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We congratulate the authors on an interesting paper which combines the ideas of shape
analysis with longitudinal data analysis. With the increasing complexity of experiments
involving imaging data, including a number of important longitudinal imaging studies, not
least those presented, it is important to develop methodology that allows for a considered
analysis of such data, and this paper goes a long way to helping address these issues.

There are a number of important choices made in the paper. The registration of the
shapes themselves is done through an approach which first received prominence in a sta-
tistical functional data context in |Srivastava et al. (2011), where the square-root velocity
function plays an analogous role to the square-root normal field (SRNF) (Jermyn et al.l
2012). This approach has highly beneficial properties that allow for the definition of repa-
rameterization invariant metrics as described for the SNRF approach in this paper. It is
very interesting to see the approach using mixed-effect models which again has connections
to the literature in functional data and registration (Marron et al. 2015} [Tucker et al., 2013}
Hadjipantelis et all [2015). However, as with many instances of longitudinal data analysis,
particularly with sparse observations, it is very natural to consider the temporal components
of the data to be a form of functional data, and hence the PACE approach (Yao et al., 2005)

is a more suitable framework to model these in. There are many possible extensions to the
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original PACE idea, and all these could be implemented if relevant to the application. Of
course, this would also set up a number of challenging theoretical questions, particularly
given the non-FEuclidean nature of shape spaces.

One aspect that stands out in the paper is the computational tradeoffs that need to be
made in these types of approaches. The authors have chosen to use a Euclidean framework
for PCA in contrast to the SRNF approach used for the image registration. It is rightly
pointed out that it would be possible to adapt methods of Kurtek et al.| (2010) to do this more
formally in the original metric, but a Euclidean approximation is chosen for computational
reasons. It would be very interesting to determine how quickly this approximation breaks
down under certain specific modelling choices. For example, is it possible to determine how
far the results can be extrapolated based on the approximation if projections of subsequent
shapes outside the original set are of interest? It should, however, be noted that such
approximations have ultimately allowed the authors to conduct a comprehensive analysis of
thousands of images from multiple studies, which further substantiates their findings.

A different approach would be to use a methodology which aims to model shapes through
diffeomorphic deformations, or more specifically, through vector fields that characterise these
diffeomorphic functions in the framework of |[Younes| (2010). This approach was considered
by [Lila and Aston| (2022)) in the context of a joint analysis of brain shape and connectivity,
where a joint model was used to account for the non-Euclidean nature of both brain shape
and functional connectivity (non-negative definite covariance matrices). The geometry of
the space was preserved through linear tangent space mapping of the data which then allows
the statistical estimates to be projected onto the original space. This, of course, loses some of
the elegance of the SRNF framework, but at a considerable ease of preserving the topology of
the data and avoiding Euclidean approximations. Indeed, an interesting direction would be
to integrate these approaches and leverage the effectiveness of the SRNF framework to define
a metric between shapes that leads to accurate registration while adopting diffeomorphic
functions to represent shapes in the original space, avoiding complex inversions of SRNFs,
which may have motivated the adoption of a Euclidean framework post registration in the
first place. Comparisons of these different approaches, and their integration, might well be

an obvious next step.
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