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Advancing Clinical Trials with

Novel Designs and Implementations

Lorenzo Trippa and Yanxun Xu

We extend our congratulations to Robertson and co-
authors [12] for their comprehensive overview of re-
sponse adaptive randomization (RAR) in clinical trials
and insightful comparative analyses. Their contribution
is noteworthy for clearly demonstrating the diversity of
RAR designs and algorithms that utilize the available data
to update randomization probabilities throughout the en-
rollment period. For instance, several forms of Bayesian
RAR tend to accelerate the enrollment to the most promis-
ing arms, while other RAR strategies vary the random-
ization probabilities to enhance trial power compared to
fixed or balanced randomization. The authors accurately
highlight the wide range of statistical designs based on
RAR, each with different benefits and risks compared to
balanced randomization.

The significance of showing marked differences of the
operating characteristics of various RAR designs lies in
the fact that the views of stakeholders, including biostatis-
ticians and clinical trial investigators, on the key aspects
of RAR are often influenced by their experience with a
single algorithm, a narrow subset of RAR designs ex-
plored in a publication or a few RAR clinical trials with
favorable or unfavorable patient allocation. Such biases
can obstruct the development of effective clinical trial de-
signs.

Additionally, it is essential to consider the broad range
of settings where RAR and adaptive trial designs can be
utilized in clinical research. Context-specific evaluations
of RAR designs are necessary as their advantages and
disadvantages over traditional randomization vary with
study-specific factors such as the expected accrual rate or
the risk of time trends of the enrolled population. To fully
assess the potential of RAR and adaptive trial designs, it
is crucial to account for these context-specific considera-
tions.

In our experience with adaptive platform trials [1, 5,
19], it is necessary to consider both operational/imple-
mentation complexity and potential efficiencies over fixed
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randomization. A relevant aspect of RAR that is often
overlooked is the possibility of reducing the number of
patients allocated to inferior arms. Early in the trial, data
may suggest that an experimental therapy has lower ef-
ficacy compared to the control. Despite this, the experi-
mental arm is not dropped from the study at this stage be-
cause of insufficient evidence. However, frequent interim
data analyses and a preplanned mechanism, such as RAR,
which allows for reducing or temporarily halting enroll-
ment to the experimental arm until additional outcome in-
formation (e.g., survival data) becomes available, along
with standard early stopping rules, can reduce the num-
ber of patients exposed to inferior treatments compared to
less complex designs with fixed randomization. The RAR
algorithm in a multiarm study can be customized to con-
trol the number of patients exposed to potentially inferior
or toxic arms.

A Positive Perspective on the Future Use of Adaptive
Trial Designs

Despite significant attention paid to RAR algorithms
and adaptive trial designs in academic literature, their
application in clinical trials is still limited, as noted by
Robertson and colleagues. Predicting which trial designs
will be implemented in the next decades is challenging,
but we maintain a positive outlook on the future ability
of clinical research across various areas, including oncol-
ogy, to leverage the advancements in RAR designs and ac-
celerate the development of new and effective treatments.
Here, we discuss three motivations.

Collaboration-Centered Strategies for the
Development of New Treatments

Our optimism is driven by the growing interest and uti-
lization of multiarm and platform trial designs. These de-
signs offer greater efficiency by evaluating multiple ex-
perimental treatments with a shared control arm, instead
of conducting separate two-arm RCTs with similar con-
trol groups. Both multiarm trials and platform trials can
employ fixed randomization or RAR. In both cases, they
achieve substantial efficiency gains compared to tradi-
tional two-arm RCTs [14].

Collaboration among pharmaceutical companies, bio-
statisticians and other stakeholders in conducting clinical
studies of multiple experimental treatments presents an
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opportunity to identify innovative trial designs and eco-
nomic models. Literature has shown that the benefits of
using Bayesian RAR and more generally adaptive deci-
sions increases with the number of treatments being tested
[2]. A collaborative environment can also drive further el-
ements of innovation, such as new economic models with
shared risks and profits for pharmaceutical companies and
investors [11], or new adaptive designs taking into ac-
count cost-effectiveness considerations [7]. Companies,
funding agencies and investigators can share costs for sev-
eral tasks such as developing curated real-world data sets
or new predictive models. This can lead to improvements
of RAR and other decision-making during the drug devel-
opment process.

The transition from fragmented clinical research envi-
ronments with trials that evaluate a single experimental
therapeutic to collaboration-focused platform trials and
other methods for sharing information and resources (see,
e.g., Kotecha et al. [10]) opens new opportunities for suc-
cessful implementations of RAR and more broadly, adap-
tive designs.

Improved Evaluations of Candidate Trial Designs

The second reason for our optimism lies in the continu-
ous advancements in methods and software for evaluating
candidate study designs. The use of simulations to com-
pare the operating characteristics of candidate designs un-
der various scenarios has been a common practice for
many years. The tools for anticipating the operating char-
acteristics of a study design in a specific context (e.g., a
phase Il trial in asthma) have been greatly improved. With
the advancement of computing infrastructure and innova-
tive methods (such as those described by Golchi [8]), the
analyst can rapidly assess the variations of the operating
characteristics of interest across plausible scenarios.

Data sharing initiatives, such as Yoda [13] and Project
Data Sphere [9], and disease-specific data collections, are
useful for comparing trial designs in a specific clinical
setting. The analyst can utilize real-world data sets or
patient-level data from previous trials to define realistic
simulation scenarios consistent with previous studies. Re-
cently, in [16] and [15], we employed direct subsampling
of data sets from completed clinical studies to simulate
trials in glioblastoma and compare candidate study de-
signs. We used a subsampling procedure, similar to boot-
strapping, to define scenarios that reflect various aspects
of previous clinical trials, including enrollment rates and
the joint distribution of pretreatment clinical profiles and
outcomes.

There are several other effective approaches for rig-
orous and context-specific comparisons. For example,
Broglio et al. [3] prospectively planned the comparison
of two candidate trial designs using the data generated
by a randomized trial of acute stroke interventions. An

ideal extension of this approach would be a prospectively
planned evaluation of candidate designs, possibly devel-
oped by different research groups, to identify strengths
and weaknesses based on data generated from multi-
ple randomized trials. To summarize, new and improved
methods for accurate, comprehensive and context-specific
assessments of candidate designs are emerging.

Effective approaches for illustrating the operating char-
acteristics of adaptive clinical trials are critical for allow-
ing stakeholders, such as patient representatives, to eval-
uate a candidate trial design. A related and less explored
problem is the rigorous evaluation of the impact of early-
phase designs and preplanned interim decisions, such as
RAR, on the subsequent phases of drug development. In-
deed the design of an early phase trial directly impacts on
the accuracy of treatment effect estimates, which then af-
fects the decision to continue the drug development with
subsequent trials and various aspects of their design, in-
cluding the sample size and the eligibility criteria.

Auxiliary Outcomes, New Biomarkers and Improved
Prediction Models

Our optimism is also motivated by the rapid advance-
ments in various fields including biology, statistics and
others, which we believe will improve RAR and other
preplanned adaptive decisions in future clinical trials. For
instance, innovative approaches to analyze imaging data
have produced ground-breaking results in radiology [6].
Similarly, recent developments in biomarkers and assays
have enabled scientists to predict clinical outcomes such
as disease progression and survival in oncology and other
areas of medicine. Novel biomarkers can be useful to
identify patient subpopulations and modify the eligibility
criteria at interim analyses in adaptive enrichment designs
[18]. The integration of patient-level information using
novel statistical and machine learning approaches is lead-
ing to improved accuracy in predicting clinical outcomes.

These advancements and joint models combining infor-
mation available soon after randomization, such as cir-
culating tumor cells, with primary outcomes could im-
prove the prediction of the trial results and identify early
during the study promising treatments and patient sub-
populations. Multioutcome models (e.g., joint models of
progression-free survival and overall survival in oncol-
ogy) have been used to adapt the randomization probabil-
ities and show promise in settings where treatment effects
tend to be more pronounced on auxiliary outcomes com-
pared to primary outcomes [4, 17]. Evaluating the perfor-
mance of trial designs that use joint models incorporating
predictive variables and primary outcomes for adaptive
decisions is particularly challenging. Real-world data sets
could be useful to assess the value of predictive variables
and compare trial designs.
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