newton derivative with respect to the base point.

Lemma 2: Let F : D ⊂ X → X ′ be Newton differen-
tiable with Newton derivative GF for an open set D and
suppose that F is monotone, i.e.,

⟨F (u+ h)− F (u), h⟩ ≥ 0, (8)

for all u, u+ h ∈ D. If w ↦→ ⟨GF (w)h, h⟩ is continuous at
w = u ∈ D for each h, then GF (u) is monotone, i.e.,

⟨GF (u)h, h⟩ ≥ 0

for all h ∈ X .
Proof: By (8) and the definition of Newton derivative,

we observe that

⟨GF (u+ h)h, h⟩ ≥ ⟨r(h), h⟩ ,

for some r(h) = o(∥h∥X). Let h = th̃ with h̃ ∈ X fixed,
then

⟨GF (u+ th̃)h̃, h̃⟩ ≥ ⟨r(th̃), th̃⟩
∥th̃∥2X

∥h̃∥2X ,

and the result follows by taking the limit of t → 0.
We now establish the main theorem of the section and

the tool which later allows us to determine differentiability
properties of the control-to-state map in the introduction.

Theorem 1: Let A : X → X ′ satisfy the assumptions
of Lemma 1 for q = 2 and D = X , let F : X → X ′

be monotone, continuous and Newton differentiable, and
suppose that either F satisfies the assumptions of Lemma 2
or that its Newton derivative GF (u) : X → X ′ is monotone.

Then, for f ∈ Y ′, u(f) is well-defined as the unique
solution u ∈ X to the equation

A(u) + F (u) = f in X ′. (9)

In addition,
Y ′ ∋ f ↦→ u(f) ∈ X

is Newton differentiable with Newton derivative Y ′ ∋ f ↦→
Gu(f) ∈ L(Y ′, X) defined as follows: For h ∈ Y ′, w(f) =
Gu(f)h is the unique solution w ∈ X to

A′(u(f))w +GF (u(f))w = h in X ′ (10)

where A′ is the Fréchet derivative of A.
Proof: Note first that u(f) is well-defined for any f ∈

Y ′ given that there exists a unique solution to (9); the result
follows by standard methods in monotone operator theory,
see [6, Theorem 2.1]. Further, by Lemma 1, we have that
for any u ∈ X , A′(u) is strongly monotone, and GF (u) is
monotone by initial assumption or by Lemma 2, so that w,
the unique solution to (10), is also well-defined; again by [6,
Theorem 2.1].

Since A is continuously Fréchet differentiable, it also
is Newton differentiable. Then E := A + F is Newton
differentiable with derivative GE := A′ +GF satisfying

⟨GE(u)v, v⟩ ≥ ⟨A′(u)v, v⟩ ≥ c̃∥v∥2X ,

for all u, v ∈ X .
For any f, h ∈ Y ′, define d(h) = u(f + h) − u(f).

Considering (9) with f and f+h and subtracting the results,
we obtain

E(u(f) + d(h))− E(u(f)) = h.

Since A satisfies (6) with q = 2, and F is monotone, it
follows that Y ′ ∋ f ↦→ u(f) ∈ X is Lipschitz continuous.
Then, for a map r : Y ′ → X ′ satisfying ∥r(h)∥X′ =
o(∥d(h)∥X), we have ∥r(h)∥X′ = o(∥h∥Y ′). Subsequently,
from the definition of Newton derivative, it holds true that

GE(u(f) + d(h))d(h) = h+ r(h), (11)

where
∥r(h)∥X′ = o(∥h∥Y ′).

In contrast, from (10), for some w = w(f + h) we have
that

GE(u(f + h))w(f + h) = h,

and substracting this from (11), we obtain

GE(u(f + h))R(h) = r(h), (12)

where

R(h) := u(f + h)− u(f)− w(f + h).

By testing in (12) with R(h), we observe due to the strong
monotonicity of GE(u(f + h)) that

c̃∥R(h)∥2X ≤ ⟨G(u(f + h))R(h), R(h)⟩ = ⟨r(h), R(h)⟩,

and since

⟨r(h), R(h)⟩ ≤ ∥r(h)∥X′∥R(h)∥X ,

we observe
∥R(h)∥X = o(∥h∥Y ′),

and the proof is finished.
We now aim at applying the results in this section to our

sandpile control problem.



III. APPLICATION TO THE SANDPILE CONTROL PROBLEM

In the framework of (P), we consider the problem in
the introduction associated to the control of the stationary
accumulation of granular material. In this section, we fix
X = H1

0 (Ω), and X ⊂ Y ⊂ L2(Ω) with Y a real
Banach space, e.g., Y = L2(Ω). Note that this implies
that L2(Ω) ⊂ Y ′ ⊂ X ′ since we identify L2(Ω) with its
topological dual.

In (4), we define the constraint regularization operator P :
X → X ′ as

⟨P(u), w⟩X′,X =

∫︂
Ω+(u)

P (Du) ·Dw dx (13)

=

∫︂
Ω+(u)

(|Du| − φ)±
(Du ·Dw)

|Du|
dx,

where

Ω+(u) := {x ∈ Ω : |Du(x)| > 0 a.e.}.

Additionally, P (u) := q(u)b(u) for

q(u) :=
u

|u|
, and b(u) := (|u| − φ)±,

and (·)± := min(1,max(0, ·)) in the pointwise sense, i.e.,
for g : Ω → R,

(g(x))± =

⎧⎪⎨⎪⎩
0, if g(x) ≤ 0,

g(x), if 0 ≤ g(x) ≤ 1,

1, if 1 ≤ g(x).

Two possible choices for D are considered: D = ∇,
the weak gradient, and D = Dµ, where Dµ : Lp(Ω) →
Lp(Ω)d is a bounded linear operator for all 1 ≤ p ≤ +∞,
approximating the gradient (e.g., by means of incremental
quotients). The parameter µ > 0 can be considered in order
to obtain Dµ → ∇ in some sense, as µ ↓ 0. In addition, note
that (formally) we can write P(u) = D′P (Du).

For both cases, we have that P corresponds to the deriva-
tive of the convex functional

JP(u) =

∫︂
Ω

K(|Du(x)| − φ(x))dx,

where

K(t) =

{︄∫︁ t

0
(y)±dy, if t ≥ 0;

0, if t < 0.

It follows that P is monotone given that JP is convex, and
further from its definition we observe that P is continuous.
Thus, in both the cases D ∈ {∇,Dµ}, we obtain that for
every f ∈ Y ′, since −∆ is strongly monotone, equation
(4) has a unique solution by the same argument as in the
beginning of the proof of Theorem 1. Hence, for each γ > 0,
there exists a uγ ∈ X solving (4), and standard arguments
exploiting the monotonicity of JP yield that uγ → u∗ in X
as γ → ∞, where u∗ is the solution to (1); see for example
[10].

Next we show that P (u) = q(u)b(u) is Newton differ-
entiable between appropriate spaces, and later we use the

result to obtain a Newton differentiability result for P(u) =
D′P (Du).

Lemma 3: The operator P : Lp(Ω)d → Lq(Ω)d with 2 ≤
2q ≤ p is Newton differentiable. A Newton derivative GP

can be defined as

GP (u) = q(u)Gb(u) + b(u)Q(u), (14)

where

Q(u)(x) :=
1

|u(x)|

(︃
id− u(x)uT (x)

|u(x)|2

)︃
,

and

Gb(u)(x) := Gmin
max(|u(x)| − φ(x))

uT (x)

|u(x)|

is a Newton derivative of b : Lp(Ω)d → Lq(Ω), and

Gmin
max(w)(x) := χ(0,1)(w(x))

is a Newton derivative of (·)± : Lp(Ω) → Lq(Ω).
Proof: The fact that Gb(u) is a Newton derivative of b :

Lp(Ω)d → Lq(Ω) follows from Gmin
max(u)(x) = χ(0,1)(u(x))

being a Newton derivative of (·)± : Lp(Ω) → Lq(Ω), and
this is similarly obtained as the Newton derivative of the
max function alone, see [8] and compare to [10].

Initially, we observe that

P (u+ h)−P (u)−GP (u+ h)h

=b(u+ h) (q(u+ h)− q(u)−Q(u+ h)h)

+ (q(u)− q(u+ h)) (b(u+ h)− b(u))

+ q(u+ h) (b(u+ h)− b(u)−Gb(u+ h)h)

=I + II + III,

and in what follows we show that

I + II + III = o(∥h∥p).

Initially consider I . Note that we have

I = b(u+ h)

(︃
− u

|u+ h||u|

(︃
|u+ h| − |u| − (u+ h)Th

|u+ h|

)︃
+
(u+ h)Th

|u+ h|2

(︃
u+ h

|u+ h|
− u

|u|

)︃)︃
.

Since ⃓⃓⃓⃓
b(u+ h)

u

|u+ h||u|

⃓⃓⃓⃓
≤ 1

ν
,

due to the fact that φ ≥ ν a.e. in Ω, and because

G|·|(u+ h)h =
(u+ h)Th

|u+ h|
,

when u+ h ≥ ν, where G|·| is a Newton derivative of | · | :
Lp(Ω) → Lq(Ω), we observe that the first part of the sum
in I is o(∥h∥p).

Regarding the second term of I , if u+ h ≤ ν then b(u+
h) = 0, and if u+ h ≥ ν, then⃓⃓⃓⃓

(u+ h)Th

|u+ h|2

⃓⃓⃓⃓
≤ |h|

ν
and

(︃
u+ h

|u+ h|
− u

|u|

)︃
≤ 2

|h|
ν
,



and since b(u + h) ≤ 1, we get a bound of 2 |h|2
ν2 . An

application of Hölder’s inequality implies that the second
term of I is also o(∥h∥p) as we see next. Suppose that
z : Ω → R satisfies |z| ≤ |h|2. Thus by applying Hölder’s

inqualitiy to |h|2q and 1 for the exponents p
2q ≥ 1 and

(︂
p
2q

)︂′
we get∫︂

Ω

|z|qdx ≤
∫︂
Ω

|h|2qdx ≤ C1(Ω)

(︃∫︂
Ω

|h|pdx
)︃2q/p

.

Therefore (by taking the q-th root), we get

∥z∥Lq(Ω) ≤ C2(Ω)

(︃∫︂
Ω

|h|pdx
)︃2/p

= C2(Ω)∥h∥2Lp(Ω),

which proves the statement.
We turn our attention now to II . For a.e. x ∈ Ω it holds

that

|b(u(x) + h(x))− b(u(x))| ≤ |h(x)|χΩν (x) (15)

where

Ων := {x ∈ Ω : |u(x)| < ν ∧ |u(x) + h(x)| < ν a.e.}.

Thus for x ∈ Ω \ Ων we observe that

|q(u)− q(v)| ≤ 2min

(︃
|h|
|u|

,
|h|

|u+ h|

)︃
≤ 2

|h|
ν
,

thus II is bounded by |h|2/ν. As above, this implies II =
o(∥h∥p).

Finally, we consider III . Since Gb is the Newton deriva-
tive of b : Lp(Ω)d → Lq(Ω), and |q| is bounded by 1, we
have that III = o(∥h∥p).

Let P∇ : X → X ′ and PDµ : X → X ′ be defined as
P in (13) for D = ∇ and D = Dµ, respectively. Although
these operators are well-defined as maps from X to X ′, in
order to obtain differentiability properties in the case of P∇,
the operator needs to be defined in slightly different spaces
as we see next.

Lemma 4: The maps P∇ and PDµ are Newton differ-
entiable when defined as P∇ : X → (W 1,∞

0 (Ω))′ and
PDµ : X → X ′. The general expression of a Newton
derivative GP in these cases is given by

⟨GP(u)v, w⟩ =
∫︂
Ω+(u)

(GP (Du)Dv) ·Dw dx, (16)

for
(i) all u, v ∈ X , w ∈ W 1,∞

0 (Ω), and the duality pairing
considered between (W 1,∞

0 (Ω))′ and W 1,∞
0 (Ω) in the

case D = ∇ and P = P∇.
(ii) all u, v, w ∈ X , and the duality pairing considered

between X ′ and X in the case of D = Dµ and
P = PDµ .
Proof: Consider (i) first. The map ∇ : X → L2(Ω)d

is Fréchet differentiable with derivative ∇, and by Lemma 3
the map P : L2(Ω)d → L1(Ω)d is Newton differentiable.
Thus u ↦→ P (∇u) is Newton differentiable (since it is
the composition of a Newton and a Fréchet differentiable

mapping [8]) as map from X → L1(Ω)d with Newton
derivative u ↦→ GP (∇u)∇. From here, an application of
Hölder’s inequality can be used to show that P∇ : X →
(W 1,∞

0 (Ω))′ is Newton differentiable (analogously as in [10,
Corollary A.3]), with Newton derivative given by (16).

Next consider (ii). In the case of Dµ, we use that for
d = 1, 2, by the Sobolev Embedding Theorem (e.g. see [11]),
X is embedded in Lp(Ω) for any 2 ≤ p < ∞, and by the
same result we have that Lq(Ω) is continuously embedded
in H−1(Ω) for q > 1. In addition, Dµ : X → Lp(Ω)d is
Fréchet differentiable with derivative Dµ for 2 ≤ p < ∞,
and P : Lp(Ω)d → Lq(Ω) with 2 ≤ 2q ≤ p is Newton
differentiable. Then, as in the previous item, u ↦→ P (Dµu)
is Newton differentiable as map from X → Lq(Ω) with
Newton derivative u ↦→ GP (Dµu)Dµ. By choosing a q > 1,
an application of Hölder’s inequality shows that P∇ : X →
X ′ is Newton differentiable with Newton derivative given by
(16).

Next we prove the existence of a solution to the sensitivity
equation: Note that this requires to show the monotonicity of
GP(u) directly. The reason for this is that P does not satisfy
the continuity assumption of Lemma 2, i.e., continuity of
w ↦→ ⟨GP(w)h, h⟩.

Lemma 5: There exists a unique w ∈ X such that

⟨−ϵ∆w, z⟩X′,X + ⟨GP(u)w, z⟩X′,X = ⟨h, z⟩X′,X (17)

for all z ∈ X , for P = P∇ and for P = PDµ .
Proof: The map −∆ is strongly monotone and linear,

then we only need to show that GP(u) ∈ L(X,X ′) is
monotone, i.e.,

⟨GP(u)z, z⟩X′,X ≥ 0,

for all z ∈ X .
Note that |GP (Du)| ∈ L∞(Ω) for each u ∈ X , hence we

are only left to prove that D′GP (Du)D ≥ 0. Exploiting the
structure of GP (Du) in (14) we have

⟨GP(u)z, z⟩X′,X =

(q(Du)Gb(Du)Dz,Dz) + (b(Du)Q(Du)Dz,Dz).

For the first term we have

Gmax
min (|Du| − φ)

(Du)TDz

|Du|2
· (Du)TDz

|Du|2
≥ 0,

and since b(Du) ≥ 0 and

Q(Du)Dz·Dz =
1

|Du|

(︄
|Dz|2 −

(︁
(Du)TDz

)︁2
|Du|2

)︄
≥ 0,

the second term is also monotone and the proof is complete.

We are now in shape to apply the results from Section II
to this specific control problem.

Theorem 2: For P = PDµ , the solution map Y ′ ∋ f ↦→
u(f) ∈ X of (4) is Newton differentiable.

Proof: The result follows as direct application of
the abstract result in Theorem 1 where the hypotheses are
covered by Lemma 4 and 5.



A significant obstacle of the “non-ϵ differentiability gap”
in Lemma 3 results in the lack of an analogous result for
the case P = P∇. However, some of these issues can be
resolved in the algorithmic area with the introduction of a
“lifting operator”, see [12].

A direct corollary of the previous result concerns the
Newton differentiability of the reduced functional for the
control problem under study.

Corollary 1: Provided that Y ′ ∋ f ↦→ ∥f∥2Y ′ is Newton
differentiable, the functional Y ′ ∋ f ↦→ J(u(f), f) where J
is defined in (3) is Newton differentiable.

Proof: Note that u ↦→ 1
2

∫︁
Ω
|u− ud|2 dx is Fréchet dif-

ferentiable. Then, the proof is an application of the previous
theorem and the composition result of Newton differentiable
maps in [13].

IV. SOLUTION ALGORITHMS

The idea of this section is to provide a solid idea of the
applicability of the results of the previous section for the
development of solution algorithms for (4) and (P).

As defined previously, the map E : X → X ′ is given by

E(u) = −ϵ∆u+ γP(u)− f,

so that the state equation (4) can be written as

E(u) = 0.

It is known that for every f ∈ H−1(Ω), this equation is
uniquely solvable in all cases contemplated in this paper,
namely for D = ∇ and D = Dµ.

In the case D = Dµ, and given that E is Newton
differentiable as a map X → X ′, a Newton derivative of
E is given by

GE(u)v = −ϵ∆v + γGP(u)v,

where GP is made explicit in (16). Further, since the constant
in the strong monotonicity of −ϵ∆ is identical to ϵ, and
because we have proven that GP(u) is monotone, it follows
that GE(u) is nonsingular and its inverse is uniformly
bounded by ϵ−1, i.e.,

∥G(u)−1∥ ≤ 1

ϵ
.

Hence, solutions to E(u) = 0 are suitable to be approximated
by a function space version of a semismooth Newton method;
see [8, Theorem 8.16].

The semismooth Newton iteration is then given by

un+1 := un + v∗,

where the Newton step v∗ is defined as the solution of

GE(u
n)v = −E(un). (18)

This yields (see [8, Theorem 8.16]) that the sequence
{un}n∈N defined by the iteration (18) converges superlin-
early to the unique solution u∗ ∈ X of the state equation
E(u) = 0, provided that the initial iterate u0 is sufficiently
close to u∗. The fact that D = Dµ is considered, leads to the

idea to further apply a path-following method simultaneously
on γ and µ.

Under mild conditions we have proven that Y ′ ∋ f ↦→
J(u(f), f) is Newton differentiable. In the case where Y ′

does not have a large number of degrees of freedom, a de-
scent approach for the overall problem is possible. However
the computation of the entire derivative is prohibitive if the
dimension of Y ′ is not small. On the other hand, if the
approach is such that the entire derivative is not needed (only
a small number of components are), a descent method is
directly suitable.

V. CONCLUSION AND FUTURE RESEARCH

We have provided several abstract results that link no-
tions of differentiability to monotonicity ones. In fact, in
Theorem 1, the hypotheses contemplate the possibility of
heavily nonlinear operators, e.g., the p−Laplacian defined
as −∆pu = −div(|∇u|p−2∇u) with p ∈ [2, 3) is within the
scope of the theorem. The application of the abstract results
to the specific example of control of the pile of granular
material is then tackled in Theorem 2 and its corollary.
There, a function space approach is suitable provided that
the gradient is considered in its approximated version. The
result of Newton differentiability in Lemma 4 is of interest in
its own right; it provides a better result than the one standing
in the literature for the case D = ∇. The short discussion
on the algorithmic development is a current area of active
research and topic of a future publication.
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