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2
Stanford University, Stanford, California 94305, USA

(Received 1 December 2021; accepted 26 May 2022; published 28 July 2022)

Quantum low-density parity-check (LDPC) codes are a promising avenue to reduce the cost of

constructing scalable quantum circuits. However, it is unclear how to implement these codes in practice.

Seminal results of Bravyi et al. [Phys. Rev. Lett. 104, 050503 (2010)] have shown that quantum LDPC

codes implemented through local interactions obey restrictions on their dimension k and distance d. Here

we address the complementary question of how many long-range interactions are required to implement a

quantum LDPC code with parameters k and d. In particular, in 2D we show that a quantum LDPC code

with distance d ∝ n1=2þε requires Ωðn1=2þεÞ interactions of length Ω̃ðnεÞ. Further, a code satisfying k ∝ n

with distance d ∝ nα requires Ω̃ðnÞ interactions of length Ω̃ðnα=2Þ. As an application of these results, we

consider a model called a stacked architecture, which has previously been considered as a potential way to

implement quantum LDPC codes. In this model, although most interactions are local, a few of them are

allowed to be very long. We prove that limited long-range connectivity implies quantitative bounds on the

distance and code dimension.
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Introduction.—Finding ways to battle decoherence is

among the foremost challenges on the path to implement-

ing fault-tolerant quantum circuits. Quantum error cor-

recting codes can address this issue, and their efficacy is

guaranteed by the quantum threshold theorem [1–4]. The

code we choose to use will be tailored to the advantages and

disadvantages of the physical architecture on which it is

implemented. For instance, we might consider how many

qubits we can measure jointly, how far apart qubits

involved in such measurements need to be located, or

how many supplementary qubits will be needed to imple-

ment a particular algorithm fault tolerantly [5,6]. We will

want the choice of code to be efficient and respect the

limitations of our architecture. Consequently, there is a

strong interest in understanding how physical constraints

on a system can impede the efficiency of a quantum code.

Formally, a quantum error correcting code C on n qubits

is the common þ1 eigenspace of a set of independent

commuting n-qubit Pauli operators fS1;…;Smg, referred
to as stabilizers,

C ¼ fjψi∶Sijψi ¼ jψi ∀ i ∈ f1;…; mgg:

Measuring the stabilizers yields information required to

detect and correct errors. Alternatively, the code space can

be thought of as the ground space of a commuting

Hamiltonian. For ease of implementation, we may stipulate

that these measurements be local, i.e., that the qubits

involved in a stabilizer be contained within a ball of

constant radius. Let k ¼ log2 dim C denote the number of

encoded qubits [7]; we aim to encode as many qubits as

possible with a limited number of available physical qubits.

Furthermore, let d denote the distance; it is a measure of the

number of physical qubits that need to be corrupted to

irreparably damage encoded information. Seminal works of

Bravyi et al. [8,9] demonstrated that there are sharp trade-

offs between k and d for all local codes. As a result, locality

limits our ability to reduce the resource cost of implementing

scalable quantum circuits. This naturally raises the following

questions—Question 1: To construct an error correcting code

with dimension k and distance d, how much nonlocality is

needed to implement it? How do we even quantify this

seemingly nebulous notion of nonlocality?

Expanding our attention beyond local quantum codes is a

worthwhile endeavor as certain architectures support inter-

actions between arbitrary qubits. Prominent examples are

silicon-based architectures with photon-mediated inter-

actions that encode qubits into the spin states of silicon

[10] or photonic architectures where the qubits are directly

encoded in the photons and therefore not localized [11].

Other architectures include atomic arrays [12], where atoms

are laid out along a single line, but long-range interactions

can be used to simulate higher dimensions. Ion trap

architectures that support all-to-all connectivity in a limited

capacity have also been considered [13–15]. By dropping

the restriction of locality, these architectures could even-

tually circumvent the limitations of local codes. With this

motivation, we consider quantum low-density parity-check

(LDPC) codes, a class that subsumes all known topological

codes [2,16–18]. The study of these codes is motivated by

several results showing that quantum LDPC codes can

drastically reduce the number of physical qubits required to
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build a fault-tolerant quantum computer [19–21]. These

results are theoretical and we need to better understand how

to translate them for realistic implementations. In practice,

we wish to understand how to implement quantum LDPC

codes in a two- or three-dimensional layout. It is conceiv-

able that implementing quantum codes where a majority of

measurements are local, but some limited amount of long-

range connectivity is available. This then prompts the next

question concerning locality—Question 2: Can we imple-

ment good quantum LDPC codes using a setup where a

majority of measurements are local?

In this Letter, we address questions 1 and 2. Through

Theorem 2 we show that quantum LDPC codes require

large amounts of nonlocality between qubits when the

dimension k and the distance d are large. To motivate how

to quantify nonlocality, we repeat an observation from [22].

It is not possible to add a limited number of long-range

connections and significantly improve the performance of a

local code. Any code that we consider will have to have a

sufficient number of long-range interactions to work. Our

quantification of nonlocality, therefore, in addition to the

length of the long-range interactions, will also include the

number of such interactions.

We highlight codes for which k ∝ n, and d ∝ nα for

α > 0, as these codes underpin the current proposals for

low-overhead quantum computation. Our results state that,

to implement these codes in 2D, we require roughly n

interactions of length nα=2. Therefore, implementing these

codes will require an architecture able to deal with a

significant amount of nonlocality. Our results are also of

interest for good codes, i.e., constant-rate codes for which

α ¼ 1 [24]. They seem to make optimal use of long-range

connectivity. This is because in two dimensions the

maximum distance between any two points on an L × L

grid is proportional to L ∝
ffiffiffi

n
p

, which would saturate our

bound. Finally, our results suggest that it is expensive to

improve the distance of a local code. For example, in 2D,

Bravyi and Terhal proved that local codes cannot do better

than d ∝ n1=2 [8]; we show that any code satisfying d ∝

n1=2þε will require a growing number of long-range

interactions. Together, these results suggest that architec-

tures limited to local interactions can only implement

topological codes at best.

Next, we consider what we refer to as a stacked layout

[25]. This model is inspired by the schematic for a

concatenated code shown in Fig. 1. In the stacked model,

qubits are placed on the vertices of a two-dimensional grid.

The measurements required to define the code are parti-

tioned into multiple layers as visualized in Fig. 1. Each

layer of the stack represents stabilizers of a given inter-

action radius. The interaction radius increases as we move

up the layers of the stack, while the number of stabilizers

decreases. The majority of stabilizers in this model are in

the lower layers. Therefore, any code implemented by a

stack is mostly local. For this reason, this model has been

considered a potential route to implement LDPC codes.

However, such an architecture cannot implement arbitrary

quantum LDPC codes. In Corollary 3, we show that two-

dimensional stacked layouts are limited. We show the

distance is bounded by d ¼ Õðn2=3Þ and the dimension-

distance trade-off is k3d4 ¼ Õðn5Þ. This shows that there
are strong limitations to such models; however, it does not

prevent implementations of constant-rate codes with dis-

tance scaling as
ffiffiffi

n
p

. Related work: Delfosse et al. provide

an explicit multiplanar layout of hypergraph product codes

[27]; however, within each plane the connectivity is

allowed to be long-range.

Background and intuition.—An ⟦n; k; d⟧ quantum code

C is a 2k-dimensional subspace of the complex Euclidean

space C
2
n

associated with n qubits. The code space is

specified as the joint þ1 eigenspace of a set of commuting

Pauli operators S ⊂ fI;X;Y;Zg⊗n called the stabilizer

group. The distance d is the minimum number of qubits

that are acted on nontrivially by a Pauli operator to map one

element of C to another. Suppose the group is generated by

some elements fSign−ki¼1
. The code is said to be a LDPC

code if each generator only acts on a constant number of

qubits, and each qubit is only involved in a constant number

of generators.

We represent a quantum code C on n qubits using a

“connectivity graph” G ¼ GðCÞ ¼ ðV; EÞ. Here V refers to

the set of vertices of the graph and E ⊆ V × V the set of

edges. Each vertex v ∈ V of G corresponds to a qubit of C

and two vertices share an edge e ∈ E if both qubits

participate in the same stabilizer generator Si. The con-

nectivity graph of a LDPC code is sparse, i.e., only a

constant number of edges emanate from each vertex. In

[22], we showed that there is an intimate relationship

between the properties of a quantum code and the corre-

sponding connectivity graph. We build on these results to

show that the properties of quantum LDPC codes with

FIG. 1. (a) A schematic for a concatenated code [28]. The

qubits of the code are themselves encoded in an error correcting

code and this gives rise to a hierarchical structure. (b) A two-

dimensional stacked architecture. Qubits are the bottommost

layer. Stabilizers, identified with their support, are assigned to

different layers above and are depicted using blue circles.

Stabilizers in a given layer have a radius of support depending

on the layer. This interaction range increases as we move up the

stack or, equivalently, the radius of the circles increases. On the

other hand, the number of stabilizers in each layer decreases

exponentially.
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desired parameters are severely restricted. For an in-depth

discussion of this lemma, including the proof, we point the

interested reader to [22]. For brevity, we use the following

notation in our inequalities (see Ref. [29] for details):

consider two functions f; g∶X → Y with real domain and

image, i.e., X; Y ⊆ R. If there exists an x0 ∈ R such that

for all x ≥ x0, (a) there exists a constant c such that

fðxÞ ≥ cgðxÞ, we say that fðxÞ ¼ OðgðxÞÞ; (b) if there

exist constants c−; cþ such that c−gðxÞ ≤ fðxÞ ≤ cþgðxÞ,
we say that fðxÞ ¼ TðgðxÞÞ; and (c) if there exists a con-

stant c such that fðxÞ ≤ cgðxÞ, we say fðxÞ ¼ OðgðxÞÞ.
These are modified with a tilde when the bounds hold only

up to polylogarithmic factors. For example, f ¼ Ω̃ðgÞ
implies that fðxÞ ¼ O½gðxÞlogcðxÞ� for some constant c.

We use this shorthand because we are interested in the

scaling of resources, and this notation allows us to highlight

the most important features of this scaling.

Main result: Embedding codes inD dimensions.—In this

section, we consider how to embed quantum LDPC codes in

R
D. This section is inspired by results frommetric geometry

that consider the distortion of expander graphs embedded in

R
D. Here we show that a class of graphs called ε expanders

are difficult to embed. As a consequence, we show that

constant-rate quantum codes require a growing number of

long-range interactions between qubits.

Definition.—For a graph G ¼ ðV; EÞ, a map η∶V → R
D

is called an embedding. η satisfies the following condition

for all pairs of distinct vertices u; v ∈ V, jηðuÞ − ηðvÞj ≥ 1.

We use j:j∶RD
→ R to denote the standard Euclidean

metric.

In the following sections, we will frequently refer to the

length of an edge. We mean that any embedding η naturally

endows an edge ðu; vÞ with a length. Equivalently, the

length of an edge ðu; vÞ is jηðuÞ − ηðvÞj. The condition on

the embedding guarantees that two qubits are not squeezed

arbitrarily close together.

Theorem 2 (Main).—Let C ¼ fCng be a family of

⟦n; k; d⟧ quantum LDPC codes. Further suppose C

is associated with the nontrivial connectivity graphs

G¼fGn¼ðVn;EnÞgn. For any θ embedding η∶Vn→R
D,

there exists some β; n0 such that for code sizes n > n0,

and any α ∈ ð0; 1Þ, the following propositions hold: η

induces (1) ΩðdÞ edges of length Ω̃fðdÞ=ðnðD−1Þ=DÞg,
(2) Ω̃ð

ffiffiffiffiffiffiffiffiffiffiffiffi

ðk=nÞ
p

dÞ edges of length Ω̃ð
ffiffiffiffiffiffiffiffiffiffiffiffi

ðk=nÞ
p

d1=DÞ, and

(3) Ω̃ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ð1 − αÞk�=ðnÞ
p

1=lognðdÞαkÞ edges of length

Ω̃ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ð1 − αÞk�=ðnÞ
p

d1=DÞ if kd2=D ≥ βn logðnÞ2=ð1 − αÞ.
To understand its implications, we proceed to a short

discussion of the theorem and the intuition for the proof.

The proof is presented in Sec. II of the Supplemental

Material [30]; the proof uses references [31–34]. As shown

in [22], a quantum LDPC code with good parameters k and
d requires a connectivity graph with a lot of connectivity.

We can measure the distance between two vertices on the

graph using the graph metric, which is simply the minimum

number of edges to traverse between the two vertices. In a

tightly connected graph, the minimum distance between

vertices is small. For example, in what are known as

expander graphs, there is high degree of connectivity. On an

expander graph of size n, the maximum distance between

two points is O½logðnÞ�. On the other hand, this distance

can be quite large for a poorly connected graph such as

the grid graph. For example, for the grid graph in two

dimensions, the maximum distance between two points can

be proportional to
ffiffiffi

n
p

. In general, any embedding η from

the connectivity graph will try to respect the graph metric.

This is to minimize distorting the graph and make edges

longer than necessary. However, there is only a limited
extent to which it can do so, as we have constrained the

density of the embedding η. Recall that η cannot place two

qubits in D dimensions closer than unit distance apart. It is

forced to distort the graph metric for a well-connected

graph when embedding in two dimensions. This, in turn,

forces some edges of the graph to be very long.

Discussion.—As a reminder, an edge of length l implies

that there exist a stabilizer measurement involving at least

two qubits that are embedded at a distance at least l from
each other. We say that such stabilizer has range at least l. If
an embedding induces m edges of length l, then, since the
codes we consider are LDPC, there exist at least ΘðmÞ
stabilizers of range at least l.
(1) We focus on the case D ¼ 2. The first observation is

that a code of distance Ωðn1=2þεÞ will induce Ωðn1=2þεÞ
edges of length Ω̃ðnεÞ from claim 1. This underlines how

hard it is to break free of the natural restrictions space

imposes on the distance: the case ε ¼ 0 can be obtained

readily using topological codes and only nearest-neighbor

interactions, but ε > 0 will require a significant amount of

nonlocality. In particular, implementing a linear distance

code will induce ΩðnÞ edges of length Ω̃ðn1=2Þ. In that

particular case, the length of the edges are tight up to

logarithmic factors, since any code can be implemented on

a
ffiffiffi

n
p

×
ffiffiffi

n
p

square lattice such that all qubits are at a

distance at mostOðn1=2Þ from each other. InD dimensions,

this result can also be seen as complementing the Bravyi-

Terhal claim [8]—if we desire that the code be local, then

the longest edges of its connectivity graph have length

Oð1Þ, the distance must obey d ¼ ÕðnðD−1Þ=DÞ.
(2) Similarly, our results yield nontrivial bounds on

codes with constant rate. First, consider the case with k ∝ n
and d ∝ 1. Such a code can be achieved usingΘðnÞ disjoint
patches of a 2D topological code, and this implementation

requires zero nonlocal interactions. However, claim 3

shows that escaping from this constant distance is chal-

lenging. For example, achieving d ∝ nα requires Ω̃ðnÞ
interactions of length Ω̃ðnα=2Þ: quite a dramatic change.

(3) The Panteleev-Kalachev codes [24] seem to make

optimal use of nonlocality, as they almost saturate claim 3.

For example, we could implement n1−α disjoint blocks of

good codes, each with size nα. Then we have k ∝ n,
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d ∝ nα, and at most OðnÞ edges of length nα=2, which
minimizes the bound as discussed in the previous point.

This suggests that good quantum codes will likely be

essential in decreasing the experimental cost of quantum

error correction.

(4) There is a gap between the Bravyi et al. result and our

results with respect to the conditional statement in claim 3.

Recall that they stated that if quantum LDPC codes are

local, then kd2=ðD−1Þ ¼ OðnÞ. However, we require for

claim 3 that kd2=D is roughly greater than n logðnÞ2. What

are the classes of codes that lie in the gap? Claim 3 itself

cannot be sharpened to yield nontrivial bounds on codes

satisfying kd2=ðD−1Þ ¼ ΩðnÞ. Suppose we naively substitute
the conditional

ffiffiffiffiffiffiffiffi

k=n
p

d1=D by
ffiffiffiffiffiffiffiffi

k=n
p

d1=ðD−1Þ. Then in two

dimensions, for any distance larger than n1=2þε and con-

stant rate, we would find some edges larger than n1=2þε.

However, this is impossible: we can always place the qubits

in a
ffiffiffi

n
p

×
ffiffiffi

n
p

square with edges of length Oð ffiffiffi

n
p Þ. This

seems to imply that, if that substitution worked, there exists

no constant-rate quantum LDPC code with a distance larger

than
ffiffiffi

n
p

. However, we know this to be false because of the

recent result by Panteleev and Kalachev [24].

Application of main theorem to the stacked model.—We

return now to the stacked architecture and provide strong

evidence that the properties of any code implemented this

way will be limited. We begin by describing the model in

more detail. Suppose we wish to design an error correcting

code using a stacked layout in two dimensions. Consider

the following proposal where qubits are laid out on a square

grid of size n ¼ 2lm × 2lm as shown in Fig. 1. In total, there

are lm layers in this stack, where the generators at level l act

within a ball of radius rl ¼ 2l=
ffiffiffi

2
p

. At the very top, we have

a highly nonlocal stabilizer associated with a ball of radius

rlm ¼ 2lm=
ffiffiffi

2
p

. To be clear, while the stabilizer in the

topmost layer has a radius of rlm , it still only jointly

measures some constant number of qubits, and each qubit is

involved in a constant number of generators. The radius

merely constrains where these qubits are allowed to be

located. In the next layer we have four stabilizers, but these

stabilizers are each only supported within a ball of radius

rl−1 ¼ 2l−1=
ffiffiffi

2
p

. This proceeds until we hit the very last

layer—there are 4lm−l such generators in layer l—until we

hit layer 0, which consists of stabilizers supported entirely

within a ball of constant radius. It follows that the majority

of the stabilizers are in the last layer, or in other words, the

majority of stabilizers are local with r ¼ Oð1Þ locality. A
natural question then is whether the nonlocal checks are

numerous enough to allow for good codes.

A corollary of our results is that the average length of the

interactions in the implementation of a code limits code

properties. For example, a family of codes with linear

distance requires ΩðnÞ edges of length Ω̃ðn1=2Þ. If this

system is sparse, then the average length is Ω̃ðn1=2Þ.

Conversely, if the average length of the interactions is

not Ω̃ðn1=2Þ, then the system cannot implement a family of

linear distance codes.

Extending this idea, we can use a direct edge-counting

argument together with Theorem 2 to bound the distance

and obtain a trade-off between k and d.
Corollary.—The stacked model satisfies d ¼

n2=3 logðnÞ2=3, and k3d4 ¼ O½n5 logðnÞ10�.
The proof is presented in Sec. III of the Supplemental

Material [30]. The distance bound immediately implies that

this limited amount of nonlocality only yields a limited

amount of leeway. The distance of a two-dimensional local

code, with this limited nonlocality, is constrained like that

of a three-dimensional local code. We do not know if this

bound can be saturated, but it does not readily forbid the

implementation of constant-rate codes, with d ∝
ffiffiffi

n
p

. The

Panteleev-Kalachev codes [22] achieve code dimension

and distance that scale as ΘðnÞ; these codes clearly violate

the above bounds. However, it is still not clear whether the

codes that do not violate these bounds can be implemented

via a stacked architecture; our techniques do not rule out

this possibility.

Conclusions.—We considered how much nonlocality is

needed to implement quantum LDPC codes. In our results,

this question is addressed by lower bounding the number

of long-range connections between qubits and their length.

In particular, in 2D we show that a quantum LDPC code

with distance d ∝ n1=2þε requires Ωðn1=2þεÞ interactions of
length Ω̃ðnεÞ. We also focus on constant-rate quantum

LDPC codes, as the cost of encoding a logical qubit in such

a code remains fixed. For such a code to exhibit a distance

d ∝ nα, we find that one requires Ω̃ðnÞ interactions of

length Ω̃ðnα=2Þ. We then considered a stacked architecture

to implement quantum LDPC codes. In this model,

although most stabilizers are local, a few are capable of

long-range connections. We showed that the distance of

this architecture is bounded. Furthermore, it too witnesses a

sharp trade-off between k and d. We hope these tools can be

used to understand the difficulty of implementing efficient

codes, as well as the limitations of particular architectures.
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