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We congratulate the authors on an interesting paper which combines the ideas of shape

analysis with longitudinal data analysis. With the increasing complexity of experiments

involving imaging data, including a number of important longitudinal imaging studies, not

least those presented, it is important to develop methodology that allows for a considered

analysis of such data, and this paper goes a long way to helping address these issues.

There are a number of important choices made in the paper. The registration of the

shapes themselves is done through an approach which �rst received prominence in a sta-

tistical functional data context in Srivastava et al. (2011), where the square-root velocity

function plays an analogous role to the square-root normal �eld (SRNF) (Jermyn et al.,

2012). This approach has highly bene�cial properties that allow for the de�nition of repa-

rameterization invariant metrics as described for the SNRF approach in this paper. It is

very interesting to see the approach using mixed-e�ect models which again has connections

to the literature in functional data and registration (Marron et al., 2015; Tucker et al., 2013;

Hadjipantelis et al., 2015). However, as with many instances of longitudinal data analysis,

particularly with sparse observations, it is very natural to consider the temporal components

of the data to be a form of functional data, and hence the PACE approach (Yao et al., 2005)

is a more suitable framework to model these in. There are many possible extensions to the
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original PACE idea, and all these could be implemented if relevant to the application. Of

course, this would also set up a number of challenging theoretical questions, particularly

given the non-Euclidean nature of shape spaces.

One aspect that stands out in the paper is the computational tradeo�s that need to be

made in these types of approaches. The authors have chosen to use a Euclidean framework

for PCA in contrast to the SRNF approach used for the image registration. It is rightly

pointed out that it would be possible to adapt methods of Kurtek et al. (2010) to do this more

formally in the original metric, but a Euclidean approximation is chosen for computational

reasons. It would be very interesting to determine how quickly this approximation breaks

down under certain speci�c modelling choices. For example, is it possible to determine how

far the results can be extrapolated based on the approximation if projections of subsequent

shapes outside the original set are of interest? It should, however, be noted that such

approximations have ultimately allowed the authors to conduct a comprehensive analysis of

thousands of images from multiple studies, which further substantiates their �ndings.

A di�erent approach would be to use a methodology which aims to model shapes through

di�eomorphic deformations, or more speci�cally, through vector �elds that characterise these

di�eomorphic functions in the framework of Younes (2010). This approach was considered

by Lila and Aston (2022) in the context of a joint analysis of brain shape and connectivity,

where a joint model was used to account for the non-Euclidean nature of both brain shape

and functional connectivity (non-negative de�nite covariance matrices). The geometry of

the space was preserved through linear tangent space mapping of the data which then allows

the statistical estimates to be projected onto the original space. This, of course, loses some of

the elegance of the SRNF framework, but at a considerable ease of preserving the topology of

the data and avoiding Euclidean approximations. Indeed, an interesting direction would be

to integrate these approaches and leverage the e�ectiveness of the SRNF framework to de�ne

a metric between shapes that leads to accurate registration while adopting di�eomorphic

functions to represent shapes in the original space, avoiding complex inversions of SRNFs,

which may have motivated the adoption of a Euclidean framework post registration in the

�rst place. Comparisons of these di�erent approaches, and their integration, might well be

an obvious next step.
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