OPTIMAL CONDUIT SHAPE FOR STOKES FLOW *

ANDREA N. CERETANIf, WEIWEI HU¥, AND CARLOS N. RAUTENBERG#

Abstract. We consider the problem of the optimal shape of a two dimensional duct which
contains a fluid governed by the Stokes equations with mixed boundary conditions. The conduit
domain is assumed to be non-smooth and perturbations are allowed only on the walls, while the
objective functional aims at minimizing the head loss and to enforce a uniform velocity profile at
the outlet. We show existence of solutions to the shape optimization problem and determine the
existence of the shape derivative.
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1. Introduction. In this paper, we consider the problem of optimal shape of a
duct for a two dimensional Stokes flow with mixed boundary conditions and with an
objective shape functional involving trace values of velocity and pressure. Specifically,
the domain that contains the fluid is assumed to be Lipschitz, and the possible pertur-
bations are located on the walls. Further, the boundary conditions for the Stokes flow
are homogeneous Dirichlet (no-slip) on the walls, non-homogeneous Dirichlet on the
inlet, and homogeneous Neumann (do-nothing) at the outlet. Finally, the objective
functional involves trace values of the state variables at the inlet and outlet, and it is
a performance measure of uniformity of the outflow and loss of energy.

The overall problem possesses several intertwined difficulties: The lack of smooth-
ness of the domain, and the mixed boundary conditions of the problem limit the
possible regularity of the velocity and pressure of the fluid, which are required for
the objective functional evaluation. This implies that possible perturbations of the
domain are required to be handled with care in order to prove existence of solutions
to the shape optimization problem and for the determination of a shape derivative.

Shape optimization problems with constraints determined by (Navier-)Stokes sys-
tems are of great interest with significant complexities. Concerning the fundamentals
of shape optimization, we refer the reader to the monographs [3] and [13], and for
Navier-Stokes and Stokes equations, to [14] and [5]. In [7], the authors consider the
shape problem with Navier-Stokes and homogeneous Dirichlet boundary conditions,
and an existence result together with an algorithm for calculation of directional deriva-
tives is provided. For a reference on applied problems involving several fluid equations
we refer the reader to [9], the monograph [10] and references therein.

The rest of the paper is organized as follows. In Section [2] we provide complete
descriptions of possible domains and the formulation of the Stokes flow with mixed
boundary conditions. Subsequently, we present the regularity result that establishes
that the velocity-pressure pair has H 2+e x Hzt¢ domain regularity for some small
€ > 0. In Section [3| we formulate the shape optimization problem and motivate the
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objective functional by means of obtaining a uniform outflow with the minimal loss
of energy possible. In addition, we show that there exists solutions to the shape
optimization problem if the family of possible domains is properly determined. Next,
in Section [4] we show the existence of a shape derivative and establish the structure
of the problem that is solved by the derivatives.

2. The Stokes Problem. Let 2 C R? be an open bounded set with Lipschitz
boundary 02 divided into a Dirichlet, I'p, and a Neumann I'y parts, i.e., 02 =
Tp UTN. Specific regularity and structural assumptions on the boundary and its
parts are given in the next section. We assume that the Dirichlet part is the union
two parts, an inlet I'; and a wall T';,, and the outlet T', is identical to the Neumann
boundary part; that is

FD:FiUFw and FN:Fo-

For a given viscosity v > 0, we assume that the fluid and velocity pair (u,p) €
H'(Q;R?) x L?(Q) satisfy the following Stokes problem

(2.1) —divo(u,p) =f in Q,
(2.2) divu=0 in Q,
(2.3) u=u; on I';,
(2.4) u=0 on Iy,
(2.5) o(u,p)n=0 onT,,

where f : Q — R? is a distributed forcing term, u; : I'; = R? is a prescribed velocity
profile at the inlet, and o(u,p) = v(Vu+ (Vu)?) — pI is the Cauchy stress tensor.
For the sake of brevity, we define up as

N u,(x) ifx e FZ‘,
up(z) = {0 if 2 € Ty

We consider the Stokes problem over specific domains €2 called proper on which
needed regularity results hold true, and are defined as follows.
DEFINITION 2.1 (PROPER DOMAINS). The domain Q) is called proper if it is
bounded and connected, and satisfies the following assumptions:
1. Ty and T, are segments, and Ty, is the union of two C? disjoint pieces each
of which joins one endpoint of I'; to an endpoint of T',,.
2. There exists v > 0 such that at each junction point xj the set {x € 9 :
dist(z s, z) <} is the union of two segments joining at a right angle.
3. There exists a finite tube T = T(6;C1,Ca;Sp,Sn) of & > 0 thickness with
Cy, Cy walls and extremities Sp, Sy (see (12, Definition 2.1]) such that
Sy CTn, Sp CR2\Q, and (T\ Sy)NOQ=TNT; =T, 7. Givenx €T,
we denote by C, the unique curve parallel to Cy and Cy such that x € Cy,
and assume that C, intersects T'; 7 at exactly one point, say v.(xr), which
satisfies C, N Q = {z € Cp : U(x) > U(y.(x))}. Here €(z) denotes the arc
length coordinate of z € T on the curve C,. We further assume that there
exists a non-negative function n € C°(R), with values in [0,1], such that
suppn C (=6/2,8/2), n(0) =1, and

/F nlpl@)r(@)  nl@)dz £0,
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Fig. 2.1: (Left) A proper domain 2, location of T';, T',,, and T',, u; and velocity profile
ulr,. (Right) Minimal O™ and maximal QM domains, and location for all possible
domain perturbations.

where p(x) is the transverse coordinate of x and T(x) is the unitary vector
tangent to C,, oriented in the sense of increasing arc length coordinates.

It is worth to mentioning that although the definition of proper domains is rather
technical, it includes natural tubular shapes as straight, and elbow fittings, and vari-
ations thereof; it is in place to prevent degenerate-type-domains with low regularity
of fluid velocity and pressure.

In order to write our weak formulation of the problem we make use of the following
result found in |12} Theorem 2.16] that provides a “lifting” result of the boundary data
to the domain.

LEMMA 2.2. Suppose that ) is a proper domain. Let up € Hj"‘%(FD; R2) with
j=0,1. Then, there exists v.€ HT1(;R?) such that

divv =0 in Q, (Vw4 (V)" m=0o0onTy, and v=up onTp,
and further

(2.6) IVllmi ey < Ml[upll g ) ey

where M > 0 does not depend on up.
We define Vi, () as the closure in H!(Q; R?) of smooth divergence free vector-
fields that vanish on I'p, i.e.,

e H (QRY)
VFD (Q) = EFD (Q) s

where
Er, () :={¢ € C(%R?) :dive =0 in Q and supp ¢ NT'p = 0}.

The weak formulation associated to (2.1))-(2.5)) is given by the following problem:
Find (u,p) € HY(Q;R?) x L3(2) such that

(S) va(u,z) := %/Q(Vu—l— (Vu)') : (Vz + (Vz)") dz = /Qf -z dz,
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for all z € Vp, (2), with divu =01in ©Q, u = up on I'p in the trace sense, and where
Vp = £+ ¥div(Vu+ (Vu)?) in (H'(Q;R?))* € H'(Q;R?). Given f € L*({;R?)
and up € Hz(Ip;R2), the existence and uniqueness of u € H'(Q;R?) is provided
by the use of Lax-Milgram in combination with the data lifting result from Lemma
Then the classical result by Necas (see Proposition 1.2. in Chapter I, §1 of [14])
determines the existence of a unique p € L := {q € L*(Q) : fQ gdz =0}.

Moreover, the existence of u above is equivalent to the existence of w € Vp, (£2)
such that u = w + v and v is the one associated to Lemma It is helpful to note
that w satisfies

(2.7) va(w,z) = /Qf czdx —va(v,z), Vz € Vi, ().

As it will be clear in the next section, we require better regularity of the pair (u, p)
than the one determined by existence theory. Improved regularity of all variables is
established in the following lemma found in |12, Theorem 2.5], see also Lemma

LEMMA 2.3. Suppose that Q is a proper domain. Let up € H%(FD,RQ) and
fe LQgQ; R2%), then the weak solution (u,p) € H'(Q;R?) x LE() to (2.1)-([2.5) belongs
to Wg (4 R?) x W *(Q) for some B € (0,1/2) and satzsﬁes

28)  lulyzeme + Il < CUfl@es + bl 0 )
Further,
29) Tl 3eeqmn 1Py < COEme) + bl o o)

for some € € (0,1/2) and where C > 0 does not depend on up nor f.

The spaces WE’Q(Q; R2?) and Wgz(Q) are weighted Sobolev spaces with weights
determined by a 28 power of the distances to junction points x; (cf. [12, page 3013])
endowed with the norms

||V||W22(Q R2) Z Z/ H dist (a7, 2)|Oyvi|? da,

|k|=0 i=1 /& j=1

and

||q||3vg2 Z/Hdlst 27, 2)28|9q|? dz.

|k[=0

Further, note that the W§’2(Q; R?) x Wﬂl’z(Q)—regularity of (u, p) implies that (u, p)|o €
H2(Q;R%) x HY(QY) on Q' = {x € Q : dist(z,J) > &} for every § > 0, where J is
the set of all junction points.

It is worth mentioning that the regularity results above are valid in more general
domains than the proper ones defined earlier. In fact, we can allow I'p and I'y to
be finite unions of regular connected components of 02, satisfying certain conditions
at the junction points (see assumptions (H1), (H2) and (H3) in [12]). For the sake of
simplicity, we consider proper domains as in Definition



3. The Shape Optimization Problem. The main objective is to find a regular
domain €2 in a set of admissible domains O such that two criteria are minimized. One
target objective is to enforce the outflow to be as uniform as possible, and the second
one corresponds to try to minimize the loss of energy of the flow as it travels along
the duct. Their mathematical description is given next.

UNIFORM OUTFLOW CRITERION: The normal component of the outflow u - n|p,
should be close to uniform on the entire I',. Since u on T'; is given by u,,
by conservation of mass, if the outflow is constant, its velocity is given by
q:= —ﬁ fl“,- u;(s) - n(s)dS. This leads us to consider the functional

Ji(u,Q) = %/ (u-n—7g)%ds.

o

ToTAL PRESSURE L0ss CRITERION: The Bernoulli principle states that, disre-
garding height differences and dissipation of energy due to nonlinear effects
(e.g., friction and turbulence), the total pressure p + |u|? is a quantity that
remains constant along streamlines. In presence of energy dissipation, a pres-
sure drop (or head loss) occurs. Along a streamline, we would then obtain
(p+ul®)|r, > (p+ 3[ul?)|r,, and this drop of pressure, related to the loss of
energy, is required to be minimized. Based on this, the functional of interest
is determined by

Ta(uap.9) =~ [

r,ur,

1
(p+ §|u|2)u~ndS.

Notice that J; and Jo are well-defined provided that f € L?(Q;R?) and up €
H?(Ip;R?): In this setting, the weak solution (u,p) € H(;R?) x L(Q) to ([2.1)-
[25) belongs to H2+¢(Q;R2) x H2+<(Q), for some € € (0,1/2); see Lemmas d
In particular, up € H?(I'p;R2) yields that g is finite, and u € H3+¢(Q;R?)
implies that trace values of u are in L7(9€;R?) for every ¢ > 1; see [6]. Thus J;

is well-defined. Further, since p € H %“(Q), we have that trace values of p are in
L1(0R) for every 1 < ¢ < 2/(1—2¢); see [6, Theorems 1.5.1.1 and 1.5.1.2]. This yields
that J5 is well-defined and that

(3.1)

1 1
/ gl nas| < Ol )+ I Il
The class O of admissible domains €2 is defined as follows.
DEFINITION 3.1 (ADMISSIBLE DOMAINS O). The class of admissible domains O
corresponds to the set of all Q that satisfy:
1. There exist @™, QM that are proper in the sense defined in Section such that
Q™ c Qc QM and we assume that Q™, QM € O.
2. The location of I'; and T, is the same for all Q@ € O. Further, there exists a
r > 0 such that at each junction point x; the set {x € 9Q : dist(xzy,x) < r}
is identical for each Q € O. In particular, this means that locally at every
Junction point xy all domains Q € O are composed of two identical segments
joining at a /2 angle.
3. All domains in  share the same interior smooth wall tube T as defined in
the previous section.
4. There exists k > 0 such that each local parametrization g of Ty, satisfies
lg""(t)| < k for all t. In particular, this means that all Q € O are piecewise



C3. We denote by T,y C Ty, the portion of the wall boundary that may change
with respect to elements in O.

Note that that every admissible domain is proper in the sense of Definition [2.1]
and the class of domains allows smooth perturbations on the walls (with a uniform
bound on the third derivative) of proper domains. The optimization problem of
interest is parametrized by v € [0, 1] and given by

glelg J’Y(u7p, Q) = (1 - V)Jl(uvg) + ’YJQ(u,p, Q)v
s.t. (u,p) is a weak solution to — ([2.5)) in Q.

In order to prove existence of solutions of the above problem we need to address
the behavior of weak solutions to — with respect to variations on the domain
) € 0. We do this in the next lemma which shows that constants in Lemma can
be selected independently of 2 € O. (

LEMMA 3.2. Suppose that up € H?(T'p;R%) and f € L2(QM;R?). Then, there
exist B € (0,1/2), e € (0,1/2) and C > 0 such that and hold true indepen-
dently of Q € O.

Proof. Let v be the vector field given in Lemma [2.2] for the domain Q™. Its
extension by zero to 2 € O satisfies the same properties than v, now over 2. We
denote the extension also by v and consider this vector field to define a weak solution
to — in  as in . In particular, note that the M constant in can be
selected independently of Q2 € O.

We have from Lemma that the weak solution (u,p)e H(£;R?) x LZ(Q) to
[2:3)-.5) in Q € O belongs to WBZ’Z(Q; R?) x WEQ(Q) Following [12} p. 3013] (see
also [8]), we know that the parameter § in the weighted Sobolev spaces WE’Q(Q; R?)

and WBQZ(Q) can be selected such that the equation \?sin’(m/2) — cos?(Ar/2) = 0
has no solution A in the strip 0 < R®(A) < 1 — 8. This equation does not change with
domain perturbations since junction points form a right angle for every perturbed
domain. We also have from Lemma that (u,p) belongs to H2T¢(Q; R2) x Hz2T¢(1).
Exactly as in the proof of Theorem 2.5 in [12] (see also [1, Proposition A.1]), via a
Hardy-type inequality, we deduce that the parameter € can be selected as 1/2 — .
Thus € remains unchanged with respect to domain perturbations. Therefore, the weak
solution to — enjoys the same regularity in each domain 2 € O.

The constant C' in can be selected as in |12, Theorem 2.5] (see also [8]
Theorem 9.4.5]). Since the inlet and outlet parts of the boundary are segments for
of every Q) € O, and local parametrizations of the walls have uniformly bounded
derivatives with respect to 2 € O (see Definition , we observe that the Lipschitz
constant characterizing 02 can be selected independently of Q € O. In addition,
junction points form a right angle for every 2 € O and that Q™ c Q c QM for every
Q € O, where Q™ and QM are fixed, thus the constant C' can be selected independently
of the domain perturbations. In a similar way, and via a Hardy-type inequality as
before, we obtain that the constant C in can be considered to be independent
of Q € O as well. O

THEOREM 3.3. Problem admits solutions.

Proof. Step 1: Preliminary bounds. Let (uqg,pq) € H'(2;R?) x L2(Q) be the
solution of on an arbitrary 2 € O. Then, by Lemma there exist € > 0 and
C > 0 (both independent of ) such that

(P)

(32)  l0ell, g g 120l e ) < CUELE @ + 19013 1 o))



7

In particular, the pair (uq,pq) is uniformly bounded in H2¢(Q; R2) x H2¢(Q) with
respect to §2.

Step 2: FEzistence and properties of infimizing sequences. The existence of an
infimizing sequence of Problem follows as O is non-empty, and for each Q € O
the uniform bound in holds. From this we obtain that J7(ugq, pa,Q) > M for
some M € R and for all Q € O, see (3.1)), where (uq, pq) is the weak solution to the
Stokes problem in Q. Thus, there exists a sequence {(ug, px, %)} such that

. ~ . y
kILHoch (g, Pk, Q) —geng (uq, pa, ).
Here (ug, px) denotes the weak solution to the Stokes problem in ;. Note that there
exists an extension (1, ;) of (ug,pxr) on QM \ Q that belongs to H%+€(Q; R?) x
Hz%¢(Q) and additionally satisfies

[ < K fJug|

e < and [y

H%+E(Qk;R2)’ H%JrE(QM) < K2||pk||H%+e(Qk)’

for some K7, K3 > 0 (both independent of ); see [4] and recall that the extension is
done through T',, which is a C3-smooth boundary part. Thus, {(t, ps)} is bounded
in H3+e(QM;R2) x Hzte(QM).

Step 3: Cluster points of {(Gk, D)} solve (S). The boundedness of {(Gy,D;)}
imply that along a subsequence

Qg pg) = (8%,7) i H2H(QYSR?) x HET(QY),
for some (0", p*). Further, since Q € O, there is Q* € O such that
Qr — Q*,

along a subsequence and where convergence is in the Hausdorff complementary metric;
see |11, Proposition A3.2 and Theorem A3.9] (see also |11}, p. 54]). In particular, we
have that xo, — X+ pointwise a.e. in QM.

Since div i = 0 in Q, we now show that divi® = 0 in Q*. Let O be an open
set such that O C Q*, then there exists ko > 0 for which O C Q for all k > ko,
see |11, Proposition A3.8]. It follows then that divi™ = 0 in O and hence also in Q*.

Let v € C*(Q*;R?) be such that divv = 0 in Q* and supp v N T}, = () where
I'p denotes the Dirichlet boundary of Q*, i.e., v € Ep; (2%). Since ) — Q* in the
Hausdorff complementary metric, there is k&* such that supp v N\ I'% = for k > k*
(see |11, Proposition A3.8]) where '}, is the Dirichlet boundary of Q. Therefore,
vy = Vl]q, € C%®(), divvy =0 in Qx and supp v, NTX = 0 for k > k* so that

(3.3) vag, (U, vi) = / f-vpde VE>Ek".
Qg

Since 1y — 0* in H2T¢(QM;R2) | we observe that Vi, — Via* in L2(QM;R2%2)
(see [6, Theorem 1.4.3.2]) and so Viiy — Va* pointwise almost everywhere in QM
along a subsequence. Then,

lem aq, (ug, vi) = lim (Vug + (Vup)?) - (Vv + (V)T xq, do =

k—oo Jom

/QM (Va* + (va")h) . (Vv + (Vv)T) xa- dz = ag- (0", V),



and

lim f- vkdx—hm f-vxq,de= f-vyxg-de= f vdz.
k—oo Jo, QM QM Q*

Define u* as the restriction of 4" to Q*, then by taking the limit in (3.3), we
observe

vag«(u*,v) :/ f. vde.

Since v € C*(Q*;R?), divv = 0 on Q* and that supp v N '}, = () is arbitrary, then
by a density argument we have that the above equality holds true for v € Vi, (Q2).

The fact that u* = u; on I'; in the trace sense follows from the compact embedding
of Hate(OM, R?) into L?(T';; R?) and the fact that each 1y, is given by u; on I';. Now
we show that u* =0 on I'}, := 9Q* \ (T'; UT,) in the trace sense. Let O be an open
set such that O C QM \ Q*, note that (I'; UT,) N O = (). Then there exists ko > 0 for
which O c OM\ Qy, for all k > ko, see |11, Proposition A3.8]. Let E be the extension
by zero operator from Q to QM. Tt follows then that Eug|o = 0 a.e. for k > ko;
hence it is straightforward to observe that Fu*|p = 0 a.e. and since O is arbitrary,
Eu* =0 on QM\ Q* and so 4" = 0 on I'},. Finally, Vp* = f + ¥ div(Vu* + (Vu*)?)
in 2'(Q2) and hence (u*, p*) solves in Q*.

Step 4: Ezistence of a minimizer. From the lower-semicontinuity of J7, and the
weak convergences up — u* in L4(I'g U I';;R?) for every ¢ > 1 and p;, — p* in
L1(ToUTy) for ¢ =2/(1 — 2¢), we get

JY(u*, p*, Q) <liminf JY (ug, pg, Q) = inf J?(ugq,pa, ).
k—o0 QeOo

4. Shape derivatives. In this section we consider the differentiability properties
of the map Q — (uq,pq) by means of proper perturbations to . We consider a
family of perturbed domains t — €, given by Q; = T;(Q2) where ¢ — T} is a family of
diffeomorphisms defined as

dT
= 97 I
I =V(s)o s €
Ty = 1d

where I is an real interval such that 0 € I. Further, we assume that s — V(s) is in
C>=(I; 0> (OM;R2)), and that there is a compact set in the region enclosed by 9QM
and 0Q™ in which the support of V(s) lies for all s € I. In particular, note that
that I';,['g are left unchanged via T as well as a portion of wall boundary part. We
assume that Qg = Q (and hence each ;) is proper in the sense defined in this paper.

It is convenient to introduce the Piola transform Py: Given v : Qo — R?, then
P:(v) : 24 — R? is given by

(4.1) v Py(v) = (Cy - v)o Ty Y,

for C; = Jt_lDTt, Ji = det(DT;) and where DT; is the Jacobian of z +— Ti(x)
and for sufficiently small ¢ > 0, J; > 0. It follows that the Piola transform P; is
an isomorphism between Vi, (€) and Vi, (€). The weak solution in H'(Q,;R?) x
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L3(9) to (2.1)-(2.5) in Qy is denoted as (ug,ps) and we consider a transported pair
(u?®,p®) defined on (Q as

u®:=P;'(u,) and p°:=p,oT,.

It follows analogously to the approach in [2] that I D J 3 s+ u® € H(Qp;R?) is
differentiable for some J; in contrast to the aforementioned reference we do not have
continuity of s — u® when considered with values in H? as in general u® ¢ H?(2;R?).
However, as we only consider perturbations locally on I',, and uniformly away from
points of junction with I'; and T, the following can be considered.

We denote by DM the open set in between dQM and 90™, and define QM =
QN DM. We say that u is shape differentiable in H'(£2; R?) if the following two hold
true:

i) s+ us0Ts € H(;R?) is differentiable at s = 0. The derivative is denoted
as u and it is called the the material derivative.

ii) The restriction of velocity profile ug associated to the initial domain 2 to QM

has H? regularity, i.e., uolou € H?(2));R?).
Consequently, if u is shape differentiable in H*(£2; R?) then it follows that p is shape
differentiable in L?*(): here i) and ii) hold mutatis mutandis by reducing one order
of differentiability on the mentioned Sobolev spaces. Further, the shape derivative is
denoted as u’ and given by

u' =u-—Vu-V(0).

Particularly in this setting, we observe that u’ € H!(Q;R?), as V(0) = 0 outside
DM. We aim at expressing the shape derivative u’ as the derivative of the extension of
Uy, i.e., as the derivative of the map s — Eu, where FE is a continuous extension from
Qs to OM such that F : H'(Q;R?) — H'(QM;R?) with a norm uniformly bounded
with respect to s, and let By : L?(2) — L?(QM) be the extension by zero operator.
In particular, we define

U,oTs=E(us07Ts), and PsoTs = Ey(psoTy).

It can be proven that J > s — U, € HY(QM;R?) is continuously differentiable:
This follows from the fact that J > s — Uz o Ty, € HY(QM;R?) is continuously
differentiable, V : I — QM is zero outside QM and u, € H2(QOM;R?) with a uniform
norm with respect to s; see [2] and [13, Prop 2.38, p.71]. Hence, it follows that

, dU, oU, . OU,oT,

u = (0) o where s (0) s

It follows that u is shape differentiable in H'(;R?) as the regularity of s +— u®
imply the regularity of s — us o Ts and due to the regularity result in Lemma [2.3
Furthermore, this implies that p is shape differentiable in L?(2), and in fact we observe
the following.

THEOREM 4.1. The shape derivative (0',p’) of (u,p) € H*(;R?) x L?(Q) sat-
isfies (weakly) the following Stokes system

(0) — VUg - V(0).

(4.2) —dive(u,p') =0 in Q,
(4.3) diva' =0 in Q,
(4.4) u' =0 on T,
(4.5) u = —(Vun)(V(0) - n) on Ty,
(4.6) o, p’)n=0 onT,.
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Proof. Let ¢ € C>°(;R?) with supp ¢ NT'p = (), then for s sufficiently small we
have that ¢ € C>°(Q;R?) and supp ¢T3 = () where I'%, is the Dirichlet part of the
boundary of ;. Hence,

/K(Dus:D¢)—psdiv¢—f-¢dx=/ (DU, : D) — Pydive — £ ¢ da = 0,
552 QMQ

where Dz := Vz + (Vz)T and for all ¢ € L2(QM)

/qdivusdx:/ qdivUgdz = 0.
Q QI\/I

s

Differentiation with respect to s and evaluation at s = 0 of the two above equations
determine that

/ g(DU’:D¢)—P’div¢dx:O — /g(Du’:D@—p’divqﬁdx:O,
oM Q

and
/ qdivU'dz =0 = /qdivu’dxzo,
oM Q

which show , , and .

The boundary conditions on I'; and T',, are obtained similarly as in [2]: Let
¢ € C(OM;R?) with supp ¢ N T, = ), then

/ u;-¢pdS = u; - ¢ ds,
o9, o0

where we have used that us = 0 on I'j, and u; = u; on I';, and that I'; remains
unchanged for each €2;. Differentiation with respect to s and evaluation at s = 0 of
the above expression leads to

/ (0 + (Vun)(V(0) -n)) - ¢ dS = 0.
o0

Given that V(0) =0 on I';, then u’ = 0 on I';, and further u’ + (Vun)(V(0) -n) =0
onl'. 0O

Note that in the previous result, the boundary regularity in I',, is the minimal one
possible and it is dominated by Vun: Since we have that ulon € H?(Q);R?) then

Vun|r, € H'Y/?(T',;R?). Further, the computation of the state variables together
with the shape derivatives are suitable to be implemented with a finite element scheme
and subsequently a descent algorithm may be used for shape improvements.
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