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ABSTRACT

Speech processing often occurs amid competing inputs from other modalities, for example,

listening to the radio while driving. We examined the extent to which dividing attention between

auditory and visual modalities (bimodal divided attention) impacts neural processing of

natural continuous speech from acoustic to linguistic levels of representation. We recorded

electroencephalographic (EEG) responses when human participants performed a challenging

primary visual task, imposing low or high cognitive load while listening to audiobook stories as

a secondary task. The two dual-task conditions were contrasted with an auditory single-task

condition in which participants attended to stories while ignoring visual stimuli. Behaviorally, the

high load dual-task condition was associated with lower speech comprehension accuracy

relative to the other two conditions. We fitted multivariate temporal response function encoding

models to predict EEG responses from acoustic and linguistic speech features at different

representation levels, including auditory spectrograms and information-theoretic models of

sublexical-, word-form-, and sentence-level representations. Neural tracking of most acoustic and

linguistic features remained unchanged with increasing dual-task load, despite unambiguous

behavioral and neural evidence of the high load dual-task condition being more demanding.

Compared to the auditory single-task condition, dual-task conditions selectively reduced neural

tracking of only some acoustic and linguistic features, mainly at latencies >200 ms, while earlier

latencies were surprisingly unaffected. These findings indicate that behavioral effects of bimodal

divided attention on continuous speech processing occur not because of impaired early sensory

representations but likely at later cognitive processing stages. Crossmodal attention-related

mechanisms may not be uniform across different speech processing levels.

INTRODUCTION

Speech processing often occurs amid competing inputs from other sensory modalities, for

example, listening to the radio while driving. In such situations, listeners must allocate atten-

tion across modalities to effectively select the most relevant information within a modality.

This raises the question of whether and how dividing attention between modalities (e.g., audi-

tion and vision; bimodal divided attention) affects the processing of natural continuous speech.

Resource-based theoretical frameworks have been invoked to scaffold the understanding of

mechanisms governing crossmodal attention (Wahn & König, 2017). Two contrastive resource-
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based accounts (modality-specific vs. supramodal) yield different hypotheses regarding the

effects of bimodal divided attention on continuous speech processing. Per the modality-

specific account, each sensory modality is allocated a limited pool of attentional resources,

and these pools of attentional resources operate independently of each other (Alais et al.,

2006; Arrighi et al., 2011; Duncan et al., 1997; Keitel et al., 2013; Parks et al., 2011; Porcu

et al., 2014). In contrast, per the supramodal account, different sensory modalities share a cen-

tral, limited pool of attentional resources. The availability of resources to one modality is

inversely related to the amount of resources used by other modalities (Broadbent, 1958;

Ciaramitaro et al., 2017; Klemen et al., 2009; Macdonald & Lavie, 2011; Molloy et al., 2015).

Empirical evidence regarding bimodal divided attention effects on speech processing primarily

comes from experimenter-constrained tasks (e.g., Gennari et al., 2018; Kasper et al., 2014; Mattys

et al., 2009, 2014; Mattys & Palmer, 2015; Mattys & Wiget, 2011). Many studies have shown the

detrimental effects of bimodal divided attention on the acoustic processing of simplified, controlled

speech stimuli (e.g., syllable or single words; Gennari et al., 2018; Mattys et al., 2014; Mattys &

Palmer, 2015;Mattys&Wiget, 2011),which is consistentwith the supramodal account of attention.

Speech processing entails mapping acoustic features into linguistic representations of increasing

complexity (Brodbeck & Simon, 2020; Hickok & Poeppel, 2007), raising the question of how

bimodal divided attention affects linguistic representations beyond acoustic processing. Behavioral

studieswith simple speech stimuli indicate that reducedacoustic processingunder bimodal divided

attention may lead to compensatory changes manifested by increased reliance on higher-order

linguistic knowledge during auditory lexical perception (Mattys et al., 2009). However, to date,

there is a lack of a systematic and holistic analysis of divided attention-related changes across

different levels (acoustic to linguistic) of natural continuous speech processing, which is distinctly

different from processing simple speech stimuli (Gaston et al., 2023; Hamilton & Huth, 2020).

Here, we assessed electroencephalography (EEG) to provide a systematic and holistic anal-

ysis of the acoustic and linguistic processing of continuous speech (Brodbeck & Simon, 2020;

Gillis et al., 2022). The continuous speech paradigm uses the multivariate temporal response

function approach (Crosse et al., 2016; Ding & Simon, 2012) to predict neural responses from

a combination of hypothesis-driven acoustic and linguistic properties of continuous speech.

The predictive power of each speech property is used to quantify the corresponding processing

levels (Brodbeck & Simon, 2020; Gillis et al., 2022). The spectro-temporal acoustic properties

included an acoustic spectrogram and an acoustic onset spectrogram. The linguistic properties

included measures of informativeness (surprisal and entropy) based on the information-

theoretic framework (Brodbeck et al., 2018). Prior work suggests that both acoustic and

linguistic representations are strongly modulated by selective attention, within the auditory

modality and across modalities. Attentional effects are disproportionality more robust on the

linguistic representations than acoustic-based representations (Brodbeck et al., 2018, 2020).

Here we integrated the continuous speech paradigm with an audiovisual dual-task para-

digm to examine the effects of bimodal divided attention on the acoustic and linguistic pro-

cessing of continuous speech. In the dual-task paradigm, participants performed a challenging

primary visuospatial task that imposed low or high cognitive load while listening to audiobook

stories as a secondary task. The two dual-task conditions were contrasted with an auditory

single-task condition in which participants attended to the story while ignoring visual stimuli.

We hypothesized that compared to the auditory single-task condition, dual-task conditions

would lead to reduced acoustic and linguistic representations of continuous speech, especially

at high cognitive load. However, we hypothesized that linguistic representations may be

affected to a relatively greater extent based on evidence from the literature on selective atten-

tion. These hypotheses are aligned with the supramodal account of crossmodal attention.
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MATERIALS AND METHODS

Experimental Design

Bimodal divided attention was manipulated via a dual-task paradigm. Specifically, participants

performed a primary visuospatial n-back task of varying (high or low) cognitive load (Jaeggi

et al., 2007) while listening to continuous speech as a secondary task. We designated the

visual task as the primary task to maximize the chance of observing the bimodal divided atten-

tion effects on continuous speech processing. The cognitive load of the dual-task paradigm

was manipulated via 3- and 0-back tasks on the visuospatial stimuli (blue squares;

Figure 1A and 1B). The dual-task conditions were contrasted with an auditory single-task

condition (Figure 1C), in which participants explicitly attended to the auditory stimuli while

ignoring the visual stimuli. To obtain a behavioral measure for the auditory task, participants

were instructed to respond to two multiple-choice comprehension questions on the story

segments at the end of each trial. Detailed task instructions are presented in the section on

Experimental Procedure.

Figure 1. Trial design. In the two dual-task conditions, the primary task was to respond to the visual stimuli and the secondary task was to

attend to auditory stimuli (story segments of about 60 s). (A) In the high load condition, participants responded only when the current blue

square matched the one 3 positions back (examples highlighted in red squares). (B) In the low load condition, participants responded only

when the current blue square matched the first square in each trial (highlighted in the red square). (C) In the auditory single-task condition,

participants were instructed to attend to the auditory stimulus and ignore the visual stimuli. At the end of each trial, participants responded to

two multiple-choice comprehension questions for the story segments. ISI: interstimulus interval.
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Each task condition consisted of 15 trials of visual stimuli paired with 15 unique story seg-

ments and was presented in a separate block. The order of the story segments was fixed and

identical across participants in order to maintain the continuity of the storyline. The order of

task conditions was counterbalanced across participants. Each trial of visual stimuli ended

later than the corresponding story segment. Such offset gaps were not significantly different

across task conditions, F(2, 42) = 0.01, p = 0.99. The experiment was controlled with E-Prime

Version 2.0.10 (Schneider et al., 2002).

Participants

Adult native American English speakers (N = 18) were recruited from the Austin, Texas, com-

munity. Data from one participant were excluded due to technical problems. Data from

another participant were excluded because their story comprehension accuracy was lower

for the auditory single-task condition (66.67%) than the two dual-task conditions (73.37%

for low load and 76.67% for high load). We interpreted this result as that this participant

did not understand or follow the task instructions. The final sample consisted of 16 partici-

pants (18 to 23 yr old; 11 females, 5 males; 14 right-handed, 2 left-handed). The sample size

was selected based on prior work examining the effects of bimodal attention on the neural

processing of speech stimuli (e.g., Gennari et al., 2018; Kasper et al., 2014). Previous studies

have shown that music training can influence speech processing (e.g., Bidelman & Alain,

2015). Therefore, we recruited only participants without significant formal music training

(≤four years of continuous training, not currently practicing). All participants had normal

air and bone-conduction audiometric thresholds, defined as ≤20 dB hearing level for octave

frequencies from 0.25 to 8 kHz. The thresholds were measured via an Equinox 2.0 PC-based

audiometer (Interacoustics, 2023). Additional inclusion criteria are as follows: no history of

psychological or neurological disorders, no use of neuropsychiatric medication, and having

normal or corrected-to-normal vision. Before the experiment, all participants provided

written, informed consent. Participants received monetary compensation for their participa-

tion. The Institutional Review Board at the University of Texas at Austin approved the exper-

imental protocols.

Stimuli and Apparatus

The stimuli were composed of visual and auditory materials. The visual stimuli (Figure 1) were

blue squares at one of eight loci around a white fixation cross in the center of a black screen,

adapted from Jaeggi et al. (2007). The duration for individual squares was 500 ms, and the

interval between consecutive squares was 2,500 ms. Twenty-three squares were included in

a trial, lasting 69 s. The stimuli were displayed on a VIEWPixx/EEG LCD monitor (VPixx Tech-

nologies, 2022) with a scanning LED-backlight design (29.1 cm [height] × 52.2 cm [width];

display resolution: 1920 × 1080; refresh rate: 120 Hz) at an ∼110 cm distance from partici-

pants’ eyes.

The auditory stimuli were English audiobook recordings selected from a classic work of

fiction, Alice’s Adventures in Wonderland (Carroll, 1865/2010, Chapters 1–7). The audiobook

was narrated by an adult male American English speaker at a sampling rate of 22.05 kHz. The

chapters were divided into 45 segments (each ∼60 s long). Each segment began where the

story ended in the previous segment. In each segment, silent periods of more than 500 ms

were shortened to 500 ms. The story stimuli were presented diotically via insert earphones

(ER-3; Etymotic, 2023) to the participants at a 70 dB sound pressure level. A trial of visual

stimuli (23 blue squares) was presented concurrently with each story segment, with the
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segment beginning later (3 s after the onset of the visual trial) and ending earlier relative to the

visual trial.

Experimental Procedure

High and low load dual-task

The cognitive load of the dual-task conditions was manipulated via the visual task. For the

high load condition, the visual task required participants to respond when the current blue

square matched the one three positions back in the sequence (i.e., 3-back task, Figure 1A).

For the low load condition, the visual task required participants to respond when the current

blue square matched the first square in the sequence (i.e., 0-back task, Figure 1B). We random-

ized the location of the first square across trials. Matched squares were treated as targets, and

unmatched ones were non-targets. Note that targets could appear only starting from the fourth

square in the sequence for a given trial in the 3-back task. In other words, targets would be

among the last 20 squares in the sequence on a given trial. We designed the 0-back task to

match that. Six of the last 20 squares were set as targets for both task conditions, and the

remaining 14 were non-targets. The target locations were randomized across trials.

Participants responded to the targets by pressing buttons on a game controller. Participants

were told that speed and accuracy were equally important. Participants were required to rest

their fixations on a white cross in the middle of the screen. To encourage engagement, accu-

racy feedback on the visual task was displayed after their responses. The number of button

presses was not significantly different between 3- and 0-back visual tasks (t (15) = 0.96, p =

0.36). After the visual task, participants responded to two multiple-choice comprehension

questions for the auditory stories. The questions were designed such that a superficial famil-

iarity with the story was insufficient for answering them (e.g., “How many miles does Alice

think she has fallen?” (1) 2,000; (2) 3,000; (3) 4,000; (4) 5,000). Participants had unlimited time

to respond to the story questions. No feedback was provided after their responses.

Critically, to manipulate the priority of the auditory and visual tasks, participants were

instructed to focus primarily on the visual task and attend to the auditory stimulus as a second-

ary task. They were explicitly told that their data could not be used if their performance on the

visual task was poor.

Auditory single-task

In this condition, participants were instructed to focus on the story segments and ignore the

visual stimuli (Figure 1C). Participants were required to keep their eyes open and rest their

fixations on a white cross in the middle of the screen. At the end of each trial, participants

responded to two multiple-choice questions to assess their comprehension of the story seg-

ments. Participants had unlimited time to respond to questions. Visual feedback about the

accuracy of the story question was displayed following their responses.

Exit questionnaire

After participants completed the experiment, they completed a brief exit questionnaire related

to their familiarity with the auditory stimuli. Specifically, participants indicated if they had read

the Alice’s Adventures in Wonderland or watched a film adaptation, and if yes, approximately

how long ago. Participants also indicated to what extent reading the book or watching the

movie helped their task performance on a 10-point scale (1 = not at all, 10 = quite a bit). Four

out of 16 participants had read the book, and 10 out of 16 participants had watched the movie.

We examined whether reading (vs. not reading) the book and watching (vs. not watching) the
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movie modulate the effect of task condition (i.e., auditory-single task and dual-task conditions)

on behavioral auditory task (story) accuracy, using a three-way mixed analysis of variance

(ANOVA). We did not find significant main effects of reading the book (p = 0.14, ηp
2 = 0.17)

or watching the movie (p = 0.96, ηp
2 = 0.0003), or significant interactions between any vari-

ables (all ps > 0.37, ηp
2 < 0.08). These results suggest that prior familiarity with the auditory

stimuli did not appear to significantly contribute to task performance.

Electrophysiological Data Acquisition and Preprocessing

Acquisition

The experiment was conducted in a dark, acoustically shielded booth. Participants were

seated in a comfortable chair during tasks. EEG data were recorded using the Easycap

(2023) recording cap with 64 actiCAP active electrodes (Brain Products, 2023a) at a sampling

rate of 5 kHz. The electrode locations were determined according to the extended 10–20 sys-

tem (Oostenveld & Praamstra, 2001), with a common ground at the Fpz electrode site and TP9

as the reference. The electrode impedances were below 20 kΩ.

The EEG data were acquired using BrainVision actiCHAmp amplifier linked to BrainVision

Pycorder software Version 1.0.7 (Brain Products, 2023b).

Preprocessing

The EEG data were preprocessed offline in MNE-Python (Gramfort et al., 2013), and the

deconvolution analysis was implemented with the Eelbrain package (Brodbeck et al., 2021).

The data were re-referenced to the average of the electrodes TP9 and TP10, and then band-

pass filtered from 1 to 15 Hz using a zero-phase overlap-add finite impulse response filter

(hamming window) with default settings in MNE-Python. Independent component analysis

was applied to EEG data combined across the three task conditions in individual participants

using the extended-infomax algorithm. Artifact-related components (mainly ocular artifacts)

were identified according to the topographical distribution and time course via visual inspec-

tion and then removed. After that, the EEG data were segmented into epochs that were time-

locked to the onsets of corresponding story segments, and then downsampled to 100 Hz. The

maximum possible duration of the epochs was set to 61 s.

Assessing Neural Tracking of Visual and Auditory Stimuli

To assess the neural representation of speech, we used the multivariate temporal response

function (mTRF) approach (Crosse et al., 2016; Ding & Simon, 2012). In this approach, the

EEG signal is predicted using time-delayed multiple regression. We first generated several

visual, acoustic, and linguistic models (see below for detailed descriptions). Each model

was used to define several predictor variables, each implementing a specific linking hypoth-

esis for predicting brain activity from the corresponding model. We then tested the predictive

power of different combinations of predictor variables to evaluate which acoustic and linguis-

tic models are associated with predictive power for the EEG data. Each predictor variable thus

operationalizes a hypothesis that EEG responses are modulated by a given property of the

speech signal, which would indicate neural representations arising from a corresponding

acoustic or linguistic model. Figure 2 displays an example of each predictor variable.

Visual model

Because the visual stimuli were temporally sparse, visual responses were modeled analo-

gously to a visual evoked potential. The visual predictor was a one-dimensional time
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series with an impulse at the onsets and offsets of the blue squares. We did not separate pre-

dictors for targets and non-targets because this study was not intended to explore differences in

neural processing of visual targets and non-targets, and thus there were not enough targets to

estimate stable responses.

Figure 2. An excerpt of raw electroencephalography (EEG) responses from all 64 electrodes (top row) and the predictor variables (subsequent

rows) used to model the EEG responses. Note that visual predictors consist of a separate one-dimensional array with impulses for onsets and

offsets of the blue squares. They are combined into a single predictor in this example for illustration purposes.
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Acoustic model

The acoustic model was designed to assess EEG responses related to representations of acous-

tic spectro-temporal features. All acoustic predictors were derived from 256-band gammatone-

based spectrograms of the speech stimuli, with cut-off frequencies from 0.02 to 5 kHz. The

256-band spectrograms were downsampled to 1 kHz and log transformed using the formula

log(1 + x), where x refers to the downsampled spectrograms. A spectrogram predictor was then

created by summing the 256-band spectrograms in eight logarithmically spaced frequency

bands. In addition, an onset spectrogram predictor was defined to detect and control for

representations of acoustic edges. These were generated using an auditory edge detection

model (Brodbeck et al., 2020; Fishbach et al., 2001) and applied to each frequency band of

the 256-band spectrograms. The onsets across these 256 bands were also summed into eight

logarithmically spaced frequency bands to generate 8-band onset spectrogram predictors.

Linguistic models

Linguistic processing was assessed using information-theoretic models. These models assume

that listeners maintain predictive models of speech, which can be linked to brain activity

through surprisal and entropy measures (Brodbeck et al., 2018). Previous work suggests that

listeners maintain multiple such predictive models, differing in complexity, in parallel

(Brodbeck et al., 2022). The predictive models were all defined over phoneme sequences,

determined for each stimulus via forced alignment using the Montreal Forced Aligner (MFA;

McAuliffe et al., 2017). The predictors based on the specific information-theoretic models

(described in subsequent sections) all consisted of time series with an impulse of variable size

at each phoneme onset. In order to provide a control for responses related to linguistic

segmentation, two additional predictors were included: A word onset predictor with a unit

(value of 1) impulse at the onset of each word-initial phoneme and a phoneme onset predictor

with a unit impulse at the onset of all other phonemes.

Sublexical model. The sublexical model assumes that listeners predict upcoming phonemes or

speech sounds based on a local context, consisting of only a few preceding sounds. To imple-

ment such a model, all sentences from the SUBTLEX-US corpus (Keuleers et al., 2010) were

transcribed into phoneme sequences without word boundary markers, and a 5-gram model

(Heafield, 2011) was trained on these phoneme sequences. This model was then applied to

the experimental stimuli to compute a probability distribution over phonemes at each pho-

neme position, conditional on the four preceding phonemes. This distribution was used to

calculate a sublexical surprisal predictor (the surprisal of encountering phoneme phk at posi-

tion k in the stimulus is −log2 (p(phk|context)) and a sublexical entropy predictor (the entropy

at phoneme position phk reflects the uncertainty about what the next phoneme, phk+1, will be

−
Pphonemes

ph
p(phk+1 = ph|context)log2 p(phk+1 = ph|context )). Surprisal is a measure of the

amount of new information provided by a stimulus; a response to sublexical surprisal is thus

evidence that listeners integrate information on a sublexical level. A response to entropy addi-

tionally suggests that listeners create a probabilistic expectation about future input before

encountering the phoneme (Pickering & Gambi, 2018). A response to either of those predictors

would provide evidence that listeners maintain a sublexical language model.

Word-form model. The word-form model aims to predict the surface form of the word that is

currently being heard, but without access to any information preceding the word. To imple-

ment this model, a phonological lexicon was generated by combining pronunciations from the

MFA English dictionary and the Carnegie Mellon University Pronouncing Dictionary (https://
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www.speech.cs.cmu.edu/cgi-bin/cmudict). The word-form model was implemented based on

the cohort model of word recognition (Brodbeck et al., 2018; Marslen-Wilson, 1987). Each

word was assigned a prior probability based on its count frequency in the SUBTLEX corpus

(Keuleers et al., 2010), substituting a count of 1 for missing words. For each word in the speech

stimuli, the cohort model was then implemented by starting with the complete lexicon and, for

each subsequent phoneme of the word, incrementally removing words that were not compat-

ible with that phoneme in that position. The changing probability distribution over the lexicon

was then used to define two predictors, each with a value at each phoneme position: phoneme

surprisal (log inverse of the posterior probability of the phoneme given the preceding pho-

nemes) and cohort entropy (Shannon entropy over all words currently in the cohort,
Plexicon

word p(word|context)log2 p(word|context). This model implements the hypothesis that lis-

teners recognize words using a probabilistic model that takes into account all the information

since the last word boundary (i.e., where the word started), but that does not further take into

account any context when considering possible word forms as candidates.

Sentence model. The sentence model is very similar to the word-form model, with the only

difference being that the prior expectation for each word is modulated by the sentence con-

text. To implement this, a lexical 5-gram model (Heafield, 2011) was trained on the whole

SUBTLEX-US database (Keuleers et al., 2010). This 5-gram model was used to set the prior

probability for each word in the lexicon based on the preceding four words before applying

the procedure described for the word-form model above. The same two linking hypotheses

were used to define predictor variables (phoneme surprisal and cohort entropy). The sentence

model implements the hypothesis that listeners use a wider context including multiple words,

when modulating their phoneme-by-phoneme perception and expectations.

Estimation of neural tracking

We used forward encoding mTRF models to predict EEG responses from the predictors

described above. The mTRF models were fitted to the EEG responses at individual electrodes

using the boosting algorithm implemented in the Eelbrain toolbox (Brodbeck et al., 2021). The

predictive power of the mTRF models was evaluated by how accurately they could predict

EEG responses from novel trials of the same condition. This was quantified through the

z-transformed Pearson’s correlation coefficient between predicted and actual EEG responses

(i.e., prediction accuracy). Higher prediction accuracy indicates better neural tracking of the

corresponding predictor.

The mTRFs were estimated separately for each subject and condition using a fivefold cross-

validation strategy. First, the trials were divided into five test sets. For each test set, EEG

responses were predicted from the average of four mTRF models, estimated from the remaining

four data sets (among those 4 data sets, each served as validation set once and as training data

during the remaining 3 fits, thus leading to 4 different mTRF models). Thus, predictions of EEG

responses for each test set were made with mTRF models that were estimated without ever

using that test set. The mTRFs were generated from a basis of 50 ms Hamming windows with

stimulus-EEG lag from −100 to 500 ms (window center). The mTRFs were estimated jointly for

all predictors with coordinate descent to minimize the ‘1 error. After each step, the change in

error was evaluated in the validation set, and if there was an increase in error, the TRF for the

predictor responsible for the change was frozen (in its state before the change). This continued

until the whole mTRF was frozen. A single measure of prediction accuracy (Fisher

z-transformed correlation between predicted and measured response, see above) was
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calculated after concatenating the predicted responses from the five test sets. Because predic-

tions were based on cross-validation, the expected correlation by chance is z = 0. For analysis

of the response functions, the mTRFs were averaged across all the test sets. For the visual pre-

dictor, the TRFs to onsets and offsets were combined for an effective response function with

lags from −100 to 1,000 ms relative to visual stimulus onset (because the visual stimulus

always lasted exactly 500 ms).

To estimate the neural tracking of a given predictor (or a combination of predictors), we

calculated the change in prediction accuracy (i.e., Δz) when the predictor(s) of interest was

(were) removed from the full model that included all the visual, acoustic, and linguistic pre-

dictors. This procedure tests for variability in the responses that can be uniquely attributed to

the predictor(s) under investigation and cannot be explained by any other predictors. Such a

strong test is warranted because different properties of natural, connected speech tend to be

correlated in time. Note that the analysis of the mTRFs themselves could not implement such

strict control, and thus we cannot exclude the possibility that response functions include com-

ponents that are confounded with other, correlated speech features. For this reason, we focus

our interpretation on tests of predictive power more than mTRF comparisons.

Statistical Analysis

All statistical analyses, if unspecified, were implemented in R (Version 4.2.1; R Core Team,

2022).

First, we examined the effect of task condition (auditory single-task, or low or high load

dual-task) on behavioral performance, and neural visual, acoustic, and linguistic processing

separately. A paired t test (two-sided), or one- or two-way repeated-measures ANOVA, which-

ever was appropriate, was performed with an alpha level of 0.05. The reported p values of

those analyses were adjusted using the false discovery rate (FDR) method (Benjamini &

Hochberg, 1995). We also calculated effect sizes (Cohen’s d for t tests and partial eta squared

(ηp
2) for ANOVAs) and Bayes factors (BF). The BFs were computed using appropriate functions

from the R package “BayesFactor” (Version 0.9.12.4.4; Morey et al., 2022). Post hoc analysis,

if necessary, was performed using paired t tests (two-sided). FDR-corrected p values, effect

sizes (Cohen’s d ), and BFs were reported. More analysis details are provided in the following

paragraphs.

Behavioral performance was quantified by three measures, including the accuracy and

reaction time (RT) for the visual task and the accuracy for the auditory task. Visual accuracy

was calculated as the difference in hit rates (i.e., correctly responding to a target) and false

alarm rates (i.e., identifying a non-target as being a target). Visual RT was calculated as the

median RT for hits only (Jaeggi et al., 2007; Snodgrass & Corwin, 1988). Auditory accuracy

was calculated as the percentage of correctly answered story questions.

The extent of neural visual processing was determined using a mass-univariate analysis,

comparing the predictive power (z) between the full model and a model missing the visual

predictor. For this, we averaged the prediction accuracy for visual predictors across task con-

ditions at individual electrodes and tested whether the averaged difference in prediction accu-

racy (∆z) was greater than zero using a mass-univariate, one-sample t test (one-sided). This

was implemented in the Eelbrain package. The mass-univariate test was a cluster-based per-

mutation test, using a t value equivalent to uncorrected p ≤ 0.05 as the cluster-forming thresh-

old. A corrected p value was computed for each cluster based on the cluster-mass statistic in a

null distribution from 10,000 permutations (or a complete set of all possible permutations, in

cases where this was fewer than 10,000; Maris & Oostenveld, 2007). We reported the largest
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t value from the cluster (i.e., tmax) as an estimate of effect size (Brodbeck et al., 2018). Neural

acoustic and linguistic processing were analyzed in the same manner.

We followed each of these analyses by examining the extent to which task conditions mod-

ulated neural tracking of individual predictors, or subsets of predictors. To this end we used the

significant clusters from the mass-univariate analysis as region of interest (ROI) to extract ∆z

values averaged across the electrodes in the cluster, but for each condition separately. Regard-

ing neural acoustic processing, we examined the spectrogram and onset spectrogram predic-

tors separately. Regarding neural linguistic processing, we conducted three sets of analyses to

examine individual linguistic predictors. First, a two-way repeated-measures ANOVAwas per-

formed to examine the effects of context levels (sublexical, word-form, and sentence) and task

condition on prediction accuracy. Second, a two-way repeated-measures ANOVA was per-

formed to examine the effects of predictor type (entropy and surprisal) and task condition

on prediction accuracy. Third, a one-way repeated-measures ANOVA was performed to

examine the effect of task condition on the prediction accuracy of word onsets. Further, if a

significant effect of task condition was observed from any of those analyses, we conducted

follow-up analyses to examine whether task conditions eliminated neural tracking of the cor-

responding predictor(s) by testing whether the prediction accuracy at individual task condi-

tions was greater than zero using one-sample t tests (one-sided).

Finally, we examined the effect of task conditions on the mTRFs from predictors which

showed significant task condition effects on prediction accuracy. The predictors include visual

predictors, onset spectrogram, three context levels (sublexical, word-form, and sentence), and

two predictor types (entropy and surprisal). We calculated the global field power (GFP) of

mTRFs across the corresponding ROI from the above analyses of prediction accuracy. We then

compared the GFP of mTRFs between task conditions using mass-univariate paired t tests (two-

sided). The mTRF analyses were implemented in the Eelbrain package with default parameters

except for the analysis time window. For visual predictors, we concatenated the mTRFs for

visual onsets and offsets to analyze the response to visual stimuli as a whole. For the onset

spectrogram, we averaged the mTRFs across the eight frequency bands. The analysis time

window was 0 to 1,000 ms for visual predictors and 0 to 450 ms for auditory predictors.

RESULTS

Table 1 summarizes the key findings regarding the effect of task condition on behavioral

performance, and neural visual, acoustic, and linguistic processing.

Divided Attention and Visual Load Impair Behavioral Performance

Figure 3A and 3B display the accuracy and RT of the visual task for individual participants.

Compared to the low load (0-back) condition, the high load (3-back) condition was associated

with lower accuracy (low load: mean = 99.54% (SD = 0.82) vs. high load: mean = 63.31%

(SD = 21.85), t(15) = 6.60, p < 0.001, Cohen’s d = 1.65, BF = 2.59 × 103) and slower RT (low

load: mean = 453.11 ms (SD = 67.54) vs. high load: mean = 785.24 ms (SD = 233.41), t(15) =

−5.33, p < 0.001, Cohen’s d = 1.33, BF = 330.30). These results confirmed that the manipu-

lation of cognitive load in the visual task was successful.

Figure 3C displays the auditory task accuracy for individual participants. The mean accu-

racy was 88.96% (SD = 5.93) in the auditory single-task condition, 84.58% (SD = 11.86) in the

low load dual-task condition, and 65.63% (SD = 12.75) in the high load dual-task condition.

The effect of task condition was significant (F(2, 30) = 36.59, p < 0.001; ηp
2 = 0.71, BF = 6.75 ×

106). Post hoc analysis revealed that auditory task accuracy was significantly lower in the high
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load dual-task condition compared to the other two conditions: versus auditory single-task,

t(15) = 7.38, p < 0.001, Cohen’s d = 1.84, BF = 8.31 × 103; and versus low load dual-task,

t(15) = 6.34, p < 0.001, Cohen’s d = 1.58, BF = 1.70 × 103. The auditory task accuracy was not

significantly different between auditory single-task and low load dual-task conditions (t(15) =

1.75, p = 0.10, Cohen’s d = 0.44, BF = 0.88).

Further, we examined the relationship between visual and auditory task performance dur-

ing the dual-task conditions. The change in auditory accuracy (i.e., (low load − high load)/low

load) was negatively correlated with the change in visual RT (i.e., (high load − low load)/low

load) (Spearman’s ρ = −0.46, uncorrected p = 0.038, one-sided; Figure 3D), such that listeners

who slowed down more on the visual task from low to high load conditions tended to have a

smaller drop in auditory accuracy. The change in auditory accuracy was not significantly

correlated with the change in visual accuracy (Spearman’s ρ = −0.29, uncorrected p =

0.28, one-sided).

These results demonstrate that divided (vs. selective) attention and increasing visual load

impair behavioral visual and auditory performance.

Neural Tracking of Visual Stimuli Is Strongly Modulated by Divided Attention and Visual Load

To assess neural tracking of visual stimuli, we focused on the predictive power of visual pre-

dictors while controlling for all speech-related predictors (acoustic and linguistic). Adding pre-

dictors for visual stimuli to a model including only speech predictors significantly improved its

predictive power (prediction accuracy averaged across task conditions; tmax = 12.93, p <

0.001), providing evidence for neural tracking of visual stimuli. The cluster-based test resulted

in a single significant cluster that spread across all electrodes, with the largest effects on pari-

etal and occipital electrodes (Figure 4A).

Table 1. Task effects on continuous speech processing

Type Measure Key result

Behavioral Visual accuracy Low load > High load

Visual reaction time Low load < High load

Auditory accuracy Auditory single-task = Low load > High load

Neural (Δz) Visual Auditory single-task < Low load < High load

Acoustic Gammatone spectrogram No significant task effect

Onset spectrogram Auditory single-task > Low load = High load

Linguistic Sublexical, word-form,
and sentence context

Auditory single-task > Low load = High load

Entropy and surprisal Entropy: Auditory single-task > Low load = High load

Surprisal: Auditory single-task > Low load = High load

Word onset No significant task effect
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Importantly, the predictive power of the visual predictors was modulated by task condition

(F(2, 30) = 46.10, p < 0.001, ηp
2 = 0.76, BF = 6.09 × 107). As shown in Figure 4B, the high load

dual-task condition was associated with the highest predictive power (mean = 0.075, SD =

0.029), followed by the low load dual-task condition (mean = 0.053, SD = 0.022), and lowest

for the auditory single-task condition (mean = 0.020, SD = 0.012): high load dual-task versus

auditory single-task, t (15) = 9.52, p < 0.001, Cohen’s d = 2.38, BF = 1.50 × 105; high load

dual-task versus low load dual-task, t(15) = 3.34, p = 0.005, Cohen’s d = 0.84, BF = 10.7; low

load dual-task versus auditory single-task, t (15) = 6.64, p < 0.001, Cohen’s d = 1.66, BF =

2.72 × 103. Together, these results suggest that neural tracking of visual stimuli was succes-

sively enhanced with increasing load of the visual task.

We analyzed mTRFs to further clarify how the difference in model predictive power was

reflected in brain responses. Visual mTRFs can be conceptualized as evoked responses to the

visual stimuli. Consistent with results for prediction accuracy, the mTRFs were also modulated

by the task condition (Figure 4C). The high load dual-task condition showed larger mTRF

amplitudes than the auditory single-task condition from 0 to 680 ms (p < 0.001) and the

low load dual-task condition from 190 to 380 ms (p < 0.001). The mTRF amplitudes for the

Figure 3. Behavioral performance on visual and auditory tasks. (A) Accuracy on the low load

(0-back) and high load (3-back) visual tasks, which was calculated as the difference in hit rates

(i.e., correctly responding to a target) and false alarm rates (i.e., identifying a non-target as being

a target). (B) Reaction time on the low load (0-back) and high load (3-back) visual tasks, which was

calculated for hits only. (C) Accuracy on the auditory task, which was calculated as the percentage

of correctly answered story questions. Individual lines in A–C denote individual participants (n =

16). (D) Correlation between the change in auditory accuracy (i.e., (low load − high load)/low load)

and the change in visual RT (i.e., (high load − low load)/low load). The gray line is the linear regres-

sion line. n.s. (not significant): p > 0.05, *** p < 0.001.
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low load dual-task condition were larger than the auditory single-task condition from 70 to

210 ms (p = 0.009) and from 260 to 600 ms (p < 0.001).

Divided Attention, but Not Visual Load, Reduces Late Neural Tracking of Acoustic Features

The acoustic predictors significantly contributed to model prediction beyond the visual and

linguistic predictors in a cluster that spread across almost all electrodes, with maxima at tem-

poral sites (tmax = 12.00, p < 0.001; Figure 5A). As expected, these results provide evidence for

robust neural tracking of acoustic properties of speech.

The prediction accuracy for acoustic predictors was modulated by task condition (F(2, 30) =

14.83, p < 0.001, ηp
2 = 0.50, BF = 581.38; Figure 5B). Post hoc analysis showed that the pre-

diction accuracy significantly dropped in the two dual-task conditions compared to the audi-

tory single-task condition (vs. low load dual-task, t(15) = 3.84, p = 0.002, Cohen’s d = 0.96,

BF = 25.60; vs. high load dual-task, t(15) = 4.78, p < 0.001, Cohen’s d = 1.20, BF = 130.60).

The prediction accuracy was not significantly different between the dual-task conditions

(t(15) = 0.77, p = 0.45, Cohen’s d = 0.19, BF = 0.33). These results suggest that neural tracking

Figure 4. Neural tracking of visual stimuli across task conditions. Visual stimuli were associated with a robust response, which further

increased with task relevance and load. (A) Topography showing the increase in prediction accuracy (Δz) due to visual predictors, which

was significantly above zero in a single cluster encompassing the highlighted (yellow) electrodes. (B) Prediction accuracy across task condi-

tions. Blue lines denote individual participants: Thicker lines indicate higher prediction accuracy for the high vs. low load condition, and

thinner lines indicate lower accuracy for the high versus low load condition. Red asterisks denote p values for comparison between conditions.

Error bars denote the 95% within-subject confidence interval (Loftus & Masson, 1994). (C) Global field power of the visual temporal response

functions (TRFs). Visual stimuli lasted from 0 to 500 ms. Shaded areas denote within-subject standard errors around the mean (for color labels

see panel B). Horizontal lines denote time windows in which TRFs were significantly different between conditions. (D) Topographies of

selected times in panel C (grey vertical lines). A-ST: auditory single-task, Lo-DT: low load dual-task, Hi-DT: high load dual-task. ** p <

0.01, *** p < 0.001.
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Figure 5. Neural tracking of acoustic information across task conditions. (A) Increase in prediction accuracy (Δz) due to acoustic predictors

of speech (gammatone and onset spectrogram), which was significantly above zero in a cluster encompassing the highlighted (yellow) elec-

trodes. Blue dots denote individual participants. (B) Prediction accuracy across task conditions for acoustic predictors, i.e., combined gam-

matone and onset spectrogram. (C) and (D) Prediction accuracy across task conditions for gammatone spectrogram and onset spectrogram

separately. Topographies highlight electrodes (yellow) with prediction accuracy that was significantly above zero. Black asterisks denote

p values for testing against (above) zero at individual conditions. In B–D, blue lines denote individual participants: Thicker lines indicate lower

accuracy for high vs. low load condition, and thinner lines indicate higher accuracy for high vs. low load condition. Red asterisks denote

p values for comparison between conditions. Error bars denote 95% confidence interval. (E) and (F) GFP (top) of mTRFs and related topog-

raphies (bottom) for gammatone and onset spectrogram. The mTRFs were averaged across the eight frequency bands. Shaded areas denote

within-subject standard errors around the mean. Horizontal lines denote time windows in which mTRFs were significantly different between

conditions. Topographies are shown for selected times indicated in GFPs (grey vertical lines). * p < 0.05, ** p < 0.01, *** p < 0.001.
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of acoustic information was reduced when directing attention from one task (auditory) to two

tasks (visual and auditory).

Then, we assessed whether the effect of task condition could be attributed to specific acous-

tic predictors. The two acoustic predictors both independently contributed to overall model

prediction (gammatone spectrogram: tmax = 6.08, p < 0.001, Figure 5C; onset spectrogram:

tmax = 9.91, p < 0.001, Figure 5D). The effect of task condition on the prediction accuracy

was significant for onset spectrogram (F(2, 30) = 4.93, p = 0.033, ηp
2 = 0.25, BF = 4.17) but

not for gammatone spectrogram (F(2, 30) = 0.70, p = 0.59, ηp
2 = 0.04, BF = 0.26). Post hoc

analysis revealed that the prediction accuracy for onset spectrogram significantly dropped in

the two dual-task conditions compared to the auditory single-task condition (vs. low load

dual-task, t(15) = 2.61, p = 0.030, Cohen’s d = 0.65, BF = 3.14; vs. high load dual-task,

t(15) = 2.89, p = 0.030, Cohen’s d = 0.72, BF = 4.94). The prediction accuracy was not

significantly different between the dual-task conditions (t(15) = −0.79, p = 0.44, Cohen’s

d = 0.20, BF = 0.34).

Considering the modulation by task condition, we further examined whether divided atten-

tion eliminated neural tracking of onset spectrogram. The prediction accuracy at individual

task conditions was significantly above zero (all uncorrected ps < 0.001, Cohen’s d > 1.20,

BF > 256.40; Figure 5D), suggesting that directing attention from one task to two tasks did not

eliminate the neural tracking of acoustic onsets.

Finally, we examined the effect of task condition on the mTRFs for the onset spectrogram

(Figure 5F). mTRFs to a continuous stimulus like the auditory spectrogram can be conceived of

as evoked responses to an elementary event in the stimulus (i.e., the impulse response). The

mTRF amplitudes in the auditory single-task condition were larger compared to the high load

dual-task condition from 200 to 260 ms (p = 0.003). Further, a visual inspection of the mTRFs

from individual subjects revealed two relatively reliable peaks at about 56 (P1) and 152

(P2) ms. Latencies of these peaks were not significantly different across conditions (56 ms:

F(2, 30) = 0.65, uncorrected p = 0.94, ηp
2 = 0.004; 152 ms: F(2, 30) = 0.62, uncorrected

p = 0.54, ηp
2 = 0.04).

In sum, acoustic tracking was very similar across conditions, with only a slight reduction in

the tracking of acoustic onsets in the divided attention tasks, compared to the single task.

This difference was likely explained by a reduction in a relatively late response component,

starting at 200 ms.

Divided Attention, but Not Visual Load, Reduces Late Tracking of Linguistic Information

The linguistic predictors significantly contributed to model prediction beyond the visual and

acoustic predictors (tmax = 4.95, p < 0.001; Figure 6A). The cluster-based test indicated that the

effect of linguistic predictors was primarily observed for temporal-central electrodes. These

results provide evidence for neural tracking of linguistic properties of speech.

The prediction accuracy for linguistic predictors was modulated by task condition (F(1.41,

21.15) = 6.66, p = 0.029, ηp
2 = 0.31, BF = 10.82; Figure 6B). The prediction accuracy signif-

icantly dropped in the two dual-task conditions compared to the auditory single-task condition

(vs. low load dual-task, t(15) = 2.83, p = 0.029, Cohen’s d = 0.71, BF = 4.49; vs. high load

dual-task, t(15) = 2.61, p = 0.029, Cohen’s d = 0.65, BF = 3.16). The prediction accuracy was

not significantly different between the two dual-task conditions (t(15) = −1.80, p = 0.091,

Cohen’s d = 0.45, BF = 0.95). These results suggest that neural tracking of linguistic informa-

tion was reduced when directing attention from one task to two tasks.
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Figure 6. Neural tracking of linguistic information across task conditions. (A) Increase in prediction accuracy (Δz) due to linguistic predictors

of speech (word onsets, phoneme onsets, sublexical surprisal and entropy, word-form surprisal and entropy, and sentence surprisal and

entropy), which was significantly above zero across highlighted (yellow) electrodes in the topography. Blue dots denote individual participants.

(B) Prediction accuracy for combined linguistic predictors across conditions. Blue lines denote individual participants: Thicker lines indicate

lower accuracy for high versus low load condition, and thinner lines indicate higher accuracy for high versus low load condition. Red asterisks

denote p values for comparison between conditions. (C) Prediction accuracy for three context levels (sublexical, word-form, and sentence)

across conditions. Each level includes entropy and surprisal predictors. (D) Global field power (top) of mTRFs and related topographies (bot-

tom) for each context level. The mTRF GFPs were averaged across entropy and surprisal. (E) Prediction accuracy for entropy and surprisal.

Each predictor includes the three context levels. (F) GFP of mTRFs and related topographies for entropy and surprisal. In B, C, and E, error bars

denote 95% confidence interval. In D and F, shaded areas denote standard errors around the mean. Horizontal lines denote time windows in

which the mTRFs were significantly different between task conditions. Topographies are shown for selected times indicated in GFPs (grey

vertical lines). * p < 0.05, *** p < 0.001.
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Next, we conducted three sets of analyses to assess whether the effect of task condition

could be attributed to specific linguistic properties.

Task effects appear to be similar across different context levels

The first analysis focused on the three context levels (sublexical, word-form, and sentence).

Each level independently contributed significantly to model prediction (sublexical: tmax =

5.22, p < 0.001; word-form: tmax = 3.92, p < 0.001; sentence: tmax = 4.98, p < 0.001;

Figure 6C). A two-way repeated-measures ANOVA showed that the interaction between con-

text level and task condition was not significant (F(2.55, 38.18) = 1.19, p = 0.40, ηp
2 = 0.073,

BF = 0.19). The main effect of context level was not significant (F(2, 30) = 0.32, p = 0.77, ηp
2 =

0.021, BF = 0.08). But the main effect of task condition was significant (F(1.2, 18.01) = 8.46,

p = 0.021, ηp
2 = 0.36, BF = 1.40 × 103). Post hoc analysis showed that the prediction accuracy

was significantly reduced from the auditory single-task condition to the low load (t(15) = 2.90,

p = 0.016, Cohen’s d = 0.73, BF = 5.08) and high load (t(15) = 4.27, p = 0.002, Cohen’s d =

1.07, BF = 54.63) dual-task conditions. But the prediction accuracy was not significantly dif-

ferent between the low and high load dual-task condition (t(15) = 1.02, p = 0.32, Cohen’s d =

0.26, BF = 0.40). Further, we found similar patterns of results when restricting the two-way

repeated-measures ANOVA analysis to the dual-task conditions. In sum, patterns of task con-

dition effects observed for linguistic predictors appeared to be similar across the different

linguistic models.

Considering the modulation by context level and task condition, we further examined

whether divided attention eliminated neural tracking of any of these predictors. The prediction

accuracies for all predictors at individual task conditions were significantly above zero (all

uncorrected ps < 0.03, Cohen’s d > 0.53, BF > 1.51).

Regarding mTRFs, the effect of task condition was not significant for sublexical or

word-form context but was for sentence context (Figure 6D). The mTRF amplitude of sentence

context in the auditory single-task condition was larger compared to the low load dual-task

condition from 400 to 430 ms (p = 0.036). Topographies suggest that this is due to a broadly

distributed more negative component in the single task condition.

Initial response peaks to linguistic features appear relatively early. This is consistent with

previous results (Brodbeck et al., 2022) and might be partly because forced alignment, which

was used to determine phoneme timing, does not take into account coarticulation effects.

Some information about upcoming phonetic features might thus have systematically preceded

the estimates of phoneme onset times we used.

Neural tracking of surprisal might increase with visual load

The second analysis focused on entropy and surprisal. The two predictors independently con-

tributed significantly to model prediction (entropy: tmax = 5.51, p < 0.001; surprisal: tmax =

3.91, p = 0.001; Figure 6E). A two-way repeated-measures ANOVA showed that the interac-

tion between predictor type (entropy vs. surprisal) and task condition was not significant

(F(1.32, 19.86) = 1.29, p = 0.40, ηp
2 = 0.079, BF = 0.31). The main effect of predictor type

was not significant (F(1, 15) = 0.31, p = 0.65, ηp
2 = 0.02, BF = 0.23). But the main effect of task

condition was significant (F(1.35, 20.2) = 9.85, p = 0.011, ηp
2 = 0.40, BF = 890.10). Post hoc

analysis showed that, when averaging across surprisal and entropy, the prediction accuracy

was significantly reduced from the auditory single-task condition to the low load (t(15) =

3.28, p = 0.008, Cohen’s d = 0.82, BF = 9.56) and high load dual-task conditions (t(15) = 4.11,

p = 0.003, Cohen’s d = 1.03, BF = 40.91). Numerically, the prediction accuracy was improved
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from the low load to high load dual-task condition, but this difference was not significant (t(15) =

1.27, p = 0.22, Cohen’s d = 0.32, BF = 0.51).

Because of theoretical predictions of enhanced reliance on linguistic representations during

higher visual task load (see Introduction and Discussion), we further restricted the two-way

repeated-measures ANOVA to the dual-task conditions. The interaction between predictor

type and task condition was significant (F(1, 15) = 5.75, uncorrected p = 0.03 (FDR-corrected

p = 0.063), ηp
2 = 0.28, BF = 1.23). There was no significant main effect of predictor type

(F(1, 15) = 1.92, p = 0.33, ηp
2 = 0.11, BF = 0.40) or task condition (F(1, 15) = 1.62, p = 0.36,

ηp
2 = 0.097, BF = 0.79). Post hoc analysis showed that for entropy, the prediction accuracy

was not different between the dual-task conditions (t(15) = 0.10, p = 0.92, Cohen’s d =

0.03, BF = 0.26). But for surprisal, the prediction accuracy was significantly improved from

the low load to high load dual-task condition (t(15) = 2.20, uncorrected p = 0.044, Cohen’s

d = 0.55, BF = 1.66).

Considering the modulation by predictor type and task condition, we further examined

whether divided attention eliminated neural tracking of entropy or surprisal. The prediction

accuracies for both predictors at individual task conditions were significantly above zero

(all uncorrected ps < 0.01, Cohen’s d > 0.66, BF > 3.36), except for the surprisal predictors

at the low load dual-task condition (uncorrected p = 0.059, Cohen’s d = 0.41, BF = 0.78).

Figure 7. Neural tracking of word onsets across task conditions. (A) Topography showing the increase in prediction accuracy (Δz) due to

word onsets, which was significantly above zero across highlighted (yellow) electrodes. (B) Prediction accuracy across conditions. Blue lines

denote individual participants: Thicker lines indicate higher accuracy for the high vs. low load condition, and thinner lines indicate lower

accuracy for the high vs low load condition. Error bars denote 95% within-subject confidence interval (Loftus & Masson, 1994). (C) Global

field power of mTRFs. Shaded areas denote within-subject standard error around the mean. (D) Topographies of selected times in panel C (grey

vertical lines).
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Regarding mTRFs, the mTRF amplitude of entropy (Figure 6F) in the low load dual-task

condition was smaller than the high load dual-task condition from 160 to 200 ms (uncorrected

p = 0.037). The mTRF amplitude of surprisal in the low load dual-task condition was smaller

compared to the auditory single-task condition from 380 to 430 ms (uncorrected p = 0.012).

We did not observe a significant effect of task load, although the mTRF to surprisal during high

visual load was numerically stronger than low load from 200 ms onward.

Divided attention or visual load does not affect neural tracking of word onsets

The third set of analysis focused on word onset. This predictor independently contributed

significantly to model prediction (tmax = 4.51, p < 0.001; Figure 7A). But the effect of task

condition on prediction accuracy was not significant (F(2, 30) = 0.07, p = 0.93, ηp
2 = 0.005,

BF = 0.17; Figure 7B).

Taken together, results suggest that directing attention from one task to two tasks may reduce

but does not eliminate the neural tracking of linguistic features of speech. However, increasing

visual load does not lead to a further reduction. On the contrary, an increasing load of the dual

task might even be associated with enhanced neural tracking of phoneme surprisal. However,

this effect should be interpreted with care because the effect was not significant when analyzing

all linguistic predictors as a group or after correction for multiple comparisons.

DISCUSSION

We examined the extent to which bimodal divided attention influences acoustic and linguistic

representations of natural continuous speech. Compared to unimodal auditory speech

processing, the visual tasks affected acoustic onsets (Figure 5D and 5F; but not the acoustic

spectrogram, Figure 5C and 5E) and linguistic representations related to predictive processing

(Figure 6C to 6F; but not to lexical segmentation, Figure 7). Surprisingly, we did not find evi-

dence of further reduction (at any processing level) with increased visual (dual) task load,

despite unambiguous behavioral and neural evidence for the high load task being more

demanding (Figure 3 and Figure 4).

Locus of Effects of Bimodal Divided Attention on Continuous Speech Processing

We noted a potential dissociation between the impact of the dual-task on behavioral perfor-

mance in the speech comprehension task and a relative lack of impact on neural speech pro-

cessing. Behaviorally, the dual-task load clearly impacted listeners’ ability to answer auditory

comprehension questions. However, neural tracking of acoustic and linguistic speech features

was affected only at late response components and remained largely unchanged with varying

dual-task load. This neural and behavioral dissociation suggests that bimodal divided attention

largely impacts only late, post-perceptual processes of continuous speech processing. The sig-

nificant and unchanged responses related to predictive processing using the sentence context

suggest that listeners could track multi-word sequences regardless of dual-task load. We posit

that the decreased behavioral performance originates from higher-order cognitive processes

that are not adequately described by probabilistic word-sequence models, such as semantic

integration and memory formation.

Our hypothesis that the dual-task interference to continuous speech processing originates

from higher-order processes is consistent with the load theory of attention by Lavie and

colleagues (Lavie, 2005; Lavie & Tsal, 1994). The load theory proposes a distinction between

perceptual load and cognitive load (load on cognitive control, e.g., working memory).

Compared with perceptual load, cognitive load influences only later stages of stimulus
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processing, e.g., memory or behavioral responses (Lavie, 2005; Murphy et al., 2016; however,

see for example Sörqvist et al., 2012). Our dual-task paradigm manipulated the visual working

memory load and thus can be considered as a form of cognitive load.

Previous behavioral research has suggested that increased dual-task load is associated with

reduced acoustic sensitivity during speech recognition (Mattys et al., 2014; Mattys & Palmer,

2015; Mattys & Wiget, 2011). In our data, the dual-task did not alter early acoustic responses

and only had subtle effects on later (>200 ms) responses (see Figure 5E and 5F). This suggests

that the effect of bimodal divided attention may not be on basic acoustic representations

per se, but on secondary acoustic analysis stages or on how these representations are accessed

and used by higher-order processes.

Implications for Resource-Based Accounts

A common framework for understanding effects under dual-task paradigms is resource based

(Wahn & König, 2017). When two tasks draw from a limited pool of shared resources,

increased load in one task is associated with poorer performance in another task. Such a

hypothesis is often referred to as the supramodal account of crossmodal attention (Broadbent,

1958; Ciaramitaro et al., 2017; Klemen et al., 2009; Macdonald & Lavie, 2011; Molloy et al.,

2015). In contrast, if the increased load in one task does not affect a corresponding decrease in

another, the two modalities can draw on separate resource pools. Such a hypothesis is con-

sistent with a modality-specific account of crossmodal attention (Alais et al., 2006; Arrighi

et al., 2011; Duncan et al., 1997; Keitel et al., 2013; Parks et al., 2011; Porcu et al., 2014).

Here, we observed a reduction in neural tracking of speech acoustic and linguistic features

under bimodal divided attention, consistent with previous studies demonstrating detrimental

effects of bimodal divided attention for simplified speech stimuli such as syllables (Gennari

et al., 2018), words (Kasper et al., 2014), and sentences (Salo et al., 2015). In conjunction with

the co-occurring improved neural tracking of visual stimuli, this finding appears to suggest a

tradeoff between attending to the auditory versus visual modalities. Hence, these results

appear to align with the supramodal hypothesis of the dual-task effects that the auditory

and visual tasks of our study draw on a limited pool of shared resources (Broadbent, 1958;

Ciaramitaro et al., 2017; Klemen et al., 2009; Macdonald & Lavie, 2011; Molloy et al., 2015).

However, a supramodal hypothesis of the dual-task effects does not seem to fit other key

results from our study. First, the impact of bimodal divided attention is specific to certain

features of the speech signals: we found bimodal attention effects for acoustic onsets but

not auditory spectrogram representations, and for predictive linguistic processing, indexed

through information-theoretic variables, but not lexical segmentation, indexed through the

word-onset predictors. In each case, the impact of divided attention is not a generally reduced

representation but is restricted to only specific response components in the response time

courses (the mTRFs).

Furthermore, a resource-based account would suggest that when the visual load is further

increased, available resources for speech representations should further decrease, which is not

what we observed. Instead, adding a visual task exacted a cost on neural speech representa-

tions, but this cost did not scale with the task load. In contrast to these neural effects, task load

did affect behavioral performance on the auditory task. These divergent results may require an

explanation involving different resource pools (Wahn & König, 2017). For example, there may

be a resource pool for sensory processing, which is sensitive to divided attention but not task

load, and thus is relatively modality-specific. There may be a second resource pool, which is
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sensitive to task load and affects higher-order story comprehension, and thus is relatively

supramodal.

Selective Versus Divided Attention on Speech Processing

Previous studies on continuous speech processing have shown that selective attention within

and between modalities strongly modulates neural processing of both acoustic and linguistic

features of continuous speech, and the attentional effects seem to be even stronger for linguis-

tic processing (Brodbeck et al., 2018; Broderick et al., 2018; Ding et al., 2018; Kiremitçi et al.,

2021; Vanthornhout et al., 2019; Yahav & Golumbic, 2021). Specifically, neural tracking of

acoustic features is reduced and delayed but not eliminated for unattended speech, but the

tracking of linguistic features is virtually abolished. A parsimonious null hypothesis, consistent

with the notion of a shared resource pool, is that speech representations during divided atten-

tion ought to be halfway between attended and ignored speech. Our results suggest that this is

not the case.

First, certain speech features (e.g., acoustic spectrogram and word onsets) that have been

shown in prior work to be modulated by selective attention are insensitive to bimodal divided

attention. Second, unlike prior work demonstrating differential selective attention effects on

the relative balance of acoustic versus linguistic processing, we did not observe a greater

reduction in linguistic processing than acoustic processing with the manipulation of divided

attention. The neural tracking of both feature classes is reduced but not eliminated. Third, for

those features showing modulation by divided attention, we did not observe any delay in the

neural responses as reflected in the mTRFs (Figure 5 and Figure 6). Fourth, the effect of divided

attention emerged largely at later stages (after ∼200 ms) with the earlier latencies relatively

unaffected. Thus, the effect of bimodal divided attention on neural continuous speech process-

ing appears to be feature-specific and occurs relatively late in processing.

These differences indicate that selective and divided attention are subserved by distinct

mechanisms. Relative to selective attention, bimodal divided attention tasks may be associated

with additional recruitment of frontal regions that interact with sensory cortices (Gennari et al.,

2018; Johnson & Zatorre, 2006; Loose et al., 2003). A stronger engagement of frontal regions

has been associated with poorer task performance (Gennari et al., 2018; Johnson & Zatorre,

2006). These neural findings appear to align with the argument that the costs of bimodal

divided attention may come from limitations of executive control to coordinate processes

related to two tasks rather than a competition for shared sensory resources (Katus & Eimer,

2019; Loose et al., 2003). The differential effects of selective and divided attention on contin-

uous speech processing suggest that the costs of selective attention are more likely to originate

from “filter” mechanisms (Broadbent, 1958; Lachter et al., 2004) that pass task-relevant signals

but block task-irrelevant others, rather than from the re-allocation of shared resources. Never-

theless, future studies are needed to elucidate mechanisms underlying differences in continu-

ous speech processing between selective and divided attention.

Increased Responses to Surprisal With Dual-Task Load

We found that increasing visual load increased responses to phoneme surprisal, but not

entropy. Statistically, this effect was seen only after excluding the auditory single-task condi-

tion and should thus be interpreted with care, but it is consistent with several extant findings.

The dissociation between entropy and surprisal is consistent with recent evidence that these

two processes may reflect different neural processes (Gaston et al., 2023). Neural responses

associated with surprisal may reflect prediction errors that signal the difference between
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predicted and observed phonemes. Such prediction error signals may be boosted when atten-

tion is directed at the speech stimuli (e.g., auditory single-task; Auksztulewicz & Friston, 2015;

Smout et al., 2019). Thus, we may observe elevated responses to surprisal in the auditory

single-task condition compared with the dual-task conditions (Figure 6E). Further, the

increased response to surprisal with dual-task load might reflect a shift toward more reliance

on linguistic representations during speech processing when resources for auditory processing

were constrained under divided attention of higher load (Mattys et al., 2009; Mattys & Wiget,

2011).

Neural Tracking of Word Onsets Was Not Affected by Divided Attention

Tracking of word onsets might reflect lexical segmentation (Sanders et al., 2002; Sanders &

Neville, 2003) and, along with other linguistic features, is strongly affected by selective atten-

tion (Brodbeck et al., 2018). It has been suggested that neural responses to word onsets reflect

the dynamic allocation of attention to time windows that contain word onsets (Astheimer &

Sanders, 2009). However, our results indicate that tracking of word onsets is robust to manip-

ulations of attentional load by adding a visual task and increasing dual-task load. This suggests

that the word-onset attention effect may draw on a relatively unshared resource pool, or that

the word-onset responses reflect a more mechanistic aspect of lexical segmentation.

Study Limitations

One difference between the auditory single-task condition and the dual-task conditions is that

only the dual-task conditions required button-press responses (approximately 6 responses per

trial). Thus, the additional button responses across conditions could be a potential confound

that may affect the comparison between the auditory single-task condition and the dual-task

conditions. However, this difference is unlikely to be the cause of the observed results

(Table 1). This is because artifacts from motor activity would be expected to cause a uniform

decrease in predictive power of the different stimulus representations in the dual-task condi-

tions compared to the auditory single-task condition. Instead, our data showed that the

decrease in predictive power in the dual-task (vs. auditory single-task) conditions was only

evident for some representations (e.g., onset spectrogram, entropy, and surprisal, but not for

gammatone spectrogram and word onset).

The auditory stimulus material, Alice’s Adventures in Wonderland, is a relatively well-

known book. This raises the question whether prior knowledge of the auditory stimuli could

have made it easier for participants to answer the comprehension questions without paying

close attention to the story. This may affect how participants coordinate attention between

the auditory and visual tasks, thus contributing to task performance. However, results on

the exit questionnaire suggest that prior familiarity with the auditory stimuli did not appear

to significantly contribute to behavioral performance on the auditory task. Further, as indicated

in the methods section, the questions were designed such that a superficial familiarity with the

auditory stimuli is insufficient for successful performance.

CONCLUSION

This study demonstrates a potential dissociation between the impact of dual-task load on

behavioral speech comprehension performance and a relative lack of impact on time-locked

neural representations of continuous speech. The behavioral effects of bimodal divided

attention on continuous speech processing occur not because of impaired early sensory rep-

resentations but likely at later cognitive processing stages.
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