
1.  Introduction
1.1.  Drought and Heavy Precipitation

El Niño and La Niña produce alternating periods of drought and years of heavy precipitation in California (Cayan 
et al., 1999) (Figure S1 in Supporting Information S1). Anthropogenic greenhouse gases have warmed Earth by 
0.9°C since 1950, creating harsher droughts and fiercer flooding in the west U.S. (IPCC, 2021). Severe drought 
struck California from October 2011 to October 2015 (Griffin & Anchukaitis, 2014; Swain et al., 2014). Precip-
itation was low and temperature high during the 4 years (PRISM Climate Group, 2017). Snow accumulation in 
the Sierra Nevada in the winters of 2014 and 2015 was less than 1/4 of its average (NOHRSC, 2004), resulting in 
a shortfall of freshwater available for agriculture and urban centers.

Heavy precipitation replenished water in California from October 2015 to October 2019. In water years 2017 
and 2019, 14 and 6 major atmospheric rivers, respectively, brought heavy rain and snow to the Sacramento-San 
Joaquin-Tulare (SST) River basin (CDWR, 2018), resulting in maximum snowpack in the Sierra Nevada of 27 
and 37 km 3, nearly twice the average from 2006 to 2021 (NOHRSC, 2004) (Figure 1 and Figure S1 in Supporting 
Information S1). Since October 2019, drought has again struck the southwest U.S. In water year 2021, precipi-
tation was half its historical average and temperatures were high, resulting in extreme drought in the autumn of 
2021 (U.S. Drought Monitor, 2021) and bringing surface water in artificial reservoirs to historic lows.

Abstract  We integrate Global Positioning System displacements, Gravity Recovery and Climate 
Experiment gravity data, reservoir water volumes, and snowpack to estimate change in subsurface water in 
California. We find 29% of precipitation infiltrates mountain soil and fractured bedrock each autumn and 
winter and is lost in the spring and summer by evapotranspiration and lateral subsurface flow either within 
mountain watersheds or into California's Central Valley. The Central Valley lost groundwater at 2.2 ± 0.7 km 3/
yr from 2006 to 2021, with 68% of the loss occurring in the southern third of the Valley. Water in Central 
Valley fluctuates each year by a mean of 10.7 ± 1.1 km 3 with maximum water in April (not August). A third 
of Central Valley groundwater lost during recent severe drought is recharged during subsequent years of heavy 
precipitation. Of the 50 km 3 of water entering Central Valley each year, 28 km 3 comes from rivers, 17 km 3 from 
precipitation, and 5 km 3 from mountain groundwater.

Plain Language Summary  We combine measurements from Global Positioning System positioning 
and Gravity Recovery and Climate Experiment gravity to infer change in water components in Central Valley 
and its source watershed, the Sacramento-San Joaquin-Tulare River basin better than possible with either 
technique separately. We find that the Central Valley has lost groundwater from 2006 to 2021 at 2.2 ± 0.7 km 3/
yr (95% confidence limits follow the “±” sign), with 2/3 of the groundwater loss occurring in the southern part 
of the Valley. We estimate the seasonal recharge and loss of subsurface water in the Central Valley. Comparison 
to a model accounting for precipitation, evapotranspiration, and river water entering and leaving the Central 
Valley suggests that deep groundwater may be flowing from the Sierra Nevada mountains into the Central 
Valley.
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NASA missions are allowing technologists and scientists to estimate change in total water storage in the context 
of megadrought reducing the availability of freshwater resources (Landerer et al., 2020). The Global Positioning 
System (GPS) has emerged as a valuable technique to infer change in total water at Earth's surface using meas-
urements of solid Earth's elastic response to mass change (Borsa et al., 2014; Argus, Fu, & Landerer, 2014), 

Figure 1.  River watersheds (outlined in various colors), mean rate of vertical motion from January 2006 to December 2021, 
and GPS sites (symbols). This study focuses on the Sacramento (blue), San Joaquin (green), and Tulare River (violet red) 
watersheds. The Klamath and north California Coast River watershed (pink) is also plotted. Color gradations depict nearly 
zero vertical motion (white color), slow uplift (light green), slow subsidence (light blue), and fast subsidence (magenta). 
See legend at bottom left for vertical rates. Contours of vertical motion at 10 mm/yr (violet to magenta) and 100 mm/yr 
in the southern Central Valley are labeled. The shape of the symbol at each GPS site designates the primary phenomenon 
deforming solid Earth at the site: porous response to groundwater change (red squares), elastic response to water oscillations 
(blue hexagons), and volcanic activity (green triangles). Early data before 2006 (gray circles) are omitted. The hexagons are 
filled with the color designating vertical motion in mm/yr observed at the GPS site (see legend). River basins are Hydrologic 
Unit Code 4 watersheds from the National Hydrography Data set (https://www.usgs.gov/national-hydrography/national-
hydrography-dataset). The Central Valley is a physiographic province (Thelin & Pike, 1991).
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thereby complementing Gravity Recovery and Climate Experiment (GRACE) data. In this study, we (a) integrate 
GPS and GRACE to estimate change in total water as a function of location each month from January 2006 to 
May 2022, thus adding GRACE to and updating the water series of Argus et al. (2017); (b) quantify change in 
total water storage and its partitioning among river basins (Figure 1) and physiographic provinces (Figure S2 
in Supporting Information S1) in the western U.S.; and (c) infer change in bedrock groundwater by removing a 
composite model consisting of snow water equivalent and soil moisture from total water inferred from GPS and 
GRACE.

1.2.  Central Valley Groundwater Recharge and Pumping

The Central Valley, California, produces 1/12 of the United States' agricultural output in dollars and a quarter of 
the nation's food (Faunt, 2009). Water for agriculture comes primarily from precipitation and rivers draining the 
mountains surrounding the Valley. Water is stored as snowpack in the Sierra Nevada and in artificial reservoirs 
along rivers bringing water from the mountains to the Valley. Extensive infrastructure, consisting of dams, aque-
ducts, and canals, provides water to irrigate the crops. In dry years, farmers pump groundwater from the Central 
Valley aquifer to irrigate agricultural areas. Anthropogenic pumping has caused parts of the Central Valley to sink 
as much as 3 m since 1962 in response to a total net loss of 100 km 3 of groundwater (Faunt, 2009; Figure C21, 
Faunt et al., 2015; Figure 2, Scanlon et al., 2012).

Famiglietti et al. (2011) estimate change in groundwater in the Central Valley using GRACE and the Global Land 
Data Assimilation System model (Rodell et al., 2004). Several studies (Ahamed et al., 2022; Alam et al., 2021; 
Liu et al., 2019; Kim et al., 2020; Ojha et al., 2018, 2019) have followed Famiglietti et al.'s seminal formulation. 
GRACE resolves change in total water storage at a spatial resolution of about 330 km, less than the 500-km alti-
tude of the two GRACE satellites. GRACE can determine change in total water in the large SST River basin, with 
an area of 154,800 km 2; but not in the small Central Valley, with an area of 48,800 km 2.

Famiglietti et al. (2011) infer change in Central Valley groundwater assuming change in mountain groundwater 
to be negligible:

ΔCVgroundwater = ΔSSTGRACE –ΔSSTsurfacewater –ΔSSTsnow –ΔSSTsoilmoisture� (1)

where ΔSSTGRACE is change in total water in the SST River basin from GRACE, ΔSSTsurface water is known change 
in artificial reservoir surface water, and ΔSSTsnow and ΔSSTsoil moisture are change in snow and soil moisture in a 
land surface hydrology model. However, seasonal oscillations and interannual fluctuations in subsurface water 
differ significantly from those assumed in the hydrology models, as evident in Argus et al. (2017) estimates of 
changes in total water from the elastic rise and fall of the Sierra Nevada, Cascade mountains, Klamath mountains, 
and Coast Ranges. In this study, we estimate change in groundwater in the Central Valley by integrating GPS elas-
tic displacements and GRACE gravity observations. The dense array of GPS sites in the Pacific Mountain system 
constrain change in total water in all the mountain provinces and in the northern Central Valley, but not in the 
southern Central Valley, where GPS sites record primarily the porous response of the aquifer to change in ground-
water. We rigorously integrate GPS and GRACE in a joint inversion for change in water. In the inversion, GPS 
strongly constrains water change in California's mountains and GRACE strongly constrains total water change 
over broad areas. GPS determines water change in the mountains adjacent to the Central Valley; the remaining 
GRACE water change in the broad region is then assigned by the inversion to be water change in Central Valley. 
We follow the general strategy of Adusumilli et al. (2019) in that we constrain the total of water change in about 
144 quarter-degree pixels to add up to the value in the three-degree GRACE mascon that the pixels lie within. 
Carlson et al. (2022) also jointly invert GPS and GRACE data in California.

2.  Data and Methods
We use (a) GPS positions as a function of time estimated by Nevada Geodetic Laboratory (Blewitt et al., 2018) 
and (b) GRACE mass changes estimated by NASA's Jet Propulsion Laboratory (Wiese et al., 2016, 2018). We 
evaluate data from 1937 GPS sites in the western U.S. (Figures S3 and S4 in Supporting Information S1). We 
carefully perform seven steps to prepare the GPS elastic displacement data: (a) determine monthly mean GPS 
displacements uninterrupted by offsets due to antenna offsets and earthquakes, (b) remove atmospheric and 
non-tidal oceanic loading, (c) identify and omit 495 GPS sites recording porous response to groundwater change, 
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influenced by volcanic activity, or biased by postseismic transients, (d) remove elastic displacement created by 
known changes in surface water in artificial reservoirs, (e) remove glacial isostatic adjustment, (f) remove inter-
seismic strain accumulation created by locking of the Cascadia megathrust, and (g) remove elastic displacement 
produced by water change outside the western U.S. area that we are solving for.

We simultaneously invert elastic displacements at 1442 GPS sites (Blewitt et al., 2018) and mass changes at 21 
three-degree GRACE mascons (Watkins et al., 2015) in the western U.S. GPS and GRACE estimates differ in 
spatial and temporal resolution. GPS tightly constrains seasonal oscillation and interannual variations across 
distances less than 110 km where the array is dense in California, Oregon, and Washington. GRACE estimates are 
accurate across distances of more than 330 km. Tectonic uplift and subsidence and mismodeled glacial isostatic 
adjustment may bias GPS estimates over many years, whereas GRACE is accurate over decades (e.g., Watkins 
et al., 2015). By simultaneously inverting GPS and GRACE, we determine optimal estimates of change in total 
water. We estimate change in total water each month from January 2006 to May 2022 at 6,660 quarter-degree 
pixels in the region (32°N to 50°N, 125°W to 103°W). We evaluate goodness-of-fit and estimate realistic uncer-
tainties. See Supporting Information S1 for full explanation of Data and Methods.

3.  Results
We first evaluate seasonal oscillations and interannual fluctuations in water in the SST River basin, the source 
watershed of the Central Valley, which includes most of the Sierra Nevada and parts of the California Coast 
Ranges and southern Cascade and Klamath mountains.

3.1.  Change in Water in Sacramento-San Joaquin-Tulare (SST) River Basin

3.1.1.  Seasonal Oscillation

The mean peak-to-peak seasonal oscillation in total water in the SST River basin is 46 ± 4 km 3, consisting of 
6 km 3 (13%) of surface water in artificial reservoirs and 40 ± 4 (87%) km 3 of other water (Figures S5 and S6a in 
Supporting Information S1). We carefully separate change in surface water in artificial reservoirs (recorded by the 
California Data Exchange Center (CDEC, 2022)) from change in other water following the techniques of Argus 
et al. (2017, 2020). The rise and fall in total water each year is nearly half the mean annual cumulative precipi-
tation, 104 km 3. The mean total seasonal oscillation amounts to an equivalent water thickness of 0.30 ± 0.03 m 
averaged over the 154,800 km 2 area of the SST River basin.

Snow accumulation and loss (in SNODAS) in the mountain part of the SST River basin (mostly in the Sierra 
Nevada) each year produces a rise and fall of 12 km 3 of water, accounting for 26% of the total seasonal oscillation 
in the SST River basin. However, maximum snowpack varies strongly by year. In heavy precipitation years 2011, 
2017, and 2019, snow peaked at a snow water equivalent of, respectively, 28 km 3, 25 km 3, and 27 km 3. In drought 
years 2014 and 2015, snowpack reached a maximum of just 3 and 2 km 3.

The seasonal oscillation in total water storage is larger in years of heavy precipitation. In heavy precipitation 
water years 2011, 2017, and 2019, a total of, respectively, 80, 94, and 82 km 3 of water was gained in the autumn 
and winter. During drought water years 2012, 2014, and 2021, a total of just 24, 24, and 27 km 3 of water was 
gained during the wet season. Just a third of the 60 km 3 difference between water gain in the heavy precipitation 
and the drought years results from differences in snowpack; the remaining two-thirds comes from differences in 
rainwater and snow infiltrating the ground (cf. Enzminger et al., 2019).

The seasonal oscillation in subsurface water (inferred to be total water minus snow) in the SST River basin is 
30.5 ± 3.0 km 3/yr with a maximum around April 16. This seasonal oscillation in subsurface water is 29% of 
yearly cumulative precipitation in the basin, 104 km 3.

The seasonal oscillation in groundwater (inferred to be total water minus snow minus soil moisture) is 
16.8 ± 1.7 km 3/yr with a maximum around July 1. This seasonal oscillation in groundwater is 24% of yearly 
cumulative precipitation. Maximum groundwater occurs 2.5 months after maximum total water (April 16) in the 
SST River basin.
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3.1.2.  Rate of Change

The rate of loss of total water in the SST River basin from 2006 to 2021 is 5.0 ± 2.5 km 3/yr (0.032 ± 0.016 m/
yr) assuming glacial isostatic adjustment model ICE-6G (VM5a) (Figures S4 and S6b in Supporting Informa-
tion  S1). Assuming instead that solid Earth has entirely relaxed from unloading of the Laurentide ice sheet 
reduces the estimate of the loss rate to 2.4 km 3/yr (right at the 95% bound of the first estimate) and results in 
better agreement between the GRACE estimate (−3.1 km 3/yr) and the GPS estimate (−2.2 km 3/yr), suggesting 
that postglacial viscous relaxation in the western U.S. is nearly complete.

3.1.3.  Interannual Variation

We are finding substantial subsurface water, either groundwater or soil moisture (understated by hydrology 
models), to be lost during periods of drought and gained during years of heavy precipitation (Argus et al., 2017). 
There is insignificant snow on the ground in the west U.S. at the start of the water year in October. We therefore 
evaluate changes in subsurface water between successive Octobers.

During moderate drought from October 2006 to October 2009, 7 km 3 of surface water in artificial reservoirs 
and 32 ± 11 km 3 of soil moisture and groundwater was lost (Figures S5 and S6 in Supporting Information S1). 
Heavy precipitation in water years 2010 and 2011 replenished all of the surface water and 24 ± 9 km 3 (75%) of 
the subsurface water lost during the prior three drought years.

During harsh drought from October 2011 to October 2015, 13 km 3 of artificial reservoir surface water and a huge 
95 ± 10 km 3 of soil moisture and groundwater was lost. This 95 km 3 decline of subsurface water is six times the 
12 km 3 loss of soil moisture in the (NLDAS) North American Land Data Assimilation–Noah model (Mitchell 
et al., 2004; Pan et al., 2003). Heavy rain and snow in water years 2016 through 2019 restored most of the surface 
water and 48 ± 11 km 3 (51%) of the subsurface water lost during the prior 4 years of harsh drought. This 48 km 3 
increase in subsurface water is seven times the 7 km 3 gain in NLDAS-Noah.

During drought from October 2019 to October 2021, 9 km 3 of artificial reservoir surface water and 48 ± 9 km 3 
of soil moisture and groundwater was lost. We look forward to calculating water loss through October 2022, the 
end of the third year of the present drought.

3.2.  Change in Water in the Central Valley

Change in water in the Central Valley consists nearly entirely of change in soil moisture and groundwater because 
snow accumulation is negligible in the Valley. We next infer change in groundwater by assuming soil moisture to 
be that in the NLDAS–Noah land surface model.

3.2.1.  Seasonal Oscillation

The average seasonal oscillation in total water in the Central Valley is 10.7 ± 1.1 km 3 with maximum water stor-
age around April 1 (Figures 2 and 3a). In the wet autumn and winter rain falls into the Valley, raising equivalent 
water thickness by a mean of 0.21 ± 0.02 m. In the dry spring and summer, water evaporates from the Valley 
surface and is pumped from the aquifer, reducing equivalent water thickness by on average the same amount. 
(Values are calculated from the sinusoid fit to estimates of groundwater as a function of time).

We find the seasonal water oscillation to be partitioned between soil moisture (7.6 ± 0.7 km 3, maximum March 
16) and groundwater (4.9 ± 0.5 km 3, maximum May 16). Groundwater is maximum 2 months after soil moisture 
is maximum. The seasonal oscillation in groundwater is 1.5 times as large as that (3.2 km 3) in the water-balance 
of Alam et al. (2021), suggesting that there are water cycle processes not accounted for in the balance model 
(as we describe further in Section 4.1). Perhaps there is a greater capacity for California, under the Sustainable 
Groundwater Management Act (SGMA) (California State Legislature, 2014), to save groundwater and reduce the 
long-term rate of Central Valley groundwater depletion.

This study's estimate of the evolution of Central Valley groundwater determined by combining GPS and GRACE 
is more accurate than that determined using GRACE and assuming a land surface hydrology model by Famiglietti 
et al. (2011) and subsequent studies. Our realization of the Famiglietti et al. method has a seasonal oscillation 
in total water of 12 km 3 with maximum around August 16, which is incorrect because water is maximum in the 
spring. GPS sites recording solid Earth's porous response record subsurface water in the Valley to be maximum 
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around April 1. A second advantage of our method is that we account for the fact that half of surface water change 
in artificial reservoirs as observed by GRACE leaks outside of the SST River basin, whereas the Famiglietti et al. 
method assumes GRACE observes all reservoir water to be inside the SST River basin.

Figure 2.  (a) Estimates of change in water in Central Valley from 2002 to 2022: groundwater change estimated using Gravity 
Recovery and Climate Experiment (GRACE) and the composite hydrology model following the technique of Famiglietti 
et al. (2011) (pink curve); and groundwater change in this study (gold curve) is equal to change in total water in the GPS/
GRACE joint inversion (green curve) minus change in soil moisture in NLDAS-Noah (orange curve). Error bars are 95% 
confidence limits. Red circles (connected with violet line segments) are groundwater change in the Central Valley Hydrologic 
Model (Faunt et al., 2015). Light blue dots are groundwater change in the water balance model of Alam et al. (2021). 
Estimates of water change are relative not absolute; the curves vertical position on the plot is arbitrary (and chosen to clearly 
present the estimates). Units of water change are cubic kilometers on the left vertical axis and equivalent water thickess on the 
right vertical axis. The gray curve (with short violet and short teal green segments) is the difference in groundwater change 
between the GPS/GRACE/–soil moisture estimate and the Alam et al. (2021) water balance elements and can be attributed 
to water processes not in the water balance model: violet segments are positive differences inferred to be mountain-block 
recharge (subsurface flow of groundwater from the mountains to the Valley); and teal green line segments are negative 
differences inferred to reflect underestimated evapotranspiration associated with groundwater pumping. When we calculate 
the difference, we remove soil moisture in the Alam et al., 2021 realization of Land Surface Model-VIC (rather than in 
NLDAS-Noah) to be consistent with the soil moisture model subtracted in that study. The 5.9 km 3 peak-to-peak seasonal 
oscillation in soil moisture in LSM-VIC is smaller than the 7.6 km 3 seasonal oscillation in soil moisture in NLDAS-Noah. 
(b) Groundwater change in the GPS/GRACE/–soil moisture estimate is partitioned into the northern (Sacramento River part), 
middle (San Joaquin River), and southern (Tulare River) parts of the Central Valley.
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3.2.2.  Rate of Loss

The Central Valley lost groundwater from 2006 to 2021 at an average rate of 2.2 ± 0.7 km 3/yr (Figures 2 and 3b) 
which is 0.044 ± 0.14 m/yr averaged over the 48,800 km 3 area of the Valley. Our loss rate of 2.2 km 3/yr is slower 
than the 3.1 km 3/yr rate from 2003 to 2010 estimated by Famiglietti et al. (2011) but comparable to the 1.7 km 3/
yr rate from 1960 to 2011 estimated from hydrologic data (Faunt, 2009).

Figure 3.  Hydrologic character of the Central Valley: (a) Seasonal oscillation in groundwater, (b) long-term rate of 
groundwater loss, and (c) change in groundwater from October to October during periods of drought and heavy precipitation. 
Change in groundwater is estimated from Gravity Recovery and Climate Experiment (GRACE) and a hydrology model 
following the method of Famiglietti et al., 2011 (pink), from the water-balance model of Alam et al., 2021 (deep blue), from 
GPS and GRACE in the joint inversion (gold), and from GPS (green). 95% confidence limits (error bars) are calculated 
using linear propagation of errors (blue) and Hector spectral analysis (red). In (b), the rate of water loss is plotted for 
estimates correcting for (left) and not correcting for (right) glacial isostatic adjustment model ICE-6G (VM5a) (Argus, Peltier 
et al., 2014; Peltier et al., 2015, 2018); the estimates are calculated assuming the forebulge of the former Laurentide ice sheet 
to be presently collapsing in California at respectively, 0.6 mm/yr and 0.0 mm/yr.
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By integrating GPS and GRACE, we resolve the spatial distribution of groundwater loss across the Central Valley. 
The northern, central, and southern Central Valley lost water from 2006 to 2021 at average rates of, respectively, 
0.1 ± 0.3 km 3/yr, 0.6 ± 0.3 km 3/yr, and 1.5 ± 0.4 km 3/yr. The southern Valley lost 24 ± 4 km 3 of groundwater 
from 2006 to 2021, reducing equivalent water thickness by 0.48 ± 0.08 m. The result that the southern Central 
Valley is losing groundwater most rapidly is consistent with the spectacular rates of subsidence observed in parts 
of Tulare basin (Farr & Liu, 2014; Neely et al., 2021; Ojha et al., 2018, 2019) (Figure 1).

3.2.3.  Interannual Variation

Groundwater in the Central Valley is lost during periods of drought and gained during periods of heavy precipi-
tation (Figures 2 and 3c). During moderate drought from October 2006 to October 2009, the Central Valley lost 
12 ± 4 km 3 of groundwater. Heavy precipitation in water years 2006 through 2009 restored 7 ± 4 km 3 of ground-
water, 58% of the loss during the prior three years.

During harsh drought from October 2011 to October 2015, the Central Valley lost 35 ± 4 km 3 of groundwater, 
reducing equivalent water thickness by 0.70 ± 0.08 m. If the mean rock porosity of the Central Valley were 0.2, 
then groundwater well levels would have fallen by a mean of 3.5 m. Heavy precipitation from water years 2016 
through 2019 replenished 11 ± 4 km 3 of groundwater, 31% of the loss during the four harsh drought years.

Our estimates of recharge of Central Valley groundwater from GPS and GRACE are 58% (2006–2011) and 31% 
(2012–2019). The latter 31% recharge is less than the 60% recharge estimated from a water-balance model by 
Alam et al. (2021).

4.  Inference
4.1.  Inferring Mountain-Block Recharge and Evapotranspiration of Pumped Groundwater

In their water-balance model, Alam et al. (2021) estimate change in total groundwater in the Central Valley by 
accounting for all water processes bringing water into and taking water out of the Valley:

Δ𝑆𝑆 = 𝑃𝑃 +𝑄𝑄𝑖𝑖𝑖𝑖 –𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 –𝐸𝐸� (2)

ΔS = Δsnow + Δsoilmoisture + Δsurfacewater + Δgroundwater� (3)

where ΔS is change in total water in the Central Valley, P is precipitation, E is evapotranspiration, Qin is surface 
water entering the Valley along 52 rivers and creeks from the surrounding mountains, and Qout is surface water 
leaving the Valley at the Sacramento-San Joaquin River Delta.

Eliminating ΔS, Alam et al. find:

Δgroundwater = 𝑃𝑃 +𝑄𝑄𝑖𝑖𝑖𝑖 –𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 –𝐸𝐸 –Δsnow –Δsoilmoisture –Δsurfacewater� (4)

Q in and Qout are from river gauges (CDWR, 2020; USGS, 2020); precipitation is from PRISM (Daly et al., 2008); 
evapotranspiration and soil moisture are from the LSM-VIC model of Alam et  al.  (2021); artificial reservoir 
surface water is from CDEC (2022); snow accumulation is from SNODAS (NOHRSC, 2004).

Differences between our and Alam et  al.'s  (2021) estimate of Central Valley groundwater reflect groundwa-
ter fluctuations observed by GPS and GRACE but not accounted for by Alam et al. (2021), as well as uncer-
tainties in the measurements and inversion. Positive differences reflect increases in groundwater arising from 
mountain-block recharge, which is subsurface flow of groundwater from the mountains (mostly Sierra Nevada, 
also southern Cascade and Klamath mountains and Coast Ranges) into the Central Valley (Figure 2a, violet 
segments). Negative differences may reflect evapotranspiration of pumped groundwater that are underestimated 
by the water-balance model (Figure 2a, yellow segments). Subsurface recharge occurs in autumn and winter and 
tends to be larger in heavy precipitation years (13, 10, and 11 km 3 in, respectively, water years 2011, 2017, and 
2019). Evapotranspiration during spring and summer is understated by the Alam et al. water-balance model by 
on average 8 km 3 from 2010 to 2019.

A total of 50 km 3 of water recharges the Central Valley each year, consisting of 28 km 3 from rivers, 17 km 3 from 
precipitation, and 5 km 3 from subsurface flow of groundwater from the mountains to the Valley (mountain-block 
recharge). The 24 km 3 of river water each year leaving the Central Valley at Sacramento-San Joaquin Delta is 87% 
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of the 28 km 3 of river water entering the Valley from the SST watershed. The inferred 4.8 km 3 of groundwater 
moving in the deep subsurface from the mountains to the Central Valley is comparable to the 4.2 km 3 of net river 
inflow and 1/4 of yearly rainfall. Therefore mountain-block recharge plays an essential role in replenishment of 
Central Valley groundwater.

Using GPS and InSAR measurements of vertical displacements of the southern Central Valley's surface, and 
taking such displacements to reflect the aquifer's porous response, Neely et al. (2021) infer the timing and magni-
tude of changes in groundwater in the Tulare River basin part of the Valley in water years 2016 and 2017. Our 
estimates of the evolution of groundwater in the southern Tulare part of the Central Valley (Figure 2b, red violet 
curve) provide constraints complementary to Neely et al.'s detailed inferences on how the change in groundwater 
varies across the aquifer.

5.  Conclusions
In this study, we first determine change in total water at Earth's surface using GPS elastic displacements and 
GRACE gravity data. We next remove snow water equivalent to estimate change in subsurface water. We then 
remove soil moisture to infer estimates of groundwater change. We ultimately take differences between our esti-
mate of Central Valley groundwater change and that in a water-balance model to be phenomena not included in 
the model. We are finding constructive conclusions concerning the water cycle:

1.	 �In the SST River basin, the seasonal oscillation in subsurface water (soil moisture plus groundwater), 
30.5 ± 3.0 km 3, is 29% of the mean cumulative precipitation, 104 km 3.

2.	 �From 2006 to 2021, the Central Valley lost groundwater at a rate of 2.2 km 3/yr, with 68% of the loss being 
from the southern (Tulare) part of the Valley.

3.	 �In the Central Valley, the seasonal oscillation in subsurface water is 10.7 ± 1.1 km 3, with maximum water 
around April 1 (not in August as inferred from GRACE data).

4.	 �The seasonal oscillation in groundwater in the Central Valley is 4.9 ± 0.5 km 3, with maximum groundwater 
around May 16. Groundwater is maximum in the Central Valley two months after snow in the SST River basin 
(mostly in the Sierra Nevada) is maximum around March 16.

5.	 �Our GRACE/GPS estimate of change in Central Valley groundwater agrees to a high degree with that from 
the water-balance model of Alam et al., 2021, in particular in long-term rate of loss and interannual fluctu-
ations. Differences in seasonal oscillation between the two estimates reflect processes not accounted for in 
the water-balance model. An average of 5 km 3 of groundwater each year are inferred to flow in autumn and 
winter in the deep subsurface from the mountains to the Central Valley. Evapotranspiration in the spring and 
summer is underestimated in the water-balance model by 5 km 3 and likely results from groundwater pumping.

6.	 �Of the 50 km 3 of water entering the Central Valley each year, 28 km 3 comes from rivers, 17 km 3 from precip-
itation, and 5 km 3 from mountain groundwater.

Data Availability Statement
This study's estimates of total water storage inferred from GPS and GRACE as a function of location each month 
from January 2006 to May 2022 are publicly available at https://zenodo.org/record/7105955#.Y0CMAezMI74. 
JPL's GRACE Mascon solution is available at https://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/. 
Nevada Geodetic Laboratory series of GPS postions as a function of time are available at http://geodesy.unr.edu/
gps_timeseries/tenv3/IGS14/.
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