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ABSTRACT

Suppose L simultaneous independent stochastic systems gen-
erate observations, where the observations from each system
depend on the underlying parameter of that system. The ob-
servations are unlabeled (anonymized), in the sense that an
analyst does not know which observation came from which
stochastic system. How can the analyst estimate the under-
lying parameters of the L systems? Since the anonymized
observations at each time are an unordered set of L mea-
surements (rather than a vector), classical stochastic gradi-
ent algorithms cannot be directly used. By using symmetric
polynomials, we formulate a symmetric measurement equa-
tion that maps the observation set to a unique vector. We then
construct an adaptive filtering algorithm that yields a statisti-
cally consistent estimate of the underlying parameters.

1. INTRODUCTION

The classical stochastic gradient algorithm operates on a
vector-valued observation process that is inputted to the al-
gorithm at each time instant. Suppose due to anonymization,
the observation at each time is a set (i.e., the elements are
unordered rather than a vector). Given these anonymized
observation sets over time, how to construct a stochastic
gradient algorithm to estimate the underlying parameter?
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Fig. 1: Schematic setup comprising L stochastic sys-
tems. Given the sequence of anonymized observation sets
{y1(k),...,yr(k)}, k=1,2,...), the aim is to estimate the
underlying parameter set ° = {67, ...09 } of the L systems.
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Figure 1 shows the schematic setup comprising L si-
multaneous independent stochastic systems indexed by [ =
1,..., L, evolving over discrete time £k = 1,2,.... Each
stochastic system [ is parametrized by true model 6} < RP
and generates observations y;(k) € R given input signal
D x D dimensional matrix v (k):

w(k) = (k) 67 +ui(k), 1€ L] {L....L} (1)

We assume that v;(k) € RP is an iid random sequence with
bounded second moment. We (the analyst) know the input
signal sequence (¢(k),k = 1,2,...). For convenience, as-
sume that elements of (¢¥(k),k = 1,2,...) are zero mean
iid sequences of random variables. Thus the output of the L
stochastic systems at time k is the observation matrix

y(k) = [y1(k),...,yL(k)] € REXP

where o’ denotes transpose of matrix a.
The analyst observes at each time % the anonymized (un-
labeled) observation set

y(k) = or(y(k)) = {y1(k),...,yr(k)} 2)

The anonymization map o is a permutation over the set
{1,2,...,L}. By anonymization we mean that the row
indices ! of the matrix y(k) are hidden. Thus y(k) is an
unordered set of L row vectors. The time dependence of
oy, emphasizes that the permutation map operating on y (k)
changes at each time k.

Aim. The analyst only sees the anonymized observation
set (k) at each time k. Given the time sequence of observa-
tion sets (y(k),k = 1,2,...), the aim of the analyst is to esti-
mate the underlying set of true parameters 0° = {6¢,...,09}
of the L stochastic systems. Note that the analyst aims to
estimate the set 6°; due to the anonymization (unknown per-
mutation map), in general, it is impossible to assign which
parameter belongs to which individual system.

Remarks: (i) Another way of viewing the estimation ob-
jective is: Given noisy measurements of unknown permuta-
tions of the rows a matrix, how to estimate the elements of
the matrix? Our main result below is to propose a symmetric
transform framework that circumvents modeling the permu-
tations o, and is agnostic to the probabilistic structure of 0.
In our extended paper [1], we assign a Markovian process to
the permutations oy, yielding a permutation mixture model.
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(ii) Since the ordering of the elements of the set y(k) is
arbitrary, we cannot use the classical LMS algorithm. If we
naively choose a random permutation of the set y(k) as the
observation vector, and feed this L-dimensional observation
vector into L LMS algorithms, then the estimates will not in
general converge to 07,1 =1,..., L.

Applications. We classify applications of the observa-
tion model (1), (2) into two types: (i) Due to sensing limi-
tations, the sensor provides noisy measurements from multi-
ple processes, and there is uncertainty as to which measure-
ment came from which process and (ii) examples where the
identities of the processes generating the measurements are
purposefully hidden to preserve anonymity. Anonymization
of trajectories arises in several applications including health
care where wearable monitors generate time series of data
uniquely matched to an individual, and connected vehicles,
where location traces are recorded over time.

The concept of k-anonymity' (we will call this L-anonymity

since we use k for time) was proposed by [2]. It guarantees
that there are at least L identical records in a data set that are
indistinguishable. In our formulation, due to the anonymiza-
tion step (2), the identities (indexes) [ of the L processes
are indistinguishable. More generally, in the model (1), (2),
the identity [ of each target itself can be a categorical vec-
tor [l1,...,In]. For example if each process models GPS
data trajectories of individuals [3], the categorical data v; (k)
records discrete-valued variables such as individuals identity,
specific locations visited, etc. To ensure L-anonymity, these
categorical vectors are all allocated a single vector, thereby
maintaining anonymity of the categorical data. Thus the
analyst only sees the anonymized observation set y(k).

In our formulation, the input signal matrices (k) are the
same for all L processes; preserving L-anonymity. If the an-
alyst could specify a different input signal 1/; to each system
[, then the analyst can straightforwardly estimate ¢; for each
target process [, thereby breaking anonymity.

2. MAIN IDEA. SYMMETRIC TRANSFORMS &
ADAPTIVE FILTERING

A remarkable approach developed in the 1990s by Kamen and
coworkers [4, 5, 6] in the context of Bayesian estimation, in-
volves using symmetric transforms. In this paper we extend
this idea of symmetric transforms to stochastic optimization.
Specifically, we show that the symmetric transform approach
preserves convexity. Since [4] deals with Bayesian filtering
for estimating the state, convexity is irrelevant. In compar-
ison, preservation of convexity is crucial in stochastic opti-
mization problems to ensure that the estimates of a stochastic

'Data anonymity is mainly studied under two categories: k-anonymity
and differential privacy. Differential privacy methods add noise to trajectory
data providing a provable privacy guarantee for the data set. Even though our
model has additive noise v and this can be motivated in terms of differential
privacy; we will not discuss differential privacy in this paper.

gradient algorithm converge to the global minimum.

To explain our main ideas, suppose there are L = 3
scalar-valued random processes, so each observation y; (k)
is scalar-valued. For simplicity assume the input signal
(k) = 1; so the observations are y; (k) = 67 + v;(k). Given
the anonymized observation set y(k) = {y1(k),...,y3(k)}
at each time k, how to estimate the parameters 67,609, 69?
Our main idea is to use the set y(k) to construct a pseudo-
measurement vector z(k) € R3. Suppressing the time depen-
dency (k), we construct pseudo-measurements 21, 22, 23 via
a symmetric transform as follows:

21 = St{y1,Y2,¥3} = y1 + Y2 +y3
zo = So{y1, Y2, Y3} = y1 Y2 + Y1 Y3 + Y2 U3 3)
23 = S3{y1, Y2, Y3} = Y1 Y2 ¥3

The key point is that the pseudo-observations z; are sym-
metric in y1,y2,ys. Any permutation of the elements of
{y1,...,ys} does not affect z;. In this way, there is no need
to assign (classify) an observation to a specific process. But
we have introduced a new problem: estimating 6° using the
pseudo-observations is no longer a convex stochastic opti-
mization problem. To estimate ° we minimize the second
order moments to compute:

0* = argmin{E{(z; — (01 + 02 + 65))*} “)
6

+ E{(22 — (0102 + 0103 + 0205))*} + E{(23 — 610205)*}}

Clearly the multi-linear objective (4) is non-convex in 61, 03, 0.
However, the problem is convex in the symmetric transformed
variables (denoted as A below), and the original variables 6
can be evaluated by inverting the symmetric transform. We
formalize this as follows:

Result 1. (Informal) The global minimum 6* of the non-
convex objective (4) can be computed in three steps:

(i) Given the observations y(k), compute the pseudo-observations

z(k) using (3).

(ii) Using these pseudo-observations, estimate the pseudo
parameters \y = 01 + 0 + 03, Ao = 0105 + 01603 + 0503,
A3 = 010505. Clearly (4) is a stochastic convex optimization
problem in pseudo-parameters A1, A2, A3. Let A\], A5, A5 de-
note the estimates.

(iii) Finally, solve the polynomial equation s® + \}s* + X35+
A5 = 0. Then the roots® are §*. Computing the roots of a
polynomial is equivalent to computing the eigenvalues of the
companion matrix.

Put simply, Result 1 says that while (4) is non-convex in
the roots of a polynomial, it is convex in the coefficients of
the polynomial! To explain Step (ii), clearly (4) is convex in
the pseudo-parameters A1, A2, A\3. We can straightforwardly
compute the global minimum in terms of these pseudo param-
eters as A7 = E{z1}, A5 = E{22}, \j = E{z3}.

2Strictly speaking 61, 02, 03 are factors. The root is the negative of factor.
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To explain Step (iii) of the above result, we use a crucial
property of symmetric functions. The reader van verify that
the following monic polynomial in variable s satisfies

(5 +61)(s+ 02)(s+ 03) = 8% + A\1s% + Aos + A3

The above equation states that a monic polynomial with
pseudo-parameters Aj, A2, A3 as coefficients has the parame-
ters 61, 65, 03 as roots of the polynomial. By the fundamental
theorem of algebra, there is a unique invertible map between
the coefficients of a monic polynomial and the set of roots of
the polynomial. As a result, we can first compute the global
minimum \* of the above objective (4) (since it is convex in
M), and then compute the unique parameter set 8, which is
the set of roots of the corresponding polynomial. Thus we
have computed the global minimum #* of the non-convex
objective (4). Thus, Result 1 estimates the true parameter set
0° given anonymized observations (in a simplified setting).

3. ADAPTIVE FILTERING WITH SCALAR
ANONYMIZED OBSERVATIONS

Due to page restrictions, we discuss the problem of estimat-
ing the true parameter 6° when the observation y; (k) of each
process [ is a scalar; so D = 1 in (1) and ¥ (k) is a scalar. The
vector observation case is discussed in [1]; see Conclusions.
Since there are L independent scalar processes in (1), the pa-
rameters generating these L processes is 6° = {67, ...,6%}.
Given the anonymized observation set

y(k) = {y1(k),...,yr(k)} at each time k, our main idea is
to construct a pseudo-measurement vector z(k) € RE. Sup-
pressing the time dependency (k), we construct the L pseudo-
measurements z;, ! € [L] via a symmetric transform? [7] as

z=S{y} <= z=5{y,...,yL}
defn
= Z Yir Yiz Yo L€ [L] )
1 <tz <<
where [L] = {1,...,L}. Using the classical Vieta’s formu-

las [8], that the pseudo-measurements z;, ! € [L] in (5) are the
coefficients of the following L-order polynomial in variable s:

L L
S{y}(s) e:n]:[ s+uy)=s +Zzls (6)
I=1 =1

As an example, consider L = 3 independent scalar pro-
cesses. Then the pseudo-observations using (5) are given
by (3). Indeed, the pseudo-observations z1, 22, 23 are the co-
efficients of the polynomial (s + y1)(s + y2)(s + y3).

Note that each z; is permutation invariant: any permuta-
tion of the elements of {yi,...,yr} does not affect z;. That
is why our notation above involves the set {y1,y2, ..., ¥y}

3By symmetric transform S;, we mean Si{y1,...,yr} = S {P -
{y1,...,yL}} for any permutation P of {y1,...,yr}. Thus while the
elements {y1, ...,y } are arbitrarily ordered, the value of S;{-} is unique.

Symmetric Transform and Estimation Objective.
Given the set valued sequence of anonymized observa-
tions, y(1),y(2),...y(k),... generated by (1), our aim is
to estimate the true parameter set 6° = {6¢,...,0%}. To
do so, we first construct the pseudo measurement vectors

2(1),2(2),...,z(k) via (5). Denoting 8 = {6,,...,01}, our
objective is to estimate the set 0* = {67, ...,07}:
0" = argmin Z E ‘Zl — Sl{w91,¢92, . .,¢9L}|2
le[L] (N
where 2; = Sl{wﬁf +vp,...,0 07 + UL}

Recall the symmetric transform S; is defined in (5). Finally,
define the symmetric transforms on the model parameters as

A= S{Q} — N\ = 81{61,...,6’L}, le [L} ()

Note that A = [A1,...,Az] is an L-dimension vector
whereas 6 is a set with L (unordered) elements.

From (7), we see that * is a second order method of mo-
ments estimate of 6° wrt pseudo observations. Importantly,
this estimate is independent of the anonymization map o.

3.1. Main Result. Consistent Estimator for 6°.

We are now ready to state our main result, namely an adaptive
filtering algorithm to estimate 6° given anonymized scalar ob-
servations. The result says that while objective (7) is non-
convex in ), we can reformulate it as a convex optimization
problem in terms of A\ defined in (8). The intuition is that
the objective (7) is non-convex in the roots of the polynomial
(namely, ) , but is convex in the coefficients of the polyno-
mial (namely, \); and by the fundamental theorem of algebra
there is a one-to-one map from the coefficients A to the roots
0. Therefore, by mapping observations to pseudo observa-
tions, we can construct the optimal estimate of (7).

Theorem 1. Consider the sequence of anonymized observa-
tion sets (y(k), k > 1) generated by (1) and (2), where (k)

is a known iid scalar sequence. Then
1. The objective (7) can be expressed as L decoupled con-
vex optimization problems in terms of X defined in (8):

VNP2, 2(k) = (k) A +wi(k) (9)

The zero mean process w(k) is defined in [1].

2. The global minimizer 0* of objective (7) is consistent in
the sense that 6* = 6°.

3. With pseudo observations z(k) = S{y(k)} (5), con-
sider L decoupled adaptive filtering algorithms oper-
ating on z(k): Choose \(0) € RE. Then forl € [L],

minE|z —
Al

Nk +1) = (k) + e (k) (z21(k) — ' (k) Mi(k))
0(k+1) =Re(S™'(A(k +1))) (10)
Here S™! is defined in (11) and Re denotes the real

part of the complex vector. The estimates (k) converge
in probability and mean square to 6*.
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Discussion: 1. Theorem 1 gives a tractable and con-
sistent method for estimating the parameter set 6° of the L
stochastic systems given set valued anonymized observations
y(1),y(2),.... We emphasize that since the observations
y(k) are set-valued, the ordering of the elements of §° can-
not be recovered; Statement 1 of the theorem asserts that
the set-valued estimate * converges to 6°. Statement 2 of
the theorem gives an adaptive filtering algorithm (10) that
operates on the pseudo observation vector z(k). Applying
the transform S~ to the estimates A(k) generated by (10)
yields estimates 6(k) that converge to the global minimum
6*. Since ° € R”, the second step of (10) chooses the real
part of possibly complex valued roots.

2. The symmetric operator S is uniquely invertible since
an L-th degree polynomial has a unique set of at most L roots.
Given A = S{#}, & = S~1()) are the unique set of roots
{61, ...,01} of the polynomial with coefficients \;,! € [L]:

L
=57\ = s"+> Nl =
=1 l

L
(s+6,) 1)

=1

Note that S~1(-) maps the vector \ to unique set 6.

3. The adaptive filtering algorithm (10) uses a constant
step size; hence it converges weakly (in distribution) to the
true parameter 6° [9, 10]. Since we assumed 6° is a constant,
weak convergence is equivalent to convergence in probability.

4. A stochastic gradient algorithm operating on (7) is

O(k+1) =0(k) —eVo Y _ |z(k)
le[L]

= Si{e(k) 01 (K), ... (k) O (R)}P (12)

However, objective (7) has local minima and stochastic gra-
dient algorithm (12) can get stuck at these local minima (see
numerical example). In comparison, the formulation involv-
ing pseudo-measurements yields a convex (quadratic) objec-
tive and algorithm (10) provably converges to the global min-
imum. There is also another problem with (12). If initial con-
dition 6(0) is chosen with equal elements, then since gradient
Vy is symmetric (wrt y and 6), all the elements of the esti-
mate 6(k) have equal elements at each time k, regardless of
the choice of 6°, so algorithm (12) will never converge to 6°.

4. NUMERICAL EXAMPLE

We show that objective (7) has local minima wrt #; so the
classical stochastic gradient algorithm (12) gets stuck in a lo-
cal minimum. In comparison, the objective (9) using pseudo-
measurements is convex (quadratic) wrt A and so the adaptive
filtering algorithm (10) converges to global minimum 6*.

We consider L = 3 independent scalar processes (D = 1)
with anonymized observations generated as in (2). The true
model that generates the observations is ° = [—2, 5, 8]'.
The regression signal ¢(k) ~ N(0,0%) where 0 = 1. The
noise error v(k) ~ N(0,02) where o, = 1072.

estimate 0(k)

estimate 0(k)
L b o v & o o

A D o v A o ®

0 0.5 1 15 2 time k x10%

time k x10°

(a) Algorithm (10) con-
verges to global optimum
0°.

(b) Classical stochastic
gradient algorithm (12)
gets stuck in local mini-
mum.

Fig. 2: Fig.2a shows that the parameter estimates generated
by Algorithm (10) converge to 6°. Fig.2b shows that the
parameter estimates generated by stochastic gradient algo-
rithm (12) operating on (7) do not converge to 6°.

We ran the adaptive filtering algorithm (10) on a sample
path of 2 x 10° anonymized observations generated by the
above model with step size ¢ = 10~*. For initial condition
6(0) = [1, 2, 3]’, Figure 2a shows that the estimates generated
by Algorithm (10) converges to 6°.

We also ran the classical stochastic gradient algorithm (12)
on the anonymized observations. Recall this algorithm min-
imizes (7) directly. The step size chosen was ¢ = 1077
(larger step sizes led to instability). For initial condition
0(0) = [1,2,3], Figure 2(b) shows that the estimates con-
verge to a local stationary point [—2.02,6.12,6.45)" which
is not #°. For initial condition 6(0) = [3,6,9]’, we found
that the estimates converged to #°. This provides numerical
verification that objective (7) is non-convex. Besides the non-
convex objective, another problem with the algorithm (12)
is that if we choose 6(0) = [c, ¢, | for any ¢ € R, then all
elements of A(k) are identical, regardless of 6°.

5. CONCLUSIONS

We proposed a symmetric transform based adaptive filtering
algorithm for parameter estimation when the observations are
a set (unordered/anonymized) rather than a vector. Such ob-
servation sets arise due to uncertainty in sensing or deliberate
anonymization of data. By exploiting the uniqueness of fac-
torization, Theorem 1 showed that the adaptive filtering algo-
rithms converge to the true parameter (global minimum).
Extension. In [1], we extend the paper to vector observa-
tion sets by developing vector symmetric transforms using a
two-variable polynomial transform. In general the fundamen-
tal theorem of algebra, does not extend to polynomials in two
variables. By exploiting that fact that the algebraic ring of
multi-variable polynomials is a unique factorization domain
over the ring of one-variable polynomials, we construct an
adaptive filtering algorithm that yields consistent estimates of
the underlying parameters thereby extending Theorem 1 to
vector observations. [1] also has several numerical examples.
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