
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS 1

A Novel ASIC Design Flow Using Weight-Tunable
Binary Neurons as Standard Cells

Ankit Wagle, Member, IEEE, Gian Singh , Member, IEEE, Sunil Khatri, Senior Member, IEEE,

and Sarma Vrudhula , Life Fellow, IEEE

Abstract— In this paper, we describe a design of a mixed-signal
circuit for an binary neuron (a.k.a perceptron, threshold logic
gate) and a methodology for automatically embedding such cells
in ASICs. The binary neuron, referred to as an FTL (flash
threshold logic) uses floating gate or flash transistors whose
threshold voltages serve as a proxy for the weights of the neuron.
Algorithms for mapping the weights to the flash transistor
threshold voltages are presented. The threshold voltages are
determined to maximize both the robustness of the cell and its
speed. The performance, power, and area of a single FTL cell are
shown to be significantly smaller (79.4%), consume less power
(61.6%), and operate faster (40.3%) compared to conventional
CMOS logic equivalents. Also included are the architecture and
the algorithms to program the flash devices of an FTL. The
FTL cells are implemented as standard cells, and are designed
to allow commercial synthesis and P&R tools to automatically
use them in synthesis of ASICs. Substantial reductions in area
and power without sacrificing performance are demonstrated on
several ASIC benchmarks by the automatic embedding of FTL
cells. The paper also demonstrates how FTL cells can be used
for fixing timing errors after fabrication

Index Terms— Artificial neuron, perceptron, neural circuits,
threshold logic, floating gate, flash, low power, high performance.

I. INTRODUCTION AND MOTIVATION

IN THIS paper, we introduce a new programmable ASIC
primitive, referred to as a flash threshold logic (FTL) cell,

and show how it can be used to substantially improve the area
and power consumption of an ASIC, without increasing its
delay. An FTL cell and its use in an ASIC is different from
any other type of ASIC component previously reported. It is a
mixed-signal circuit that is designed as a standard cell, so that
it is fully compatible with conventional CMOS logic synthesis,
technology mapping, and place-and-route tools.

An FTL cell of n inputs realizes any threshold function of
n or fewer variables. A threshold function f (x1, · · · , xn) [1]
is a unate Boolean function whose on-set and off-set are

Manuscript received October 19, 2021; revised February 18, 2022 and
March 27, 2022; accepted April 1, 2022. This work was supported in
part by NSF Partners for Innovation (PFI) under Award 1701241 and Award
1361926. This article was recommended by Associate Editor U. Schlichtmann.
(Corresponding author: Sarma Vrudhula.)

Ankit Wagle, Gian Singh, and Sarma Vrudhula are with the School of
Computing and Augmented Intelligence, Arizona State University, Tempe,
AZ 85281 USA (e-mail: awagle1@asu.edu; gsingh58@asu.edu; vrudhula@
asu.edu).

Sunil Khatri is with the Department of Electrical and Computer Engi-
neering, Texas A&M University, College Station, TX 77843 USA (e-mail:
sunilkhatri@tamu.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSI.2022.3164995.

Digital Object Identifier 10.1109/TCSI.2022.3164995

Fig. 1. (a) FTL schematic, (b) Functional equivalent.

linearly separable, i.e. there exists a vector of weights W =
(w1, w2, · · · , wn)1 and a threshold T such that

f (x1, x2, · · · , xn) = 1 ⇔
n∑

i=1

wi xi ≥ T, (1)

where
∑

here denotes the arithmetic sum. A threshold
function can be equivalently represented by (W, T) =
(w1, w2, · · · , wn; T).

Figure 1(a) shows a block diagram of an FTL cell, in which
the weights W are shown as internal parameters of the cell and
Figure 1(b) shows its functional equivalent. The schematic is
meant to convey that the input-output behavior of an FTL
cell may be viewed as an edge-triggered, multi-input flip-
flop, whose output is the value of a threshold function, that is
internally latched at the rising edge of the clock signal CLK.

A distinctive characteristic of the FTL cell design is that
the actual threshold function realized by an FTL instance
within an ASIC is programmed after the circuit is man-
ufactured. An FTL-based ASIC integrates flash or float-
ing gate [3] transistors along with conventional MOSFETs
within the FTL cell. Thus, unlike many of the emerging
technologies [4]–[7], an FTL cell employs mature IC tech-
nologies (CMOS and Flash) that are routinely integrated today
and commercially manufactured with high yields.

A. FTL in ASIC Design – Overview

Before proceeding to the details of FTL design, it will be
instructive to understand how it can be used in an ASIC [8],
and how it can improve performance, power, and area.

Consider the logic netlist shown in Figure 2(a) which has
two registered outputs F and G. Suppose that the transitive
fan-in (TFI) cones of F and G are traversed and two subcir-
cuits labeled A and B (see Figure 2(b)) are found, such that A
and B are threshold functions of their inputs. The remaining
subcircuit is labeled as C . Suppose that subcircuits A and B

1W.L.O.G, weights can be assumed to be positive integers [2], and for a
given truth table of a threshold function, there is a weight vector whose sum
is minimum [2].

1549-8328 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ASU Library. Downloaded on April 15,2022 at 05:27:24 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6649-8487
https://orcid.org/0000-0001-9278-2959

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Fig. 2. Use of FTL in ASIC design.

are replaced by FTL cells, which are to be later programmed
to realize A and B . This replacement is shown in Figure 2(c),
where the FTL cells are shown as black boxes. Now, subcircuit
C would be re-synthesized to account for the changes in the
delay of FTL cells and the new loads that the inputs of the
FTL cells present to the outputs of C . There are two reasons
why the circuit in Figure 2(c) would have improved power,
performance and area.

1) Subcircuits A and B and the two flip-flops are each
replaced by an FTL cell which has much fewer tran-
sistors, resulting in a significant reduction in area and
power.

2) The clock-to-Q delay of FTL cells turns out to be much
less than the total delay (combinational logic delay plus
clock-to-Q delay of DFF) of subcircuits A and B , which
results in creating a substantial amount of slack (required
time minus arrival time) on the outputs of subcircuit
C . This in turn will allow synthesis and technology
mapping tools to reduce the logic area of subcircuit C .
The extent of the improvement depends on how the logic
is absorbed into the FTL cell.

Note that the reason why the FTL cells are shown as black
boxes in Figure 2(c) is to convey the fact that their functions
are not known at the time of fabrication because the flash
transistors are programmed after the chip is manufactured.

B. Main Contributions

1) An FTL cell is a mixed-signal circuit that is imple-
mented as a standard cell. The new design incorpo-
rates flash transistors, which allow its function to be
programmed after fabrication.

2) The set of threshold voltages of the flash transistors in
an FTL cell serve as a proxy for the weights [W, T].
The weights can be realized with great fidelity because
the flash transistors can be programmed with high preci-
sion [3]. However, the relationship between the weights
and threshold voltages is a non-linear and multi-valued
mapping that depends on the complex electrical and
layout characteristics of the MOSFETs and flash tran-
sistors. We present a new algorithm called the modified
perceptron learning algorithm (mPLA) [9] that works in
concert with HSPICE and learns a mapping between the
weights and threshold voltages. The mPLA algorithm
also maximizes the noise tolerance and robustness of the

FTL cell in the presence of process and environmental
variations.

3) We present an efficient architecture and methodology
for programming the threshold voltages of each flash
transistor within each FTL cell that is embedded in an
ASIC. We also demonstrate how the post-fabrication
threshold voltage assignment capability can be used to
improve functional yield and correct timing errors.

4) FTL cells are designed as standard cells to be compatible
with existing CMOS design methodologies and tools.
We demonstrate this compatibility by using commercial
CAD tools to perform synthesis, technology mapping,
and place-and-route of several complex function blocks
with FTL cells included in the cell library. The results
show that automatic embedding of FTL cells results
in substantial improvements in the area, power, and
wirelength, without sacrificing performance.

The remainder of the paper is organized as follows.
Section II gives a very brief overview of threshold logic and
flash transistor technology. Sections III, IV, V and VI contain
the main body of this work. The architecture and operation
of the FTL cell are described in Section III. Section IV
explains the mechanism for programming FTL cells once
they are embedded in an ASIC, using a separate scan chain
reserved for that purpose. Section V describes the mapping
between the weights of a threshold function and the threshold
voltages of the flash transistors in the FTL, considering factors
such as robustness to noise, process variations and circuit
delay. Section VI contains an extensive set of experimental
results, demonstrating the significant improvements in PPA of
FTL cells over their CMOS equivalents both at cell-level and
when they are integrated into ASICs. It also includes results
validating several uses of post-fabrication programming/tuning
of the flash devices. Conclusions appear in Section VII.

II. BACKGROUND

A. Threshold Logic

Threshold functions are an interesting and valuable subset
of Boolean functions. They were first proposed in 1943 as
simple models of neurons [10], which generated a vast number
of papers on neural networks – a subject that has been
revived recently with the emergence of machine learning. The
use of threshold logic in digital design and synthesis was
extensively investigated in the 1960s and 1970s, culminating

Authorized licensed use limited to: ASU Library. Downloaded on April 15,2022 at 05:27:24 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WAGLE et al.: NOVEL ASIC DESIGN FLOW USING WEIGHT-TUNABLE BINARY NEURONS AS STANDARD CELLS 3

in two authoritative works [1], [11]. Since then there has
been a substantial body of work on new circuit architectures
and implementations of threshold logic. Surveys of designs
prior to 2003 appear in [12]–[14], detailing over fifty different
implementations.

The earlier works and even later ones such as [5], [15]–[20],
have not been integrated into mainstream VLSI design. It is,
however, still is very valuable to develop efficient implemen-
tations of threshold functions. This is due to the fact that many
Boolean functions that require large AND/OR networks can
be realized by smaller, fixed depth threshold networks [2] and
nearly 70% of the functions in two standard cell libraries
(observed in a 65nm and a 40nm library from different
vendors) are threshold functions.

Recently, [8] reported an architecture of a threshold gate
and showed how it can be integrated with the standard-cell
ASIC design methodology using commercial tools. Unlike
our approach, [8] uses only CMOS devices. In addition, they
reported significant improvements in PPA of an actual silicon
implementation of ASIC with threshold gates [21]. Their
architecture, however, severely limits the number of threshold
functions that can be implemented because the width of the
transistors are made proportional to the weights. This limits the
fan-in and consequently, only 12 of the 117 threshold functions
of 5 or fewer inputs were implemented in [8]. In contrast, our
work implements all 117 threshold functions of 5 or fewer
inputs because of the use of flash transistors.

B. Flash Transistors

A flash transistor is functionally similar to a field
effect (FET) transistor, except that it is made to have an
additional layer of charge between the control gate and the
channel as a means to adjust the threshold voltage (V T) of the
transistor. Programming and erasing these devices correspond
to increasing and decreasing V T , and this is achieved by
electrons tunneling into or out of the charge layer via Fowler-
Nordheim (FN) tunneling [22]. In general, programming is
performed by applying a sequence of high voltage pulses (the
duration and magnitude of which determines V T) [23] to the
control gate and holding the bulk, source, and drain terminals
at 0V . Erasure is achieved by holding the control gate at 0V
and allowing the source and drain to float [23]. In a flash
memory, the value of V T , which is determined by sensing
the current, represents the state or stored value, and this can
be retained for more than ten years [23], while the bulk is
driven to a high voltage. Several variants of flash transistors
with different structures and materials have been investigated
over the past two decades to reduce the programming voltage,
improve reliability, encode multiple bits, reduce the number
of fabrication steps, and improve the yield.

Figure 3 shows a cross-section of the two common types of
flash transistors: (a) the floating gate transistor (FGT), which
has an additional buried and un-contacted floating gate, and
(b) the charge trapping transistor (CTT) which has an oxide-
nitride-oxide (ONO) layer between the gate and the substrate.
Floating gate technology (Figure 3(a)) is fully compatible with
and used along with CMOS, and because of its dominant

Fig. 3. Cross section of flash transistors.

role as NVM in flash drives and solid-state drives (SSD), its
design and fabrication has been continuously improved over
two decades. However, it still has several drawbacks, including
the need for additional masks, the requirement of higher
voltages for programming and erasure, and most importantly,
the difficulty in scaling its dimensions below 40nm due to poor
scaling of the thin oxide.

In CTTs (Figure 3(b)), the electrons are trapped in the
insulating nitride layer whereas in FGTs they are in the
conducting floating gate. There are several variants of CTT
device such as SONOS [24], MONOS [25] and High-K
Metal Gate (HKMG) [26]. All have been successfully scaled
to 14nm/16nm CMOS FinFET technology. Additionally, the
HKMG device can be programmed to multiple V T levels [27]
and the SONOS device can be programmed up to 128 V T
levels [28]. One important advantage of the HKMG CTTs is
that they do not require any additional processes or masks and
operate at logic-compatible voltages.

In summary, flash transistors, including FGTs and all vari-
ants of CTTs can co-exist with CMOS transistors on the same
substrate, in a high-yield, cost-effective manufacturing flow.
In this paper, their use will be for realizing logic as opposed
to just storage. The use of flash transistors in logic design was
described in [29]–[32], where the authors demonstrated sub-
stantial improvements in power, performance, and area over
conventional CMOS standard-cell based design and resilience
to aging by reprogramming the V T s of the flash transistors
when aging-related speed degradation occurred. The main
drawbacks of the approach are (1) the circuit structures are
not compatible with the standard-cell based design flow that is
practiced in industry and (2) they are potentially subject to the
similar read/write disturb issues found in memory applications.

In this paper, we describe how flash transistors can be
used to realize threshold logic gates. The flash devices are
used as resistors (by varying their threshold voltages) and the
resistances serve as a proxy for the weights in a threshold
function. This concept first appeared in [33]. Their design
was a stand-alone, custom-designed analog circuit to realize
a 16-input threshold function. In contrast, threshold gates
described in this paper are designed as standard cells, and
automatically incorporated in large-scale ASIC design using
commercial tools.

III. FLASH THRESHOLD LOGIC (FTL) CELL

Figure 4 shows the architecture of the FTL cell. It has five
main components: (i) the left input network (LIN), (ii) the right
input network (RIN), (iii) a sense amplifier (SA), (iv) an output
latch (LA), and (v) a flash transistor programming logic (PL).
The LIN and RIN consist of two sets of inputs (ℓ1, · · · , ℓn)

Authorized licensed use limited to: ASU Library. Downloaded on April 15,2022 at 05:27:24 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Fig. 4. FTL cell architecture showing LIN, RIN, sense amplifier (SA), Latch (LA), and programming logic (PL).

and (r1, · · · , rn), respectively, with each input in series with
a flash transistor. In our implementation, ℓi = ri = xi for
all i . The conductance of the LIN and RIN is determined by
the state of the inputs and the threshold voltages of the flash
transistors. The assignment of signals to the LIN and RIN is
done to ensure sufficient difference in their conductance across
all minterms.

There are two differential signals N1 and N2 in an FTL cell,
which serve as inputs to an SR latch. When [N1, N2] = [0, 1]
([1, 0]), the latch is set (reset) and the output Y = 1(0). The
magnitudes of the two sides of the inequality in the definition
of a threshold function (see Equation 1) are mapped to the
conductance GL of the LIN and G R of the RIN. Ideally, the
mapping is such that [N1, N2] = [0, 1] ⇔ GL > G R and
[N1, N2] = [1, 0] ⇔ GL < G R . As stated earlier, the flash
transistor threshold voltages serve as a proxy to the weights of
the threshold function – the higher the weight, the lower will
be the threshold voltage. For a given threshold function, this
non-linear monotonic relationship is learnt using a modified
perceptron learning algorithm described in Section V.

The FTL cell has four modes: regular, erase, programming
and scan-testing mode. The V T values of the flash transistors
are set in the programming mode and erased in the erase mode.
The logic operation of an FTL cell takes place in regular mode.

A. FTL Regular Mode

(PROG = ERASE = 0, TE = 0, HiV = 0). Assume that
the V T s of the flash transistors have been set to appropriate
values corresponding to the weights of the threshold function,
and their gates are being driven to 1 by setting FTi to VDD.
When C L K = 0, the circuit is reset. In this phase, the nodes
N5 and N6 of LIN and RIN are connected to the supply,
N5 = N6 = 0, and N1 = N2 = 1. Therefore, the output Y
remains unchanged.

Assume now that an on-set minterm is applied to the inputs
in the LIN and RIN. With properly assigned V T values to
the flash transistors, suppose that GL > G R for the given
minterm. When C L K : 0 → 1, both the LIN and RIN will
conduct, and N5 and N6 will both transition from 0 → 1.
Assuming GL > G R , N5 rises faster than N6, and hence

N5 will make M7 active before N6 makes M8 active. This
will start to discharge N1 before N2. When N1 falls below
the threshold voltage of M6, it will stop further discharge
of N2, and turn on M3, resulting in N2 : 0 → 1. Finally,
[N1,N2] = [0,1] sets the SR latch, resulting in Y = 1. For an
off-set minterm, GL < G R , and [N1, N2] = [1, 0] resulting
in Y = 0.

B. FTL Program, Erase and Scan-Testing Mode

Figure 4 shows a circuit block labeled PL (programming
logic) that generates the signals to select and program the
FTL cells at the chip-level. Details of the programming
architecture and protocol are given in Section IV. During
flash-programming of a single FTL, the PL redirects Hi V
to FTi, to program the i th flash transistor.

C. FTL Programming Mode

(ERASE=0, PROG=1, CLK=0, HiV=20V, TE=0). The
ERASE and PROG signals turn on M12 and M13 and turn
off M14. In this state, the source of the flash transistor is
floating while the drain and bulk are connected to the ground.
Activating the appropriate signals in the PL unit causes high
voltage pulses to be applied to the Hi V line and the gate of
the flash transistor to set the desired threshold voltage (V T).

D. FTL Erase Mode

(ERASE=1, PROG=1, CLK=0, HiV = −20V, TE=0).
M12 is turned off by the ERASE signal. Both the source and
drain of the flash transistors are floating in this state, while the
bulk is connected to the ground. Using the PL unit, the gate
terminals of all the flash transistors in the FTL are connected
to Hi V . A negative high voltage pulse at Hi V in this state
will tunnel the charge from the floating gate, thereby erasing
the flash transistor.

E. FTL Scan-Testing Mode

(ERASE=0, PROG=0, CLK=0, HiV=0, TE=1). The
scan-testing mechanism in the FTL cells is implemented in the

Authorized licensed use limited to: ASU Library. Downloaded on April 15,2022 at 05:27:24 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WAGLE et al.: NOVEL ASIC DESIGN FLOW USING WEIGHT-TUNABLE BINARY NEURONS AS STANDARD CELLS 5

Fig. 5. Programming scan chain for FTL cells in an ASIC.

same way as described in [8]. It uses the test enable (TE) and
test input (T I and T̄ I) signals. In this mode, T E acts as the
clock with the main clock C L K = 0. Hence the scan-testing
chains for the D flip-flops and FTL cells are kept separate.
The procedure to inject data into the scan-testing chain of
FTL cells is straightforward. On each T E cycle, the bit to be
scanned in is applied to T I . Then T E : 0 → 1, which causes
the either N1 or N2 to discharge resulting in the output latch
being set or reset. This process is repeated to load all FTLs
with the data in a test vector. Transistors M26 and M27 block
potential DC paths from VDD to VSS during testing.

Note that the problem of read and write disturb [34], [35]
found in NAND flash memories does not exist with an FTL
cell because there is only one flash transistor in each stack in
the input network. Also the problem of write endurance [36]
in flash memories, which refers to a limit on the number of
writes (from 10K - 100K cycles), is not an issue with FTL
cells, because an FTL cell would be programmed or erased
only a handful of times over the life of the design.

IV. ARCHITECTURE FOR PROGRAMMING FTL CELLS

In this section, we describe the programming architecture
used for FTL cells embedded in an ASIC. This architecture
individually addresses the flash transistors of the FTL cells and
then redirects HiV pulses to them. Although this architecture
is a part of the ASIC, its use ends once the FTL cells are
programmed. Therefore, its design must meet its functional
requirements without severely impacting the overall area and
wirelength of the ASIC. This is achieved by a scan-chain
programming architecture.

Figure 5 shows the structure of the programming scan chain.
Each stage of this chain consists of an FTL cell with its
programming logic and a select cell that identifies the FTL
cell to be programmed. Suppose that the FTL cells realize all
threshold functions of n or fewer variables.2 Then each such
cell has 2n + 2 flash transistors. Suppose further that there
are N FTL cells. Initially, all Qi s are set to 1. Then cell i
is selected by making Qi = Qi−1 = 0, while all other Qs
remain at 1. Thus, clocking in the appropriate sequence using
PCLK selects cell i . Since each FTL cell has 2n+2 flash cells,
a global decoder with log(2n + 2) inputs and 2n + 2 outputs
is used. These outputs of the decoder activate the appropriate
path for the HiV pulses to the inputs of the flash transistors
of the selected FTL cell.

The programming architecture involves the use of high
voltage nets. In the physical layout, the high voltage wires

2In the experimental results, n = 5.

are bundled, and wire-shielding [37] is used to avoid any
cross-talk due to high voltage signals to the other low voltage
lines and transistors. Programming is done with a dedicated
scan chain, and all the associated high voltage nets are
systematically bundled and shielded. This results in reducing
the total wirelength of those nets. Furthermore, since it is
a linear iterative array, it easily scales to accommodate any
number of cells.

Assuming that FTL cells use floating gate transistors, the
program and erase modes require +20V and −20V (HiV)
pulses to be applied to their inputs (see Section II-B). Note
that other flash technologies such as SONOS [24], MONOS
[25] and High-K Metal Gate (HKMG) [26] require similar
infrastructure for programming and erasure, but may differ in
the voltage levels of the pulses.

V. COMPUTING THE RELATIONSHIP BETWEEN THE

WEIGHTS AND THE VT VALUES FOR AN FTL CELL

A. Overview

Let VTℓ(f) = (V Tℓ0(f), · · · , V Tℓn(f)), and VTr (f) =
(V Tr0(f), · · · , V Trn (f)) denote the threshold voltages of the
flash transistors in the LIN and RIN of an FTL, respectively
(see Figure 4). Further, let VT(f) = (VTℓ(f), VTr (f)).
In this section, we present an algorithm to determine these
voltages for an FTL to realize a given threshold function f
having a weight vector [W, T].

To configure an FTL, the method described herein deter-
mines VT(f) for each f a priori, using models that include
circuit parasitics and global and local process variations in
the device and circuit parameters. This is to ensure that an
overwhelming majority (≫ 99%) of the FTL instances on
a chip can be programmed by attempting at most a few
pre-computed values of VT(f). The remaining small fraction
of FTLs for which a feasible, model-based VT(f) could not
be found, can be programmed directly on the chip.

Let GL(x |VT(f)) and G R(x |VT(f)) for x ∈ Bn , denote
the conductance of the LIN and RIN as functions of a minterm
x of f and the flash transistor threshold voltages. Henceforth,
for clarity, we refer to GL(x |VT(f)) and G R(x |VT(f)) as
GL and G R respectively.

The problem is to find a VT(f) that determines a mapping
between the Boolean space Bn and the conductance space
(GL, G R) such that, in the ideal case,

G R < GL , if f (x) = 1

G R > GL , if f (x) = 0. (2)

Authorized licensed use limited to: ASU Library. Downloaded on April 15,2022 at 05:27:24 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Fig. 6. Transformation from boolean space to conductance space.

This mapping, depicted in Figure 6, is one-to-many, since
there can be many (an uncountable number) feasible values
of VT(f) for a given f with a weight vector [W, T].

In practice, to avoid variations due to parasitics which could
make the circuit behavior erroneous, we require finding a
subset of the feasible set where

G R < GL − "L , if f (x) = 1

G R > GL + "R, if f (x) = 0 (3)

for some some sufficiently large "L ∈ (0, GL) and "R ∈
(0, G R). Note that "L and "R are related due to the con-
straints imposed by the truth table.

Our approach to find VT(f) consists of three steps
which are implemented by Algorithms mPLA0, mPLA+,
and mPLA++. These are described in the following sections.

B. Algorithm mPLA0

Algorithm mPLA0 is a modified version of the classical
perceptron learning algorithm (PLA) [9] that works in concert
with HSPICE (for verifying the truth table of f) to search
through the space of values of VT(f) until each minterm
(a point in the (GL , G R) space) of f is correctly classified.
It does this by iteratively adjusting the threshold voltages of
flash transistors such that points in the conductance space
that correspond to the on-set and off-set minterms satisfy the
constraints in Equation 3 (see Figure 6). It calls HSPICE
(line 3 of Algorithm mPLA0) to determine whether any
point falls above or below the lines corresponding to these
inequalities. Since a layout extracted FTL circuit is being
used, the circuit parasitics are accounted for in the HSPICE
simulation. Consequently, Algorithm mPLA0 implicitly finds
values of "L and "R .

Given the truth table (T T) of f , mPLA0 applies all the
minterms of f to the FTL cell and records the HSPICE
response in OT (output table). If T T (m) ̸= OT (m), for
some minterm m, then the constraint in Equation 3 was not
satisfied. In such a case, mPLA0 adjusts the values of VT0(f)
(Algorithm mPLA0 line 4-9) associated with the active input
transistors within the interval [δ, VD D − δ], by a minimum
increment δ, according to Equation 4. Here, mℓ (mr) is a
binary vector that identifies the active input transistors in the
LIN (RIN).

VTk+1
ℓ =

{
VTk

ℓ − δmℓ if m · W ≥ T
VTk

ℓ + δmℓ if m · W < T

Algorithm mPLA0 Modified Perceptron Learning Algorithm
Input: Truth table TT of threshold function f
Output: VT0 to program FTL cells with f
1: Initialize VT0
2: for k = 0 to kmax − 1 do
3: OT = SPICE(VT0) // Truth table from simulation
4: if TT and OT disagree on some minterm m then
5: if TT(m)==1 then
6: Update VT0: decrement (increment) the V T of every

active transistor in LIN (RIN) that is ’1’ in m by δ
7: else
8: Update VT0: increment (decrement) the VT of every

active transistor in LIN (RIN) that is ’1’ in m by δ
9: end if

10: else
11: Break
12: end if
13: end for

VTk+1
r =

{
VTk

r + δmr if m · W ≥ T
VTk

r − δmr if m · W < T
(4)

The term δml (or δmr) is a vector which has a value δ
at all locations in LIN (RIN) which are 1 for a minterm
m, and zero elsewhere. For instance, consider the threshold
function b + c ≥ a + T . Let m = 110 be an on-set
minterm that was incorrectly evaluated. If T T (m) ̸= OT (m)
then G R > GL − "L . Therefore GL needs to be increased
(threshold voltages corresponding to the flash transistors of
b and c will be decreased) and G R needs to be decreased
(threshold voltages corresponding to the flash transistors of a
and T will be increased) for minterm m. Consequently, the
threshold voltages of all the flash transistors associated with
the active input transistors should be decreased (increased) by
δ in the LIN (RIN). A similar change is made if m is an off-set
minterm. This is what is expressed in Equation (4). VT0(f)
is the value returned by Algorithm mPLA0.

If a given set of points in Bn is linearly separable (i.e.
a threshold function), then the PLA algorithm will terminate in
a finite number iterations [2], [10]. Similarly, given a threshold
function f , a sufficiently small δ and an FTL instance for
which there exists a feasible VT(f), Algorithm mPLA0 will
terminate in a finite number steps (see [2] for proof of
termination). For an n-input threshold function, the upper
bound on the number of iterations of the PLA given in [2]
becomes kmax = 2(n + 1)||VT0(f)||2/δ2. For instance, with
n = 5 and δ = .02V , kmax = 3000||VT0(f)||2.

C. Algorithm mPLA+: Improving Noise Tolerance

Algorithm mPLA0 does not consider the relative location
of the points with respect to the metastability region defined
by the lines G R = GL − "L and G R = GL + "R (see
Figure 6b). Even though minterms are classified correctly, they
can be arbitrarily close to the metastability region. The further
a minterm is from this region, the easier (and faster and more
robust) it will be for the sense amplifier to detect the difference

Authorized licensed use limited to: ASU Library. Downloaded on April 15,2022 at 05:27:24 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WAGLE et al.: NOVEL ASIC DESIGN FLOW USING WEIGHT-TUNABLE BINARY NEURONS AS STANDARD CELLS 7

Fig. 7. Conductance G L and G R of FTL cell programmed for
f = [4, 1, 1, 1, 1; 5] using mPLA0 and mPLA+ ([T T, 0.9V, 25◦C]).

between N5 and N6, and discharge the appropriate side (N1 or
N2) first. Thus, maximizing "L and "R within the feasible
set will maximize its noise tolerance.

Algorithm mPLA+ repeatedly calls mPLA0 to maximize
"L and "R . It does this by introducing a hypothetical capac-
itance C1 on node N5 (which is introduced in HSPICE) when
classifying an on-set minterm, and determining the maximum
value of C1 for which Algorithm mPLA0 converges. This
modification handicaps node N5 and directs the algorithm to
find a solution, that will result in an increased gap between
GL and G R . Similarly, we add a capacitance C0 on node N6,
when classifying an off-set minterm. Since the values of "L
and "R are linearly proportional to C1 and C0 respectively,
the separation between the lines G R = GL − "L and G R =
GL +"R increases, which in turn forces the training algorithm
to produce a threshold voltage assignment VT+(f) in a more
robust (and also faster) FTL cell. Note that C1 and C0 are
only used during HSPICE simulations, and are not part of the
actual FTL cell.

Figure 7 shows the results of running Algorithms mPLA0

and mPLA+ on a test function ([1]) f115(a, b, c, d, e) :
(W, T) = [4, 1, 1, 1, 1; 5] = a(b + c + d + e). It is plot
of the minterms in the conductivity space that was obtained
by using HSPICE after programming the FTL using VT0(f)
and VT+(f). The largest values of C1 and C0 for which a
feasible solution was obtained was 0.1 f F . The plot shows
that training with the hypothetical capacitance values separates
the two closest on-set and off-set minterms in the conductivity
space by more than five times. Furthermore, the delay of an
FTL programmed with VT+(f) will be smaller than the one
that is programmed with VT0(f).

D. Algorithm mPLA++: Optimizing Yield

The threshold voltages VT+(f) computed by the mPLA+

are aimed at achieving maximal separation between the on-set
and off-set minterms based on model-based estimates of
parasitics. This has the twin advantages of increasing the noise
margin and reducing the delay. Despite this, inevitable manu-
facturing variations can still result in reducing the difference
between GL and G R associated with VT+(f) of the two
closest minterms, which may result in the incorrect evaluation
of the intended threshold function. In this section we present
a predictive technique to pre-compute a small set of VTs(f)

for each threshold function f which would cover a very high
percentage of manufactured variations.

Among the N manufactured FTL cells programmed to real-
ize function f using VT+(f), suppose that Ne were erroneous
and let {FTL1(f), FTL2(f), · · · , FTLNe (f)} be the erroneous
instances. The problem is to find individual threshold voltage
assignments for each of these Ne instances so that each
will correctly realize f . Our approach is motivated by two
observations.

First, each erroneous function in { f e
i , 1 ≤ i ≤ Ne} is

itself a threshold function. This is simply due to the fact
that by construction, an FTL cell only computes threshold
functions (see Figure 1). Second, our experiments show that
a large number of different instances of an FTL cell, which
are reprogrammed with VT+(f) and are to realize the same
function f , realize the same erroneous function f e. This
suggests that all the erroneous FTL cell instances can be
grouped into a few equivalence classes, called error-types, with
two FTLs belonging to the same error-type if they realize the
same erroneous function.

Given a threshold function f , Algorithm mPLA++ first
generates a set of NMC Monte Carlo (MC) instances of an FTL
cell and identifies the Ne erroneous instances (i.e. those when
programmed with VT+(f) do not realize f). The Ne erro-
neous instances are grouped into M f error-types. Let f e

i , 1 ≤
i ≤ M f , denote the logic functions of the distinct error-types
observed in a sample of N FTLs. Algorithm mPLA++ selects
one MC instance from each error-type class and computes one
VT+(f) assignment for that instance using mPLA+. It returns
a set of threshold assignments,

VT++(f) = {VT+(f e
1), VT+(f e

2), · · · , VT+(f e
M f

)}, (5)

one for each error-type for each function f .

Algorithm mPLA++ Modified Perceptron Learning Algo-
rithm Accounting for Process Variations
Input: TT of f , NMC

Output: VT++(f) to program FTL cells with f
1: Execute mPLA+ to compute VT+(f)

2: Using MC sampling of the parameter space, generate
NMC (f) instances of an FTL cell, and program them with
VT+(f).

3: Among the set of NMC instances, let Ne be the number of
instances, which when programmed with VT+(f), realize
a function other than f , and among these Ne, let M f be
the number of erroneous functions that are distinct.

4: Execute the mPLA+ on one MC instance from each of the
M f erroneous functions to obtain

{VT++(f)} = {VT+(f e
1), · · · , VT+(f e

M f
).}

Results presented in Section VI show that using the
VT+(f e

i) computed for one FTL instance from i th error-type
(1 ≤ i ≤ M f) resulted in all the instances of the same
error-type correctly realizing f . This works because instances
that have the same error-type share similar parasitic variations.

Authorized licensed use limited to: ASU Library. Downloaded on April 15,2022 at 05:27:24 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Thus, all instances of our sample of FTL cells were correctly
programmed using one distinct VT+(f e

i) for each error-type.
There is no guarantee that the set of erroneous functions

found in a sample set NMC will capture all manufacturing
outcomes. This means that there may be some manufactured
FTLs that could not be correctly programmed using any of the
threshold voltage vectors computed by Algorithm mPLA++.
For these remaining FTLs, our approach is to apply Algo-
rithm mPLA0 directly on the chip. In each iteration of mPLA0,
the step that adjusts the threshold voltages of flash transistors
is replaced by the application of an appropriate number of
positive or negative pulses to the FTL cell on the chip using
the programming scan chain. This capability of correcting
the function of a cell after fabrication to increase yield is a
signature attribute of the proposed design methodology.

VI. EXPERIMENTAL RESULTS

A. Experiment Setup

An FTL cell with n = 5 (see Figure 4 in Section III) was
designed and a complete layout (including the programming
devices) was created using the TSMC 40nm LP library. It was
laid out as a double height cell requiring 24 tracks. The
flash transistor models were obtained from [30] and were
suitably modified to reflect the characteristics and variations
of the TSMC 40nm LP library. The design rules for the flash
transistors were obtained from ITRS. The standard cell area
of the FTL was15.6 µm2.

There are a total of 117 distinct positive-form threshold
functions of five or fewer variables. A numbered list of these
is given in [1] and can also be accessed at [38]. The one cell
that was designed was copied 117 times, and each was trained
to realize one of the 117 threshold functions. In this section,
we use the same numbering scheme as in [1] to identify the
functions. The FTL cell trained to implement the threshold
function numbered n in [1] will be referred to as FT Ln , and
the corresponding CMOS implementation will be denoted as
C M OSn . The threshold function itself will be denoted as fn .
Note: In all the bar charts shown in this section, the numbers
on the x-axis identify the threshold function. Function f0 is a
buffer and is omitted because this would correspond to a DFF,
which by itself would never replaced by an FTL in an ASIC.
The first function shown is f1, which is a two-input AND.

B. Training Iterations

mPLA+ was used to train the FTL cell for robustness (see
Section V-C) for all 117 functions. Figure 8 shows the number
of iterations needed for training of each of the 117 functions.
The actual number of iterations was about 10X lower than the
theoretical upper bound, presented in Section V-B.

C. Individual Cell Area, Delay and Power Comparison

All 117 threshold functions of five or fewer variables
were implemented using FTL cells. These functions were
also synthesized by Cadence Genus [39] and placed and
routed using Cadence Innovus [39], using the conventional
TSMC 40nm LP standard cells. Two sets of experiments were

Fig. 8. Iteration count for mPLA+ for all 117 functions of 5 or fewer
variables.

performed to compare the CMOS equivalent designs to the
FTL cells: (1) delay optimal and (2) area optimal synthesis.
The results comparing the total delay (sum of logic delay,
setup-time, and clock-to-Q delay), area, and power of these
circuits and the corresponding FTL implementations are shown
in Figures 9(a) and 9(b), respectively.

The results show that FTL cells have the advantage of speed.
Optimizing their CMOS equivalents to meet the delay of the
corresponding FTL cells forces the synthesis algorithms to use
high drive strength cells (larger area) for the combinational
logic and larger DFFs. As the FTL implementations are
faster than the fastest CMOS equivalent implementation, delay
optimal synthesis results in an across-the-board improvement
in all FTL cells in delay, area, and power.

When synthesizing individual cells for minimum area, FTL
cells are still uniformly faster. However, the synthesis algo-
rithm now uses the smallest combinational cells and DFFs
in the CMOS equivalents. In this case, although the CMOS
implementations of simpler functions are much smaller than
their FTL equivalents (see Figure 9(b)), the FLT versions are
still smaller for 74 out of 117 functions because the logic
absorbed by the FTL cell results in greater area savings than
the smaller drive strength cells used in the CMOS equivalents.

The dynamic power of every FTL implementation is higher
than its CMOS equivalent for area optimal synthesis. The
reasons for this are (1) an FTL cell resets and then evaluates
its function on every clock cycle and (2) the much smaller
switched capacitance of the low-drive strengths of the com-
binational logic in the CMOS equivalents. Figure 9(a) shows
that FTL cells have a much lower power-delay product (i.e.
energy) when their CMOS equivalents are synthesized for
minimum delay. Figure 9(c) shows that this also true for the
majority of the CMOS equivalents when they are synthesized
for minimum area. Hence, FTL cells are, in general, more
energy efficient.

Figures 9(d) and 9(e) show a comparison of the leakage
power of FTL cells and their CMOS equivalents. The leakage
of FTL cells is practically independent of the function, and in
the case of delay optimal synthesis, it is far lower than every
CMOS equivalent circuit. Exactly the opposite is true for the
area optimal synthesis due to reduced sizes of the combina-
tional cells and DFFs. In these plots the circuit indices are
ordered by increasing area. The area trend lines show that the
leakage increases with area for the CMOS implementations.

D. Delay Distributions

This experiment compares the distributions of delays of
FTL and CMOS implementations. We show the results
for the threshold function f35 with a weight vector

Authorized licensed use limited to: ASU Library. Downloaded on April 15,2022 at 05:27:24 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WAGLE et al.: NOVEL ASIC DESIGN FLOW USING WEIGHT-TUNABLE BINARY NEURONS AS STANDARD CELLS 9

Fig. 9. PPA improvements of FTL over CMOS implementations. Simulations done at 25◦C assuming a 20% input switching activity.

Fig. 10. Delay histogram of FT L35 and C M OS35 with 100K monte carlo
simulations. PV T = [T T, 0.9 V, 25◦C].

[W; T] = [3, 3, 2, 1, 1; 8]. The PVT corner setting was
[T T, 0.9V , 25◦C]. 100K Monte Carlo instances were gener-
ated for both FT L35 and C M OS35. Each of the 100K FTL
instances was verified against the truth table for functional
correctness, for both FT L35 and C M OS35. Figure 10 shows
the histogram of delays for both circuits. These demonstrate
the delay advantage of the FTL cell over its CMOS equivalent,
even in the presence of process variations. The difference in
standard deviation between the two is insignificant. Note that
the FTL instances with large delays can be re-programmed to
reduce the delay further. This capability is not possible for the
CMOS versions.

E. Dynamic Voltage Scaling

Voltage scaling is a common mechanism to trade off per-
formance against power. Table I shows the results of training
FT L35 at 0.9V . The FTL cell was programmed with the deter-
mined set of flash threshold voltages, and then operated over
the voltage range [0.8V , 1.1V]. To ensure proper operation
across all voltages, the gate voltages of the flash transistors
were scaled accordingly. This result demonstrates how a single

TABLE I

DELAY, TOTAL POWER AND POWER-DELAY-PRODUCT (PDP) OF FT L35,
TRAINED AT VDD = 0.9V , AND C0 = C1 = 0.1 f F

VT+(f) assignment can be used for dynamic voltage scaling.
The delay of the FT L35 varies by 2.5X (its CMOS equivalent
by 2.8X), power varies by 5.9X (CMOS equivalent by 1.9X),
and the PDP (energy) varies by 2.3X (CMOS equivalent by
1.43X), as the supply voltage varies over [0.8V, 1.1V].

F. Number of Programming Pulses

Figure 11 shows the number of high voltage pulses needed
to program the 117 threshold functions. The number of high
voltage pulses is estimated, assuming that each high voltage
pulse would increment the threshold voltage of a flash transis-
tor by 20mV. This assumption will vary across flash transistors.
As shown in Figure 11, the number of high voltage pulses
needed to program a given FTL cell increases with an increase
in the number of variables of the threshold function being
implemented.

G. Experiments on Training for Robustness

In this section, we present the results of Algorithms
mPLA+, and mPLA++ for training FTL cells taking into

Authorized licensed use limited to: ASU Library. Downloaded on April 15,2022 at 05:27:24 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Fig. 11. Number of high voltage (HiV) pulses needed to program the FTL
cells with all 117 threshold functions of up to 5 inputs.

TABLE II

DELAY VALUES OF FT L35 = [3, 3, 2, 1, 1; 8], TRAINED FOR ROBUSTNESS
USING VARIOUS CAPACITOR VALUES (FF)

account parasitics and manufacturing variations. The test
function f35(a, b, c, d, e) : (W, T) = [3, 3, 2, 1, 1; 8] =
ab(c + de) was chosen for this evaluation as this function
generated the most number of error-types (M f = 61) out of
all the 117 threshold functions when Monte Carlo simulations
were run on 20K training samples.

The first experiment consisted of training FT L35 using
mPLA+ for various values of the capacitances C1 and C0,
and for each solution, extracting the delay values. The results
for this experiment are as shown in Table II. There are two
important observations to be made here. First, even though
the weights of the inputs d and e are equal, the corresponding
flash transistors (V4 and V5) may be assigned different thresh-
old voltages. This is because mPLA+ compensated for the
irregular layout parasitics of both the flash transistors using
threshold voltages to realize equal weights. Second, the delay
improves with increasing robustness, as discussed earlier in
Section V-C. This is because the separation between the lines
G R = GL − "L and G R = GL + "R increases with increase
in C1 and C0. This increased separation results in a higher
voltage difference at the inputs of the sense amplifier, which
leads to a faster evaluation of the FTL cell.

The second experiment was aimed at validating mPLA++.
We used f35 as a test function. The first step is to create the
database {VT++(f35)}. Algorithm mPLA++ was given f35
and NMC = 20K as inputs. The erroneous instances were
grouped into M f35 = 61 error-types. Algorithm mPLA++

generated {VT++(f35)} = {VT+(f e
35,1), · · · , VT+(f e

35,61)}.
Next, 100K new MC instances were generated and pro-

grammed first with VT+(f35). Among the erroneous instances,
99.96% of them were one of 61 error-types that were previ-
ously found. When each FTL cell in group j, (1 ≤ j ≤ 61)
was programmed with the threshold voltage set VT+(f35, j),
all the erroneous instances correctly computed f35. The
remaining .04% of the 100K were correctly programmed by
executing mPLA0 directly to the chip, starting with VT+(f35).

TABLE III

YIELD WHEN MPLA++ AND MPLA0 (ON-CHIP) ARE USED FOR PRO-
GRAMMING INSTANCES OF FT L35 = [3, 3, 2, 1, 1; 8]

TABLE IV

ROBUSTNESS AGAINST VT DRIFT FOR FTL CELLS PROGRAMMED WITH
ALL 117 THRESHOLD FUNCTIONS OF UP TO 5 INPUTS

This required fewer than five iterations on the average for the
instances. Since f35 had the most number of failure types, all
of the other 117 functions, which exhibit fewer failure types,
would be equally easy to program correctly in the presence
of variations. Thus, all errors caused by process variations
were corrected, with the vast majority requiring a single,
precomputed VT set and a small fraction requiring on-chip
programming.

H. Robustness Against PVT Variations

Figure 12 shows the delay variations in delay of five
sample threshold functions [38] w.r.t process, temperature and
temperature variations. As expected, FTL cells are slowest
in the SS corner and fastest in the FF corner. Furthermore,
as the process moves from the SS corner to the FF corner,
the delay improves, as expected. When the voltage increases
from 0.81 V to 0.99 V, the delay improves. The FTL cells
were also tested for reliability for the consumer temperature
range of 0◦C, 25◦C, and 55◦C. This result demonstrates that a
VT+(f) solution, generated using TT 0.9V 25◦C can reliably
work with PVT variations.

I. Robustness Against V T Drift

Over the lifetime of an FTL cell, the charge stored in the
gate of flash transistors eventually leaks into the channel due
to the deterioration of thin oxide layer [40], signal distur-
bances [41], etc. This leakage effectively changes the V T of
the flash transistors. By extension, it also changes the weights
programmed on the FTL cell. Table IV shows the effect of
decreasing V T on the threshold functions programmed on the
FTL cells. All 117 FTL cells operated correctly with a V T
drift of up to 5mV . Beyond 5mv, some cells failed. However,
after testing, their V T s can be reprogrammed to compensate
for this drift. Furthermore, all the FTL cells that were selected
by Genus when synthesizing ASIC designs (See Section VI-K)
operated correctly with 20mV drift in V T .

J. Post-Fabrication Timing Correction

The experiments described in Sections VI-G, VI-D
and VI-E demonstrate the flexibility of FTL due to the

Authorized licensed use limited to: ASU Library. Downloaded on April 15,2022 at 05:27:24 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WAGLE et al.: NOVEL ASIC DESIGN FLOW USING WEIGHT-TUNABLE BINARY NEURONS AS STANDARD CELLS 11

Fig. 12. Delay of an FTL cell for threshold functions, with process (SS,
TT, FF), voltage (0.81 V, 0.9 V, 0.99 V), and temperature (0◦C, 25◦C, 55◦C)
variations.

Fig. 13. Datapath to demonstrate post-fabrication timing corrections.

possibility of configuring its function after fabrication. This
characteristic can also be used to correct timing errors.

Figure 13 shows a small datapath that was constructed to
demonstrate how to correct setup-time and hold-time viola-
tions after fabrication in an FTL design. The datapath con-
sists of clock-to-Q (C2Q) delay, combinational delay (D2D)
and DFF specifications for setup (DF F_setup) and hold
(DF F_hold) times. The clock is skewed by an appropriate
amount ", to generate either a setup-time or a hold-time
violation. The violations are corrected by reprogramming the
FTL cell to produce different C2Q values.

Figure 14(a) shows how the data launched from FTL X
misses the target clock edge at DFF Y, thereby violating setup-
time. Figure 14(b) then shows that decreasing the C2Q of FTL
X fixes the setup-time violation. Similarly, Figure 15(a) shows
how the data launched from FTL X is captured by the target

Fig. 14. Post-fabrication setup-time correction using an FTL cell.

Fig. 15. Post-fabrication hold-time correction using an FTL cell.

clock edge at DFF Y one cycle early, thereby violating hold-
time. Figure 15(b) then shows that increasing the C2Q of FTL
X fixes the setup-time violation. Note that we can extend post-
fabrication VT adjustment to also mitigate delay increases due
to aging.

K. Delay Optimal Synthesis of ASICs With FTLs

In this section, we show how commercial design tools
can accommodate FTL cells in synthesis, and placement and
routing. Five circuit blocks were synthesized using the 40nm
TSMC standard cell library, which was augmented with FTLs
to realize 117 positive forms of all 5-input threshold functions.
This was done by creating one cell and making 117 copies and
then determining the VT s of the flash transistors and signal
assignments to realize each threshold function. Then each FTL
standard cell was characterized in the conventional way. Only
the positive forms of the threshold functions were included in
the library to keep the increase in the library size to a minimum
(about 7%) and to exploit the capability of Genus to recognize
NPN equivalents of the cells (see below).

The ASIC benchmarks are: 1) 32-bit Wallace multiplier
(Mul), 2) 28-bit FIR filter (FIR), 3) 64-bit floating-point
unit multiplier, 4) 16-bit Fast Fourier Transform (FFT), and
5) 512-bit Secure Hash Algorithm (SHA). Designs were
synthesized using Cadence Genus and then placed and routed
using Cadence Innovus. Standard cell libraries for FTL cells
were characterized using Synopsys HSPICE and generated
in Liberty format. Timing checks were performed using
cross-corner analysis at {SS, 125C, 0.81V}, {TT, 25C, 0.9V}
and {FF, 0C, 0.99V} corners. After placement and routing, the
select cells and the FTL programming logic cells (see Figure 5
are paired. Then engineering change order (ECO) commands
stitch the programming scan chain. Since the latter uses high
voltage nets, shielding nets are added to protect neighboring
nets from high voltage signals. Both versions of each ASIC
were verified using Cadence Conformal.

Authorized licensed use limited to: ASU Library. Downloaded on April 15,2022 at 05:27:24 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

TABLE V

IMPROVEMENT IN AREA, POWER, AND WIRELENGTH IMPROVEMENT IN ASICS WITH FTL INTEGRATED, OVER CONVENTIONAL ASICS, WITHOUT
TRADING OFF PERFORMANCE. AVERAGE IMPROVEMENTS ARE CALCULATED USING THE GEOMETRIC MEAN

TABLE VI

RUNTIME AND PEAK MEMORY USAGE FOR
THE SYNTHESIS OF ASIC DESIGNS

The results of synthesis and P&R, summarized in Table V,
demonstrate significant improvements in the area (30.7%),
power (17.7%), and wirelength (19.3%) averaged over the
designs. These improvements include the overhead of the pro-
gramming infrastructure described in Section IV, which was
less than 5% in the worst case. Note that these across the board
improvements were obtained under delay-optimal synthesis.
This would not be the case for area-optimal synthesis.

Wherever it was beneficial to improve timing, Genus found
and replaced threshold logic cones (not necessarily maximal
fanout-free cones) driving DFFs with the appropriate FTL
cell. This led to a reduction in the number of standard cells.
It ranged from 10% to 42%. There are two causes for this
reduction. First is the absorption of part of the fanin cone that
is a threshold function driving the DFF into the FTL. This
eliminates all those cells. A second source is the reduction
of the subcircuit (e.g. C in Figure 2(b)) that feeds the fanin
cone. The significant speed advantage of the FTL cell creates
large positive slack at the outputs of the feeder subcircuit.
Consequently, to meet timing, Genus re-synthesizes the feeder
with slower logic. Standard logic primitives such as inverters,
2-input gates, 3-input gates, inverters, and even AOI/OAI
gates are reduced and the number of complex cells increased,
reducing the total cell count.

The last column of Table V shows estimates of the time
(i.e., number of pulses) required to program the FTL cells,
which increases linearly with the number of FTLs. Although
the actual programming time will depend on the technology,
it is expected to be on the order of microseconds [23].

Table VI shows the run-time of Genus during synthesis, for
all the ASIC designs. While the inclusion of all the 117 FTL
cells increases the library size slightly (about 7%), FTL
cells allow faster timing closure by generating positive slack.
Table VI also shows the peak memory usage of Genus during

Fig. 16. Distribution of threshold functions in 32-bit multiplier when
synthesized using FTL cells with zero-delay zero-power.

synthesis, for all the ASIC designs. The peak memory require-
ments are almost identical even after adding the 117 threshold
functions in the library.

To demonstrate that Genus can recognize NPN equiva-
lences of positive-form threshold functions, we selected a
number of threshold functions and negated and permuted their
inputs and negated their output. Table VII shows the result
of one of the more complex functions. The interpretation
of Table VII is as follows. Consider the threshold function
ab+ace+ade+bcd+acd . The weight-threshold description
is [4, 3, 2, 2, 1; 7] = 4a + 3b + 2c + 2c + d ≥ 7, which
is an FT L93. When Genus found a sub-circuit with input
negation, āb + āc̄e + āde + bcd + ac̄d„ it replaced it with
an FT L93 with ā and c̄ driving inputs a and c. The last row
shows that Genus can detect output negation and maps it to a
different cell FT L94 whose positive form is [4, 3, 2, 2, 1; 6] =
4a + 3b + 2c + 2c + d ≥ 6. In each case, the synthesis tool
detected the threshold functions and their NPN equivalents,
and added inverters as necessary, without using any additional
standard logic gates such as AND, OR, etc.

The last experiment conducted was aimed at discovering
what threshold functions would be detected if there were
no area or delay constraints. Figure 16 shows all possible
threshold functions that could be detected in the 32-bit Wallace
tree multiplier. The multiplier has 343 DFFs. Excluding the
64 input DFFs, all 279 remaining DFFs and cones of logic
feeding them were replaced by FTL cells, showing that
complex multi-level logic circuits that are threshold functions
frequently occur in logic circuits and synthesis tools can
recognize them.

Authorized licensed use limited to: ASU Library. Downloaded on April 15,2022 at 05:27:24 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WAGLE et al.: NOVEL ASIC DESIGN FLOW USING WEIGHT-TUNABLE BINARY NEURONS AS STANDARD CELLS 13

TABLE VII

DETECTION OF NPN EQUIVALENTS OF THRESHOLD FUNCTIONS USING A LIBRARY OF 117 5-INPUT FTL CELLS

VII. CONCLUSION

In this paper we demonstrated that there could be substantial
value in going beyond the traditional use of flash technology
as memory and using it in CMOS logic. Unlike the many
emerging memory technologies, flash technology is mature
and compatible with CMOS fabrication. Using flash transistors
in conjunction with CMOS transistors, we developed a design
of a binary neuron, referred to as FTL, that can realize a
large number threshold functions in a single standard cell.
We demonstrated several novel features of an FTL cell: (1) it is
a configurable standard cell, whose function can be configured
after fabrication; (2) the configuration is achieved by con-
ventional techniques of tuning the threshold voltages of flash
transistors with high fidelity; (3) its design could be optimized
to make it very robust in the presence of circuit parasitics and
improving robustness also improves its performance; (4) the
ability to tune its performance after fabrication provides a
novel way to improve the yield in the presence of process
variations and correct timing errors; (5) it was designed so
that it can automatically be embedded within ASICs using
commercial CAD tools, and resulting in significantly improved
area and power while still operating at the maximum possible
frequency.

REFERENCES

[1] S. Muroga, Threshold Logic and its Applications. Hoboken, NJ, USA:
Wiley, 1971.

[2] K. Siu, V. Roychowdhury, and T. Kailath, Discrete Neural Computation:
A Theoretical Foundation. Upper Saddle River, NJ, USA: Prentice-Hall,
1995.

[3] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Threshold voltage
distribution in MLC NAND flash memory: Characterization, analysis,
and modeling,” in Proc. Conf. Design, Autom. Test Eur., Mar. 2013,
pp. 1285–1290.

[4] R. Perricone et al., “Advanced spintronic memory and logic for non-
volatile processors,” in Proc. Design, Automat. Test Eur. Conf. Exhib.
(DATE), Mar. 2017, pp. 972–977.

[5] J. Yang, N. Kulkarni, S. Yu, and S. Vrudhula, “Integration of thresh-
old logic gates with RRAM devices for energy efficient and robust
operation,” in Proc. IEEE/ACM Int. Symp. Nanosc. Archit., Jul. 2014,
pp. 39–44.

[6] P. Gupta and N. K. Jha, “An algorithm for nanopipelining of RTD-based
circuits and architectures,” IEEE Trans. Nanotechnol., vol. 4, no. 2,
pp. 159–167, Mar. 2005.

[7] K. S. Berezowski and S. Vrudhula, “Automatic design of binary and
multiple-valued logic gates on RTD series,” in Proc. 8th Euromicro Conf.
Digit. Syst. Design (DSD), Aug. 2005, pp. 139–142.

[8] N. Kulkarni, J. Yang, J.-S. Seo, and S. Vrudhula, “Reducing power,
leakage, and area of standard-cell asics using threshold logic flip-flops,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 9,
pp. 2873–2886, Sep. 2016.

[9] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,” Psychol. Rev., vol. 65, no. 6,
p. 386, 1958.

[10] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” in Neurocomputing: Foundations of Research,
J. A. Anderson and E. Rosenfeld, Eds. Cambridge, MA, USA:
MIT Press, 1988.

[11] A. A. Mullin, “Threshold logic: A synthesis approach,” SIAM Rev.,
vol. 8, no. 3, pp. 405–406, Jul. 1966.

[12] V. Beiu, J. M. Quintana, and M. J. Avedillo, “VLSI implementations of
threshold logic—A comprehensive survey,” IEEE Trans. Neural Netw.,
vol. 14, no. 5, pp. 1217–1243, Sep. 2003.

[13] V. Beiu, “A survey of perceptron circuit complexity results,” in Proc.
Int. Joint Conf. Neural Netw., 2003, pp. 989–994.

[14] P. Celinski, S. D. Cotofana, J. Lopez, S. F. Al-Sarawi, and D. Abbott,
“State of the art in CMOS threshold logic VLSI gate implementations
and applications,” in VLSI Circuits Syst., vol. 5117, pp. 53–64. SPIE,
2003.

[15] C. Lageweg, S. Cotofana, and S. Vassiliadis, “A full adder implemen-
tation using SET based linear threshold gates,” in Proc. 9th Int. Conf.
Electron., Circuits Syst., 2002, pp. 665–668.

[16] S. N. Mozaffari, S. Tragoudas, and T. Haniotakis, “A generalized
approach to implement efficient CMOS-based threshold logic functions,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 3, pp. 946–959,
Mar. 2018.

[17] R. Zhang, P. Gupta, L. Zhong, and N. K. Jha, “Threshold network
synthesis and optimization and its application to nanotechnologies,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 24, no. 1,
pp. 107–118, Jan. 2005.

[18] V. Annampedu and M. D. Wagh, “Decomposition of threshold func-
tions into bounded fan-in threshold functions,” Inf. Comput., vol. 227,
pp. 84–101, Jun. 2013.

[19] S. N. Mozaffari and S. Tragoudas, “Maximizing the number of threshold
logic functions using resistive memory,” IEEE Trans. Nanotechnol.,
vol. 17, no. 5, pp. 897–905, Sep. 2018.

[20] S. Kaya, H. F. A. Hamed, D. T. Ting, and G. Creech, “Reconfigurable
threshold logic gates with nanoscale DG-MOSFETs,” Solid-State Elec-
tron., vol. 51, no. 10, pp. 1301–1307, Oct. 2007.

[21] J. Yang, J. Davis, N. Kulkarni, J.-S. Seo, and S. Vrudhula, “Dynamic
and leakage power reduction of ASICs using configurable threshold logic
gates,” in Proc. IEEE Custom Integr. Circuits Conf. (CICC), Sep. 2015,
pp. 1–4.

[22] R. Fowler and L. Nordheim, “Electron emission in intense electric
fields,” Proc. Roy. Soc. London. Ser. A, vol. 119, no. 781, pp. 173–181,
May 1928.

[23] D. Richter, “Fundamentals of non-volatile memories,” in Springer Series
in Advanced Microelectronics. Amsterdam, The Netherlands: Springer,
2014, pp. 5–110.

[24] K. Nii, Y. Taniguchi, and K. Okuyama, “A cost-effective embedded
nonvolatile memory with scalable LEE flash-G2 SONOS for secure IoT
and computing-in-memory (CiM) applications,” in Proc. Int. Symp. VLSI
Design, Autom. Test (VLSI-DAT), Aug. 2020, pp. 1–4.

[25] S. Tsuda et al., “First demonstration of FinFET split-gate MONOS for
high-speed and highly-reliable embedded flash in 16/14nm-node and
beyond,” in IEDM Tech. Dig., Dec. 2016, p. 11.

[26] F. Khan et al., “Turning logic transistors into secure, multi-time pro-
grammable, embedded non-volatile memory elements for 14 nm FIN-
FET technologies and beyond,” in Proc. Symp. VLSI Technol., Jun. 2019,
pp. T116–T117.

[27] F. Khan, E. Cartier, J. C. S. Woo, and S. S. Iyer, “Charge trap tran-
sistor (CTT): An embedded fully logic-compatible multiple-time pro-
grammable non-volatile memory element for high-K -metal-gate CMOS
technologies,” IEEE Electron Device Lett., vol. 38, no. 1, pp. 44–47,
Jan. 2017.

Authorized licensed use limited to: ASU Library. Downloaded on April 15,2022 at 05:27:24 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

[28] V. Agrawal et al., “In-memory computing array using 40 nm multibit
SONOS achieving 100 TOPS/W energy efficiency for deep neural net-
work edge inference accelerators,” in Proc. IEEE Int. Memory Workshop
(IMW), May 2020, pp. 1–4.

[29] M. Abusultan and S. P. Khatri, “A flash-based digital circuit design flow,”
in Proc. 35th Int. Conf. Comput.-Aided Design, Nov. 2016, pp. 1–6.

[30] M. Abusultan and S. P. Khatri, “Implementing low power digital circuits
using flash devices,” in Proc. IEEE 34th Int. Conf. Comput. Design
(ICCD), Oct. 2016, pp. 109–116.

[31] M. Abusultan and S. P. Khatri, “A ternary-valued, floating gate transistor-
based circuit design approach,” in Proc. IEEE Comput. Soc. Annu. Symp.
VLSI (ISVLSI), Jul. 2016, pp. 719–724.

[32] M. Abusultan and S. P. Khatri, “Design of a flash-based circuit for multi-
valued logic,” in Proc. Great Lakes Symp. VLSI, May 2017, pp. 41–46.

[33] V. Bohossian, P. Hasler, and J. Bruck, “Programmable neural logic,”
IEEE Trans. Compon., Packag., Manuf. Technol., B, vol. CPMTB-21,
no. 4, pp. 346–351, Nov. 1998.

[34] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to
flash memory,” Proc. IEEE, vol. 91, no. 4, pp. 489–502, Apr. 2003.

[35] Y. Cai et al., “Read disturb errors in MLC NAND flash memory:
Characterization, mitigation, and recovery,” in Proc. DSN, Jun. 2015,
pp. 438–449.

[36] S. Boboila and P. Desnoyers, “Write endurance in flash drives: Measure-
ments and analysis,” in Proc. 8th USENIX Conf. File Storage Technol.,
Feb. 2010, p. 9.

[37] M. Mehri and N. Masoumi, “A thorough investigation into active
and passive shielding methods for nano-VLSI interconnects against
EMI and crosstalk,” AEU Int. J. Electron. Commun., vol. 69, no. 9,
pp. 1199–1207, Sep. 2015.

[38] (2022). Threshold Functions of Five of Fewer Variables. [Online].
Available: https://sites.google.com/view/threshold-functions/home/

[39] Genus Synthesis Solution. [Online]. Available: https://
www.cadence.com/en/_US/home/tools/digital-design-and-signoff/
synthesis/genussynthesis-solution.htm

[40] R. Degraeve, B. Kaczer, and G. Groeseneken, “Degradation and break-
down in thin oxide layers: Mechanisms, models and reliability predic-
tion,” Microelectron. Rel., vol. 39, no. 10, pp. 1445–1460, Oct. 1999.

[41] G. Bersuker, Y. Jeon, and H. R. Huff, “Degradation of thin oxides during
electrical stress,” Microelectron. Rel., vol. 41, no. 12, p. 1923s–1931,
Dec. 2001.

[42] S. Dechu, M. K. Goparaju, and S. Tragoudas, “A metric of tolerance for
the manufacturing defects of threshold logic gates,” in Proc. 21st IEEE
Int. Symp. Defect Fault Tolerance VLSI Syst., Oct. 2006, pp. 318–326.

[43] A. Neutzling, J. M. Matos, A. Mishchenko, A. Reis, and R. P. Ribas,
“Effective logic synthesis for threshold logic circuit design,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 38, no. 5, pp. 926–937,
May 2019.

Ankit Wagle (Member, IEEE) received the B.S.
degree in electronics and telecommunication from
the University of Pune, Maharashtra, India, in 2013,
and the M.S. degree in VLSI design from the Vellore
Institute of Technology, Vellore, Tamil Nadu, India,
in 2015. He is currently pursuing the Ph.D. degree
with the School of Computing and Augmented Intel-
ligence (SCAI), Arizona State University, Tempe,
AZ, USA. He spent his graduate research internships
at Intel, Bengaluru, Karnataka, India, in 2015; and
Maxlinear, Carlsbad, CA, USA, in 2017. He also

worked with Open-Silicon, Bengaluru, from 2015 to 2016. His current
research interests include new circuit architectures and design algorithms using
threshold logic gates and their applications to the design of energy efficient
digital application-specified integrated circuit, field-programmable gate array,
and neural network accelerators.

Gian Singh (Member, IEEE) received the B.Tech.
degree in electronics and communication engi-
neering from the National Institute of Technol-
ogy Hamirpur (NIT-H), Hamirpur, India, in 2017.
He is currently pursuing the Ph.D. degree with the
School of Computing and Augmented Intelligence
(SCAI), Arizona State University, Tempe, AZ, USA.
He worked as a Project Associate at NIT-H under
SMDP-C2SD Project sponsored by the Government
of India, from 2017 to 2018. In Fall 2019, he spent at
Maxlinear Inc., Carlsbad, CA, USA, as an SoC Tech

Intern. In Summer 2020, he spent at Qualcomm Inc., San Jose, CA, USA,
as an Hardware Engineering Intern. His current research interests include
the design of threshold logic gates, in-memory computing, near memory
processing enabling high throughput, and energy-efficient systems for data-
intensive applications.

Sunil Khatri (Senior Member, IEEE) received the
B.Tech. degree in electrical engineering from IIT
Kanpur, Kanpur, India, the M.S. degree in elec-
tronics and communication engineering from The
University of Texas at Austin, Austin, TX, USA,
and the Ph.D. degree in electrical engineering and
computer sciences from the University of California
at Berkeley, Berkeley, CA, USA. He is currently a
Professor of electronics and communication engi-
neering at Texas A&M University, College Station,
TX, USA. He has authored or coauthored more

than 250 peer-reviewed publications. Among these papers, five received the
best paper award, while six others received best paper nominations. He has
coauthored nine research monographs and one edited research monograph,
three book chapters, and 13 invited conference papers or workshop papers.
He holds six U.S. patents. He was invited to serve as a panelist at a conference
seven times and has presented two conference tutorials. His current research
interests include VLSI IC/system-on-a-chip design [including energy efficient
design of custom ICs and field-programmable gate arrays (FPGAs), radiation
and variation tolerant design, and clocking], algorithm acceleration using
hardware (FPGA as well as custom IC-based) and software (uniprocessor and
GPU-based), and interdisciplinary extensions of these topics to other areas.

Sarma Vrudhula (Life Fellow, IEEE) received the
B.Math. degree from the University of Waterloo,
Waterloo, ON, Canada, and the M.S.E.E. and Ph.D.
degrees in electrical and computer engineering from
the University of Southern California, Los Angeles,
CA, USA. He is currently a Professor of computer
science and engineering with Arizona State Univer-
sity. He is the Director of the NSF I/UCRC Center
for Embedded Systems. His work spans several areas
in design automation and computer aided design for
digital integrated circuit and systems, focusing on

low power circuit design and energy management of circuits and systems.
Specific topics include: energy optimization of battery powered computing
systems, including smartphones, wireless sensor networks, and the IoT sys-
tems that rely on energy harvesting; system level dynamic power and thermal
management of multicore processors and system-on-chip (SoC); statistical
methods for the analysis of process variations; statistical optimization of
performance, power, and leakage; and new circuit architectures of threshold
logic circuits for the design of ASICs and FPGAs.

Authorized licensed use limited to: ASU Library. Downloaded on April 15,2022 at 05:27:24 UTC from IEEE Xplore. Restrictions apply.

