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ABSTRACT

Purpose

Research on temporal dynamics of crime in the United States is growing. Yet, mathematical tools to
reliably predict homicides with firearm are still lacking, due to delays in the release of official data
lagging up to almost two years. This study takes a critical step in this direction by establishing a
reliable statistical tool to predict homicides with firearm at a monthly resolution, combining official
data and easy-to-access explanatory variables.

Method

We propose a dynamic factor model to predict homicides with firearm from 1999 to 2020 using official
monthly data released yearly by the Centers for Disease Control and Prevention, provisional quarterly
data from the same agencies, media output from newspapers, and crowdsourced information from the
Guns Violence Archive.

Results

Statistical findings demonstrate that the dynamic factor model outperforms state-of-the-art tech-
niques (Al and classical autoregressive models). The dynamic factor model offers improved ability
to backcast, nowcast, and forecast homicides with firearm, and can anticipate sudden changes in the
time-series.

Conclusions

By decomposing the time-series of homicides with firearm on common and idiosyncratic components,
the dynamic factor model successfully captures their complex time-evolution. This approach offers a
vantage point to policymakers and practitioners, allowing for timely predictions, otherwise unfeasible.

Keywords— Al, autoregressive process, dynamic factor model, gun violence, mathematical modeling, time-
series analysis

Introduction

Despite years of drastic reductions in crime levels, certain types of violent crimes have recently increased in
the United States (US) (Rosenfeld & Lopez, 2020). Firearm violence is especially on the rise, as suggested
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by Albrecht (2022). Lately, we are witnessing a steady increase in non-fatal crimes, as documented by the
Police Executive Research Forum (Police Executive Research Forum, 2021) and supported by the Giffords
Law Center (Giffords Law Center, 2022). Just as non-fatal shootings are spiking across several cities in the
country, fatal shootings continue to increase, as noted by the Pew Research Center (Gramlich, 2022) from
data on gun death rates. This dramatic trend has attracted media attention and raised concerns about gun
violence among Americans. The 2022 Election Tracking Survey from Ipsos (Ipsos, 2022) identifies gun violence
as the second most important issue for Americans.

As an example of this recent trend, Figure 1 shows the 10-year relative increase in homicide offenses
rates for different weapons registered on the National Incident-Based Reporting System (NIBRS) (Bureau
of Justice Statistics, 2022). While those performed with firearm have dramatically increased, assaults with
knives (jackknifes, cutting instruments, etc.), personal weapons (hands, feet, etc.), and other weapons (blunt
objects, motor vehicles, explosives, etc.) have remained at the same level, or even decreased, in the last ten
years (Rosenfeld & Fox, 2019).
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Figure 1: Relative changes in homicide offenses rates by type of weapon in the period from
January 2011 to December 2020, from NIBRS. “Firearm” (red, e) refers to any type of gun (shotgun,
rifle, handguns), “knife” (dark green, A) to cutting instruments, “personal weapons” (light green, m) to the use
of the body (hands, feet, etc.) as weapon, and “all other” (blue, +) to blunt objects, vehicles, and any other
object used as a weapon.

The ability of policymakers and practitioners to efficiently make decisions that can reduce crime relies on
wide and quick access to real-time data (Neumayer, 2003; Drake et al., 2009; Barreras et al., 2016). Evidence-
based legislation is being embraced throughout the world. In the US, the Foundations for Evidence-Based
Policymaking Act of 2018 became a law in 2019 (Congress.Gov, 2019), thereby requiring public access to
agencies’ data' and use of statistical evidence for any bill. Likewise, the Organisation for Economic Co-
operation and Development points that countries should coordinate their strategies for policy evaluation with
those related to evidence and data governance (OECD, 2020). However, several pitfalls persist with respect
to availability, quality, and saliency of firearm-related violence data in the US (Strom & Smith, 2017; Roman
& Cook, 2021).

According to the July 2014 National Criminal Justice Report from the Bureau of Justice Statistics (Re-
goeczi et al., 2014), the Wonder database of the National Center for Health Statistics from the Centers for
Disease Control and Prevention (CDC) and the Supplementary Homicide Report (SHR) from Federal Bureau
of Investigation (FBI) are the only source of detailed information on homicides (Centers for Disease Control
and Prevention, 2021). While SHR is published with an annual frequency and suffers from missing or incom-
plete reports (Fox & Swatt, 2009), the CDC database contains granular data at a monthly resolution. Such
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an improvement in data quality comes at the expense of a significant delay in its release, as acknowledged by
Mancik et al. (2021). Specifically, in the CDC database all deaths for each month of the year are released all
at once at the end of the following year. In this way, January data is released on December of the following
year (23 months later) and December data is released on December of the following year (12 months later).
The large amounts of data that need to be collected and processed are partly the reason why this data is
published with such a hold-back. As a result, the actual picture of the homicides with firearm in the US can
have a delay between 12 to 23 months, depending on the month of the analysis. This time delay cannot be
compensated by using other series that are released with shorter delays without losing relevant information,
since only 40% of violent crimes are reported to the police (Morgan & Thompson, 2021).

Mathematical tools could be used to overcome some of the practical drawbacks in data access, thereby
supporting evidence-based interventions. However, to date, there is a paucity of reliable tools to gauge firearm
violence in the US. Several efforts from the scientific community have tackled the problem of modeling temporal
dynamics of crime-related rates, but these methods have seldom been applied to homicides and almost never
to homicides with firearms — the objective of this study. Back in 2003, Gorr et al. (2003) already proposed a
Holt exponential model to forecast crime series, which, however, is questionable when attempting long-term
predictions (Chatfield & Yar, 1988; Alonso Brito et al., 2021) and is fragile for its excessive reliance on data
extrapolation (Gardner Jr & McKenzie, 1985). Since then, a range of methods based on time-series analysis
have been adapted to study crime rates in general (Berk, 2008), including homicides (Phillips, 2016).

Recently, Feng et al. (2018) has suggested that, among artificial intelligence (AI) techniques, tree models
may outperform other approaches, such as k-nearest neighbors or naive Bayes for the prediction of crime,
an observation which is in line with the previous findings by Nasridinov et al. (2013). In this vein, Berk
et al. (2009) used random forests to specifically forecast homicides of paroles within two years after intake.
Meskela et al. (2020) and Devi & Kavitha (2021) have proposed the use of a specific type of neural network
particularly useful in time-series modeling, the long short-term memory recurrent neural network, to automate
crime prediction. While promising, Al techniques are data hungry, whereby their performance is controlled by
the richness of their training dataset (Carvalho et al., 2018), so that overfitting is difficult to avoid (Vezhnevets
& Barinova, 2007).

In parallel to implementations of AI techniques, Cesario et al. (2016) and Yadav & Sheoran (2018) have used
autoregressive integrated moving average (ARIMA) models to predict crime rates. These models are known
to systematically revert the forecasts to the mean of the series (Deadman et al., 2001), making it difficult
create reliable predictions. Building on the classical ARIMA, researchers have examined the percent change
techniques (McDowall, 2002), ARIMA with fan charts (Yim et al., 2020), spatio-temporal autoregressive
models (Shoesmith, 2013), and generalized least squares regression to study homicides.

Beyond univariate autoregressive models, classical multivariate autoregressive approaches were also adopted
to study crime (Blumstein & Rosenfeld, 2008). The ability to account for multiple drivers in a multivariate
sense allows for capturing salient phenomena that would be otherwise missed. For instance, one of the argued
reasons for the registered increase in violence with firearm from 2014 to 2018 is the “Ferguson effect” (Hoffman
et al., 2021; Cheng & Long, 2022). According to this theory, the police has been more scrutinized following
the protests in Ferguson in 2014 in the wake of Michael Brown’s death, thereby changing their approach to
law enforcement, and, in turn, to crime prevention. Likewise, the number of active law enforcement officers
has been suggested to drive the dynamics of crimes (Parker et al., 2017), along with economic fluctuations
(Rosenfeld & Fornango, 2007) and firearm possession (Cook & Ludwig, 2006).

In this vein, Pratt & Lowenkamp (2002) related homicides to time-series of coincident economic indicators
through a bivariate ARIMA model, whereas Cherian & Dawson (2015) has employed a vector autoregressive
(VAR) model to predict several category crimes and Parkin et al. (2020) studied, within the same approach,
the relation between deadly force incidents, line of duty deaths, and homicides rates. Although offering a much
more complete view of homicide dynamics, most of the series that may be useful for multivariate time-series
analysis could have very different sample periods and sampling frequency (so-called “ragged edge” problem
identified by Wallis (1986)). Bringing the series to the same sampling period and frequency might cause an
excessive reduction in the dataset, thereby hindering the use of any VAR model.

To bestow improved prediction of homicides, we relied on a single-index dynamic factor model (DFM)
approach (Sargent et al., 1977; Stock & Watson, 1991), which allows for the integration of information from
multiple, easily accessible time-series to predict a variable of interest. Single-index DFM relies on the co-
movement of different series, thereby reducing dimensionality compared to a VAR approach and improving
the reliability of the identification. The DFM framework allows for the use of data with different frequencies,
as shown in Harvey (1990) and Mariano & Murasawa (2003), to create common and idiosyncratic dynamics.



By using Kalman filtering to fill any missing observations (Brockwell & Davis, 2009), DFM forecasts benefit
from the different delays of the time-series. The proposed approach solves some of the limitations of the
existing state-of-the-art. First, DFM is less prone to overfitting than Al techniques when working with real
datasets of crimes that have limited size and potentially missing data (Mitchell & Mitchell, 1997; Ying, 2019;
Soybilgen, 2020). Second, the identification of common and idiosyncratic dynamics within DFM avoids the
problems of autoreregressive models related to the reversion to the mean (Beshears et al., 2013; Nau, 2014)
and the inability to detect abnormal periods (Stock, 1994; Wheeler & Kovandzic, 2018; Yim et al., 2020).

Through the proposed DFM, we are able to predict homicides with firearm in the short term better than
other benchmark models, such as tree-based models, neural networks, and classical autoregressive approaches.
Specifically, through an out-of-sample exercise, we find that the DFM is the only approach that can perform
a better prediction than a benchmark ARIMA model, on average for every month in the year. Furthermore,
the model shows an improved ability to timely and accurately capture unexpected changes in the direction of
the series, as those experienced in the recent COVID-19 outbreak. Not only does the model offer improved
qualitative agreement with real data, but also it begets higher predictive accuracy. The enhanced ability to
predict homicides with firearm offers a vantage point to policymakers and practitioners, allowing for timely
predictions that would be otherwise unfeasible.

Materials and methods

Data

Homicides with firearm was our main variable of interest. On the Wonder database, we collected data on deaths
whose “injury intent” was “homicide” and whose “injury mechanism and all other leading causes” were “firearm”
from January 1999 to December 2020. This data is updated by the CDC once a year at a monthly resolution,
and it is based on death certificates of US residents from the National Center of Health Statistics. Since
there is no official monthly population data, we used the monthly population estimates (Bureau of Economic
Analysis, 2022) from the Economic Bureau of Analysis to compute per-capita homicides with firearm.

Our approach is based on the use of a single-index dynamic factor model, which seeks to unveil a general
co-movement in the data. To construct a common dynamics in the dynamic factor model, we should consider
homicide-related data with a certain degree of co-linearity with homicides with firearm. The model’s ability
to deal with missing observations allows for taking into account data with different sampling periods. In this
vein, the integration of series whose data is released before the official release of data about homicides with
firearm is expected to improve predictions. With this in mind, we collected the following additional variables:

e A provisional estimation of homicides with firearm. Since January 2017, the CDC publishes a
provisional quarterly estimation of the rate of homicides with firearm, released ten months after the end
of the quarter (that is, a cumulative monthly series with two missing observations). The rate for the
third quarter of 2020 was the highest recorded in our observation window ending in December 2020,
with an annualized rate of 15 homicides with firearm per 100,000 inhabitants.

e Data on deaths in incidents involving guns. From January 2014, the Guns Violence Archive
(Guns Violence Archive, 2022), a non-profit corporation, registers daily gun violence incidents from law
enforcement, media, and commercial sources. Based on the incidents, they report the victims of gun
violence, including murders, accidents, or suicides. We specified the filter selection “Shot-Dead (murder,
accidental, suicide)” as “Incident Characteristic” to create a monthly series of deaths in incidents with
guns from January 2014 to December 2020. The highest number of deaths was recorded on July 2020,
with 1,964 deaths.

e Data on homicides from three of the main cities in the US. We collected daily crime rates in New
York City, Chicago, and Philadelphia from the police departments. These data are publicly available
from January 2006, weekly updated, and registered within the Unified Crime Report guidelines from
the FBI. The Census Bureau Population data for each city was used to estimate the per-capita rates,
which were further averaged among each other to create a baseline estimate. In our observation window
from January 2006 to Decemeber 2020, the highest average rate was recorded on July 2020, with 2.41
homicides per 100,000 inhabitants.

e Media output. According to Phillips & Hensley (1984), when publicity is given in mass media to
violence events, an increase in mortality is likely to follow. We collected media output from January



1999 to December 2020, using the Proquest Database, by searching for the number of news articles
containing the words “homicide” and “shot” from the New York Times (2,997 news articles) and the
Washington Post (6,175 news articles). Daily data was aggregated to create a monthly time-series
where the highest media output was recorded on December 2020, with 107 news articles. Similarly, we
collected the number of news containing the word “riots” (24,801 news articles) and those containing the
word “unemployment” (6,925 news articles). The highest media output on riots was recorded in June
2020, when 744 news articles were published, whereas the peak of news articles about unemployment
was in July 2020, with 195 news articles registered.

e Google Trends. Building on recent work on crime analysis with Google Trends (Gamma et al., 2016),
we collected data from Google Trends with the search term “homicide” from January 2004 to December
2020 at a monthly resolution. The highest output was recorded on January 2013 (index of 100). We
repeated the procedure with the term “gun”, for which the highest output was observed on December
2012.

e Background checks. This classical proxy of firearm sales (Lang, 2013; Wallace, 2015) is made available
by the FBI at a monthly resolution via the National Instant Criminal Background Check System (NCIS)
(FBI, 2022a). In our observation window from January 1999 to December 2020, the highest number of
background checks was recorded on December 2020, when 3,937,066 background checks were performed
throughout the nation.

e Economic uncertainty. The Economic Policy Uncertainty (EPU) index, available at a monthly
resolution from January 1999 from Baker et al. (2016), was chosen as a proxy of economic uncertainty.
In our observation window from January 1999 to December 2020, the highest score was registered in
May 2020, with an index of 350.

e Microblogging data. Building on recent work (Chen et al., 2015) on the use of Twitter data in
modeling crime, we collected the number of daily geo-located tweets in the US containing the word
“homicide” from January 2010 to December 2020. We collected a total of 146,661 posts and created a
monthly time-series, whose peak was registered on May 2015 with 1,862 tweets. Recent work (Chen et
al., 2015) has demonstrated the use of Twitter data in modeling crime.

For all the series mentioned except of the media output, a monthly seasonal adjustment was performed to
remove seasonal effects. Besides, all the series except of homicides with firearm, monthly and provisional, and
deaths in incidents with guns, were also detrended. The resulting time-series are plotted in Figures 2a to 2l
All the raw and processed data are available at Github.
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Figure 2: Monthly time-series collected for the period from January 1999 to December 2020. (a)
Monthly homicides with firearm rate per 100,000 inhabitants from CDC (seasonally adjusted). (b) Provisional
quarterly annualized estimate rate per 100,000 inhabitants for homicides with firearm from CDC. (c) Deaths
in incidents involving guns from Guns Violence Archive (seasonally adjusted). (d) Monthly homicides rate
for the aggregated cities of New York, Chicago, and Philadelphia (seasonally adjusted and detrended). (e)
Monthly Google Trends for the word “Homicide” (seasonally adjusted and detrended). (f) Monthly background
checks from NCIS (seasonally adjusted and detrended). (g) Media output for the news containing the words
“homicide” with “shot”. (h) Media output for the news containing the word “riots” (seasonally adjusted and

detrended).
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Figure 2: Monthly time-series collected for the period from January 1999 to December 2020
(continued). (i) Media output for the news containing the word “unemployment” (seasonally adjusted and
detrended). (j) Monthly Economic Policy Uncertainty (EPU) index (seasonally adjusted and detrended). (k)
Monthly Google trends for the word “gun” (seasonally adjusted and detrended). (1) Monthly geo-located tweets
in the US containing the word “homicide” (seasonally adjusted and detrended).

The data differ in their resolution and release date throughout the year (Table 1). While variables such as
background checks and media output are available in the same time-span of homicides with firearm (starting
January 1999), Google Trends’ data is available only from 2004 and homicides data in the three cities from 2006.
All the variable, except of homicides with firearm and their provisional estimates, are released with no delay.
Firearm homicides have a delay of 12 up to 23 months; for example data from January 2020 to December 2020
of homicides with firearm was released in December 2021. The provisional quarterly estimation is released
with a fixed ten months of delay. Other variables available at yearly resolutions and released with similar
delays as homicides with firearm (number of police officers (FBI, 2019), the National Crime Victimization
Survey (Bureau of Justice Statistics, 2017), or the FBI violent crime index (FBI, 2019)), were not taken into
account as they would not improve predictive power. Likewise, the registered murders in the recently released
Quarterly Tables from NIBRS (FBI, 2022b) were not used due to its short historic period (three editions
released up to date).

Dynamic factor model

Single-index dynamic factor models decompose the dynamics of the chosen observable variables y; ¢, for i =
1,..,n and t = 1,...,7T, as the sum of two unobservable and orthogonal components: one affecting all the
time-series, f;, and the other one accounting for their idiosyncratic variation, u; . More specifically, we write

Yit = bift + Uit (1)

where b; is the loading factor of each variable on the common factor. Any variable at a coarser resolution than
the variable of interest (like the provisional estimate of homicides with firearm in Table 1) can be written as
the sum of unobserved variables at the chosen resolution with proper delays®. The dynamics of the common

2For example, let i = 2 be a time-series with a quarterly resolution, then, we would write y2,t =ba (ft + fr-1 + fr—2) +
u9 St



Variable Frequency ‘ Sample ‘ Delay

Homicides with firearm monthly 1999M1-2020M 12 12-23

months
Provisional estimate of homicides with firearm quarterly 2017Q1-2020Q4 10 months
Deaths in incidents with guns monthly 2014M1-2020M12 no delay
Monthly homicides (averaged in three cities) monthly 2006M1-2020M12 no delay
Google Trends on “homicide” monthly 2004M1-2020M12 no delay
Background checks monthly 1999M1-2020M 12 no delay

Media output on “homicide”+“shot” monthly 1999M1-2020M 12 no delay
Media output on “riots” monthly 1999M1-2020M 12 no delay

Media output on “unemployment” monthly 1999M1-2020M12 no delay
Economical Policy Uncertainy index monthly 1999M1-2020M 12 no delay
Google Trends on “gun” monthly 2004M1-2020M12 no delay

Number of tweets about “homicide” monthly 2010M1-2020M12 no delay

Table 1: Sampling frequency, time-interval, and delays (in months) for each of the variables forming the
dataset used to model and predict homicides with firearm at a monthly resolution.

factor and idiosyncratic components are described as autoregressive processes of orders p and ¢, that is,

fo=Bufer+ o+ Bofrp+el )
Uit = Ci Wi t-1 t ... + CiqUit—q + €iu¢,
where etf captures the errors in the common factor and €;', the errors in the ith idiosyncratic terms. Errors in
the common factor and in the ith idiosyncratic term are considered independent and identically distributed
(i.i.d.) in cross-section and time, following N (0,07 ) and N'(0,02.) distributions, respectively, where o s and
ocu are the standard deviations. Since the common factor is not observed either in mean and variance, oy
must be chosen to make the model identifiable (in particular, we set it equal to one).
The model in equations (1) and (2) can be cast in a state-space representation of the form

Yi = Hha, (3)

where h; is the state vector created from the common and idiosyncratic components in time. The transition

equation is written as
ht = th—l + €¢, (4)

with €; being i.i.d. N (0,Q) and Q = diag(aff,0,0,afaf,QQ ...,0'62%,070).
For example, considering a model with p,q = 2 and all variables at a monthly resolution expect of ys
chosen to be quarterly, equation (3) reads
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and equation (4) becomes
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where, due to the definition of ¢; and @, the error terms of the period ¢t — 1 will be zero. The terms in these
equations could be estimated by maximum likelihood through a Kalman filter.

In the case of missing observations, such as when treating quarterly data within our monthly resolutions,
we use the approach given by Mariano & Murasawa (2003). Specifically, the missing values are replaced by
random draws, oy, from a distribution that does not depend on the parameter space that characterizes the
filter, for example N (0,02).

The estimation algorithm for obtaining the parameters can be summarized as follows. Let hy, be the
estimate of h; with information up to period 7, that is, the expected value of the state vector conditioned on
the past. Denoting P, its covariance matrix, the prediction equations for the Kalman filter are

b1 = Fhe e, (7a)
Pyg1 = FPt—ut—lF’ +Q, (7b)

where a prime indicates transposition.
Then, the error in the prediction is defined as

Meje—1 = Yr — Hehypoq, (8)

and its covariance matrix is ,
Xtlt-1 = HtPt|t—1Ht - Ry, 9)

where R; is the covariance matrix of the added noise that the approach of Mariano & Murasawa (2003) uses
to treat missing values in equation (3). Hence, the Gaussian log-likelihood function can be evaluated as

1 1 - —
le = =5 InC2rlxge-a)) = 5o Otee-1) ™ Mo (10)

The next step in the Kalman filter is updating the estimation with the Kalman gain, typically defined as
K = Pt|t—1Ht(Xt\t—1)_1» such that
haje = Rye—1 + Kiyje-1, (11)

Pt\t—l = Pt\t—l - KthPt|t—1~ (12)

The initial parameters used to start the filter are typically a vector of zeros for (11) and a diagonal matrix for
(12); the parameters that ultimately minimize the log-likelihood function in equation (10) are used as model fit
parameters. The minimization is carried out through the limited memory Broyden-Fletcher-Goldfarb-Shanno
algorithm (Liu & Nocedal, 1989). Finally, missing values can be added at the end for doing forecast. This
operation can be done since if not observed at period 7, the updating equation will be h;; = hr_1, which
will not change the dynamics of the model.



Comparison models and performance metrics

To quantify the ability of the DFM to predict the dynamics of homicides with firearm, its performance is
compared to other benchmark models. Specifically, we examined models from two different families: AI and
classic autoregressive models. Details about model implementation are presented in Appendix A and related
codes are available at Github.

Within AI models, we considered two tree-based family models (random forest, RF, following Berk et al.
(2009), and gradient boosting trees, GBOOST, following Kim et al. (2018)) and a long short-term memory
recurrent neural network (LSTM), following Muthamizharasan & Ponnusamy (2022). In all cases, we created
predictions by accounting for time variations in the availability of data. Specifically, in each time-segment,
the models were trained using all the covariates available and predictions were made using models trained up
to the latest available datapoint.

With respect to classical autoregressive models, we considered the univariate ARIMA model as the standard
benchmark for time-series modeling. To acknowledge variations in levels and trends of the homicides with
firearm series, we also implemented a Holt-Winters model (Winters, 1960; Gardner Jr & McKenzie, 1985). For
completeness, we considered a VAR modeling as the benchmark for multivariate analysis, following Parkin et
al. (2020) — Results are presented in Appendix B.

The main measurement used for comparison is the mean absolute error (MAE) of the model for the entire
year at every month of prediction. To compare the predictive powers of the methods, we considered the
H L N-statistic based on the difference in the model residuals, established by Diebold & Mariano (1995) and
refined by Harvey et al. (1997) to deal with short series. To assess the ability of the forecasts to accurately
anticipate changes in the series’ directionality we used the PT-statistic (Pesaran & Timmermann, 1992), by
which one can monitor the extent to which a model can anticipate the sign of the variation between two
different time-steps of a series.

Results

In-sample model estimation

The smallest model that achieved convergence in the optimization of the parameters over the entire sample pe-
riod consisted of the following four variables: monthly homicides with firearm, provisional quarterly estimates
of homicides with firearm, deaths in incidents with guns from Guns Violence Archive, and media output of
“homicide” + “shot”. To improve the model accuracy, we systematically added one of the remaining variable
if: i) its inclusion did not affect convergence, and ii) the new loading factor of the DFM was statistically
significant at a confidence level of o = 0.05. Such a procedure for model enrichment was conducted on both
lagged and non-lagged variable. The final model also included the variables of homicides from three cities
and background checks with seven months of lag. The b;’s parameters in equation (2) and their p-values are
shown in Table 2.

| HF | PQEHF | GVA | H3 | MOH | BCs(-7)
b; 0.34 0.07 0.20 0.21 0.16 0.10
p-value <1072 <1072 <1072 <1072 <1072 <1072

Table 2: Loading factors for the model fitted over the entire sample period from January 1999
to December 2020. HF refers to monthly homicides with firearm from CDC, PQE HF to provisional
quarterly annualized estimate of homicides with firearm from CDC, GVA to deaths in incidents with guns
from Guns Violence Archive, H3 to monthly homicides in the three cities, MOH to monthly media output
with “homicide”+“shot”, and BCs(-7) to monthly background checks lagged seven periods.

The fitted model explained 59.80% of the variance, as estimated through linear regression of monthly
homicides with firearm and the common factor. The resulting common factor, along with the reconstructed
series of monthly homicides with firearm, are shown in Figure 3 for the sample period.

To ascertain test the robustness and appropriateness of the obtained model, we inspected the features of
the residuals of the decomposed series. Specifically, we checked whether the residuals were normally distributed
and serially uncorrelated. With respect to nornality, we utilized four different tests settled in the literature: the
Kolmogorov-Smirnov test (Massey Jr, 1951) and its corrected version by Lilliefors (1967), the non-parametric
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Figure 3: Adjusted model fitted for the whole sample period from January 1999 to December
2020. The dashed line represents the common factor (right vertical axis) and the black line the reconstructed
series from the model on monthly homicides with firearm.

entropy-based test by Vasicek (1976), and the Shapiro-Francia test (Shapiro & Francia, 1972; Royston, 1993)
for censored data after censoring extreme data. To test for serial correlation, we employed both the Box-Pierce
(Box & Pierce, 1970) and the Ljung-Box (Ljung & Box, 1978) tests.

Results in Table 3 offer evidence in favor of normality and non-serial correlation. First, all of the normality
tests yield large p-values for the null that the residuals are Gaussian, with the unique exception of background
checks. Such a departure from normality should not be treated as a major concern. In fact, according to
Durbin & Koopman (2012), if the true distribution of the error is non-Gaussian, then the Kalman filter would
still provide the minimum variance linear unbiased estimator of the state variables, especially when only a
handful of the residuals depart from normality (Barigozzi & Luciani, 2019). Second, all the residuals are
serially uncorrelated, with the unique exception of those of quarterly annualized estimates of homicides with
firearm — which should be expected given the time resolution of this variable. Similar to isolated lack of
normality, serial correlation of a few variables have limited effect on the estimators and forecast in DFMs
Stock & Watson (2002).

Out-of-sample comparison

An out-of-sample pseudo-real-time exercise was performed to evaluate DFM predictions. For each period
of the sample history, a database was created with data available in that period. For each database, we
estimated model parameters and recorded the corresponding forecasts. We compared forecasts with the true
values and computed the MAE for each forecasted year at every month. The DFM was utilized to forecast
future homicides with firearms and to provide missing values in the previous (backcasting) and present years
(nowcasting). For example, in March 2017, the last available data for homicides with firearm is for December
2015, although information about other covariates can be available until March 2017. Through the DFM,
we backcast from January 2016 until February 2017, nowcast March 2017, and forecast from April 2017 till
December 2017. In what follows, we organize our comparisons between DFM predictions and real data in terms
of MAE values for the previous (backcasting) and present year (backcasting, nowcasting, and forecasting for
all months except January and December).

The same analysis was carried out for Al models. Since these models do not systematically impute missing
values, we interpolated quarterly data using splines with the imputeT'S R package. For the case of RF and
GBOOST, multiple models were trained according to the availability of data. Should a variable not be
available at a given month, it was excluded from the model training. For the case of LSTM, the procedure
was based on training with sequences of three periods, using the Keras R package. The parameters of the
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| Normality ‘ Serial correlation

| KS | L | \% | SF | BP | LB
ef 0.036 (0.883) | 0.036 (0.554) | 0.098 (0.062) | 1.315 (0.094) | 1.327 (0.249) | 1.343 (0.247)
v, 0.077 (0.950) | 0.077 (0.775) | 0.153 (0.911) | -0.527 (0.701) | 9.536 (0.002) | 10.252 (0.001)
€Y, 0.054 (0.439) | 0.054 (0.066) | 0.091 (0.174) | -0.068 (0.527) | 1.274 (0.259) | 1.288 (0.256)
€%, 0.063 (0.884) | 0.063 (0.592) | 0.130 (0.445) | -0.543 (0.707) | 0.124 (0.725) | 0.128 (0.720)
€Y, 0.043 (0.749) | 0.043 (0.320) | 0.120 (0.078) | 1.720 (0.044) | 0.106 (0.745) | 0.107 (0.744)
€, 0.042 (0.913) | 0.042 (0.624) | 0.104 (0.504) | -0.592 (0.723) | 2.194 (0.139) | 2.231 (0.135)
€, 0.154 (<0.001) | 0.154 (<0.001) | 0.414 (<0.001) | 2.116 (0.017) | 2.231 (0.345) | 0.135 (0.342)

Table 3: Diagnostic tests on the DFM residuals. e{ refers to the error of the common factor and €}
to the errors of the idiosyncratic components: i=1 for provisional quarterly annualized estimate of homicides
with firearm from CDC; i=2 for monthly homicides with firearm from CDC; i=3 for deaths in incidents with
guns from Guns Violence Archive; i=4 for monthly media output with “homicide”+“shot”; i=5 for monthly
homicides in the three cities; and =6 for monthly background checks lagged seven periods. Numbers in
parentheses are p-values. We use the following acronyms: K-S (Kolmogorov-Smirnov test), L (corrected
version of the Kolmogorov-Smirnov by Lilliefors test), V (non-parametric entropy-based test by Vasicek), S-F
(Shapiro-Francia test), B-P (Box-Pierce test), and L-B (Ljung-Box test).

RF and GBOOST models were identified using cross-validation over the whole sample period; for the latter
model we used a Gaussian loss function. The networks’ composition of the LSTM was based on training over
the whole sample. A dropout layer was included after each LSTM layer, with a final time-distributed layer,
and an adam optimizer (Kingma & Ba, 2015) was used. In addition to AI models, an ARIMA model was
included as a benchmark. The number of parameters was chosen through the Akaike information criterion,
yielding an ARIMA (3,0,3) as the model that minimized the score. Since new data for homicides with firearm
appears in December of every year, such a univariate model provides the same prediction for any month from
January to December.

The MAE associated with predictions of the past and present year at every month is shown in Figure 4.
With respect to backcasting the series of homicides with firearm in the previous year, the DFM outperformed
every other model, which all showed a comparable performance to an ARIMA. Likewise, the DFM performed
better than any other model in the prediction of homicides with firearm in the present years. Importantly, the
DFM shows an improved learning ability than any other model, whereby its MAE decays faster than any other
model as a function of the month within the year. In other words, the DFM is effective in using information
about homicides with firearm and all its covariates in the past to draw accurate predictions in the present year.
Additionally, we performed a comparison between DFM and alternative autoregressive models (Holt-Winters
and VAR models), whose results, displayed in Appendix B, offer further backing to the predictive power of
DFM for backcasting, nowcasting, and forecasting homicides with firearm.
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Figure 4: Out-of-sample pseudo real-time comparison between the DFM, AI models, and
ARIMA for the period from January 2008 to December 2020, in terms of MAE: (a) previ-
ous and (b) present years. Each point represents an MAE value for either the entire year preceding the
month at which the prediction is made (a) or the entire year when the prediction is made (b). DFM (red, m),
RF (dark green, o), GBOOST (light green, A), LSTM (light blue, v), and ARIMA(3,0,3) (violet, ).

The qualitative observations drawn from the study of Figure 4 were further supported by statistical analyses
using the H L N-statistic, as shown in Table 4. We tested whether the accuracy of the DFM was better than
any of the other four models (RF, GBOOST, LSTM, and ARIMA). In agreement with our expectations, we
registered a consistent improvement in forecasting using DFM, whereby any comparison yielded a significant
difference in the H LN-statistic. With regards to backcasting, the DFM offered improved predictive capacity,
yet, some of the comparisons failed to reach statistical significance. In particular, comparisons with ARIMA
and GBOOST pointed at a marginal improvement bestowed by DFM.

We also tested the ability of the models to capture changes in directionality through the PT-statistic, that
is, we studied the extent to which they were able to forecast changes in direction over different prediction
periods. In particular, the analysis of Table 5 offers strong support for the systematic ability of DFM to
predict the changes in directionality of homicides with firearm. In addition to reliable predictions of changes
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DFM vs RF DFM vs DFM vs LSTM  DFM vs ARIMA

GBOOST
Backcast
h=1
HLN -3.01 -1.21 -3.00 -1.54
p-value <1072 0.23 <1072 0.12
h=2
HLN -2.23 -1.42 -3.64 -1.54
p-value 0.03 0.15 <1072 0.01
h=3
HLN -1.77 -1.92 -1.12 -1.82
p-value 0.08 0.05 0.07 0.07
Forecast
h=1
HLN -4.94 -5.54 -5.32 -5.12
p-value <1072 <1072 <1072 <1072
h=2
HLN -4.78 -4.87 -4.57 -4.55
p-value <1072 <1072 <1072 <1072
h=3
HLN -4.78 -4.80 -4.74 -4.70
p-value <1072 <1072 <1072 <1072
h=4
HLN -4.95 -5.89 -4.51 -4.22
p-value <1072 <1072 <1072 <1072
h=5
HLN -5.62 -5.59 -4.56 -4.17
p-value <1072 <1072 <1072 <1072
h=6
HLN -5.01 -5.33 -4.43 -4.04
p-value <1072 <1072 <1072 <1072

Table 4: Statistical analysis of DFM performance in backcasting and forecasting against other
AI models and ARIMA using the HLN-statistic. The comparisons are carried out for different fore-
cast /backcast horizons (h); bold values indicate a significant statistic at o = 0.05.

in directionality for the first backcast period, the DFM also yielded some predictive abilities for longer backcast
periods. Importantly, the DFM was the only model that was able to reliably predict such changes for any
forecast horizon.

Discussion

In the 2010s, violent crimes exhibited a downward trend in the US (Friedman et al., 2017). However, some types
of crimes, mainly those related to firearms, have increased in the period 2015-2020 (Albrecht, 2022), thereby
attracting media attention and fueling gun policy debates (Barry et al., 2019). The spark in homicides with
firearm during the lockdown in 2020 was the dramatic culmination of such a trend, which, however, remained
officially undetected for two years — until official data was released. Such a systematic delay represents
a major hurdle for policymakers and practitioners to promptly react to changes in violence. Establishing
reliable, statistical tools to predict homicides with firearm is a key, open challenge.
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DFM RF GBOOST LSTM ARIMA

Backcast
h=1
PT 2.38 1.83 1.14 3.06 1.83
p-value <1072 0.03 0.13 <1072 0.03
h=2
PT 1.06 0.61 0.61 0.10 -0.61
p-value 0.14 0.27 0.27 0.46 0.73
h=3
PT 2.34 0.61 1.83 -0.61 -1.83
p-value <1072 0.27 0.03 0.73 0.97
Forecast
h=1
PT 5.42 0.72 1.02 -2.32 0.00
p-value <1072 0.24 0.15 0.99 0.5
h=2
PT 4.67 -1.02 -1.41 -0.61 -1.99
p-value <1072 0.85 0.92 0.73 0.98
h=3
PT 4.34 0.20 0.51 -0.71 -2.27
p-value <1072 0.42 0.31 0.76 0.99
h=4
PT 3.82 0.28 0.58 -2.23 -1.64
p-value <1072 0.39 0.28 0.99 0.95
h=5
PT 3.90 0.94 0.89 -0.75 -1.85
p-value <1072 0.17 0.19 0.77 0.97
h=6
PT 3.85 0.27 -0.10 -0.68 -1.18
p-value <1072 0.39 0.54 0.75 0.88

Table 5: Statistical analysis of direction predictive accuracy of DFM, AI models, and ARIMA
using the PT-statistic. The comparisons are carried out for different forecast/backcast horizons (h); bold
values indicate a significant statistic at @ = 0.05.

Standard methods, like univariate autoregressive models, are known to yield unreliable predictions, whose
error grows over time (Huang et al., 2020). Multivariate vector autoregressive models could, in principle,
stabilize error growth, but the limited length of the time-series challenges the estimation of salient model
parameters. The short length of the time-series also hampers the use of AI methods, which may overfit the
data and fail to capture underlying patterns. Such an issue is further exacerbated by the wide difference in
the range of the available time-series, which further restricts the dataset available for training. To address
these issues, we propose a dynamic factor model, as a parsimonious monthly representation of the dataset
that is updated in real time as any new information about homicides with firearm and any other explanatory
variable (provisional quarterly estimates of homicides with firearm, deaths in incidents with guns from Guns
Violence Archive, and media output of “homicide” + “shot”) becomes available.

Our approach is not free of limitations. One of the key shortcomings of the proposed dynamic model is
that, as a single index model, it relies on unique common dynamics. In principle, multiple grouped dynamics
might coexist when working with large datasets, so that more than one common factor would be needed.
In such a case, homicides with firearm could be associated with more than a single common factor, thereby
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challenging the use of a dynamic factor model with a single factor for reliable predictions. Likewise, the loading
factors of the dynamic factor model could be time-varying; for example, during a certain period, homicides
with firearm might be closely related to social unrest and in another period, they might be tied to gun-related
dynamics. Such time-varying dynamics might have occured in the last section of the observation, entailing
the COVID-19 lockdown, when it is tenable that additional social and economic variables might have played
a role. In addition to these methodological drawbacks, we should acknowledge limitations in the process of
data curation, whereby data from media can be noisy and crowdsource databases are not officially verified,
leading to potentially inaccurate estimations.

In the future, several research directions can be pursued. First, Bayesian estimation following Del Negro
& Otrok (2008), or extended/unscented Kalman filters can be leveraged to cope with richer dynamics and
nonlinear behaviors. Second, the approach can also be adapted to a spatio temporal setting, as in Lopes et
al. (2011), working with time-series of homicides with firearm for distinct US states. Lastly, we envision the
inclusion of further data, like the Quarterly Tables from NIBRS (FBI, 2022b) to enrich the existing dataset
and enhance the accuracy of our predictions.

Conclusions

The investigation carried out in this effort bears key methodological and practical insights that should be
highlighted. From a methodological point of view, we find that decomposing the time-series of homicides
with firearm into common and idiosyncratic components through a dynamic factor model yields superior
predictions than standard autoregressive and AI models. The superior performance of the dynamic factor
model is likely due to asynchronous reporting calendar for official mortality statistics by the CDC, which
strain the applicability of the existing machinery. The dynamic factor model thrives on this asynchronicity,
where its Kalman filter allows for the incorporation of any information as it becomes available, thereby easing
the processes of backcasting, nowcasting, and forecasting.

Despite their increased computational costs, Al techniques failed to contribute significant improvement
with respect to a benchmark ARIMA model, in contrast with the dynamic factor model that systematically
outperformed ARIMA in backcasting, nowcasting, and forecasting in terms of H LN-statistic (Harvey et al.,
1997). The improved ability to detect trends of the dynamic factor model comes with the further additional
advantage of reliably anticipating changes in directionality in the time-series of homicides with firearms, a key
element to effective policymaking. Through PT-statistic (Pesaran & Timmermann, 1992), we demonstrated
an improved ability to detect such changes for both backcasting and nowcasting, in contrast with any other
model that can only be reliably used for very narrow backcasting periods.

To our surprise, a new research has been recently conducted by AH firm (AH Datalitycs, 2022), as high-
lighted by the New York Times (New York Times, 2022), pointing at a reduction of homicides this year.
Gun deaths, injuries, and mass shootings are also down this year, compared to the previous year. The New
York Times provides an interesting interpretation of the findings, relating to a return to normalcy after a
long pandemic, and touches on some “bad news bias” that have prevented such a funding to reach a wider
audience. Data by the CDC regarding this very same time period will not be available until December 2023:
our new approach to prediction of homicides with firearm could be key in accelerating the validation stage
of any new findings like those by AH firm. More in general, the superior performance of the dynamic factor
model has important, practical implications for policymakers and practitioners who are tasked with making
timely decisions on pressing topics around violence with limited and often outdated data. In this vein, the
model may be used to fill data gaps and anticipate outbreaks of violence, thereby offering a concrete aid to
evidence-based interventions.
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Appendix A: Description of methods used for comparison

ATl and ARIMA models

Here, we present a brief description of the Al and ARIMA models that are used in the main manuscript to
assess the performance of the DFM. First, we offer some intuition behind tree-based methods (random forest,
RF and gradient boosting trees, GBOOST) and then turn our attention to long short-term memory neural
networks (LSTM) and the ARIMA model.

RF. Tree-based methods (Breiman, 2001) involve the segmentation/partition of the predictor space into
a finite set of regions by minimizing a given loss function. Toward improved robustness, RF and GBOOST
produce multiple trees that are combined to yield a single consensus prediction. More specifically, RF builds
multiples decision trees on bootstrapped training samples and averages them to obtain the prediction. To avoid
the creation of correlated trees that would grow the variance of the final predictor, the algorithm considers a
random sample of m predictors among the full available set at each split of any tree. From cross-validation of
the whole sample, we set m = 48, the number of bootstrapped trees equal to 200, and the minimum node size
equal to 5.

GBOOST. GBOOST does not involve bootstrap sampling. Instead, the trees are grown sequentially
and each of them is fit to a modified version of the original dataset. Specifically, the algorithm has three
parameters: the number of trees B, the shrinkage parameter A\, and the number of splits d in each tree, which
controls the complexity of the boosted ensemble. The algorithm implements the following steps:

1. Initialize the algorithm with a null tree ( f= 0) and residuals equal to the observations of the dependent
variable (r; = y;, for all ¢ in the training set).

2. For b=1,2..., B, create multiple trees by
(a) fitting a tree f* with d splits;
(b) update the tree by adding a shrunken version of the new tree,
fefenf,
(c) update the residuals X
Ty < Ti— )\fb(itl),
where z; is the value of the independent variable in the training set.

3. Output the boosted model
B
F=2 "
b=1

After cross validation with the whole sample, we choose B =20, A = 0.5, and d = 3.

LSTM. The long short-term memory networks, LSTM, are a particular case of recurrent neural networks
(RNN) that were proposed by Rumelhart et al. (1986) to process variable length sequences of inputs. The
LSTM network is created with different layers where a back-propagation algorithm (typically through the
stochastic gradient descent procedure) is used to estimate the network parameters during the training process.
In contrast with standard RNN, the LSTM networks do not suffer from the so-called “long short-term memory
problem”, as pointed out in Hochreiter (1991), from which during back-propagation the gradient might vanish
or explode and therefore artificially affecting the training process. In our case, the adam optimizer was used,
which is an extension of the standard stochastic gradient descent procedure, to minimize the mean absolute
error (MAE). Moreover, the networks composition were first trained with the whole sample, minimizing the
error the configuration with two LSTM layers, with 50 and 20 neurons respectively. A dropout layer was
included after each LSTM layer, with a dropout rate of 0.5 to avoid overfitting, and a final time-distributed
layer was added at the end. The training was performed through 10 epochs.

ARIMA. The univariate autoregressive model assumes that the dynamics of a time series, y:, is driven
by its own past. In particular, assuming the number of lag-observations to be equal to p and mean value to
be equal to p, the time-series can be written as

Yo = p+a(L)(ye1 - p) + &, (13)
where L is the lag-operator, a(L) = (a1 +aaL +... +a,LP™"), and the errors ¢; are i.i.d. following N'(0,0?). By

choosing the order of the moving average to be equal to g and the degree of differencing to be equal to d, we
obtain ARIMA(p,d, q), defined as
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(1-a1—asL— ... —ap L Y((1= L)%y —p) = (1 + 61 + 0oL + ... + 0,LY)ey, (14)

For the time-series of homicides with firearm, we used an ARIMA(3,0,3) as a parsimonious, yet descriptive
model; the estimated coefficients and their respective p-values are presented in Table 6.

| a | e [ a | & | & | 6
Value -0.09 0.12 0.95 0.68 0.64 -0.35
p-value <1072 <1072 <1072 <1072 <1072 <1072

Table 6: Estimated coefficients for the ARIMA (3,0,3) for homicides with firearm. The intercept
was not statistically significant and the resulting AIC was —7510.

Alternative autoregressive models

In addition to the ARIMA examined in the main manuscript, we considered two alternative autoregressive
models: the Holt-Winters’ method, initially proposed by Holt (1957) and extended to account for seasonality
by Winters (1960), and the vector autoregressive (VAR) model, the natural extension of univariate models to
multivariate settings Sims (1980).

Holt-Winters. The Holt-Winters’ method uses exponential smoothing to encode the values of a time-
series, y:, as a combination of three components: the level (I;), trend (b:), and seasonal factor (s¢). The three
components are determined using smoothing methods as follows:

le = oyt = St-m) + (1 — @) (li-1 + bi-1)
be = Bl = le—1) + (1 = B)bi—1 (15)
st =y(ye —le-1 = be-1) + (1 =) St-m,

where a, 3, and 7 are the corresponding smoothing parameters, and m denotes the frequency of the seasonality.
The parameters of the model can be estimated by minimizing the residual sum of squares (in our case,
a=0.3,8=0.1, and v = 0.1), and l4, b, and s; can be obtained by simply initializing at the first time-step.
For forecasting h time-steps in the future, we implement the following;:

Yern = Lo + hby + St+h—m(k+1)s (16)

where k is the integer part of (h—1)/m.
VAR. Let Y; be a vector of n stationary time- series yi ¢, ..., yn,+ with expected value v. The reduced form
of a VAR model with p lags, VAR(p), is

Y:=v+C(L)(Yi-1 —v) +uy, (17)

where C(L) = (Cy +Co L +...+C, LP™") is the matrix of lag polynomials and the errors are serially uncorrelated
with zero mean and covariance matrix €. In our database, the in-sample estimation is performed with only
four variables: homicides with firearm, media output on “homicide” + “shot”, homicides from three cities,
and background checks, while deaths in incidents with guns from the Guns Violence Archive and provisional
quarterly annualized estimate rate for homicides with firearm from the CDC are omitted because they start
very late The model can be estimated by ordinary least squares in each equation and the lag-length is typically
chosen by using model selection criteria (in our case, we used AIC and obtained p = 3). In-sample parameter
estimates are shown in Table 7.

Appendix B: Comparison with alternative autoregressive models

Here, we compare the DFM with Holt-Winters’ method and VAR.Similar to ARIMA, the Holt-Winters’
method yields the same forecast for every estimation period from January to December as new data for
homicides with firearm appear in December every year. With the VAR model, we implemented two different
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HF, MOH; H3: BCs; HF» MOH, H3, BCs, HF3 MO3 H33 BCs3 v

HF 41071 21074 2.102 21078 31071 2.107° 7102 -1.107° 11071 1-1074 1-102 1-1072 610710
MOH 2.10° 31071 1-10° -81076 11072 91072 -3.10° 71076 4107} 31073 3.10° -3.1077 -3.10"

H3 21076 9-107° 21071 210712 11075 -2.107° 21071 | -210712 | -1.107° 21078 31071 710713 | -2.1076
BCs 1-108 2.103 6-10° 81071 -1-10° 4102 -610° -2.107" 1-108 210 11010 21071 -41076

Table 7: Estimated coefficients for the VAR(3) model. HF refers to monthly homicides with firearm
from CDC, H3 to monthly homicides in the three cities, MOH to monthly media output with “homicide”+“shot”,
and BCs to monthly background checks. Subscript refers to the lag of the variable in the model.

approaches for prediction. In the first, we performed an iterative forecast from the last time period where all
observations for all the four variables were available and we refer to these results as VAR4. For predictions
after 2017, there is the possibility to include deaths in incidents with guns from the Guns Violence Archive; the
VAR model accounting for this extra variable is referred to as VAR5. In the second approach, which we refer
to as VAR “fill”, we performed a one-step-ahead forecast from the period where all observations were available.
For the next period, if some variables became available, we disregarded the forecast of those variables and
used observations in their place. In this case, the forecasts computed with the four original variables are called
VARfill4, while those that include also deaths in incidents with guns from the Guns Violence Archive are
referred to as VARAill5.

The results of the out-of-sample analysis are displayed in Figure 5. As in the case of Al models, the DFM
was the only model with better performance than the ARIMA benchmark model. Holt-Winters and VARfill4
performed similarly to the ARIMA model in the previous years, while just VAR{ill4 did it in the present years.
Finally, VAR4, VAR5, and VARAill5 predictions perform poorly.
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Figure 5: Out-of-sample pseudo real-time comparison between DFM and other autoregressive
models in the period from January 2008 to December 2020, in terms of MAE: (a) previous and
(b) present years. Each point represents an MAE value for either the entire year preceding the month at
which the prediction is made (a) or the entire year when the prediction is made (b). DFM (red, m), VAR with
four variables and “fill” schema (orange, ®), VAR with four variables (turquoise, +), VAR with five variables
and “fill” schema (pink, ®), VAR with five variables (yellow, x), Holt-Winters’ method (light blue, x), and
ARIMA(3,0,3) (violet, ). In (b), VAR predictions with five variables with “fill” scheme are not shown for
their higher range. VAR and VAR models with “fill” scheme do not contain predictions for years 2013 and

dec jén feb mar abr m:'ay ijn jLIJ| al'Jg sép oct nov
Month

(b)

2008, respectively, due to their outlier performance.
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