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ABSTRACT

Suppose L simultaneous independent stochastic systems gen-

erate observations, where the observations from each system

depend on the underlying parameter of that system. The ob-

servations are unlabeled (anonymized), in the sense that an

analyst does not know which observation came from which

stochastic system. How can the analyst estimate the under-

lying parameters of the L systems? Since the anonymized

observations at each time are an unordered set of L mea-

surements (rather than a vector), classical stochastic gradi-

ent algorithms cannot be directly used. By using symmetric

polynomials, we formulate a symmetric measurement equa-

tion that maps the observation set to a unique vector. We then

construct an adaptive filtering algorithm that yields a statisti-

cally consistent estimate of the underlying parameters.

1. INTRODUCTION

The classical stochastic gradient algorithm operates on a

vector-valued observation process that is inputted to the al-

gorithm at each time instant. Suppose due to anonymization,

the observation at each time is a set (i.e., the elements are

unordered rather than a vector). Given these anonymized

observation sets over time, how to construct a stochastic

gradient algorithm to estimate the underlying parameter?
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Fig. 1: Schematic setup comprising L stochastic sys-

tems. Given the sequence of anonymized observation sets

({y1(k), . . . , yL(k)}, k = 1, 2, . . .), the aim is to estimate the

underlying parameter set θo = {θo1, . . . θ
o
L
} of the L systems.
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Figure 1 shows the schematic setup comprising L si-

multaneous independent stochastic systems indexed by l =
1, . . . , L, evolving over discrete time k = 1, 2, . . .. Each

stochastic system l is parametrized by true model θo
l
∈ R

D

and generates observations yl(k) ∈ R
D given input signal

D ×D dimensional matrix ψ(k):
yl(k) = ψ(k) θol + vl(k), l ∈ [L]

defn
= {1, . . . , L} (1)

We assume that vl(k) ∈ R
D is an iid random sequence with

bounded second moment. We (the analyst) know the input

signal sequence (ψ(k), k = 1, 2, . . .). For convenience, as-

sume that elements of (ψ(k), k = 1, 2, . . .) are zero mean

iid sequences of random variables. Thus the output of the L

stochastic systems at time k is the observation matrix

y(k) = [y1(k), . . . , yL(k)]
′ ∈ R

L×D

where a′ denotes transpose of matrix a.

The analyst observes at each time k the anonymized (un-

labeled) observation set

y(k) = σk(y(k)) = {y1(k), . . . , yL(k)} (2)

The anonymization map σk is a permutation over the set

{1, 2, . . . , L}. By anonymization we mean that the row

indices l of the matrix y(k) are hidden. Thus y(k) is an

unordered set of L row vectors. The time dependence of

σk emphasizes that the permutation map operating on y(k)
changes at each time k.

Aim. The analyst only sees the anonymized observation

set y(k) at each time k. Given the time sequence of observa-

tion sets (y(k), k = 1, 2, . . .), the aim of the analyst is to esti-

mate the underlying set of true parameters θo = {θo1, . . . , θ
o
L
}

of the L stochastic systems. Note that the analyst aims to

estimate the set θo; due to the anonymization (unknown per-

mutation map), in general, it is impossible to assign which

parameter belongs to which individual system.

Remarks: (i) Another way of viewing the estimation ob-

jective is: Given noisy measurements of unknown permuta-

tions of the rows a matrix, how to estimate the elements of

the matrix? Our main result below is to propose a symmetric

transform framework that circumvents modeling the permu-

tations σk and is agnostic to the probabilistic structure of σk.

In our extended paper [1], we assign a Markovian process to

the permutations σk yielding a permutation mixture model.IC
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(ii) Since the ordering of the elements of the set y(k) is

arbitrary, we cannot use the classical LMS algorithm. If we

naively choose a random permutation of the set y(k) as the

observation vector, and feed this L-dimensional observation

vector into L LMS algorithms, then the estimates will not in

general converge to θo
l
, l = 1, . . . , L.

Applications. We classify applications of the observa-

tion model (1), (2) into two types: (i) Due to sensing limi-

tations, the sensor provides noisy measurements from multi-

ple processes, and there is uncertainty as to which measure-

ment came from which process and (ii) examples where the

identities of the processes generating the measurements are

purposefully hidden to preserve anonymity. Anonymization

of trajectories arises in several applications including health

care where wearable monitors generate time series of data

uniquely matched to an individual, and connected vehicles,

where location traces are recorded over time.

The concept of k-anonymity1 (we will call thisL-anonymity

since we use k for time) was proposed by [2]. It guarantees

that there are at least L identical records in a data set that are

indistinguishable. In our formulation, due to the anonymiza-

tion step (2), the identities (indexes) l of the L processes

are indistinguishable. More generally, in the model (1), (2),

the identity l of each target itself can be a categorical vec-

tor [l1, . . . , lN ]. For example if each process models GPS

data trajectories of individuals [3], the categorical data ψl(k)
records discrete-valued variables such as individuals identity,

specific locations visited, etc. To ensure L-anonymity, these

categorical vectors are all allocated a single vector, thereby

maintaining anonymity of the categorical data. Thus the

analyst only sees the anonymized observation set y(k).

In our formulation, the input signal matrices ψ(k) are the

same for all L processes; preserving L-anonymity. If the an-

alyst could specify a different input signal ψl to each system

l, then the analyst can straightforwardly estimate θo
l

for each

target process l, thereby breaking anonymity.

2. MAIN IDEA. SYMMETRIC TRANSFORMS &

ADAPTIVE FILTERING

A remarkable approach developed in the 1990s by Kamen and

coworkers [4, 5, 6] in the context of Bayesian estimation, in-

volves using symmetric transforms. In this paper we extend

this idea of symmetric transforms to stochastic optimization.

Specifically, we show that the symmetric transform approach

preserves convexity. Since [4] deals with Bayesian filtering

for estimating the state, convexity is irrelevant. In compar-

ison, preservation of convexity is crucial in stochastic opti-

mization problems to ensure that the estimates of a stochastic

1Data anonymity is mainly studied under two categories: k-anonymity

and differential privacy. Differential privacy methods add noise to trajectory

data providing a provable privacy guarantee for the data set. Even though our

model has additive noise v and this can be motivated in terms of differential

privacy; we will not discuss differential privacy in this paper.

gradient algorithm converge to the global minimum.

To explain our main ideas, suppose there are L = 3
scalar-valued random processes, so each observation yl(k)
is scalar-valued. For simplicity assume the input signal

ψ(k) = 1; so the observations are yl(k) = θo
l
+ vl(k). Given

the anonymized observation set y(k) = {y1(k), . . . , y3(k)}
at each time k, how to estimate the parameters θo1, θ

o
2, θ

o
3?

Our main idea is to use the set y(k) to construct a pseudo-

measurement vector z(k) ∈ R
3. Suppressing the time depen-

dency (k), we construct pseudo-measurements z1, z2, z3 via

a symmetric transform as follows:

z1 = S1{y1, y2, y3} = y1 + y2 + y3

z2 = S2{y1, y2, y3} = y1 y2 + y1 y3 + y2 y3

z3 = S3{y1, y2, y3} = y1 y2 y3

(3)

The key point is that the pseudo-observations zl are sym-

metric in y1, y2, y3. Any permutation of the elements of

{y1, . . . , y3} does not affect zl. In this way, there is no need

to assign (classify) an observation to a specific process. But

we have introduced a new problem: estimating θo using the

pseudo-observations is no longer a convex stochastic opti-

mization problem. To estimate θo we minimize the second

order moments to compute:

θ∗ = argmin
θ

{E{(z1 − (θ1 + θ2 + θ3))
2} (4)

+ E{(z2 − (θ1θ2 + θ1θ3 + θ2θ3))
2}+ E{(z3 − θ1θ2θ3)

2}}

Clearly the multi-linear objective (4) is non-convex in θ1, θ2, θ3.

However, the problem is convex in the symmetric transformed

variables (denoted as λ below), and the original variables θ

can be evaluated by inverting the symmetric transform. We

formalize this as follows:

Result 1. (Informal) The global minimum θ∗ of the non-

convex objective (4) can be computed in three steps:

(i) Given the observations y(k), compute the pseudo-observations

z(k) using (3).

(ii) Using these pseudo-observations, estimate the pseudo

parameters λ1 = θ1 + θ2 + θ3, λ2 = θ1θ2 + θ1θ3 + θ2θ3,

λ3 = θ1θ2θ3. Clearly (4) is a stochastic convex optimization

problem in pseudo-parameters λ1, λ2, λ3. Let λ∗1, λ
∗

2, λ
∗

3 de-

note the estimates.

(iii) Finally, solve the polynomial equation s3+λ∗1s
2+λ∗2s+

λ∗3 = 0. Then the roots2 are θ∗. Computing the roots of a

polynomial is equivalent to computing the eigenvalues of the

companion matrix.

Put simply, Result 1 says that while (4) is non-convex in

the roots of a polynomial, it is convex in the coefficients of

the polynomial! To explain Step (ii), clearly (4) is convex in

the pseudo-parameters λ1, λ2, λ3. We can straightforwardly

compute the global minimum in terms of these pseudo param-

eters as λ∗1 = E{z1}, λ∗2 = E{z2}, λ∗3 = E{z3}.

2Strictly speaking θ1, θ2, θ3 are factors. The root is the negative of factor.
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To explain Step (iii) of the above result, we use a crucial

property of symmetric functions. The reader van verify that

the following monic polynomial in variable s satisfies

(s+ θ1)(s+ θ2)(s+ θ3) = s3 + λ1s
2 + λ2s+ λ3

The above equation states that a monic polynomial with

pseudo-parameters λ1, λ2, λ3 as coefficients has the parame-

ters θ1, θ2, θ3 as roots of the polynomial. By the fundamental

theorem of algebra, there is a unique invertible map between

the coefficients of a monic polynomial and the set of roots of

the polynomial. As a result, we can first compute the global

minimum λ∗ of the above objective (4) (since it is convex in

λ), and then compute the unique parameter set θ∗, which is

the set of roots of the corresponding polynomial. Thus we

have computed the global minimum θ∗ of the non-convex

objective (4). Thus, Result 1 estimates the true parameter set

θo given anonymized observations (in a simplified setting).

3. ADAPTIVE FILTERING WITH SCALAR

ANONYMIZED OBSERVATIONS

Due to page restrictions, we discuss the problem of estimat-

ing the true parameter θo when the observation yl(k) of each

process l is a scalar; so D = 1 in (1) and ψ(k) is a scalar. The

vector observation case is discussed in [1]; see Conclusions.

Since there are L independent scalar processes in (1), the pa-

rameters generating these L processes is θo = {θo1, . . . , θ
o
L
}.

Given the anonymized observation set

y(k) = {y1(k), . . . , yL(k)} at each time k, our main idea is

to construct a pseudo-measurement vector z(k) ∈ R
L. Sup-

pressing the time dependency (k), we construct the L pseudo-

measurements zl, l ∈ [L] via a symmetric transform3 [7] as

z = S{y} ⇐⇒ zl = Sl{y1, . . . , yL}

defn
=

∑

i1<i2<···<il

yi1 yi2 · · · yil , l ∈ [L] (5)

where [L] = {1, . . . , L}. Using the classical Vieta’s formu-

las [8], that the pseudo-measurements zl, l ∈ [L] in (5) are the

coefficients of the followingL-order polynomial in variable s:

S{y}(s)
defn
=

L
∏

l=1

(s+ yl) = sL +

L
∑

l=1

zl s
L−l (6)

As an example, consider L = 3 independent scalar pro-

cesses. Then the pseudo-observations using (5) are given

by (3). Indeed, the pseudo-observations z1, z2, z3 are the co-

efficients of the polynomial (s+ y1)(s+ y2)(s+ y3).
Note that each zl is permutation invariant: any permuta-

tion of the elements of {y1, . . . , yL} does not affect zl. That

is why our notation above involves the set {y1, y2, . . . , yL}.

3By symmetric transform Sl, we mean Sl{y1, . . . , yL} = Sl{P ·
{y1, . . . , yL}} for any permutation P of {y1, . . . , yL}. Thus while the

elements {y1, . . . , yL} are arbitrarily ordered, the value of Sl{·} is unique.

Symmetric Transform and Estimation Objective.

Given the set valued sequence of anonymized observa-

tions, y(1), y(2), . . . y(k), . . . generated by (1), our aim is

to estimate the true parameter set θo = {θo1, . . . , θ
o
L
}. To

do so, we first construct the pseudo measurement vectors

z(1), z(2), . . . , z(k) via (5). Denoting θ = {θ1, . . . , θL}, our

objective is to estimate the set θ∗ = {θ∗1 , . . . , θ
∗

L
}:

θ∗ = argmin
θ

∑

l∈[L]

E |zl − Sl

{

ψ θ1, ψ θ2, . . . , ψ θL
}

|2

where zl = Sl

{

ψ θo1 + v1, . . . , ψ θ
o
L + vL

}

(7)

Recall the symmetric transform Sl is defined in (5). Finally,

define the symmetric transforms on the model parameters as

λ = S{θ} ⇐⇒ λl = Sl{θ1, . . . , θL}, l ∈ [L]. (8)

Note that λ = [λ1, . . . , λL]
′ is an L-dimension vector

whereas θ is a set with L (unordered) elements.

From (7), we see that θ∗ is a second order method of mo-

ments estimate of θo wrt pseudo observations. Importantly,

this estimate is independent of the anonymization map σ.

3.1. Main Result. Consistent Estimator for θo.

We are now ready to state our main result, namely an adaptive

filtering algorithm to estimate θo given anonymized scalar ob-

servations. The result says that while objective (7) is non-

convex in θ, we can reformulate it as a convex optimization

problem in terms of λ defined in (8). The intuition is that

the objective (7) is non-convex in the roots of the polynomial

(namely, θ) , but is convex in the coefficients of the polyno-

mial (namely, λ); and by the fundamental theorem of algebra

there is a one-to-one map from the coefficients λ to the roots

θ. Therefore, by mapping observations to pseudo observa-

tions, we can construct the optimal estimate of (7).

Theorem 1. Consider the sequence of anonymized observa-

tion sets (y(k), k ≥ 1) generated by (1) and (2), where ψ(k)
is a known iid scalar sequence. Then

1. The objective (7) can be expressed as L decoupled con-

vex optimization problems in terms of λ defined in (8):

min
λl

E|zl − ψlλl|
2, zl(k) =

(

ψ(k)
)l
λol + wl(k) (9)

The zero mean process w(k) is defined in [1].

2. The global minimizer θ∗ of objective (7) is consistent in

the sense that θ∗ = θo.

3. With pseudo observations z(k) = S{y(k)} (5), con-

sider L decoupled adaptive filtering algorithms oper-

ating on z(k): Choose λ(0) ∈ R
L. Then for l ∈ [L],

λl(k + 1) = λl(k) + ϵ ψl(k)
(

zl(k)− ψl(k)λl(k)
)

θ(k + 1) = Re
(

S−1(λ(k + 1))
)

(10)

Here S−1 is defined in (11) and Re denotes the real

part of the complex vector. The estimates θ(k) converge

in probability and mean square to θ∗.
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Discussion: 1. Theorem 1 gives a tractable and con-

sistent method for estimating the parameter set θo of the L

stochastic systems given set valued anonymized observations

y(1), y(2), . . .. We emphasize that since the observations

y(k) are set-valued, the ordering of the elements of θo can-

not be recovered; Statement 1 of the theorem asserts that

the set-valued estimate θ∗ converges to θo. Statement 2 of

the theorem gives an adaptive filtering algorithm (10) that

operates on the pseudo observation vector z(k). Applying

the transform S−1 to the estimates λ(k) generated by (10)

yields estimates θ(k) that converge to the global minimum

θ∗. Since θo ∈ R
L, the second step of (10) chooses the real

part of possibly complex valued roots.

2. The symmetric operator S is uniquely invertible since

an L-th degree polynomial has a unique set of at most L roots.

Given λ = S{θ}, θ = S−1(λ) are the unique set of roots

{θ1, . . . , θL} of the polynomial with coefficients λl, l ∈ [L]:

θ = S−1(λ) ⇐⇒ sL +

L
∑

l=1

λl s
l−1 =

L
∏

l=1

(s+ θl) (11)

Note that S−1(·) maps the vector λ to unique set θ.

3. The adaptive filtering algorithm (10) uses a constant

step size; hence it converges weakly (in distribution) to the

true parameter θo [9, 10]. Since we assumed θo is a constant,

weak convergence is equivalent to convergence in probability.

4. A stochastic gradient algorithm operating on (7) is

θ(k + 1) = θ(k)− ϵ∇θ

∑

l∈[L]

|zl(k)

− Sl

{

ψ(k) θ1(k), , . . . , ψ(k) θL(k)
}

|2 (12)

However, objective (7) has local minima and stochastic gra-

dient algorithm (12) can get stuck at these local minima (see

numerical example). In comparison, the formulation involv-

ing pseudo-measurements yields a convex (quadratic) objec-

tive and algorithm (10) provably converges to the global min-

imum. There is also another problem with (12). If initial con-

dition θ(0) is chosen with equal elements, then since gradient

∇θ is symmetric (wrt y and θ), all the elements of the esti-

mate θ(k) have equal elements at each time k, regardless of

the choice of θo, so algorithm (12) will never converge to θo.

4. NUMERICAL EXAMPLE

We show that objective (7) has local minima wrt θ; so the

classical stochastic gradient algorithm (12) gets stuck in a lo-

cal minimum. In comparison, the objective (9) using pseudo-

measurements is convex (quadratic) wrt λ and so the adaptive

filtering algorithm (10) converges to global minimum θ∗.

We consider L = 3 independent scalar processes (D = 1)

with anonymized observations generated as in (2). The true

model that generates the observations is θo = [−2, 5, 8]′.
The regression signal ψ(k) ∼ N(0, σ2) where σ = 1. The

noise error v(k) ∼ N(0, σ2
v) where σv = 10−2.
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(b) Classical stochastic

gradient algorithm (12)

gets stuck in local mini-

mum.

Fig. 2: Fig.2a shows that the parameter estimates generated

by Algorithm (10) converge to θo. Fig.2b shows that the

parameter estimates generated by stochastic gradient algo-

rithm (12) operating on (7) do not converge to θo.

We ran the adaptive filtering algorithm (10) on a sample

path of 2 × 105 anonymized observations generated by the

above model with step size ϵ = 10−4. For initial condition

θ(0) = [1, 2, 3]′, Figure 2a shows that the estimates generated

by Algorithm (10) converges to θo.

We also ran the classical stochastic gradient algorithm (12)

on the anonymized observations. Recall this algorithm min-

imizes (7) directly. The step size chosen was ϵ = 10−7

(larger step sizes led to instability). For initial condition

θ(0) = [1, 2, 3]′, Figure 2(b) shows that the estimates con-

verge to a local stationary point [−2.02, 6.12, 6.45]′ which

is not θo. For initial condition θ(0) = [3, 6, 9]′, we found

that the estimates converged to θo. This provides numerical

verification that objective (7) is non-convex. Besides the non-

convex objective, another problem with the algorithm (12)

is that if we choose θ(0) = [c, c, c] for any c ∈ R, then all

elements of θ(k) are identical, regardless of θo.

5. CONCLUSIONS

We proposed a symmetric transform based adaptive filtering

algorithm for parameter estimation when the observations are

a set (unordered/anonymized) rather than a vector. Such ob-

servation sets arise due to uncertainty in sensing or deliberate

anonymization of data. By exploiting the uniqueness of fac-

torization, Theorem 1 showed that the adaptive filtering algo-

rithms converge to the true parameter (global minimum).

Extension. In [1], we extend the paper to vector observa-

tion sets by developing vector symmetric transforms using a

two-variable polynomial transform. In general the fundamen-

tal theorem of algebra, does not extend to polynomials in two

variables. By exploiting that fact that the algebraic ring of

multi-variable polynomials is a unique factorization domain

over the ring of one-variable polynomials, we construct an

adaptive filtering algorithm that yields consistent estimates of

the underlying parameters thereby extending Theorem 1 to

vector observations. [1] also has several numerical examples.
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