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Machine learning-augmented materials design is an emerging method for rapidly developing 
new materials. It is especially useful for designing new nanoarchitectured materials, whose 
design parameter space is often large and complex. Metal-agent dealloying, a materials 
design method for fabricating nanoporous or nanocomposite from a wide range of elements, 
has attracted significant interest. Here, a machine learning approach is introduced to explore 
metal-agent dealloying, leading to the prediction of 132 plausible ternary dealloying systems. 
A machine learning-augmented framework is tested, including predicting dealloying systems 
and characterizing combinatorial thin films via automated and autonomous machine learning- 
driven synchrotron techniques. This work demonstrates the potential to utilize machine 
learning-augmented methods for creating nanoarchitectured thin films.
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Nanoarchitecture materials such as nanoporous metals are 
versatile due to their unique properties including high 
surface-area-to-volume ratios, light weights, and high 
thermal and electrical conductivities1-3. Dealloying is a promising 

method for fabricating nanoporous metals. During dealloying of a 
parent alloy (A-B), one or more components (a metal/alloy B) are 
removed with a dealloying agent (a metal/solution C), and the 
remaining components form a bicontinuous structure through a 
self-organizing process4. Recently, liquid metal dealloying (LMD), 
where liquid metal is used as the dealloying agent (metal C), was 
reintroduced to fabricate less noble nanoporous materials5, 
including stainless steel6-7, silicon8-9, magnesium10, graphite11, a- 
titanium5-12, |3-titanium13, and TiVNbMoTa high entropy 
alloys14. Solid-state metal dealloying (SSMD), or solid-state 
interfacial dealloying (SSID), has been introduced to fabricate 
nanoporous Fe, Fe-Cr, and a-Ti with a finer ligament, which can 
be used to overcome the limitation of high fabrication tempera­
tures and handle liquid metal difficulties in LMD15-18. However, 
the fundamental mechanisms leading to metal-agent dealloying 
remain unclear, thereby creating challenges in defining a strategy 
for materials design using metal-agent dealloying.

The material design principle of LMD proposed by Wada 
et al.5 is primarily focused on the thermodynamic quantities of 
the differences in the mixing enthalpies between the parent alloy 
A-B (ALF'ab) and the dealloying agent (C) mixed with one of the 
components from the parent alloy (ALP”ac or AHlnBC). The 
general guideline is to have a negative mixing enthalpy of BC 
(AHmBC < 0) and AHmBC < AHmAB to provide a driving force to 
dealloy B from AB, while utilizing a positive AHmAC so that 
mixing between AC would not be preferred. However, while such 
criteria have been widely used to design new material systems, 
they have not been consistent with experimental observations. 
LMD also occurs when the mixing enthalpy between the elements 
in parent alloys is more negative than the mixing enthalpy 
between the soluble element and the dealloying agent 
(0 > ALP”bc > ALP”ab), such as in TiVNbMoTa-Ni, C-Mn, Ti-Cu, 
and Nb-Ni systems11-14-19. SSID was even reported in some sys­
tems with a positive mixing enthalpy between the soluble element 
in the parent alloy and the dealloying agent (ALP”BC > 0 and 
AFf"AB>0)2°.

These contradictions could have resulted from one of the three 
factors or a combination of them. The first such factor is the 
inaccuracy of the mixing enthalpy value available. The widely 
used mixing enthalpy was proposed and calculated by the Mie- 
dema model21. Although the Miedema model provides a way to 
calculate the mixing enthalpies in binary alloy systems, its accu­
racy is limited when the mixing enthalpy is close to zero22. In 
binary systems containing nonmetals or semimetals, a large 
transformation energy calibration was needed23. The second 
factor is that in considering the relative phase stability, the mixing 
enthalpy may not be the right parameter to use. Instead, analysis 
in the literature has shown that the thermodynamic stability of a 
material should be defined by its Gibbs energy of 
decomposition24. The third factor is the entropy contribution to 
the Gibbs free energy. Conventionally, mixing enthalpy has been 
treated as the dominant quantity for determining Gibbs free 
energy. However, new studies indicate that configurational and 
vibrational entropies can contribute to stabilizing/destabilizing 
the solid solution25. Overall, the conventional criteria of using the 
mixing enthalpy difference calculated from the Miedema model 
to determine if a system can be dealloyed should be re-examined 
to critically enable the fabrication of a wider range of elements 
based on sound design principles.

Using machine learning (ML) algorithms to facilitate new 
materials design is a rapidly growing research area. Com­
plementing computational simulation and theoretical modeling

techniques, ML methods promise to efficiently predict the pre­
sence of novel materials. Recent developments in the field include 
a general ML framework for predicting inorganic materials26, 
with a wide range of materials predicted. Depending on their 
composition, crystal structure, and microstructures, ML methods 
have been used to predict materials, such as high entropy alloys27, 
shape memory alloys28, and thin-film metallic glasses29. Combi­
natorial thin-film synthesis has been used to achieve the pre­
paration of a great number of material compositions that could 
not be realized previously. By combining combinatorial sample 
synthesis with synchrotron characterization, the correlation of 
material properties with composition to realize rapid materials 
discovery becomes feasible30. A combination of iterative ML 
prediction and combinatorial synthesis has also been applied for 
the discovery of metallic glasses29. Recently, an autonomous 
decision-making algorithm-driven scientific instrument was 
developed; it minimized the number of measurements needed, 
prevented the collection of redundant information, and thus 
optimized the utilization of experimental and computing 
resources31-33. The Gaussian-process-based decision-making 
algorithm (gpCAM) was independently developed by 
CAMERA34. The term “autonomous experiment” describes the 
combination of automatic decision-making, analysis, instru­
mentation, and communication tools to create a closed-loop that 
can make intelligent decisions during an experiment without 
human interaction33-35. Here, during a synchrotron diffraction 
experiment, gpCAM makes decisions based on the diffraction 
intensity of the phase(s) of interest from the collected data, and 
autonomously drives the next diffraction measurements to probe 
regions with the highest uncertainty. Closed-loop concepts with 
machine learning prediction and an autonomous experiment 
were demonstrated36, and the development of carbon nanotube 
growth was realized37. The ability to design self-driving materials 
provides a promising pathway toward autonomously designing 
and synthesizing novel materials38. In the field of dealloying 
research, data mining and automated image analysis were intro­
duced to identifying coarsening mechanism39.

In this study, we established a workflow for designing nano­
pores/ nanocomposites, simultaneously exploiting the advances in 
ML prediction, combinatorial sample preparation, and autono­
mous synchrotron characterization. We applied several ML 
methods to predict new ternary dealloying systems by employing 
training and testing ML methods on randomly split published 
dealloying data based on systems that exhibit successful deal­
loying behaviors. We used ML ranked important variables to 
analyze the underlying materials design principles in the metal- 
agent dealloying method. In total, the ML models predicted 132 
ternary dealloying systems from the selected 16 metal elements. A 
proof of concept for validating the ML method through thin-film 
SSID experiments was tested by dealloying a Ti-Cu alloy with Mg. 
Because the Ti-Cu/Mg system was reported previously40 with an 
established preparation and characterization methods, it is thus 
an ideal system to demonstrate new materials design and char­
acterization methodologies here. A combinatorial Ti-Cu thin film 
was prepared to cover a wide range of parent alloy compositions. 
Other processing parameters were analyzed, including the deal­
loying time, dealloying temperature, and amount of dealloying 
agent. We applied synchrotron X-ray diffraction (XRD) char­
acterization to combinatorial dealloyed thin films to explore the 
kinetics in Ti-Cu/Mg dealloying systems, including the phase 
transition, crystallization, and parent alloy composition threshold 
for dealloying. In addition, the crystallographic companion agent 
(XCA) was used to automate the XRD analysis, and gpCAM for 
autonomous experimental control was used to drive XRD char­
acterization at the synchrotron beamline for faster materials 
discovery. This helped in overcoming the complexity and
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Fig. 1 Workflow of an Mi-augmented framework to design SSID. The workflow includes the ML prediction of new ternary SSID systems (Xenonpy76, 
pymatgen82, matminer77, and literatures78), combinatorial thin-film deposition of predicted systems, and autonomous synchrotron X-ray characterization 
(XCA50, gpCAM34, and bluesky81 libraries). The characterization result is returned to enrich the ML training datasets.

increasing the efficiency of the time-consuming validation 
methods for new materials with a large parameter space.

Results and discussion
Workflow of an ML augmented framework to design SSID.
The workflow includes the ML prediction of new ternary SSID 
systems, combinatorial thin-film deposition of predicted systems, 
and autonomously driven synchrotron X-ray characterization, as 
shown in Fig. 1.

For ML prediction, ML methods are first trained based on 
published dealloying systems from the literature and are then 
employed to predict new dealloying systems. The prediction 
involves classifying the elemental pairs into two categories: 
miscible and immiscible, composing the elemental pairs into 
potential ternary dealloying systems, and selecting the parent 
alloy and the dealloying agent from each of the potential ternary 
systems. Different ML methods lead to different results, and the 
majority vote from the three ML methods with equal weight is 
used towards ensemble prediction, which is then validated by the 
experiment. The variables selected by the ML methods are used to 
elucidate the design criteria in SSID thin films. Note that the 
current training set was built on both SSID and LMD methods, 
considering both methods are based on the selective dissolution 
using a metallic dealloying agent. In the future, further refined 
models that train these two sets of data separately can be 
developed with more experimental results available in both 
methods.

In the experiment, we used combinatorial thin-film deposition 
to prepare dealloying systems and characterized them with 
decision-making algorithm-driven autonomous synchrotron 
X-rays. Efficient data collection enables the analysis of the 
kinetics in multiple SSID thin-film systems, validation of the ML 
prediction results, and improvement in the ML methods by 
enriching the ML training sets with the experimental results. The 
potential functional application is also expected to be tested at the 
synchrotron after validating the dealloying in the predicted 
systems.

The experiment and subsequent enrichment of the ML training 
sets with experimental results are crucial for the following 
reasons: (1) the reported dealloying systems were mostly designed 
based on the mixing enthalpy difference calculated by Miedema’s

Step 1

A) Bj ^ 

A Ci

<e) o

Miscible 
A B 

B C

Immiscible

Step 2 Feasible

Dealloying

Miscible

Fig. 2 Schematic of ML predictions of miscible/immiscible pairs and 
ternary dealloying systems. The two steps for predicting dealloying 
systems by the ML method. The first step is to classify the miscible and 
immiscible pairs and compose potential ternary dealloying systems. The 
second step is to determine the parent alloy and the dealloying agent in 
each of the ternary systems that are prescreened in the first step.

method, where testing and including more systems that did not fit 
the mixing enthalpy difference would help in exploring the design 
criteria, (2) to easily etch away the residual dealloying agent, the 
reported dealloying agent was mostly limited to Mg and Cu, 
leading to a bias in the training sets that may limit the prediction 
accuracies of the ML methods, and (3) the reported dealloying 
systems were primarily focused on successfully dealloyed systems, 
whereas systems that cannot be dealloyed are still useful for 
learning design criteria and training ML methods.

Machine learning prediction of ternary metal agent dealloying
systems. The ML predictions geared towards answering two 
research questions were broken down into two steps, as shown in 
Fig. 2. In the first step, we trained the ML methods to identify the 
miscible/immiscible pairs and then compose ternary dealloying 
systems with two miscible pairs and one immiscible pair. In the 
second step, we differentiated the parent alloy from the dealloying 
agent in each ternary dealloying system that was composed in the 
first step. In each of these two steps, three different ML methods
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were applied for classification. The selected ternary systems are 
expected to form bi-continuous composite after isothermal 
treatment at an elevated temperature to introduce solid-state 
interfacial dealloying, as shown in Fig. 2. Here a two-step clas­
sification was employed. This was because the literature only 
reports ternary systems that can introduce dealloying, without 
information on systems that cannot introduce dealloying. This 
hindered us to label ternary systems directly in a classification 
process with supervised learning method. With the help of the 
first classification step to construct the miscible and immiscible 
pairs first, the plausible dealloying systems can be better predicted 
with a more accurately defined searching space.

In the first step, we trained three different ML methods to 
classify miscible and immiscible elemental pairs. The normalized 
confusion matrices from each ML method on the testing sets after 
variable selections are summarized in Supplementary Fig. 1. The 
three methods showed good classification performance on the 
testing sets; the accuracies of the random forest, XGBoost, and 
SVM were 1.00, 1.00, and 0.84, respectively. Note that the high 
accuracy is also related to the limited sample size, but the good 
performance on testing sets showed no overfitting issue. Future 
experiments can help to expand the dataset and achieve a more 
robust model. As a comparison, the accuracy of determining 
whether the mixing enthalpy is positive or negative to classify the 
miscible/immiscible pairs from reported dealloying systems is 
0.828. The top 10 most important variables ranked by SHAP 
values for each of the three ML methods are shown in 
Supplementary Fig. 2. It is not surprising that the mixing 
enthalpy is the top, most important variable ranked by both ML 
methods, as the reported systems from the literature were mostly 
designed based on the mixing enthalpy. The solubility, which is 
commonly used in determining dealloying systems, was also 
highly ranked. It is clear that the high mixing enthalpy and low 
solubility will lead to immiscibility. Other high-ranking variables, 
such as the heat of formation, the energy at the ground state, the 
formation energy, and the decomposition energy as the energy 
above the convex hull of stable points, are common contributors 
in the determination of the phase stability. The high rankings of 
these features indicated that the ML methods rely heavily on 
thermodynamic stability to determine miscible/immiscible pairs, 
which is consistent with the scientific understanding of phase 
stability and signifies the reliability of these ML methods.

The overlap of the new miscible pairs predicted by the three 
ML methods is shown in Fig. 3a. Since each binary pair can only 
be classified as a miscible or immiscible pair, the two classification 
results are in a complementary relationship. We selected the pairs 
that are commonly predicted from the majority (two or three) 
ML methods as the classification results. Therefore, a total of 94 
miscible and 27 immiscible pairs were selected to generate 169 
potential ternary dealloying systems.

In the second step, we separately trained three different ML 
methods to distinguish the parent alloy from the dealloying agent 
using the training dataset with a 70% random split from the 31 
reported ternary dealloying systems. The normalized confusion 
matrices from the three ML methods are summarized in 
Supplementary Fig. 3. All three ML methods showed good 
classification performances in determining the parent alloys and 
dealloying agents in the testing dataset, which is the remaining 
30% of the random split, and the accuracies of the random 
forest, SVM, and XGBoost methods in classifying the parent alloy 
were 1.00, 0.95, and 1.00, respectively. In comparison, the 
conventional method based on the mixing enthalpy difference 
between the parent alloy and sacrificial element with a dealloying 
agent showed an accuracy of only 0.516 for the 31 reported 
ternary dealloying systems. We then removed the overlap of the 
reported ternary systems from the classified A-B-C systems and

focused on the newly predicted ternary dealloying systems. The 
overlap of classified ternary A-B-C systems with A-B as parent 
alloy from mixtures A-B or B-C as parent alloy in the first step by 
the three ML methods is shown in Fig. 3b. All the predicted 
ternary dealloying systems are summarized in Supplementary 
Table 1. The systems colored gray were voted higher by all three 
ML methods, while other colored systems were voted higher by 
only one of the two ML methods. Among the 132 predicted 
systems, only 59 systems satisfy the mixing enthalpy criteria, 
which are labeled in green and summarized in Supplementary 
Table 2, and the rest 73 systems that did not satisfy the mixing 
enthalpy criteria are labeled in orange in Supplementary Table 2. 
Note that using the mixing enthalpy to determine whether a 
system can be dealloyed is still valuable, but there are additional 
cases to be considered and explored. Compared to the training 
dataset in which 20 out of 31 (64.5%) of the dealloying systems 
consist of Mg as the dealloying agent, there are only 26 out of the 
132 (19.7%) of the predicted dealloying systems using Mg as the 
dealloying agent. It shows the potential of using ML methods to 
explore new dealloying systems.

After removing the highly correlated variables, the top 12 most 
important variables selected by three ML methods by SHAP 
values, are shown in Fig. 3c, and the corresponding descriptions 
of each variable are summarized in Table 1. The variables are 
ranked along the vertical axis by their influence on differentiating 
the dealloying agent from the parent alloy. The horizontal axis 
shows the SHAP values for classifying the feasible and infeasible 
ternary dealloying systems. The color scale represents the feature 
value from high (red) to low (blue). Here the solubility difference 
between two elemental pairs was used to explain the meaning of 
SHAP values. The system with a relatively low solubility 
difference corresponds with a positive SHAP value, implies that 
it tends to be able to form a ternary dealloying system. The top 10 
most important variables ranked by SHAP values from all three 
ML methods for variables selection are shown in Supplementary 
Fig. 4a-c. The correlation matrix showing the correlation 
coefficients between each pair of variables is summarized in 
Supplementary Fig. 4d. Different from the variables ranked in 
Step 1 to classify miscible/immiscible pairs, in Step 2 the mixing 
enthalpy was no longer ranked highly by any of ML methods.

Other thermodynamic variables, such as the energy at the 
ground state, heat of fusion, and heat of formation, were ranked 
highly. The energy at the ground state is related to the relative 
stabilities of the compounds41. The melting point is then 
associated with the elemental diffusivity20. Furthermore, the 
atomic volume was also ranked high by the ML methods; this is 
consistent with our previous suggestion that the entropic 
contribution should be included in the design criteria of the 
metal-agent dealloying method40. Conventionally, the mixing 
enthalpy has been treated as a dominant quantity due to the 
identification of stable alloys, and the contribution of the mixing 
entropy term for determining the total mixing Gibbs free energy 
was considered to be less important for its relatively small value, 
particularly in ordered structures25. In a solid solution, the 
entropic contribution has a significant impact on the alloy phase 
stability. Because we included both reported intermetallic and 
solid solution dealloying systems in our training sets, the ML 
methods were able to rank the important variables for both alloy 
systems. Therefore, the limitation regarding the conventional 
design criteria for limited intermetallic alloys can be resolved by 
using the ML methods.

The number of predicted ternary dealloying systems were 
organized by element A, where Fig. 3d depicts ternary systems A-B- 
C. After removing the ternary system which cannot be distin­
guished by ML methods, as well as the systems that have been 
previously reported, we obtained a total of 132 ternary systems that
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Fig. 3 The ML prediction result and corresponding SHAP value analysis, a The overlap of the miscible and immiscible pairs predicted by the three ML 
methods, namely random forest, XG Boost, and SVM. b The overlap of predicted ternary dealloying systems from the three ML methods, c The 12 variables 
which are ranked by their impacts on differentiating the dealloying agent from the parent alloy, as sorted by the random forest method. Variables ending 
with 1 represent the properties of the first two elements in a ternary system, and those ending with 2 represent the properties of the last two elements, 
d The number of predicted ternary dealloying systems organized by element A, where the parent alloy is A-B. The results are voted higher by at least two 
ML methods.

Table 1 Description of the final 12 most important variables selected by three ML methods, using for determining parent alloy 
(Step 2).

Variables used in ML methods
gs_energy_mean1

gs_energy_mean2

Solu bi lity_diff

density_mean2 
atomic_number_mean1 
covalent_radius triple_mean2

solubility 2 
melti ng_poi nt_diff 1 
melti ng_poi nt_diff 2 
covalent_radius double_diff 2

covalent_radius double_diff 1

icsd_volume_diff 1

Description
Average of the DFT energy per atom (raw VASP value) for the T= 0 K ground state from the first two elements in the 
ternary system
Average of the DFT energy per atom (raw VASP value) for the T= 0 K ground state from the last two elements in the 
ternary system
The difference in the maximum equilibrium solubilities between the first two elements and last two elements in the 
same ternary system
Average of the density at 295 K of the last two elements in the ternary system
Average of the number of protons found in the nucleus of an atom, from the first two elements in the ternary system 
Average of the number in the triple-bond covalent radii, as defined by Pyykko et al., from the last two elements in the 
ternary system
The maximum equilibrium solubility between the last two elements
The difference in the melting point between the first two elements in the ternary system
The difference in the melting point between the last two elements in the ternary system
The difference in the double-bond covalent radii, as defined by Pyykko et al., from the last two elements in the
ternary system
The difference in the double bond covalent radii, as defined by Pyykko et al., from the first two elements in the 
ternary system
The difference in the atomic volumes from ICSD database between the first two elements in the ternary system

Variables ending in 1 represent the variables of the first two elements in a ternary system, and those ending in 2 represent variables of the last two elements in the same ternary system. The variables
were collected from Xenonpy76, pymatgen82, matminer77, and literatures78. The names of the variables follow the convention as shown in these sources.

have been voted highly by at least two ML methods. Interestingly, 
the predicted elements can be dealloyed by a large number of 
dealloying systems that correspond to elements such as Cr and Nb 
that have been reported and fabricated based on the metal-agent 
dealloying method42. ML methods can not only provide an 
approach to explore metal elements that have not been explored 
but also enable the design of bicontinuous nanocomposites with 
wider elemental compositions for the explored elements.

Combinatorial thin Aim SSID and synchrotron XRD char­
acterization. Combinatorial thin-hlm deposition is used to prepare 
a range of parent alloy compositions efficiently, which is critical for 
analyzing the composition-dependent structural/morphological 
evolution and validating the ML method predictions. With its high 
brilliance X-ray, the synchrotron enables the characterization of a 
large number of samples in a short time43. These two components 
are critical in the materials discovery for metal-agent dealloying.
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Fig. 4 Sample layout for XRD measurement and XRD result, a Sample layout for a series of combinatorial thin-film samples with four controlled 
parameters: parent alloy composition (Ti -20-80 at.% in a Ti-Cu parent alloy), Mg dealloying agent film thickness (250 and 450 nm), dealloying time (7.5, 
15, 30, and/or 60 min, depending on the dealloying temperature) and temperature (340, 400 and 460 °C). The numbers in each grid indicate atomic 
concentration of Ti in the parent alloy film, b XRD pattern from a sample dealloyed at 400 °C for 60 min, after subtracting the glass background.

Cu2Mg (2 2 2)/CuMg2 (4 4 0) Cu2Mg (1 1 1)
0.35
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5
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0.15 S 
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S

Fig. 5 Selected diffraction peaks and interpolated diffraction peak intensities from Cu2Mg (111), CuMg2 (O 8 O), and Cu2Mg (2 2 2) overlapped with 
CuMg2 (4 4 O). The white color lines separate the regions with different dealloying temperature.

Here, the reason for choosing Ti-Cu (the A-B parent alloy) 
dealloyed by Mg (the C dealloying agent) with the SSID method is 
twofold. The first reason for this choice is that Ti-Cu dealloyed by 
Mg has been reported only in bulk samples with discrete 
compositions, while the precise dealloying composition threshold 
is missing. Another reason for this choice is that the Ti-Cu-Mg 
system does not adhere to the conventional mixing enthalpy 
difference criteria, which states that the mixing enthalpy of Cu- 
Mg is less negative than that of Ti-Cu21. In addition, the sample 
preparation procedure for the Ti-Cu/Mg system has been well- 
established. We can validate the new characterization methods in 
the current work against the known the crystalline phases and use 
the prior knowledge in the XCA method. Thus, the dealloying 
behavior of the Ti-Cu-Mg system through the thin-film SSID 
method was studied, also serving as a proof of concept for 
establishing a method for future experiments with a wider range 
of elements to (1) experimentally validate the ML method 
predictions, and (2) acquire new datasets for ML method training 
and testing, as illustrated by the workflow in Fig. 1. In the future, 
the accuracy of each ML method can be validated with 
experiments to determine the ML method with the highest 
accurate probability, or to combine the prediction from the ML 
methods each with a different weight factor based on the 
accuracy. In addition, experimenters may choose a dealloying 
system based on different design goals, such as elemental 
compositions, cost of the materials, and properties of the 
materials, etc.

A combinatorial Ti-Cu thin film was prepared by the 
cosputtering method44. Compared to conventional samples with 
discrete compositions, combinatorial samples provide an effective 
way to study samples with compositional gradients. In addition, 
we considered the influence of the processing parameters on the 
dealloying combinatorial samples. A total of four parameters were 
considered, including 3 dealloying times (7.5, 15, 30 and/or 
60 min, depending on the dealloying temperature), 3 dealloying 
temperatures (340, 400, and 460 °C), 2 thicknesses of the 
dealloying agent, a Mg film, (250 and 450 nm), and a continuous 
parent alloy composition (Ti -20-80 at.% in a Ti-Cu alloy). The 
layout with the conditions for combinatorial samples is shown in 
Fig. 4a, and the setup of samples measured at the XPD beamline 
is shown in Supplementary Fig. 5. The representative XRD result 
after subtracting the background from glass substrate is shown in 
Fig. 4b.

The scanning step size along the horizontal (X) axis was 2 mm, 
and that along the vertical (Y) axis was 4.75 mm. A total of 
34x18 = 612 data points were collected upon scanning an 
80.64 mm by 66 mm area. The interpolated diffraction peak 
intensities from Cu2Mg (1 1 1), CuMg2 (0 8 0), and Cu2Mg (2 2 2) 
overlap with CuMg2 (4 4 0) in grid scanning and are shown in 
Fig. 5. Grid-scanned mapping was used to analyze the kinetics in 
the Ti-Cu dealloying system and was also used as the ground 
truth to validate the automatic XRD pattern analysis and 
autonomous algorithm-driven characterization result, which will 
be discussed in the next section.
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Fig. 6 The distribution of the XCA-generated phase probability, represented by round points in a gray-to-blue color scheme, overlayed on the 
interpolated intensity of the designated diffraction peak in the grid-scanned result, represented by a yellow-to-purple color scheme. The diffraction 
analysis was based on Cu2Mg (1 1 1), CuMg2 (0 8 0), and Ti (1 1 0).

The variation in the dealloying-generated Cu2Mg and CuMg2 
phases with dealloying temperature is shown in Fig. 5. XRD from 
the CuMg2 phase can be detected only below 460 °C, and XRD 
from the Cu2Mg phase can be detected only when dealloying at 
460 °C with thick Mg. Such a phase distribution is consistent with 
the phase transition in Cu and Mg interdiffusion. Arcot et al. 
showed that with excess Cu in the system, CuMg2 transformed to 
Cu2Mg when the annealing temperature was >380 °C45. When a 
small amount of oxygen is distributed in the sample, crystal phase 
formation can be increased over a range of more than 200 °C. 
Knowing the dealloying-generated phase distribution, we used 
CuMg2 and Cu2Mg phases together to determine the dealloying 
progress.

The parting limit is the composition threshold of the parent 
alloy; when the concentration of the sacrificial component (B) 
falls below this threshold, the parent alloy cannot be fully 
dealloyed. While the sacrificial element composition in the parent 
alloy is above the parting limit, an atomic-scale network of 
sacrificial components (B) runs through the entire structure of the 
parent alloy for B element dissolution. This dissolution process is 
called a percolation dissolution mechanism in dealloying46. The 
theoretical values of the site percolation threshold for face- 
centered cubic (FCC) and hexagonal close packed (HCP) 
structures have been determined to be ~20 at.%, where 
-24.5 at.% has been reported for body-centered cubic (BCC) 
structures47,48. Although few systems, such as the Cu-Zn system, 
showed a parting limit that is close to the theoretical percolation 
limit of -20%, more common systems, such as Au-Ag and Au- 
Cu, showed a much higher parting limit of -55%.

We used the boundary of the dealloying-generated crystalline 
phase to search for the parting limit in the thin-hlm SSID Ti-Cu 
system. Since only crystalline Cu2Mg and CuMg2 phases were 
detected from the XRD pattern, their distributions were used to 
find the parting limit. In the samples dealloyed with a thin Mg 
layer, the Cu2Mg and CuMg2 phases can be found based on 
samples with a sacrificial element Cu of 20-80 at.% in the parent 
alloy. Such a composition range matches the theoretical 
percolation limit. It is interesting that in the samples dealloyed 
by the thicker Mg films, a clear decrease in diffraction peak 
intensity can be found when the sacrificial element composition is 
below -35 at.% in the parent alloy, as indicated by vertical red 
dashed lines in Fig. 5. Since thick Mg layer samples provide more 
material for dealloying, the difference cannot be induced by 
limited diffusion materials. In addition, the percolation threshold 
is related to the atomic coordination environment49, and a 
relatively thin layer is not expected to change the environment. 
The differences in dealloying-generated crystalline phases in 
thinner vs. thicker Mg films may be attributed to geometric 
differences in the thin films, although further kinetics analysis is 
needed.

ML augmented synchrotron characterization: ML informed 
automated (XCA) and ML driven autonomous experiments 
(gpCAM). A neural-network-based automated XRD pattern 
analysis method, XCA50, and a Gaussian process regression-based 
algorithm, gpCAM32, were tested separately for ML-informed 
automated and autonomous characterization. The goal here is to 
develop a methodology for rapidly validating the ML prediction 
results through experiments and enriching the training datasets 
for ML methods.

The working principle of XCA is that an ensemble model is 
trained from synthetic datasets by inputting the CIFs of expected 
phases and subsequently generates the existence probability of a 
given phase given the diffraction pattern. The trained XCA model 
can be applied to analyze the collected XRD patterns in real time. 
In our study, the XCA method first generated a synthetic dataset 
from the CIFs of the expected Ti, Cu2Mg, CuMg2, and Mg phases 
with a range of experimental variations, such as the diffraction 
instrument parameters, peak shape, sample texturing, and offset. 
The ensemble of CNNs were trained based on this synthetic 
dataset. Then, the trained model was applied to analyze the grid- 
scanned results on combinatorial Ti-Cu-Mg samples and the 
output existence probability of Ti, Cu2Mg and CuMg2 from each 
input diffraction pattern. To analyze the accuracy of the XCA 
method, we overlapped the XCA-generated existence probability 
of each phase with the interpolated intensity of a key diffraction 
peak interest for each phase from the grid scan, as shown in 
Fig. 6. The layout discrepancy between the XCA-generated 
probability distribution and grid-scanned data points is related to 
the sample layout. The XCA focused only on the samples with 
calibrated compositions, while grid scans covered the full 
dimension of the samples, as shown in Fig. 5. Overall, the 
distribution of the high probabilities of Cu2Mg and CuMg2 
phases matches well with the distribution of strong diffraction 
intensity from the grid-scanned result. Crystalline Ti was barely 
detected in the dealloyed sample, but XCA generated relatively 
high existence probabilities among a wide compositional range of 
the dealloyed samples. This deviation stems from the discrete 
probability distribution being confined to only the input phases 
and no other possible impurities. The challenge of classifying out- 
of-distribution data, and small amounts of phases in samples 
need to be considered carefully in the future. Overall, the accuracy 
in detecting a large amount of Cu2Mg and CuMg2 phases 
demonstrated that the XCA is a powerful tool for analyzing the 
evolution of the phase during the dealloying processes. In 
addition, the XCA holds great advantages in considering the 
preferred orientation, peak shifting, and phase mixtures, which 
are critical for characterizing thin-hlm materials50. The XCA 
method provides an additional tool for future experimental 
validation and is thus valuable to be included in the current 
materials discovery workflow as a proof-of-concept. The data-
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Fig. 7 The data-collection distribution of the autonomous experiment driven by the gpCAM algorithm overlayed on the interpolation of the diffraction 
peak intensities from Cu2Mg (3 1 1) and CuMg2 (3 5 1). a The sample with thin Mg layer, b The sample with thick Mg layer. Note that the colormap in 
grid-scan and gpCAM are different for better visualization. (For video sequence of diffraction peak intensity analysis see Supplementary Movie 1-2).

collection points in autonomous characterization driven by an 
XCA-generated probability are summarized in Supplementary 
Fig. 6.

We also tested the gpCAM algorithm, which autonomously 
decides on future measurements and is critical in driving 
experiments in the multidimensional parameter space. gpCAM 
was developed based on Gaussian-process regression and we 
augmented the GP posterior variance with local information and 
measurement costs. In this experiment, gpCAM considers the 
absolute value of the gradient to find regions where the diffraction 
intensity rapidly changes as local information and the total time 
required to acquire a new datapoint as the measurement cost. Here, 
gpCAM aims to search the phase boundary based on the intensities 
of the diffraction peaks of dealloying-generated Cu2Mg and 
CuMg2. The selected diffraction peak was previously characterized 
as an overlapping peak from Cu2Mg (3 11) and CuMg2 (3 5 1), and 
the peak in the q range is 3.047 A-1-3.106 A-1, where q is the 
momentum transfer of the scattered wave vector to the incident 
wave vector. By comparing the peak intensity distributions from 
Cu2Mg (1 1 1) and CuMg2 (0 8 0), we were able to determine that 
this diffraction peak is mainly attributed to the Cu2Mg phase, thus 
corresponding to Cu2Mg (3 1 1).

Compared to the grid scan in which 612 points were collected, 
in the gpCAM-driven autonomous experiment, only 133 points 
were collected. With only -21.7% of the data points, the 
autonomously driven analysis was able to successfully determine 
the boundary of the Cu2Mg phase by means of the key processing 
parameters. The intensity and distribution of gpCAM data- and 
mapping of the Cu2Mg (3 1 1) diffraction peak intensity in the 
grid scan are shown in Fig. 7. The collection trajectory, intensity 
of the Cu2Mg (3 11) diffraction peak in the gpCAM-driven 
characterization is shown in Supplementary Fig. 7. A large 
number of collected points were distributed at the boundary 
between 400 °C for 60 min and 460 °C for 7.5 min in both thin 
and thick dealloying agent samples. This result indicates that 
gpCAM determined the Cu2Mg phase transition distributed 
between 400 °C and 460 °C, matching the grid scan results. 
Overall, this match of the phase boundary from grid-scanned 
mapping with gpCAM collected points proves the capability of 
gpCAM in analyzing the phase transition in SSID.

It should be noted that while gpCAM determines the boundary 
based on the diffraction peak intensity calculated from a fixed q 
range, it could be replaced by the phase probability result from

the XCA method. From each collected XRD pattern, the XCA 
generates the probability of an existing phase, which can be used 
to replace the diffraction peak intensity in the gpCAM algorithm. 
gpCAM searches through the phase distribution based on the 
probability of a given phase existing at each location. In such 
circumstances, we can prevent XRD pattern variation in thin-hlm 
samples, such as a strain-induced phase shift, calculate the 
compositional variation according to Vegard’s law, accurately 
determine the dealloying-generated phase intensity, and effi­
ciently analyze the dealloying results. To fully realize a closed- 
loop approach, future test on the systems predicted in this work 
could consider different design criteria and cost functions based 
on the goal of the materials design. For instance, other dealloying 
agents beyond Cu and Mg could be prioritized to create novel 
systems. Alloys with compositions not following the conventional 
mixing enthalpy differences would be of fundamental research 
interests. For particular applications, the cost of materials and 
processing constraints such as temperature can be considered.

Conclusion
An ML approach to dealloying and designing nanoporous/nano- 
composite materials is first introduced. The proposed ML ensemble 
pipeline consisting of three ML methods was able to predict 132 
ternary dealloying systems from 16 selected metal elements after 
training with published dealloying systems. In addition to elements 
that have never been reported by the dealloying method, more 
elemental combinations have been introduced to pave the way for 
the development of nanocomposites and nanoporous materials 
with a broader range of applications. The important variables 
ranked by the ML methods, such as energy at the ground state, 
fusion heat, and heat formation, indicate that thermodynamic 
stability is the key to designing dealloying systems. In addition, 
atomic volume differences that contributed to entropy changes 
were also ranked highly by the ML methods. The ML methods have 
demonstrated their potential to overcome the limitations of con­
ventional design criteria in intermetallic alloys and can be readily 
applied to a wider range of alloys.

The kinetics in Ti-Cu-Mg dealloying systems was studied using 
combinatorial thin-hlm deposition and synchrotron XRD char­
acterization. The relation between the phase transition of 
dealloying-generated Cu2Mg and CuMg2 phases and the deal­
loying conditions was discussed. Relation between the dealloying­
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generated phase and the film thickness and parent alloy com­
position was analyzed.

A neural-network-based automated XRD pattern analysis 
method, XCA, and a Gaussian process regression-based algo­
rithm using the gpCAM software were validated through the 
characterization of Ti-Cu-Mg dealloying systems. The accuracy of 
XCA analysis in identifying the Cu2Mg and CuMg2 phases gen­
erated from dealloying and the efficiency of finding the Cu2Mg 
phase boundary through gpCAM were demonstrated. In the 
future, validated ML-informed automated pattern analysis and 
the ML-augmented decision-making algorithm can be combined 
to further the development of the autonomous experimental 
methods, where a range of automatic decision making, analysis, 
instrumentation, and communication tools are combined to 
create a closed-loop that can make intelligent decisions during an 
experiment without human interaction.

The ML-augmented workflow built in this work will sig­
nificantly improve data-acquisition accuracy and rate, which will 
pave the way for rapidly validating the ML predictions, enriching 
the ML training set with experimental results, improving the 
accuracy of the ML methods, and developing nanoporous/ 
nanocomposite materials. Moreover, such a workflow can be used 
to design a wider range of solid-state materials with limited 
published results.

Methods
Machine learning prediction of ternary systems for metal-agent dealloying.
To construct a ternary system where the dealloying of a parent alloy by a dealloying 
agent can occur, two questions must be answered. First, among all possible ternary 
systems, how do we identify promising ternary systems that may display dealloying 
behavior with two miscible pairs and one immiscible pair of elements? Here we 
simplify the question and exclude the potential ternary systems that composed of 
three miscible pairs or composed of one miscible pair and two immiscible pairs. 
Second, within a ternary system, how do we discern which element will act as a 
dealloying agent in the immiscible pair? Note that the other element is then the 
remaining element left within the parent alloy. While for both questions, ther­
modynamics can provide guidelines for identifying possible answers, these two 
questions are essentially classification problems that can also be addressed using 
ML methods.

Based on the two questions outlined above, we divided the ML-based 
classification process for identifying dealloying systems into two steps. In Step 1, 
ML methods were trained to classify the published miscible and immiscible pairs. 
Once trained, the first-step ML classifier can be applied to classify new elemental 
pairs into miscible and immiscible pairs. Two miscible pairs and one immiscible 
pair were then combined to form ternary systems. In Step 2, ML methods were 
trained to distinguish ternary systems that will lead to dealloying process. This was 
done by identifying systems with the A-B combination as a parent alloy from a 
mixture of ternary systems where either A-B or B-C combination is the parent 
alloy; both new systems satisfy the criterion of Step 1 in that they contain a 
composition of two immiscible pairs and one miscible pair. However, only the 
systems with A-B as parent alloys will lead to the dealloying process. Once trained, 
the second-step ML classifier can identify the parent alloy and dealloying agent 
from new ternary systems.

To establish ML methods to address the above classification problems, training 
and testing datasets were collected from a total of 21 different peer-reviewed 
papers, including 13 discussing the LMD method8,10,11,14,19,51-63, 4 papers 
addressing the SSID method17,20,64,65, and 4 papers examining the aqueous 
solution dealloying (ASD) method66-69, listed in Supplementary Table 3. These 
data were then used to classify miscible/immiscible pairs. Excluding the ASD 
systems, only the training and testing datasets from metal-agent dealloying systems 
were used for classifying parent alloys and dealloying agents. Each of the ternary 
dealloying systems is composed of three elements, A, B, and C, where the parent 
alloy elements A and B are miscible. In addition, the sacrificial element (B) and the 
dealloying agent (C) are miscible, while the remaining element (A) and the 
dealloying agent (C) are immiscible. We organized all the reported dealloying 
systems to follow the A-B-C sequence, specifically to distinguish dealloying agent C 
from the remaining element A. To identify miscible/immiscible pairs, the organized 
A-B-C ternary systems were separated into A-B and B-C miscible pairs, as well as 
A-C immiscible pairs. Some reported systems have more than two elements in the 
parent alloy. Following the miscible/immiscible relation, these systems (A1A2... 
An)-B-C were separated into multiple miscible pairs (A^B, A2B... AnB, BC) and 
immiscible pairs (A^C, A2C... AnC) and placed into the miscible/immiscible 
dataset. In addition, we also separated (A1A2...An)-B-C into ArB-C, A2-B-C... 
An-B-C ternary systems, which were included in the training and testing datasets 
for classifying parent alloys and dealloying agents.

We first conducted the training and testing of the ML methods for both steps 
using the data from the literature. In the first step, we classified all reported 
dealloying systems into miscible and immiscible pairs. Two types of elemental parts 
are labeled as miscible pairs: (1) the parent alloy elemental pair, and (2) the pair of 
sacrificial element and dealloying agent. The pair of the residual element and the 
dealloying agent is labeled as immiscible pair. In our dataset, we summarized 64 
pairs, including 43 miscible and 21 immiscible pairs. To train each ML method, the 
dataset was randomly divided, where 70% was allocated for training and 30% was 
allocated for testing classifier performance. To increase the reliability of the ML 
predictions, we used three ML methods from the scikit-learn library70: random 
forest71, support vector machine (SVM)72, and XGBoost73. We trained the ML 
methods with all variables and used the SHAP (SHapley Additive explanations) 
value, based on a game theoretic approach for explaining outputs of ML models to 
select variables74. The union set of the top five important variables from each ML 
method was selected, leading to a total of 10 valuables. Then we removed two 
highly correlated variables (correlation coefficients r > 0.8) based on the correlation 
matrix. The final 8 variables selected were used to train the three ML methods with 
one more iteration, listed in Supplementary Table 4. The trained ML classifier was 
then applied to predict new miscible and immiscible pairs generated from 
16 selected elements, including Mg, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, 
Nb, Mo, and Ta. The fabrication of half of the selected elements has not been 
reported based on the metal-agent dealloying method, according to McCue et al.’s 
report42. Although all the three ML methods showed great performance in both 
training and testing process, they showed different prediction results on new pairs. 
We used the majority vote from the three ML classifiers with equal weight as the 
ensemble prediction result75 so that the common predictions from at least two ML 
classifiers were included, while the prediction from only one ML classifier without 
intersections with the other ML classifiers’ prediction was not included in the final 
classification result. The newly classified miscible and immiscible pairs derived 
from the ensemble prediction results were used to build new potential ternary 
dealloying systems A-B-C, where A-B and B-C are two miscible pairs and A-C is an 
immiscible pair.

In Step 2, we then introduced the second classification step to identify the 
parent alloy and dealloying agent in the potential ternary systems, as classified in 
Step 1. The parent alloy and dealloying agent were not identified in the new ternary 
A-B-C dealloying system in the first step. In Step 1, we did not determine the 
relative strength of the miscibility. In Step 2, we then identified whether A-B or B-C 
had a stronger tendency to mix; in other words, we classified whether A-B or B-C 
was the parent alloy. From the published result, we knew that the C element had a 
stronger tendency to combine with the B element so that the A element could not 
dealloy the B-C pair. In Step 2, we classified the ternary alloy systems where B-C 
combination is the parent alloy as systems that cannot be dealloyed. A total of 
62 systems, including 31 feasible systems, were reported as feasible ternary systems 
with A-B combination as parent alloy; the 31 corresponding infeasible ternary 
systems with B-C combination as the parent alloy were randomly split, resulting in 
70% of the system allocated for training and 30% for testing. The elemental 
distribution in training and testing dataset in the step 1 and 2 are summarized in 
Supplementary Fig. 8. We then separately trained 3 ML methods (random forest, 
XGBoost, and SVM) to classify feasible and infeasible systems. The variables 
selection based on the SHAP values were conducted following the similar 
procedure as in step 1, except that the top eight important variables were selected 
from each ML method, leading to a total of 18 in the union set. After removing six 
values with r > 0.8, a total of 12 final variables were selected (Table 1). The trained 
classifiers were then applied to differentiate ternary systems with A-B or B-C as 
parent alloy that were composed in the first step.

The variables that were input into the ML methods to classify and predict new 
dealloying systems were sets of quantitative attributes describing the materials. We 
selected 55 relevant element-level properties and electronic structure attributes 
available in the Python library XenonPy76, including 21 calculated elemental 
properties developed for a general machine learning framework for inorganic 
materials26. To avoid bias from training sets that restricted dealloying agents to 
specific elements (Cu and Mg), we focused on the relationships within elemental 
pairs rather than the individual element properties. We computed the means and 
absolute differences of each pair’s 52 attributes and used them as variables in the 
ML methods. In addition, we included two key variables, mixing enthalpy and 
maximum equilibrium solubility in binary systems, that are conventionally used to 
classify dealloying systems. The mixing enthalpies of all elemental pairs were 
calculated based on Miedema’s method21 and are available from the Python library 
Matminer77. The maximum equilibrium solubilities of the first 83 elements in the 
periodic table were collected from the literature78. We also included 
thermodynamic attributes to determine the compound stabilities, including the 
formation energy and energy above the convex hull (approximate as 
decomposition enthalpy)24, which are available in the Matminer library77. Since the 
compositions of the dealloying-generated B-C phases were not reported in all the 
literature, we did not consider a specific composition in each A-B-C system. We 
generalized the dealloying for compositional attribution and included only the 
minimum and maximum values of the formation energy and energy above the hull 
among each binary pair here. All variables were summarized in Supplementary 
Table 5.

To select the optimal ML methods, we evaluated the performances using 
fivefold cross-validation for the three different ML methods in the scikit-learn
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library70, including random forest, SVM, and XGBoost. Hyperparameters, 
including the number of estimators and maximum depth in XGBoost and random 
forest, and C values in SVM were selected through a fivefold cross-validated 
randomized search79. The confusion matrix were used to assess each method’s 
classification performance. Although the confusion matrix from three ML methods 
all showed a good classification performance, and the majority of the predictions 
from three ML methods overlapped, there is still a small number of predictions 
from each ML method disagrees with each other. Because of the limited data 
availability, and clustered data at Ti, Cu and Mg elements, we further validated the 
trained ML methods with the leave-one-element-out method in both steps. The 
cross_val_score function available in the scikit-learn package was applied with 30 
fold cross-validation, and the output accuracies of trained ML methods were 
averaged and collected. In step 1, the averaged accuracy for the random forest is
0.90, the accuracy for XGBoost is 0.89, and the accuracy for SVM is 0.92. In step 2, 
the accuracy for the random forest is 0.92, the accuracy for XGBoost is 0.87, and 
the accuracy for SVM is 1.00. The result indicates that ML method is reliable.

Combinatorial thin-film deposition and synchrotron characterization. Bor- 
osilicate glass slides (TedPella) with an initial area of 114 x 159 mm2 and a 
thickness of -200 pm were cut down to 72.5 x 72.5 mm2 in size for the deposition 
substrate. Before deposition, the glass slides were cleaned with isopropyl alcohol 
and deionized water, followed by treatment in an oxygen-plasma environment. A 
Ta film (99.95% purity, 3” diameter, and 0.125” thickness target from Kurt J. 
Lesker) was deposited by direct current (DC) sputtering as a barrier layer. A 
combinatorial film with a compositional gradient of TixQi! x (x = 20-80 at.%) was 
prepared by cosputtering Ti and Cu targets (2” diameter and 0.125” thickness, Kurt 
J. Lesker) at the University of Maryland44. A Mg sputtering target (99.95% purity, 
3” diameter, and 0.25” thickness from Kurt J. Lesker) was used as the dealloying 
agent. The deposition of the homogeneous barrier layer Ta film and dealloying 
agent Mg film was conducted at the Center for Functional Nanomaterials (CFN) in 
Brookhaven National Laboratory (BNL). For the Ta and Mg sputtering targets, a 
cleaning protocol that involved sputtering the target for 5-10 min with the sput­
tering shutter closed was conducted to remove the surface oxides. Ta, Ti-Cu, and 
Mg films were sequentially sputtered onto borosilicate glass slides. Two types of 
samples with different thicknesses of Mg were prepared: one with a 250 nm thin 
Mg layer and another with a 450 nm thick Mg layer. The thickness of the rest layer 
was consistent in both types of samples: 80 nm for Ta and 220 ± 35 nm for Ti-Cu.

After deposition, the samples were heated by rapid thermal processing (RTP- 
6008, Modular Process Technology Corp.) for an isothermal heat treatment to 
introduce dealloying. All heat treatment processes were conducted in a reduced gas 
atmosphere (4 vol.% hydrogen and 96 vol.% argon) to prevent oxidation during the 
heat treatment. The samples were heated from room temperature to the designated 
dealloying temperature in 30 s and kept at the dealloying temperature for a 
designated duration of time. The samples were then cooled to room temperature in 
-150 s. The heating temperature and time were determined based on the estimated 
diffusion length between Cu and Mg, as calculated based on the diffusion data in 
the literature80.

X-ray diffraction analysis was conducted at the X-ray powder diffraction (XPD) 
beamline 28-ID-2 at the National Synchrotron Light Source II (NSLS-II) in BNL. 
The incident X-ray beam energy was 66.16 keV, with a corresponding X-ray 
wavelength of 0.1874 A. The beam size was 0.5 mm x 0.5 mm. A large-area X-ray 
detector with 2048 x 2048 pixels was used to measure the XRD patterns, where the 
size of each pixel was 200 x 200 pm2. The distance from the sample to the detector 
was first calibrated with a Ni standard and determined to be 1356.038 mm. The 
exposure time for collecting each XRD pattern was 60 s. Phase identification based 
on the XPD results was carried out by comparing the peak locations to those of 
reference compounds using the commercial software package Jade (Materials Data, 
Inc. Jade 9). The analysis of diffraction peak intensity was based on the integral of 
peak intensity after removing the background. The background was fitted by linear 
interpolating the averaged values of three points on both sides of a given diffraction 
peak. For instance, for the Cu2Mg (311) peak, we integrated the peak intensity with 
the corresponding q range from 2.925 to 2.974 A-1. The diffraction background 
was removed based on a linear interpolation of the peak intensity at 2.925 and 
2.974 A-1, where values were averaged from three data points at the immediately 
left of 2.925 A-1 and right of 2.974 A-1 respectively.

Automatic XRD pattern analysis and autonomous characterization. A
ensemble of feed forward convolutional neural networks were applied to auto­
matically analyze the XRD pattern50. These models were built using the Crystal­
lography Companion Agent (XCA) package, and trained on synthetic datasets by 
inputting the crystallographic information file (GIF) of the expected phases and 
created an output of probabilistic classifications. The XCA input included Mg, 
Cu2Mg, CuMg2, and Ti CIFs collected from the materials project. The autonomous 
experiment was driven by gpCAM to autonomously detect phase transformation 
and drive the XRD data-collection process31.

Bluesky, a library for experimental control and scientific data collection, was 
used for synchrotron characterization81. This library supports the collection and 
analysis of data in real time, enabling the incorporation of XCA and gpCAM into 
the ML-augmented materials design process.

In the autonomous characterization process, the experimental control was 
coordinated based on two Python programs: bluesky control of the XPD beamline 
and gpCAM implementation of Gaussian-process-based optimization for decision 
making. Although XCA performed automated XRD pattern analysis separately in 
this experiment, it demonstrated the feasibility of combining this step with 
autonomous experimental control; such control involves bluesky controlling the 
beamline, XCA analyzing the pattern, and gpCAM deciding the measurement 
point from the XCA-generated probability.

Data availability
Data contained in this manuscript are available from the corresponding authors upon 
reasonable request.

Code availability
The codes that support the findings of this study are available from the corresponding 
author upon reasonable request.
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