
Navigating Murky Waters: Automated Browser

Feature Testing for Uncovering Tracking Vectors

Mir Masood Ali†, Binoy Chitale‡, Mohammad Ghasemisharif†, Chris Kanich†, Nick Nikiforakis‡, and Jason Polakis†

†University of Illinois Chicago, {mali92,mghas2,ckanich,polakis}@uic.edu
‡Stony Brook University, {bchitale,nick}@cs.stonybrook.edu

AbstractÐModern web browsers constitute complex applica-
tion platforms with a wide range of APIs and features. Critically,
this includes a multitude of heterogeneous mechanisms that allow
sites to store information that explicitly or implicitly alters client-
side state or functionality. This behavior implicates any browser
storage, cache, access control, and policy mechanism as a poten-
tial tracking vector. As demonstrated by prior work, tracking
vectors can manifest through elaborate behaviors and exhibit
varying characteristics that differ vastly across different browsing
contexts. In this paper we develop CanITrack, an automated,
mechanism-agnostic framework for testing browser features and
uncovering novel tracking vectors. Our system is designed for
facilitating browser vendors and researchers by streamlining the
systematic testing of browser mechanisms. It accepts methods
to read and write entries for a mechanism and calls these
methods across different browsing contexts to determine any
potential tracking vulnerabilities that the mechanism may expose.
To demonstrate our system’s capabilities we test 21 browser
mechanisms and uncover a slew of tracking vectors, including 13
that enable third-party tracking and two that bypass the isolation
offered by private browsing modes. Importantly, we show how
two separate mechanisms from Google’s highly-publicized and
widely-discussed Privacy Sandbox initiative can be leveraged for
tracking. Our experimental findings have resulted in 20 disclosure
reports across seven major browsers, which have set remediation
efforts in motion. Overall, our study highlights the complex and
formidable challenge that browsers currently face when trying to
balance the adoption of new features and protecting the privacy
of their users, as well as the potential benefit of incorporating
CanITrack into their internal testing pipeline.

I. INTRODUCTION

The privacy of online activities is a growing concern to an
increasing number of users [9], with a recent survey finding
that 80% of users are worried about online tracking [11]. In
recent years trackers have pivoted away from cookies, to a
variety of alternative techniques as a response to cookie-based
tracking countermeasures. In turn, this has attracted increased
scrutiny from the security community towards identifying new
tracking vectors. At the same time, browsers have continued
to evolve as complex application platforms by deploying new
features and APIs that further complicate efforts towards
restricting online tracking.

Even though new browser mechanisms offer novel func-
tionality, they also increase the browser’s attack surface,
introducing new flaws and opportunities for misuse. One
particularly problematic class of flaws involves mechanisms
that can be abused for re-identifying and tracking users. Re-
searchers have already demonstrated novel tracking techniques
that leverage browser mechanisms which at face value do not
resemble tracking mechanisms, such as, HSTS policies [78]
and favicon caches [74]. These studies have showed that any
mechanism that stores some form of data in the browser or
affects client-side policies is a potential tracking vector.

This observation has serious implications for browser
vendors’ internal testing procedures, which may not include
testing workflows for assessing this specific privacy risk. We
argue that any client-side caching, storage, access-control,
or policy mechanism should be thoroughly evaluated as a
potential tracking vector prior to its public release. More-
over, once those mechanisms are actually deployed, security
researchers may employ manual or ad hoc approaches that do
not comprehensively test all pertinent aspects of a potential
tracking vector’s capabilities. As manual testing cannot scale,
such endeavors will be limited to a small number of browser
versions, thus being unable to uncover longitudinal patterns of
vulnerability evolution over time [54, 61, 62, 69].

In this paper we present CanITrack, an automated frame-
work designed to streamline the testing of browser mechanisms
and assessing whether they can be misused as a tracking vector.
The modular design of CanITrack provides all the necessary
components for orchestrating browsers and web servers, and
exploring multiple dimensions of tracking functionality; this
includes the effects of first-party (1P) and third-party (3P)
navigation, testing the isolation offered by incognito mode,
and the impact of browsing data being cleared. To achieve our
design goal of a mechanism-agnostic framework, CanITrack
interacts with basic write() and read() user-provided
functions, for the mechanism being tested. These functions
implement a mechanism-specific action that allows our system
to write and read, respectively, one or more bits of information
that are used for storing and reconstructing a tracking identifier.
For instance, if the developer wishes to test the suitability
of using the favicon cache as a tracking vector [74], the
write() function would simply require requesting a unique
favicon, while the read() function would infer the presence
of that favicon based on whether it is fetched over the network
or returned from the internal cache. CanITrack then invokes the
user-provided methods to assess how access to the mechanism
is limited in multiple first-party (1P) and third-party (3P)

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.24072
www.ndss-symposium.org

browsing contexts, within the top-level context and from any
embedded iframes. It also determines if a partitioning key is
associated with the mechanism and, if so, infers the key’s
composition. Our system additionally develops redirection
chains and evaluates methods for extending access to the mech-
anism from a single page, and also orchestrates a web server
that can be used to host resources on multiple paths, ports,
and domains. CanITrack manages the experimental pipeline
using fresh browser instances for each experiment, which are
controlled by simulating user interactions, and ensures that its
results are consistent with end-user experience.

To experimentally evaluate CanITrack, we implement the
necessary write() and read() functions for 21 browser
mechanisms, including four mechanisms for which we provide
the first exploration of their utility as a tracking vector. We
then conduct a comprehensive evaluation of these mechanisms
across a total of 126 versions of seven major browsers (i.e.,
Brave, Chrome, Edge, Firefox, Safari, Opera, and Tor) across
a two-year period and find that all are vulnerable to at least
one new tracking technique in their latest version. Crucially,
we demonstrate how two mechanisms from Google’s widely-
discussed Privacy Sandbox initiative can be used for third-
party tracking. Surprisingly, CanITrack also revealed a new
behavior of the favicon cache in the latest versions of Chrome
and Safari, which we leverage for demonstrating a novel
history-sniffing attack. Overall, our experiments highlight that
our framework streamlines the comprehensive and systematic
testing of browser mechanisms as potential tracking vectors
while requiring minimal effort from intended users.

In summary, we make the following research contributions:

• We develop CanITrack, a novel framework that stream-
lines the comprehensive testing of browser mechanisms
as potential tracking vectors.

• We experimentally evaluate our system on 21 browser
mechanisms, including four previously-untested mecha-
nisms (two are from Google’s Privacy Sandbox), and
demonstrate their suitability as tracking vectors across
different deployment scenarios and different browser ver-
sions.

• Due to the severe privacy implications of our research,
we have disclosed our findings to all affected browsers to
enable remediation.

• To ensure reproducibility, we are making the source code
of CanITrack as well as example implementations of the
mechanisms evaluated in our experiments available [34].

II. SYSTEM DESIGN AND IMPLEMENTATION

In this section, we first briefly outline the tracking behav-
iors and threat model that have guided the design of CanITrack.
We then detail our framework’s design and implementation.

First-party (1P) and Third-party (3P) Context. We
consider the domain that a user visits to be the first-party (1P)
entity, and any access to a browser mechanism made by the 1P
entity or its subdomains as 1P access. On the other hand, we
refer to any embedded elements (e.g., iframes) served from a
different domain, or a different domain that the user visits in
the future, as a third-party (3P) entity, and consider access to
the browser mechanism made by these entities as 3P access.

Differentiating Tracking from Legitimate Access.
Browser mechanisms may save and reuse state across browsing
sessions for various purposes. While certain tracking behaviors
(e.g., in 3P contexts) can be straightforwardly assessed as
privacy-invasive, other scenarios may be more ambiguous. In
our work we consider a capability to be privacy-invasive (i.e.,
suitable for tracking) based on two factors:

• Intended Use. While mechanisms like cookies, local stor-
age, and indexedDB have been designed to store useful
1P information, their misuse in cross-origin contexts
can result in privacy-invasive tracking behaviors. This
scenario encompasses what we refer to as 3P tracking
in the remainder of the paper.

• Bypassing Existing Protections. We consider the ability to
re-identify users visiting from a private browsing mode
session or after having cleared their browsing data to
be a privacy-invasive tracking capability. This scenario
encompasses what we refer to as 1P tracking in the
remainder of the paper.

Threat Model. We assume that when a user visits a website
the tested browser mechanism is used to store a unique 32-
bit identifier in that browser instance. This identifier is then
read back in future browsing sessions from the same browser
instance. The attacker misusing the browser mechanism can
be the visited website itself, or any included 3P entity (e.g.,
through the use of an iframe).

Figure 1 shows the major components of our framework,
which we detail below. Given methods to interact with a
browser mechanism, CanITrack curates contexts for various
experimental scenarios under its test suite and handles the
entire process for automating the testing pipeline. In a nutshell,
a browser runner simulates user interactions within various
browsing contexts, and generates page visits which execute
the write and read methods for the browser mechanism within
local browser instances. Following each experiment, the web
server collects results in a database. Finally, these results are
automatically gathered, analyzed, and filtered, before generat-
ing a vulnerability report for the mechanism.

1 Browser Mechanism: CanITrack’s inputs are JavaScript
methods for interacting with browser mechanisms. These
methods are formatted in such a way that CanITrack’s client-
side testing functions can independently store information
(write()) and access existing information (read()) from
the browser. While certain types of data can be directly
accessed (e.g., data stored in local storage), other types of
data can only be indirectly accessed (e.g., data fetched from
a cache) or inferred based on the outcome of an action (e.g.,
the result of a client-side security policy being enforced by
the browser). Using the framework for a new mechanism
requires implementing the following two functions that will be
called from within a client-side browser environment. Listing 1
provides example input methods that interact with a site’s
cookies.

1) Write(): A method that accepts a string identifier as
input and translates that into a mechanism-specific action
(or series of actions) that stores the input into the browser.

2) Read(): A method that implements a mechanism-
specific action (or series of actions) that retrieves the

2

3P Tracking. If data stored in the browser can be read
or inferred by 3P domains (i.e., from a different origin than
the one that set the data), then the mechanism can allow
websites to track users across services. CanITrack evaluates
three aspects of data access in 3P contexts.

Can sites track across 3P origins? If the browser mecha-
nism is not partitioned and its stored data is globally accessible
from all websites, it creates a significant privacy threat as it can
potentially leak sensitive data, including information about the
user’s browsing history. CanITrack visits a website, siteA.com,
and calls the write() method. On a subsequent visit to a
different website, siteB.com, it calls the read() method, and
observes if the same identifier can be accessed again.

Can sites track while embedded in different 3P contexts?
Browsers that partition stored data with a single key may limit
access to the domain of the frame that added the entry. Without
this protection, a site can read the same data entries while
embedded across different 3P origins. For instance, assume
that a browser visits shopping.com, which includes ad.com in
an iframe. If ad.com adds data using the browser mechanism
during this visit, the entry is keyed to ad.com. Thereafter, on a
visit to a different site, say news.com which serves an ad from
ad.com in an iframe, the embedded 3P, ad.com, can access
the data it had stored during the browser’s previous visit to
shopping.com and identify the user. This allows the advertiser
to track a user across websites.

Can sites track from different 3P iframes in the same top-
level context? Browsers that partition stored data with a single
key may limit access to the domain of the top-level context.
Such partitioning allows embedded 3P entities within the same
site to share access to the entries of a browser mechanism. An
example of a privacy-invasive attack in such a scenario would
be as follows: say a browser visits news.com which serves an
ad from ad1.com in an iframe. If ad1.com adds some entries
using a browser mechanism during this visit, those entries
are keyed to news.com. On a subsequent visit to news.com,
a different ad in a different iframe from a different site
ad2.com can read back the same entries that had been added by
ad1.com and identify the user. This allows multiple advertisers
to collude and track users, similar to cookie syncing [3, 36].

Partitioning key. Once vendors recognized the use of
certain mechanisms as tracking vectors, browsers deployed
mitigations by keying each resource entry to the context
within which it was accessed. In addition to 1P and 3P
tests, CanITrack includes additional tests that help deter-
mine both, the number of elements added to each browser
mechanism’s partitioning key, as well as the domain level
(i.e., site (eTLD+1), subdomain, or port) of each element
considered while constructing the partitioning key. These tests
help determine the extent to which each mechanism provides
tracking capabilities, and the limits of tracking use that each
browser permits.

Redirection chains. Mechanisms that are limited to 1P
access may not be directly available within 3P contexts. As
a method to circumvent such restrictions, sites can redirect
browsers through multiple domains, each of which accesses
data in a 1P context before moving on to the next domain
in the redirection chain. This way sites can access data for

3P tracking even when such entries are only available in 1P
contexts.

Despite prior research [59] showing the use of redirections
as a popular tracking vector, browser vendors vary in their
mitigation strategies; while Safari attempts to block cross-site
redirections [4], Google Chrome does not consider the vector
to be a privacy-relevant issue. Regardless, past disclosures
of tracking vulnerabilities that used redirection chains have
demonstrated their practicality for tracking without signifi-
cantly impacting the end-user’s browsing experience [74].

CanITrack traverses the redirection chain by updating the
value of window.location on the client-side. It considers
the minimum tests required to write and read a 32-bit identifier.
These redirection chains can be traversed as both top-level
redirections (i.e., navigating users through multiple domains)
and frame redirections (i.e., only redirecting embedded iframes
while the user accesses content on the top-level frame).

Private browsing mode. Browsers offer their users the
option of accessing domains in a private browsing mode
(i.e., incognito mode), intended for ensuring the user’s privacy
during that browsing session. This session is partitioned from
normal browser storage and uses separate storage spaces whose
lifetime is limited to that specific session. Data stored during
regular browsing sessions is typically (but not always [74])
inaccessible within private browsing sessions, and data stored
during the private browsing session is intended to be purged
once the session ends [18]. If browsers omit clearing access
to stored data before/after the use of private mode, or do not
correctly isolate the use of stored policies [78], trackers may be
able to correlate the activity of a private-mode browsing ses-
sion with a regular session, thereby impacting users’ privacy.
CanITrack includes tests for detecting the leakage of stored
data or use of client-side policies from, to, and within private
browsing mode sessions.

Clear browser data. Regardless of the scope and use of
a browser mechanism, browsers are expected to respect user
decisions, especially when a user explicitly requests that stored
browsing data be cleared. While browsers may allow such
requests from extensions via browsing data APIs [16, 19], from
developer tools [5], and even from websites themselves using
a Clear-Site-Data header in their HTTP response [21],
they place special emphasis on such requests being received
via the user interface. For instance, the Private State Token
API [45] mechanism checks if the request to clear tokens has
been received from a user. However, it does not clear tokens
even if the domain that issued them were to send a Clear-Site-
Data HTTP header in subsequent responses [8].

CanITrack uses PyAutoGUI [33] to simulate user inter-
action. For instance, while testing against Chromium-based
browsers, it ªpressesº Ctrl+Shift+Del to open the ºClear
Browsing Dataº menu. CanITrack first calls the write()

method on one visit, clears the browser data, and then calls
the read() method on a subsequent visit. It, therefore, tests
if identifiers written by a browser mechanism can be read even
after a user explicitly clears their browsing data.

3 Context Creation: CanITrack’s Context Creation com-
ponent curates information relevant to the browsing context
required for each experiment under the tests described above.
It uses available configuration information as input, which

4

includes details about the browser vendor, domains hosted by
the web server, and information available about the browser
mechanism. Next, we detail the different aspects that are
considered while defining each context.

Embedded frames. The tests for 1P tracking, 3P tracking,
Paritioning key, and Redirection chains, each include experi-
ments involving embedded iframes. The context creation phase
first determines the domains required for both the top-level
context and iframe for each experiment (i.e., the 1P or 3P site,
subdomain, or port).

Per-context domain list. In addition to determining do-
mains for frames, certain mechanisms require a list of domains
to access resources and to send network requests. CanITrack
ensures that the list of domains that receive such requests
remain consistent while writing and reading the identifier, and
these domains vary between tests for 1P and 3P tracking.
Moreover, the Context Creation phase creates an additional
list for redirection chains, which comprises a curated list of
domains to traverse.

Network configuration and HTTP headers. CanITrack
handles both, 1P and 3P requests by including a default header
set that responds to cross-origin requests. It also listens to
requests made on multiple domains and ports, which can
be incorporated into tests for numerous browser mechanisms
as-is. Nonetheless, if the existing defaults do not suffice,
our framework offers flexibility for such accommodations.
Network configuration changes may include handling server-
side requests, serving hosted files, customizing headers for
each request, and even setting up a parallel server on a different
port on the web server.

Command-line Flags. One of CanITrack’s most useful
features is its ability to test experimental browser mechanisms
accessible in browsers through specific command-line flags.
For any such browser mechanism, the Context Creation phase
accepts and includes these flags, to be later read by the Browser
Runner before starting browser instances for relevant tests. In
our experiments (§ IV) we use command-line flags to evaluate
mechanisms within Google’s Privacy Sandbox, as well as older
browser versions that do not support Alt-Svc-based protocol
updates to HTTP/3 requests by default.

4 Test Configuration: The Test Configuration component
interprets details about the context of each experiment and
feeds them into existing scripts that perform the evaluations
for each test. The test scripts broadly comprise two parts;
first, the server-side scripts handle the creation of the HTML
body for each experiment, which includes embedding and
serving iframes, and setting any global variables needed by
the client-side scripts. Second, the client-side scripts call the
mechanism’s abstracted write() and read() methods,
and perform redirections if needed. The results from each
invocation of the write() and read() methods are returned
to the web server.

5 Web Server: The server accepts requests for multiple do-
mains and on multiple ports, and hosts all the logic and scripts
relevant to communicating with the Browser Mechanism, the
Test Configuration, and the Tracking Results DB.

Browser Mechanism. The Web Server makes the client-side
scripts that include the write() and read() methods for

"Chrome-v100": {
"Overall": {

"Track in 1P Contexts": true,

"Track in 3P Contexts": false,

"Redirections": n/a,

"Track Into or From Private Browsing Mode

": false,

"Track Despite Clearing Browsing Data":

true

}
"1P Tracking": {

"Track in 1P Top-level Contexts?": true,

"Track in 1P iframes?": true.

"Track Across 1P Subdomains?" : false

}
"3P Tracking": {

"Track Across 3P Sites?": false,

"Track While Embedded in Different 3P

Contexts?": false,

"Track From Different 3P iframes in the

Same Top-

Level Context?": false

}
"Partitioning Key": {

"Number of Elements in Paritioning Key": 2

,

"Key Composition": [

{
"frameLevel": "IFrame",

"domainLevel": "Origin (Subdomain)

"

},
{

"frameLevel": "Top-Level",

"domainLevel": "Site (eTLD+1)"

}]}}

Listing 2: Example vulnerability report for the CORS Preflight Cache
on Chrome v100.

the browser mechanism available when invoked by the Test
Configuration scripts. In addition, it hosts resources and files,
along with the logic provided by the mechanism to handle any
network requests.

Test Configuration. The Web Server accepts network re-
quests on behalf of the test scripts, and also makes the context
of the request available for assisting test scripts.

Tracking Results DB. The Test Configuration’s client-side
scripts send the results of each experiment back to the Web
Server, which parses them, and adds them to the Tracking
Results DB.

6 Browser Evaluation: The Browser Evaluation phase
is primarily handled by a script, the Browser Runner, that
interprets the configuration information, executes fresh browser
instances, and creates new and appropriate contexts for each
experiment. Prior to each experiment the runner makes sure
that the browser has been completely closed and its state
has been cleared, ensuring that each experiment is executed
fresh and the operations performed in one experiment do not
affect another. The Browser Runner then opens a new browser
instance with any command-line flags specified. It opens a
new window within a regular or private session, depending on
the context of each experiment, before visiting different links
to first write and then to read an identifier. The test scripts
running within each visit send the results of these operations
to the server using network requests. If an experiment requires
clearing browsing data between writing and reading an identi-

5

fier, the Browser Runner module executes a PyAutoGUI [33]
script to simulate keyboard and mouse events that perform this
operation. At the end of each experiment the Browser Runner
closes the browser instance, and repeats the process for the
next experiment.

7 Vulnerability Analysis: The Tracking Results DB contains
fine-grained entries that include configuration information for
the mechanisms, the browser configuration for each operation,
and the domains and frames used within each experiment, in
addition to the absolute values of the 32-bit identifier that were
written in each context and the values that were retrieved from
local data, as a result of the write and read operations.

Once the Browser Evaluation has been completed for all
tests, an analysis script parses the individual entries from
the Tracking Results DB. It creates a list of successful read
operations (i.e., where the read operations were able to re-
construct the identifier), and separates them from unsuccessful
experiments, while taking the context of each experiment into
consideration. The script compiles the results of these exper-
iments into a simple, computer- and human-readable report,
indicating the scenarios within which the browser mechanism
can be used as a tracking vector. Listing 2 provides an example
of our framework’s output.

CanITrack can be used to test a wide range of new and
existing browser mechanisms. The initial effort required to
create relevant read() and write() methods will vary
depending on the mechanism being tested. To provide a
more concrete workload assesment, we describe an example
implementation in the Appendix. Our open source repository
also includes implementations of the 21 browser mechanisms
that we evaluated, which we present in the following sections.

III. EXPLORING BROWSER MECHANISMS

In this section we provide additional details about the
browser mechanisms that we explore in our experimental
evaluation. We gathered 21 browser mechanisms that were
included based on three factors: first, we ensured that they
were supported by at least one major browser vendor. Second,
websites under our control could interact with entries in the
mechanism by altering the DOM, calling a client-side Web
API, or using HTTP response headers. Third, the entries
in the mechanism persisted across subsequent visits to the
same domain within the same browser instance. In addition
to the read() and write() methods, the mechanisms
that we evaluated comprised a diverse set of requirements,
which needed both, server- and client-side setup, an overview
of which is shown in Table I. We provide details about
their individual read and write actions in Table VII in the
Appendix. In the remainder of this section, we focus on the
four mechanisms that have not been studied by prior work
± Private State Token API, FLEDGE API, CORS Preflight
Cache, and Client Hint Headers.

Google Privacy Sandbox. Google recently announced
their plans to mitigate 3P cookie-based tracking and to ex-
periment with and release a slew of different technologies
(all part of their Privacy Sandbox initiative [25]) that aim
to offer more privacy-preserving alternatives for numerous
aspects of the web ecosystem, including online advertising
and ad bidding (currently planned for late 2023 [17]). Given

write (uniqueID, domainList) {

for (let i = 0; i < domainList.length; i++) {

if(uniqueID[i] == '1') {

fetch(`https://${domainList[i]}/tokens

`, {

method: "POST",

trustToken: {

type: "token-request",

}}}}

read (domainList) {

let uniqueID = '';

for (let i = 0; i < domainList.length; i++) {

let ifExists = await document.

hasTrustToken(`https://${domainList[i

]}`);

if (ifExists) {

uniqueID += '1';

} else {

uniqueID += '0';

}}

return uniqueID;}

Listing 3: Example read and write methods used to evaluate the
Private Token API with CanITrack.

Google’s dominant positioning, coverage and power within
the web ecosystem, as well as Chrome’s prevalence among
browsers, this initiative can have severe and long-lasting
privacy implications. As such, our exploration of browser
mechanisms that can be misused for tracking also includes
two of the main components of Google’s Privacy Sandbox,
the Private State Token API and the FLEDGE API, that have
been rolled out and are currently supported by certain major
browsers.

Private State Token API. To allow advertisers to dif-
ferentiate trusted users from bots when serving ads, Google
introduced the Private State Token API (formerly called the
Trust Token API) as a cross-origin mechanism for websites
to communicate trust within a browser instance [45]. For
example, consider a user visiting shopping.com, which embeds
Google Ads. During this visit, Google can use its reCAPTCHA
mechanism [30] to identify that the user of the current browser
instance can be ªtrustedº as a real user, and can therefore
be served advertisements. Google can issue multiple Private
State Tokens that are stored within the browser as a way to
remember such trust in the future. Following this, if the user
visits a different website travel.com which embeds Facebook
Ads, before Facebook actually displays an advertisement it
can request the browser to provide a Private State Token from
Google, if one exists. It can then send this token to Google,
and redeem it. This way, Facebook can learn that Google has
already verified the user, and serve advertisements without
needing to perform such verification again.

The Private State Token API uses the Privacy Pass proto-
col [43] as an underlying cryptographic primitive, which en-
sures that tokens are unlinkable (i.e., when Facebook redeems
a token Google does not learn which exact browser instance the
token belongs to). A service using the Private State Token API
additionally needs to set up TLS-based cryptographic functions
on its end and advertise its public key commitments at a Well-
Known URI [52]. Google has also placed additional limits on
the number of tokens each website can redeem, allowing only
2 calls to be made per top-level browsing context, in order to
prevent malicious actors from exhausting all tokens [35].

6

TABLE I: Overview of the diverse browser-mechanism setups that CanITrack supports. denotes a requirement for a browser mechanism,
G# denotes partial requirements for browser mechanisms. Specific to the Routing Setup, rows that include multiple can be evaluated with
any one such setup.

Mechanism
DOM Web Network File HTTP Server Command-line Routing Setup

Interaction API Requests Resources Headers Configuration Flags Paths Ports Subdomains Sites (eTLD+1)

Cookies

Local Storage

IndexedDB

Cache Storage

Stylesheet Cache

Font Cache

Image Cache

HTTP Disk Cache

Favicon Cache

Service Worker Variable Scope

Service Worker Cache

Alt-Svc G#

HSTS

HTTP Auth

CORS Preflight

Accept-CH

NEL

Filesystem API

WebSQL

FLEDGE API

Private State Token API

Despite restrictions, the API is fundamentally a cross-origin
communication mechanism, made especially easy by having
each token associated with an origin. Google also included
document.hasTrustToken(<origin>), a client-side
API call that can be used to query the existence of a 3P token,
without the intricacies of the cryptographic operations put in
place by the Privacy Pass protocol for redeeming private state
tokens. This creates a mechanism for writing and reading a
unique identifier, based on a unique set of origins, to be used as
a tracking vector. Listing 3 shows an example implementation
of the read() and write() mechanisms.

Writing an identifier using the Private State Token API.
A private state token can be issued by adding an attribute
to one of three existing methods, a Fetch request, an XML
HTTPRequest, or an iframe tag. As stated in Chrome’s doc-
umentation, ªthese APIs are not restricted to being called in
any particular origin’s contextº [8]. With two such issuance
requests allowed under each top-level browsing context, a total
of 16 redirections would be required to write a 32-bit identifier.

Reading the identifier. Issuing a call to
document.hasTrustToken(<origin>) returns a
Promise that resolves to True if a token exists for the
<origin> or False if no such token exists. With a
restriction of two such calls under each top-level browsing
context, a total of 16 redirections would be required to
reconstruct a 32-bit identifier.

FLEDGE API. Google proposed this API to facili-
tate remarketing and advertising to custom audiences in
the absence of 3P cookies [46]. FLEDGE helps advertis-
ers save user interests in the browser and read these in-
terests back when placing bids for showing advertisements
in future visits across different sites. Consider the user vis-
iting shopping.com; this website can add the user to an
Ad Interest Group named ªsneakers enthusiastº, using a
call to navigator.joinAdInterestGroup(). When
the user visits a different website, say news.com, which
sells ad space, the website can call another FLEDGE API,
navigator.runAdAuction() with a list of buyers, in-
cluding shopping.com, that can bid for the ad space. Here,

shopping.com can access any Ad Interest Groups that it had
previously saved in the browser instance. If it finds that the
browser belongs to a specific interest group it can place a
higher bid for showing a relevant advertisement during the
current visit to news.com.

Google has placed a few privacy-focused restrictions on the
FLEDGE API. Each browser instance regularly queries two
advertiser-controlled endpoints within an interest group: the
dailyUpdateURL used by advertisers for periodically updating
interest group information en masse, and the renderingURL
from where the browser fetches an individual advertisement.
The API restricts the use of these two components by requiring
that the same endpoints be observed by at least 100 other
browser instances. No such restriction exists on the entire
Ad Interest Group. Additionally, an ad auction that results
in a winning bid is returned as an opaque source (example:
urn:uuid:c3697...), a value that can only be deci-
phered by a new, sandboxed, HTML Element called Fenced
Frames [23]. However, the API allows any origin to have the
browser join Ad Interest Groups, including 3P iframes with
a Permissions-Policy directive [13]. Moreover, ad auctions
can be run with a single buyer bidding for the advertising
space. While a successful auction returns an opaque source
to the seller, an auction that ends without a winner returns
a NULL value. The FLEDGE API Explainer itself points out
that ªthis non-opaque return value leaks one bit of information
to the surrounding pageº [24]. Listing 4 shows an example
implementation of the corresponding read() and write()

mechanisms.

Writing an identifier using the FLEDGE API. A
browser can be added to an Ad Interest Group by pass-
ing the interest group object as an argument to naviga-
tor.joinAdInterestGroup(). If a 3P element like an iframe makes
the API call it requires a Permissions-Policy directive of ªjoin-
ad-interest-groupº. In order to set a 32-bit identifier, up to 32
origins will make API calls (i.e., all origins corresponding to
a value of ª1º in the identifier), adding the browser to at least
one Ad Interest Group from each origin.

7

write (uniqueID, domainList) {

for (let i = 0; i < domainList.length; i++) {

if (uniqueID[i] == '1') {

let iframe = document.createElement('

iframe');

iframe.src = `https://${domainList[i]}`;

/* Within each iframe:

navigator.joinAdInterestGroup({

owner: `https://${domainList[i]}`

...

}, 3600*24*30))

*/

let body = document.getElementById('body'

);

body.appendChild(iframe);}}

read (domainList) {

uniqueID = '';

for (let i = 0; i < 32; i++) {

adAuctionResult = await navigator.

runAdAuction({

interestGroupBuyers: [`https://${

domainList[i]}]

...

});

if (adAuctionResult == null) {

uniqueID += '0';

} else {

uniqueID += '1';

}

}

return uniqueID; }

Listing 4: Example read and write methods used to evaluate the
FLEDGE API with CanITrack.

Reading the identifier. A site can run multiple ad
auctions on a single page visit by making calls to
navigator.runAdAuction(). Each auction can involve
a single buyer. If a buyer can access their respective Ad
Interest Group from the browser, they can use it to bid
in an auction which will return an opaque source. If they
find no such Ad Interest Group, the bid can end without a
winner and return a NULL value. The results from 32 such
auctions can be used to reconstruct a 32-bit identifier. While
no restrictions are currently in place for the number of calls to
navigator.runAdAuction(), Google is experimentally
evaluating an 8-auction limit per page visit, behind an addi-
tional flag [20]. If this limit were to be turned on by default,
reading a 32-bit identifier would require either 4 redirections
or 4 page reloads, which would marginally increase the effort
required for using this tracking vector.

CORS Preflight Cache. When websites request resources
from an origin other than the top-level browsing context
(referred to as Cross Origin Resource Sharing or CORS),
browsers can issue so-called ªpreflightº requests, if they
determine that these requests may be sensitive (e.g. AJAX
requests with custom HTTP headers). These requests use the
OPTIONS method and are used to ask for permission from
the 3P server, before they send the actual request that the
cross-origin site intended. If the server responds with the
appropriate permission headers, the full cross-origin request
can be fired. This is an effective defense against CSRF attacks
and prevents unauthorized requests from causing side-effects
on the server [70]. All major browsers cache the preflight re-
quests for cross origin resources for performance reasons, thus
matching our description of a potential tracking mechanism.
However, we note that while other mechanisms described in
this section have extended lifetimes, the CORS Preflight Cache

is shortlived, and only persists for 24 hours on Firefox and 2
hours on Chrome [15].

Writing an identifier using CORS Preflight Cache. Every
time a cross-origin resource is requested, the browser fires
an OPTIONS request to the server. The response of this
OPTIONS request will be cached for future requests for the
same resource. In order to write a 32-bit identifier, the client-
side code can generate a bitmap representing the identifier to be
written, and assign a single cross-origin resource for each bit
in the bitmap. Subsequently, the client will issue cross origin
requests corresponding to the appropriate bit in the identifier.
This will result in the identifier being encoded in the browser’s
preflight cache and available for later use.

Reading the identifier. In order to read a previously stored
identifier, the client will re-generate the same bitmap that was
created in the write phase. Then, the client will issue preflight
requests for each of the 32 resources mapped to the bits of the
identifier. Meanwhile the server maintains a set of resources
for which it receives an OPTIONS request, which indicates
that the preflight cache was cold for those. These resources
correspond to the 0 bits of the identifier, and are used for
re-constructing the previously written identifier.

Client Hint Headers. To optimise content delivery
based on device and network characteristics, Chromium-based
browsers support client hints, wherein the browser includes
information about the client along with the HTTP requests
(sent in the form of HTTP headers). The Accept-CH

header in a HTTP response allows the server to request
specific client hint headers from the browser. For instance, the
Accept-CH: Viewport-Width response header directs
the browser to supply the width of the client viewport in the
Viewport-Width header on subsequent requests.

Writing an identifier using Client Hint Headers. The value
of the Accept-CH response header is stored in the browser
for future requests, and hence can be used for storing an
identifier. Upon receiving a request the server generates a
bitmap of the identifier which needs to be written, and maps a
single client hint to each bit of the identifier. Now, the server
populates the Accept-CH header only with client hints for
which the bit value is 1, and responds to the client. The client
stores this Accept-CH directive for future requests, which
can be used to reconstruct the identifier.

Reading the identifier. The server can retrieve an existing
identifier by reading the client hint headers that were sent to it
along with a request. The server re-generates the mapping of
bit positions and client hints that were used and checks which
client hints were sent in the requests. These correspond to the
identifier-bits set to 1 allowing the server to reconstruct the
identifier that was written.

IV. EVALUATION

In this section we evaluate CanITrack, and identify browser
mechanisms that can be misused as tracking vectors. We
choose 126 versions of seven major browsers (see Table II)
as a representative sample of the browser ecosystem over a 2-
year period, during which browsers deployed a series of coun-
termeasures (including redesigning their origin-partitioning
architectures). We present our findings for six of the tested

8

TABLE II: Statistics about browsers tested using CanITrack.

Browser Versions Period
Market Tested

Share [10] Mechanisms

Brave 20 (v1.3 -v1.37) 02/2020 - 04/2022 <1% 21
Chrome 20 (v80 - v100) 02/2020 - 04/2022 67.17% 21
Edge 20 (v80 - v100) 02/2020 - 04/2022 9.14% 21
Firefox 20 (v80 -v99) 08/2020 - 04/2022 7.87% 15
Opera 20 (v67 - v86) 02/2020 - 04/2022 2.89% 21
Safari 4 (v12.1.2 - v15.4) 07/2019 - 04/2022 9.63% 13
Tor 22 (v9.0 - v11.0.10) 10/2019 - 04/2022 ± 15

TABLE III: Number of browser mechanisms that can be used for 1P
tracking across different scenarios.

Browser Versions
Number of Vulnerable Mechanisms

1P Top-level Site-wide 1P IFrame

Brave
1.3-1.15 17 8 16
1.17-1.37 16 7 16

Chrome
80-83 19 8 18
84-90 20 9 19
91-100 21 10 20

Edge
80-83 19 8 18
84-90 20 9 19
91-100 21 10 20

Firefox 80-100 15 7 14

Opera
67-69 19 8 18
70-76 20 9 19
77-88 21 10 20

Safari 12-15 12 6 12

browsers below, and separately provide some observations on
the Tor browser.

1P Tracking. Initially, we explore which of the tested
mechanisms can be used as a tracking vector in a 1P context.
As can be seen in Table III, these mechanisms are over-
whelmingly accessible in top-level contexts and can be used
to write and read identifiers across visits, each affecting the
latest version of at least one browser. CanITrack also evaluates
the mechanisms that can be accessed within 1P iframes. Such
access can help websites separate the context used for tracking
from the context used for their user-facing services. Table III
shows that apart from the favicon-cache all the other evaluated
browser mechanisms that can be accessed in top-level contexts
can also be accessed within 1P iframes. Additionally, we check
whether browsers provide unified access to the mechanisms
from all subdomains under the main domain (eTLD+1). This
access allows sites that provide a large number of services to
share tracking identifiers across their subdomains even when a
user is not registered with each service individually. All tested
browsers support at least six such mechanisms in their latest
versions that enable site-wide tracking capabilities.

Non-standard or deprecated mechanisms. We also observe
that Chromium-based browsers have adopted non-standard
APIs and extended support for deprecated APIs long af-
ter the plans for deprecation were made public, as de-
tailed in Table IV. Google Chrome still supports WebSQL
and the legacy version of the File System API (via win-
dow.webkitRequestFileSystem()) despite both APIs being dep-
recated for over 3 years [39, 53]. Support for such APIs
can be observed across the Chromium-based browser family
(including Brave, Edge and Opera) expanding the viability of
its use for tracking to users of those browsers as well. An
additional example is Network Error Logging [41], which uses
an older version of the Reporting API [42]. While browsers

TABLE IV: Non-standard APIs supported by Chromium-based
browsers.

Mechanism Version Introduced Status

Accept-CH Chrome(46), Edge(79), Opera(33) Enabled
FLEDGE Chrome(91), Edge(91), Opera(77) Experimental
File System API Chrome(13), Edge(79), Opera(20), Brave(0.57) Enabled
Network Error Log Chrome(71), Edge(79), Opera(58) Enabled
Private State Token API Chrome(84), Edge(84), Opera(70) Experimental
WebSQL Chrome(4), Edge(79), Opera(10.5), Brave(0.57) Deprecated

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

Sep
 2

02
0

N
ov

 2
02

0

Ja
n

20
21

M
ar

 2
02

1

M
ay

 2
02

1

Ju
l 2

02
1

Sep
 2

02
1

N
ov

 2
02

1

Ja
n

20
22

M
ar

 2
02

2

V
u

ln
e

ra
b

le
 A

P
I

c
o

u
n

t

Version Update Month

Brave
Chrome

Edge
Firefox
Opera
Safari

Brave adds partitioning
Chrome/Edge add partitioning

Firefox adds partitioning
Opera adds partitioning

Safari blocks 3P cookies

Fig. 2: Browser mechanisms that can be used as 3P tracking vectors.
A breakdown is provided in Table V.

like Firefox hide the API behind flags [31], Chrome enabled
support for the now-deprecated mechanism by default in 2018,
and continues to support its use in the latest version [66]. While
Brave blocks use of the header by default due to its potential
for misuse, other popular Chromium-based browsers (e.g.,
Edge, Opera) do not include such restrictions. Mechanisms
made available using Google’s Privacy Sandbox, as described
in §III, remain unadopted by other major browsers like Firefox
and Safari. While Brave blocks access, Edge and Opera support
them, thus increasing the number of users affected by the
tracking vectors that these protocols enable.

The curious case of Safari. While Chromium-based
browsers are affected by the adoption of non-standard mech-
anisms, Safari takes a conservative approach even in its
implementation of standard browser mechanisms. Safari has
added support for HTTP/3 as an experimental feature in
its Technology Preview Version [26], but does not support
upgrades from HTTP/1.1 to HTTP/3 based on the Alt-Svc
header - a mechanism adopted by all of the other browsers
that we evaluated [26, 27]. While this protects the browser
from tracking vectors enabled by this feature, websites have to
advertise all supported protocols, including HTTP/3, by editing
their DNS entries, which would result in only one of the pro-
tocols being used from the first visit itself, instead of a future
upgrade to a dynamically alterable domain or port [7, 51].
Moreover, Safari mitigates HSTS-based tracking by limiting
upgrades in HSTS State to the entire site (eTLD+1), therefore
reducing the number of bits that can be set for every site to
one. By additionally restricting such state upgrades to 1P links,
they prevent trackers from abusing this mechanism [50]. Safari
also identifies cross-site top-frame redirects, and classifies it as
bounce tracking, further reducing the feasibility of creating an
identifier across 32 sites in a redirection chain [6].

3P Tracking. CanITrack also assesses access to each tested
browser mechanism in three different 3P contexts, as explained

9

in §II. Browsers that allow cross-site access offer the same
view of the mechanism’s state to all domains visited by the
same browser instance. This form of global access allows
malicious or invasive actors to track users across multiple
browsing contexts without needing to be the 1P top-level
context when reading or writing an identifier. As can be seen
in Figure 2, CanITrack reveals that in the past two years
all major browsers have allowed such unrestricted, cross-site
access to at least one of the evaluated browser mechanisms.
Interestingly, we observe that for certain mechanisms browsers
realize the possibility of misuse and subsequently isolate these
mechanisms to the domain that accessed them. Moreover they
do so using different approaches, shown in Table V, further
highlighting the requirement for testing the additional contexts
included in CanITrack’s 3P tracking test suite.

Partitioning Key. Browsers add a key to each entry associ-
ated with a browsing mechanism. This key includes the URL
of each resource associated with the mechanism, in addition to
the context that made such an entry in the browser. The context
considered for the key varies across browsers. For instance,
consider the version updates observed in January 2021 for
Firefox (v85) and Chrome (v87), as shown in Figure 2.
Both browsers identified potential 3P tracking issues in prior
versions, enabled by making the same view of the Stylesheet
Cache, Image Cache, Font Cache, and the HTTP Disk Cache
available to all domains. They both chose to key entries to
these mechanisms using additional context considered in each
request. Chrome used the domain (eTLD+1) of the frame (if
the entry was added by an iframe) and the site of the top-
level context, in addition to the URL of the resource. For in-
stance, consider that a font available at (font.com/f.tff)
was added by an iframe (iframe.com) while embedded in
another site (news.com). Starting from v87, Chrome keys
each entry in a way that considers the entire context. In our
example the key will include news.com, iframe.com,

font.com/f.tff.

Firefox, on the other hand, also identified that those mech-
anisms and two additional ones (Alt-Svc and HSTS) can be
misused for tracking. Following an alternative strategy, Firefox
chose to key each resource only to the top-level site (eTLD+1)
under which such an entry was added to the mechanism. In
the same example scenario, Firefox will add the new font
with a key that includes news.com, font.com/f.tff,
thus ignoring the domain of the iframe under which the
request was made. Table V shows that considering a partial
view of the context in each key leaves Firefox vulnerable
to 3P tracking, albeit in a reduced number of scenarios. We
additionally observe that Safari adopts a similar approach to
their partitioning of similar browser mechanisms, i.e., Fonts,
Stylesheets, Images, and the HTTP Disk Cache.

We observed that Chrome’s adoption of keys for 4 mech-
anisms (i.e., Fonts, Stylesheets, Images, HTTP Disk Cache)
were also inherited by Brave. Additionally, Brave partitioned
the Alt-Svc header (v1.33, 2022), and restricted the use of the
favicon cache (v1.15, 2020), independently of Chrome.

Inconsistency in domain levels used for partitioning. While
all of the browsers use their own approaches to interpreting the
context included in a partitioning key, they additionally vary
in their understanding of the level of domains included in such
keying. Namely, even though most browsers make cookies

TABLE V: Breakdown of 3P tracking capabilities.

Browser Versions
3P Tracking Contexts

Total
Cross-site

IFrame Across 3P IFrames
3P Contexts in a Site

Brave

Pre-partition
(v1.17)

6 0 0 6

Post-Partition
(v1.19)

2 0 0 2

Chrome

Pre-Partition
(v87)

8 9 0 17

Post-Partition
(v88)

4 8 0 12

Edge

Pre-Partition
(v87)

8 9 0 17

Post-Partition
(v88)

4 8 0 12

Firefox

Pre-Partition
(v84)

7 6 0 13

Post-Partition
(v85)

0 6 7 13

Opera

Pre-Partition
(v73)

8 9 0 17

Post-Partition
(v74)

4 8 0 12

Safari

Pre-Block 3P
Cookies (v13)

1 2 4 7

Post-Block 3P
Cookies (v14)

1 1 4 6

available to all subdomains under a site (eTLD+1), they restrict
such access for local storage, indexedDB, and cache storage
to each subdomain. They adopt similar variations with regard
to the resource-based mechanisms explained before, including
only the site (eTLD+1) as part of their key. This variation
enables the Site-wide Access scenario shown in Table III.

Restricting Access in 3P Contexts. Another approach
adopted by browsers for certain mechanisms is a blanket
restriction of access from 3P contexts. Safari and Brave use this
approach for cookies and mechanisms under the Storage API,
i.e., local storage, indexedDB, and cache storage. Any accesses
made to these mechanisms in a 3P context is considered to
be ephemeral. Chrome adopted a similar approach to restrict
access to WebSQL in later versions (>=v97). Imposing such
restrictions to access overcomes the need for a partitioning key,
ensuring that sites only adopt mechanisms for 1P tracking use-
cases, and greatly restricts its misuse by malicious actors.

Firefox’s Total Cookie Protection. In July 2022, Firefox
(>=v103) rolled out a new default tracking protection feature
that contains all 3P cookies in a separate ªucookie-jarº for each
site (eTLD+1) that they are embedded in [65]. This restriction
is the equivalent of a double-keying approach and limits the
use of cookies for 3P tracking. Adopting similar defaults for
other mechanisms supported by the browser will further protect
against tracking misuses.

Redirections. For browser mechanisms that are limited in
terms of the number of accesses that can be made to their
entries with a single page visit, we evaluate them using redirec-
tion chains. We test whether browsers impose any restrictions
on these chains, and whether depending on the ªoriginsº
that comprise these chains (i.e., a list of sites (eTLD+1),
subdomains, or ports) results in a different treatment from
browsers. In most cases where the mechanism is keyed to
the origin of a domain, different subdomains and ports under
the same domain (eTLD+1) are considered to be different
origins. While a resource accessed for each new subdomain
would require the resolution of a new DNS request, resources
accessed from different ports of the same site can do so

10

without the DNS overhead (or the management of additional
subdomains). We observed a reduction of 0.8 seconds in the
average time taken to perform 16-redirections across a chain
of ports to set a 32-bit identifier using the Private State Token
API, in comparison to similar redirections that used a chain of
subdomains instead.

Clearing Browser Data. All of the browsers we evaluate
offer users a method to clear browser data, including their
history, cached files, and any cookies stored in the browser.
CanITrack verified prior reports of incomplete data removal
with regard to the favicon cache [74]. We found that the
options that were selected by default when Chrome and Brave
users accessed the ªClear browsing dataº menu from the
browser’s settings tab, failed to clear the favicon cache. Older
versions of Safari (<=v14), similarly did not clear the favicon
cache from either of the user actions that they provided, i.e.,
the ªClear Historyº option under the ªHistoryº menu and the
ªManage Website Dataº option under the ªPreferencesº menu.

Private mode leaks. We also verified prior findings about
the favicon cache in older versions of Chrome (<=v91) and
Safari being available when the user visits a site in private
mode [74]. This enabled tracking vectors that re-identified
users that had previously visited a service in normal browsing
mode. These checks highlight the need for a completely new,
sandboxed profile of all browser mechanism entries upon
creating a fresh instance of a private browsing context.

Tor observations. The Tor browser, which is based on
Firefox, adopts a privacy-focused approach wherein browsing
sessions use the private browsing mode by default; when users
quit and reopen the browser, any private information linked to
the profile (cookies and browsing history) are cleared [68].
As a result of this unique design, the states of the browser
mechanisms that we test are linked to the browsing profile
and are cleared each time the browser is quit and re-opened.
However, the state of 11 mechanisms persists within the same
ªidentityº, i.e. across different visits without the user quitting
the browser in between. Of these, 6 mechanisms (Alt-Svc, Font
Cache, HTTP Auth, HTTP Disk Cache, Image Cache, and the
Stylesheet Cache) are keyed in a similar manner to Firefox,
and can be read by different 3P iframes under the same site.
Unlike Firefox, Tor doesn’t provide a menu to manage and
clear browser data. Instead, it provides an equivalent ªnew
identityº button, which clears all cookies and browsing history
in addition to using new Tor Circuits for future connections [1].
While this feature works in a similar manner to quitting and
re-opening the browser (i.e. it clears the states of all tested
mechanisms) CanITrack found that the CORS Preflight Cache
remains uncleared until the browser has been quit. Users can
therefore be tracked in Tor despite adopting a ªnew identityº,
until they quit the browser.

Performance measurements. Apart from the feasibility
experiments, we use CanITrack to evaluate the practicality of
these tracking vectors in terms of performance. We deployed
a lightweight Express.js [22] web server on a Quad Core
machine with 16GB of RAM. We placed our VM in the same
city as the devices used during our evaluation. We leveraged
a Puppeteer [29] script to orchestrate visits to our web server,
and recorded the time it took to read and write a 32-bit identi-
fier. We limit this experiment to the four browser mechanisms
that we are the first to demonstrate as tracking vectors, and

Mechanism Performance (CDF)

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800 900

Time (ms)

Write Read

Accept-CH

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800 900

Time (ms)

CORS

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800 900

Time (ms)

FLEDGE

Fig. 3: Overhead of writing and reading a 32-bit identifier using
CORS, Accept-CH, and FLEDGE.

average the timing information from 100 separate tests in each
scenario. Figure 3 shows that three of the mechanisms are
extremely efficient as writing or reading a 32-bit identifier
requires only 200-900 milliseconds. As can be seen in Figure 4,
the Private State Token API introduce additional overhead
due to their reliance on redirections, along with its specific
implementation [14] of the cryptographic primitives included
in the underlying Privacy Pass protocol [43]. Nonetheless,
while the one-time cost of writing a 32-bit identifier requires
three seconds, reading the identifier only takes about one sec-
ond. Importantly, this can be further optimized by leveraging
immutable fingerprints as a source of identifier entropy [74].

Additional notable findings. During our evaluation, CanI-
Track unearthed new tracking vulnerabilities and capabilities in
the latest versions of evaluated browsers. These vulnerabilities
are additional to the four novel tracking vectors (see §III).

Unpartitioned Alt-Svc in Chromium Browsers. Using the
Alt-Svc header to track users across websites was previously
reported by Tiwari et al. [79] in 2019. Following this work,
Chrome imposed restrictions on using Alt-Svc headers for
upgrading requests to use HTTP/3, requiring that such servers
exist in parallel with an HTTP/1.1 or HTTP/2 server. They
imposed additional restrictions on the ports that can be used by
these parallel servers, requiring that they both be served either
on ports < 1024 or on ports >= 1024. They also require that
servers have TLS certificates signed by a Certificate Authority
already in Chrome’s list of trusted CAs [63].

CanITrack’s testing pipeline revealed that despite these
restrictions the latest version of Chrome (v103) keeps the
Alt-Svc cache unpartitioned. With support for HTTP/3 being
enabled on Chrome by default since v87, the browser reads
any HTTP response that returns a valid Alt-Svc Header and
upgrades future requests to use the HTTP/3 protocol. This
behavior allows malicious actors to write an identifier in any
context within a regular browsing session, and any other
malicious actor to read the same identifier in a different
context during future visits, obviating the need to rely on
redirections or insecure contexts. Finally, we observed that
while Brave used a partitioning key for its Alt-Svc entries, no
such partitioning existed for other Chromium-based browsers,
including Edge and Opera.

CORS Preflight in Private Browsing. Prior to including
appropriate tests in CanITrack, we found that cached CORS
Preflight responses for cross-origin resources were leaked
between subsequent private browsing sessions in Firefox. If
the mechanism was used to store an identifier during a visit
in private browsing mode, this identifier would persist even if
the private window was closed and another one was opened
at a later time. We reported our findings to Firefox, which led

11

 0

 2

 4

 4 8 12 16 20 24 28 32

T
im

e
 (

s
e

c
)

ID size (bits)

Write Read

Fig. 4: Overhead of the read and write phases using the Private State
Token API across different ID sizes.

to this vulnerability being patched. We then designed a test to
evaluate the behavior of mechanisms within private browsing
sessions, and included it in the test suite offered by CanITrack.

CORS Preflight Cache following Clearing Browser Data.
During our evaluation, CanITrack reported that tracking identi-
fiers persisted despite user-initiated clearing of browser data on
the latest versions of Chrome, Safari, and Tor. Upon further
inspection, we found that user-initiated data clearing, in the
context of preflight responses, does not take effect until the
browser is completely closed. We observed similar behavior
in Brave, Edge, and Opera as well. Browsers failing to clear
the CORS-Preflight cache will result in the vector persisting
until its expiration, despite the user requesting their removal.

Favicon as a Global Cache. While evaluating the latest
versions of Chrome and Safari, CanITrack revealed that cross-
site favicon links could be used to write and read identifiers.
This flaw was also inherited by Edge and Opera, whereas
Brave correctly partitions this mechanism. While previous
work [74] demonstrated how favicons can be misused for
tracking, that work did not identify or report the feasibility
of cross-origin requests, and focused on same-origin tracking.
We note that despite the disclosure of that attack, the ability to
misuse favicons for tracking remains. More importantly, our
system revealed that browsers allow cross-site favicon links
and serve them to all sites from the same cache. The lack
of any partitioning key results in favicons becoming a cross-
origin vector, which we leverage for developing a novel history
sniffing attack that we describe below.

Favicon Leaking into Private Browsing Mode. CanITrack
reported that while Safari cleared favicons on UI-triggered
actions in Safari v15, the browser continued to serve favicons
from the cache when a user visited domains while using the
private browsing mode. This indicates an incomplete fix of
previously reported bugs.

History Sniffing using Favicons. Here, we describe a
novel history sniffing attack that we designed following our
experimental findings from CanITrack’s testing of the latest
versions of major browsers. Browsers request favicons for a
website based on the href attribute of the link element
included in the returned page. The attribute can point to any
3P URL or path indicated in the element. If the browser finds
an existing entry for the favicon in its cache, it does not
trigger a network request, instead fetching a cached copy of
the previously requested favicon. The Performance API [28],
which is available in most major browsers, provides infor-
mation about network requests triggered to fetch resources.
The entries returned by calls to this API include information

about a request for the favicon only if a network request was
made. If the favicon was accessed from the cache, no such
entry will be found. Once CanITrack revealed that entries to
the favicon cache were shared across websites, we gathered
links to favicons of popular websites which we then visited.
We observed that adding these 3P links in the href attribute
of our test page caused the browser to fetch these favicons
from the cache, and no corresponding entry was found in the
list returned by the Performance API. We then developed two
versions of a history sniffer.

Chromium Version. Chrome allows websites to dynamically
change the favicons associated with a page by modifying the
link element included in the DOM’s head. We leveraged this
feature to traverse a list of favicons gathered from popular
websites, and added it to an attack page under our control.
When a user visits our page after having previously visited any
of the websites on the list, the attack page dynamically changes
the link element associated with its favicon, as it traverses
the list of targeted websites (i.e., the list of websites that we
want to cross reference with the user’s browsing history). The
page includes a small (∼100ms) wait between each update to
ensure that a network request or a cache fetch is triggered. The
page then calls the Performance API and traverses the list of
resource requests returned by the API. Any favicon link that
is not included in the returned list indicates a domain that the
user has visited in the past. Moreover, the attack page can then
associate a new favicon, under its own control, with its page.
This helps ªpurgeº tested 3P favicons from being associated
with it in the browser’s cache, thus ensuring that the attack can
be re-run in future visits. Since the described attack makes use
of dynamically changing favicons within the same page, this
attack, unlike prior favicon-based attacks [74], does not incur
the additional performance overhead added by redirections. A
demo of the attack can be found here [80].

Safari Version. Unlike Chrome, Safari does not allow dy-
namic changes to the favicon associated with a page. As such,
we develop a redirection chain, with each page in the chain
requesting a single 3P favicon before querying the Performance
API, and moving on to the next page. This history sniffing
attack then reconstructs the user’s history based on the values
observed across multiple page visits. The attack works on the
first visit to a page in regular browsing mode, after which
Safari adds sniffed favicons to the cache. While the attack in
Safari is not as stealthy, the privacy threat is exacerbated by
Safari using the same cache from regular browsing sessions in
the private browsing mode. Moreover, since favicon entries are
not added to the cache when in the private browsing mode (i.e.,
the site can read but not write), this attack can be repeated each
time a user visits the attack page in a new private browsing
session. A demo of the attack can be found here [81].

Vulnerabilities across Chromium browsers. A large
number of browser vendors rely on the underlying Chromium
engine [82] for their functionality, including the implemen-
tation of the mechanisms that we evaluated. Vulnerabilities
resulting from these implementations can be inherited by these
browsers, exacerbating the effect of any privacy-sensitive flaw.
For each vulnerability found during our evaluation of Google
Chrome, we further evaluated their viability in Microsoft Edge
and Opera, two popular Chromium-based browsers. All of
the vulnerabilities described in this section, including the

12

newly-evaluated browser mechanisms, affected those browsers
as well. While Brave blocked access to Google’s Privacy
Sandbox, its latest version was vulnerable to an oversight in
the clearing of the CORS-Prelight Cache. Additionally, Brave
does not block inherited implementations of non-standard APIs
like WebSQL and the legacy version of the File System API,
both of which can be used as 1P tracking vectors.

Summary. We used CanITrack to evaluate a wide range
of emerging and existing browser mechanisms and implemen-
tations across numerous versions over a two-year period. Our
system unearthed novel vulnerabilities in the latest versions of
all major browsers and guided the design of two versions of
a new history sniffing attack. Moreover, CanITrack allowed
us to confirm prior findings and also quantify the impact
storage isolations and anti-tracking countermeasures deployed
by browser vendors.

V. DISCUSSION

Ethics and disclosure. We note that no users were affected
by our experiments, all of which were conducted using our
own devices or cloud-based virtual machines. Furthermore,
we disclosed the individual tracking vectors uncovered by our
system to all of the affected browsers. Importantly, due to the
extensive public discourse around Google’s Privacy Sandbox
initiative and the long term ramifications for the web ecosystem
that would result from a wider adoption, we preemptively
notified major browsers (i.e., Safari, Firefox, Brave) that do not
currently support the mechanisms we evaluated (i.e., Private
State Tokens and FLEDGE) about our findings. This will allow
them to make a more informed decision moving forward about
supporting these mechanisms. In total, we have submitted 20
bug reports to seven browser vendors. We present a summary
of our disclosures and their latest status (January 2023) in
Table VI.

CanITrack release and use cases. We developed our
framework to be modular and extensible so as to allow other
researchers to incorporate additional features and capabili-
ties for exercising browsers and analyzing their respective
functionality. To that end, we have made CanITrack publicly
available [34]. Our system can facilitate and streamline the
internal testing procedures of browser vendors during the
development phase of new browser mechanisms, as well as
allow comprehensive and systematic testing of existing features
by the research community. Moreover, our framework can be
used by researchers for evaluating the effectiveness of anti-
tracking defenses they develop against specific types of online
tracking.

VI. RELATED WORK

CanITrack is the first automated system for comprehen-
sively and systematically uncovering tracking vectors. Here,
we list relevant studies that advanced our community’s under-
standing of the tracking ecosystem and motivated our proposed
framework’s design.

Cookie-based Tracking. Cookies have long been used
to track users across sites in both 1P and 3P contexts. The
privacy-invasive nature of 3P entities that gather user data
through a combination of cookies and other fingerprinting
vectors has been measured and reported in prior work by

TABLE VI: Summary of Disclosures.

Mechanism Browser
Date Current Status

Reported (as of Jan 2023)

Private State
Chrome 11/2021 Engaging in Discussions

Token API
Edge 11/2021 Waiting on Upstream
Opera 11/2021 Waiting on Upstream

FLEDGE API
Chrome 04/2022 Engaging in Discussions

Edge 04/2022 Waiting on Upstream
Opera 04/2022 Waiting on Upstream

Favicon Cache

Chrome 02/2022 Fixed
Edge 02/2022 Fixed Upstream
Opera 02/2022 Fixed Upstream
Safari 04/2022 Working on a Fix

CORS Preflight

Brave 04/2022 Waiting on Upstream
Chrome 04/2022 Engaging in Discussions

Edge 04/2022 Waiting on Upstream
Firefox 11/2021 Fixed
Opera 04/2022 Waiting on Upstream
Tor 07/2022 Fixed

Safari 04/2022 Fixed

Alt-Svc
Chrome 04/2022 Developed Fix (yet to deploy)

Edge 04/2022 Waiting on Upstream
Opera 04/2022 Waiting on Upstream

Englehardt and Narayanan [49]. In a similar vein, Acar et
al. [36] reported the use of cookie-syncing, where unique IDs
were respawned by colluding trackers across different site
visits, which helped them merge records of individual users.
To mitigate misuse, browsers like Firefox [32] and Safari [83]
added protections to limit their access in 3P contexts. Recently,
Google released their Privacy Sandbox proposals [25], and
announced plans to eventually phase out 3P cookies. Addition-
ally, Dimova et al. [44] showed ways to bypass cookie-oriented
restrictions using approaches like CNAME cloaking that help
websites embed 3P tracking resources in 1P contexts.

Cookie-less Tracking. As anti-tracking defenses that target
cookie-based techniques continue to be adopted by browsers,
other browser mechanisms have been shown to aid user
tracking over the years [67], and various browser fingerprinting
techniques [47, 56, 57, 64, 72, 73, 77] have been proposed or
deployed in practice. Additionally, researchers have demon-
strated how other browsing mechanisms can be misused for
tracking. In 2009, Soltani et al. [75] demonstrated the misuse
of Flash cookies, while in 2010, Kamkar [55] demonstrated
similar misuse of local storage, session storage, and ETags.
More recently, mechanisms like HSTS for websites not in-
cluded in the preload list [50] and the favicon cache [74]
have been shown to enable similar tracking. While browsers
have partitioned mechanisms when they realized the potential
for misuse [12, 18], new vectors, like those presented in our
work, can expose users to significant risk as long as they
remain undetected or unnoticed. The lack of a structured
approach to identifying tracking vectors further amplifies the
possibility of privacy-invasive behaviors going unnoticed for
a long time. CanITrack aims to reduce this gap, and to offer
security researchers and browser vendors a streamlined and
comprehensive system for evaluating mechanisms.

Longitudinal Studies. Online tracking has been studied
at scale [37, 49] and retrospectively [60]. These studies also
presented frameworks for detecting the use of known tracking
vectors by sites, and measured the extent of tracking in the
wild. They further showed the importance of detecting non
cookie-based vectors, given the extent of use by trackers.

13

Frameworks. Next to frameworks that analyzed track-
ing across websites, recent work has also suggested systems
for evaluating mechanisms that enable cross-site communi-
cation [58, 71]. More relevant to our work is the recent
PrivacyTests project [48]. The service tests and provides a
snapshot of the state of known supercookies, blocking of
tracking content, and fingerprint resistance measures within
the latest versions of browsers. While their evaluation of
supercookies is similar to those proposed by CanITrack, they
only cover a single aspect of the 1P and 3P tracking tests
evaluated by our system (see §II). Our system includes a suite
of additional tests that capture tracking vectors across multiple
1P and 3P contexts, and further evaluate the composition of
a partitioning key associated with a mechanism. Our system
also supports the evaluation of vectors that can benefit from
redirection chains, and verifies the possibility of optimizing
tracking vectors by replacing the use of subdomains with
ports. Additionally, our system uncovers leaks into, from, and
within private browsing modes, and assesses the effects of
clearing browser data. These tests help determine the extent
to which each mechanism provides tracking capabilities, and
the limits of tracking use that each browser permits. The
systematic approach used by our framework makes it easy to
test a plethora of browser mechanisms with various configura-
tion requirements, including the flexibility to handle network
requests, host resources, customize HTTP headers, and set
up parallel servers on different ports (see Table I). Finally,
CanITrack can be used in the evaluation of new, unreleased,
experimental features hidden behind command-line flags.

Overall, the motivation behind our work was recognizing
the need for a structured and comprehensive methodology and
system for assisting developers and researchers in uncover-
ing the tracking risk introduced by browser mechanisms. To
address that gap we developed CanITrack, and demonstrated
its capabilities by analyzing a multitude of heterogeneous
mechanisms. In fact, our system was able to identify the
privacy threat introduced by four mechanisms that have not
been previously analyzed (including two high profile propos-
als from Google’s Privacy Sandbox) and unearth previously
undiscovered bugs in existing mechanisms.

VII. CONCLUSION

With the web playing a pivotal role in some of our most
private and sensitive moments, ensuring the privacy of our
online activities has become a matter of paramount importance.
This complex ecosystem is driven by the ever-evolving set of
browsers that mediate our online actions and communications.
As more features get incorporated, systematically testing the
privacy risk introduced by new mechanisms has become a
daunting task. To facilitate and streamline research around
online tracking we have developed CanITrack, a mechanism-
agnostic framework that comprehensively assesses whether a
browser mechanism can be misused for tracking purposes
under different scenarios. To demonstrate the utility of our
system, we presented an extensive evaluation of 21 browser
mechanisms, including four that to the best of our knowledge
have never been analyzed before. Our experiments uncovered
a wide range of flaws, with the latest version of every browser
we tested being vulnerable to at least one tracking technique.
Overall our findings highlight the importance of employing
principled and comprehensive browser-auditing strategies for

detecting and tackling the severe privacy threats that users face,
and we believe that our system addresses a significant gap that
currently exists.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for
their valuable feedback. This work was supported by the Na-
tional Science Foundation under grants CNS-1934597, CNS-
2211574, CNS-2143363, CNS-2211575, CNS-2126654, CNS-
1941617 as well as the Office of Naval Research under grant
ONR N00014-20-1-2720. Any opinions, findings, conclusions,
or recommendations expressed herein are those of the authors,
and do not necessarily reflect those of the NSF or the ONR.

REFERENCES

[1] ªNew Identity | Tor Project | Support.º [Online]. Available:
https://support.torproject.org/glossary/new-identity/

[2] ªRedirect tracking protection - Privacy, permissions, and information
security | MDN.º [Online]. Available: https://developer.mozilla.org/
en-US/docs/Web/Privacy/Redirect tracking protection

[3] ªWhat is Cookie Syncing and How Does it Work? - Clearcode
Blog,º Dec. 2015. [Online]. Available: https://clearcode.cc/blog/
cookie-syncing/

[4] ªIntelligent Tracking Prevention 2.0,º Jun. 2018. [Online]. Available:
https://webkit.org/blog/8311/intelligent-tracking-prevention-2-0/

[5] ªView Cache data,º 2019. [Online]. Available: https://developer.chrome.
com/docs/devtools/storage/cache/

[6] ªTracking Prevention in WebKit,º Jun. 2020. [Online]. Available:
https://webkit.org/tracking-prevention/

[7] ªAccelerate networking with HTTP/3 and QUIC - WWDC21 -
Videos,º 2021. [Online]. Available: https://developer.apple.com/videos/
play/wwdc2021/10094/

[8] ªChrome Design Doc: Trust Token API,º 2021.
[Online]. Available: https://docs.google.com/document/d/
1TNnya6B8pyomDK2F1R9CL3dY10OAmqWlnCxsWyOBDVQ/
edit?usp=sharing&usp=embed facebook

[9] ªCISCO - Consumer Privacy Survey,º https://www.cisco.
com/c/dam/en us/about/doing business/trust-center/docs/
cisco-cybersecurity-series-2021-cps.pdf, 2021.

[10] ªDesktop Browser Market Share Worldwide,º Oct. 2021.
[Online]. Available: https://gs.statcounter.com/browser-market-share/
desktop/worldwide/

[11] ªNordVPN - How Am I Being Tracked,º https://nordvpn.com/
research-lab/tracked-down/, 2021.

[12] ªState Partitioning - Privacy, permissions, and information security |
MDN,º 2021. [Online]. Available: https://developer.mozilla.org/en-US/
docs/Web/Privacy/State Partitioning

[13] ªW3c - permissions policy explainer,º 2021. [Online].
Available: https://github.com/w3c/webappsec-permissions-policy/blob/
main/permissions-policy-explainer.md

[14] ªIssue 1176287: Reconsider the choice of crypto for signing trust
tokens, or document why we chose what we did,º 2021-02-
09. [Online]. Available: https://bugs.chromium.org/p/chromium/issues/
detail?id=1176287

[15] ªAccess-Control-Max-Age - HTTP | MDN,º 2022. [On-
line]. Available: https://developer.mozilla.org/en-US/docs/Web/HTTP/
Headers/Access-Control-Max-Age

[16] ªbrowsingData.remove() - Mozilla | MDN,º 2022. [Online].
Available: https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/
WebExtensions/API/browsingData/remove

[17] ªChrome - An updated timeline for Privacy Sand-
box milestones,º https://blog.google/products/chrome/
updated-timeline-privacy-sandbox-milestones/amp/, 2022.

14

[18] ªChrome Web Storage and Quota Concepts,º 2022.
[Online]. Available: https://docs.google.com/document/d/
19QemRTdIxYaJ4gkHYf2WWBNPbpuZQDNMpUVf8dQxj4U/edit#
heading=h.uc5wcu4n4rnw

[19] ªchrome.browsingData,º 2022. [Online]. Available: https://developer.
chrome.com/docs/extensions/reference/browsingData/

[20] ªchromium/src - Commit r960512,º Jan. 2022, publisher: Google.
[Online]. Available: https://chromium.googlesource.com/chromium/src/
+/6241ea2c4875d1343594f3db53be489649335351

[21] ªClear-Site-Data - HTTP | MDN,º 2022. [Online]. Available: https://
developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Clear-Site-Data

[22] ªExpress - Node.js web application framework,º 2022, publisher:
Express. [Online]. Available: https://expressjs.com/

[23] ªFenced Frames Ad Reporting,º 2022, publisher: turtledove.
[Online]. Available: https://github.com/WICG/turtledove/blob/main/
Fenced Frames Ads Reporting.md

[24] ªFLEDGE API developer guide,º 2022, publisher: turtledove. [Online].
Available: https://github.com/WICG/turtledove/blob/main/FLEDGE.md

[25] ªGoogle - The Privacy Sandbox,º https://privacysandbox.com/, 2022.

[26] ªHTTP/3 protocol | Can I use... Support tables for HTML5, CSS3,
etc,º 2022. [Online]. Available: https://caniuse.com/http3

[27] ªHTTP/3 protocol | Can I use... Support tables for HTML5, CSS3,
etc,º 2022. [Online]. Available: https://caniuse.com/?search=alt-svc

[28] ªPerformance - Web APIs | MDN,º 2022, publisher: MDN.
[Online]. Available: https://developer.mozilla.org/en-US/docs/Web/API/
Performance

[29] ªPuppeteer | Tools for Web Developers,º 2022. [Online]. Available:
https://developers.google.com/web/tools/puppeteer

[30] ªreCAPTCHA,º 2022, publisher: Google. [Online]. Available: https:
//www.google.com/recaptcha/about/

[31] ªReporting API - Web APIs | MDN,º 2022. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/API/Reporting API

[32] ªThird-party cookies and Firefox tracking protection | Firefox
Help,º 2022. [Online]. Available: https://support.mozilla.org/en-US/kb/
third-party-cookies-firefox-tracking-protection

[33] ªWelcome to PyAutoGUI’s documentation! Ð PyAutoGUI
documentation,º 2022. [Online]. Available: https://pyautogui.
readthedocs.io/en/latest/

[34] ªCanITrack Repository,º https://github.com/masood/canitrack, 2023.

[35] W. I. C. , ªTrust Token API Explainer,º 2020, publisher: WICG.
[Online]. Available: https://github.com/WICG/trust-token-api

[36] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and
C. Diaz, ªThe web never forgets: Persistent tracking mechanisms in
the wild,º in Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security, ser. CCS ’14. New York,
NY, USA: Association for Computing Machinery, 2014, p. 674±689.
[Online]. Available: https://doi.org/10.1145/2660267.2660347

[37] ÐÐ, ªThe web never forgets: Persistent tracking mechanisms in
the wild,º in Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security, 2014, pp. 674±689.

[38] M. D. Ayenson, D. J. Wambach, A. Soltani, N. Good, and C. J.
Hoofnagle, ªFlash cookies and privacy ii: Now with html5 and
etag respawning,º Available at SSRN, 2011. [Online]. Available:
http://dx.doi.org/10.2139/ssrn.1898390

[39] J. Bell, ªFile and Directory Entries API,º Aug. 2021, publisher: W3C.
[Online]. Available: https://wicg.github.io/entries-api/

[40] Brave Software, ªUnderstanding Redirection-Based Tracking,º Aug.
2018. [Online]. Available: https://brave.com/redirection-based-tracking/

[41] D. Creager and I. Clelland, ªNetwork Error Logging,º Jul.
2021, publisher: W3C. [Online]. Available: https://w3c.github.io/
network-error-logging/

[42] D. Creager, I. Clelland, and M. West, ªReporting API,º Apr.
2022, publisher: W3C. [Online]. Available: https://www.w3.org/TR/
reporting-1/

[43] A. Davidson, I. Goldberg, N. Sullivan, G. Tankersley, and F. Valsorda,
ªPrivacy pass: Bypassing internet challenges anonymously.º Proc. Priv.

Enhancing Technol., vol. 2018, no. 3, pp. 164±180, 2018.

[44] Y. Dimova, G. Acar, L. Olejnik, W. Joosen, and T. Van Goethem,
ªThe CNAME of the Game: Large-scale Analysis of DNS-
based Tracking Evasion,º in Proceedings on Privacy Enhancing

Technologies. Proceedings on Privacy Enhancing Technologies, Mar.
2021, pp. 394±412, arXiv: 2102.09301. [Online]. Available: https:
//petsymposium.org/2021/files/papers/issue3/popets-2021-0053.pdf

[45] S. Dutton, ªGetting started with Trust Tokens,º 2020, publisher:
web.dev. [Online]. Available: https://web.dev/trust-tokens/

[46] ÐÐ, ªFLEDGE API,º 2022, publisher: web.dev. [Online]. Available:
https://developer.chrome.com/docs/privacy-sandbox/fledge/

[47] P. Eckersley, ªHow unique is your web browser?º in Proceedings of

the 10th International Conference on Privacy Enhancing Technologies,
2010.

[48] A. Edelstein, ªWhich browsers are best for privacy?º 2021. [Online].
Available: https://privacytests.org/

[49] S. Englehardt and A. Narayanan, ªOnline tracking: A 1-million-site
measurement and analysis,º in Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, ser. CCS ’16,
2016, pp. 1388±1401.

[50] B. Fulgham, ªProtecting Against HSTS Abuse,º Mar. 2018. [Online].
Available: https://webkit.org/blog/8146/protecting-against-hsts-abuse/

[51] A. Ghedini, ªSpeeding up HTTPS and HTTP/3 negotiation with...
DNS,º 2020, publisher: Cloudflare. [Online]. Available: https://blog.
cloudflare.com/speeding-up-https-and-http-3-negotiation-with-dns/

[52] E. Hammer-Lahav and M. Nottingham, ªDefining Well-Known
Uniform Resource Identifiers (URIs),º Internet Engineering Task
Force, Request for Comments RFC 5785, Apr. 2010. [Online].
Available: https://datatracker.ietf.org/doc/rfc5785/

[53] I. Hickson, ªWeb SQL Database,º Nov. 2010. [Online]. Available:
https://www.w3.org/TR/webdatabase/

[54] C. Hothersall-Thomas, S. Maffeis, and C. Novakovic, ªBrowseraudit:
automated testing of browser security features,º in Proceedings of the

2015 international symposium on software testing and analysis, 2015,
pp. 37±47.

[55] S. Kamkar, ªEvercookie- virtually irrevocable persistent cookies,º
Septemer 2010. [Online]. Available: http://samy.pl/evercookie/

[56] S. Karami, P. Ilia, K. Solomos, and J. Polakis, ªCarnus: Exploring the
privacy threats of browser extension fingerprinting,º in Proceedings of

the Symposium on Network and Distributed System Security (NDSS),
2020.

[57] S. Karami, F. Kalantari, M. Zaeifi, X. J. Maso, E. Trickel,
P. Ilia, Y. Shoshitaishvili, A. DoupÂe, and J. Polakis, ªUnleash
the simulacrum: Shifting browser realities for robust Extension-
Fingerprinting prevention,º in 31st USENIX Security Symposium

(USENIX Security 22). Boston, MA: USENIX Association, Aug.
2022, pp. 735±752. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity22/presentation/karami

[58] L. Knittel, C. Mainka, M. Niemietz, D. T. Noû, and J. Schwenk,
ªXsinator.com: From a formal model to the automatic evaluation
of cross-site leaks in web browsers,º in Proceedings of the

2021 ACM SIGSAC Conference on Computer and Communications

Security, ser. CCS ’21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 1771±1788. [Online]. Available:
https://doi.org/10.1145/3460120.3484739

[59] M. Koop, E. Tews, and S. Katzenbeisser, ªIn-depth evaluation of
redirect tracking and link usage,º Proceedings on Privacy Enhancing

Technologies, vol. 4, pp. 394±413, 2020. [Online]. Available: https:
//petsymposium.org/2020/files/papers/issue4/popets-2020-0077.pdf

[60] A. Lerner, A. K. Simpson, T. Kohno, and F. Roesner, ªInternet jones and
the raiders of the lost trackers: An archaeological study of web tracking
from 1996 to 2016,º in 25th USENIX Security Symposium (USENIX

Security 16), 2016.

[61] M. Luo, P. Laperdrix, N. Honarmand, and N. Nikiforakis, ªTime does
not heal all wounds: A longitudinal analysis of security-mechanism
support in mobile browsers,º in Proceedings of the 26th Network and

Distributed System Security Symposium (NDSS), 2019.

[62] M. Luo, O. Starov, N. Honarmand, and N. Nikiforakis, ªHindsight:
Understanding the evolution of ui vulnerabilities in mobile browsers,º
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, 2017, pp. 149±162.

15

[63] R. Marx, ªHTTP/3: Practical Deployment Options (Part 3),º Sep.
2021. [Online]. Available: https://www.smashingmagazine.com/2021/
09/http3-practical-deployment-options-part3/

[64] K. Mowery and H. Shacham, ªPixel perfect: Fingerprinting canvas in
html5,º 2012, pp. 1±12.

[65] Mozilla, ªFirefox Rolls Out Total Cookie Protection By
Default To All Users | The Mozilla Blog,º Jun.
2022. [Online]. Available: https://blog.mozilla.org/en/mozilla/
firefox-rolls-out-total-cookie-protection-by-default-to-all-users-worldwide/

[66] M. Nalpas, ªMonitor your web application with the Reporting API,º
Oct. 2021. [Online]. Available: https://web.dev/reporting-api/

[67] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens,
and G. Vigna, ªCookieless monster: Exploring the ecosystem of web-
based device fingerprinting,º in 2013 IEEE Symposium on Security and

Privacy. IEEE, 2013, pp. 541±555.

[68] M. Perry, E. Clark, S. Murdoch, and G. Koppen, ªThe Design
and Implementation of the Tor Browser [DRAFT],º 2019. [Online].
Available: https://2019.www.torproject.org/projects/torbrowser/design/

[69] J. Schwenk, M. Niemietz, and C. Mainka, ªSame-Origin Policy: Eval-
uation in Modern Browsers,º in 26th USENIX Security Symposium

(USENIX Security 17), 2017, pp. 713±727.

[70] E. Skeggs, ªUsing CORS policies to implement CSRF protection
- Mixmax Engineering Blog,º 2017. [Online]. Available: https:
//www.mixmax.com/engineering/modern-csrf

[71] P. Snyder, S. Karami, B. Livshits, and H. Haddadi, ªPool-
party: Exploiting browser resource pools as side-channels for web
tracking,º CoRR, vol. abs/2112.06324, 2021. [Online]. Available:
https://arxiv.org/abs/2112.06324

[72] K. Solomos, P. Ilia, S. Karami, N. Nikiforakis, and J. Polakis,
ªThe dangers of human touch: Fingerprinting browser extensions
through user actions,º in 31st USENIX Security Symposium (USENIX

Security 22). Boston, MA: USENIX Association, Aug. 2022,
pp. 717±733. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity22/presentation/solomos

[73] K. Solomos, P. Ilia, N. Nikiforakis, and J. Polakis, ªEscaping the
confines of time: Continuous browser extension fingerprinting through
ephemeral modifications,º in Proceedings of the 2022 ACM SIGSAC

Conference on Computer and Communications Security, 2022, pp.
2675±2688.

[74] K. Solomos, J. Kristoff, C. Kanich, and J. Polakis, ªTales of
Favicons and Caches: Persistent Tracking in Modern Browsers ±
NDSS Symposium,º Virtual, Feb. 2021, pp. 1±19. [Online]. Available:
https://dx.doi.org/10.14722/ndss.2021.24202

[75] A. Soltani, S. Canty, Q. Mayo, L. Thomas, and C. J. Hoofnagle,
ªFlash cookies and privacy,º in 2010 AAAI Spring Symposium Series,
2010. [Online]. Available: http://dx.doi.org/10.2139/ssrn.1446862

[76] M. Squarcina, M. Tempesta, L. Veronese, S. Calzavara, and
M. Maffei, ªCan i take your subdomain? exploring Same-Site
attacks in the modern web,º in 30th USENIX Security Symposium

(USENIX Security 21). USENIX Association, Aug. 2021, pp.
2917±2934. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/squarcina

[77] O. Starov and N. Nikiforakis, ªXhound: Quantifying the fingerprintabil-
ity of browser extensions,º in IEEE Symposium on Security and Privacy

(SP). IEEE, 2017, pp. 941±956.

[78] P. Syverson and M. Traudt, ªHSTS supports targeted surveillance,º
in 8th USENIX Workshop on Free and Open Communications on

the Internet (FOCI 18). Baltimore, MD: USENIX Association, Aug.
2018. [Online]. Available: https://www.usenix.org/conference/foci18/
presentation/syverson

[79] T. Tiwari and A. Trachtenberg, ªAlternative (ab)uses for HTTP
alternative services,º in 13th USENIX Workshop on Offensive

Technologies (WOOT 19). Santa Clara, CA: USENIX Association,
Aug. 2019. [Online]. Available: https://www.usenix.org/conference/
woot19/presentation/tiwari

[80] Vimeo, ªFavicon History Sniffer: Chrome,º 2022. [Online]. Available:
https://vimeo.com/705259642

[81] ÐÐ, ªFavicon History Sniffer: Safari,º 2022. [Online]. Available:
https://vimeo.com/705259659

[82] Wikipedia contributors, ªChromium (web browser) Ð Wikipedia,
the free encyclopedia,º https://en.wikipedia.org/w/index.php?title=
Chromium (web browser)&oldid=1084930496, 2022, [Online;
accessed 28-April-2022].

[83] J. Wilander, ªFull Third-Party Cookie Blocking and More,º
Mar. 2020. [Online]. Available: https://webkit.org/blog/10218/
full-third-party-cookie-blocking-and-more/

16

APPENDIX

In Table VII, we provide descriptions of the write()

and read() actions for each evaluated mechanism. The
descriptions offer further insight into the unique quirks of each
approach, reframing accesses to these mechanisms as reading
and writing methods.

Example implementation of a browser mechanism in
CanITrack. We use the Image Cache as an example browser
mechanism to illustrate the testing process using CanITrack.
This example also provides an estimate of the workload
required to add a new browser mechanism for testing with
CanITrack.

When a webpage makes a request for an image re-
source, the browser caches the returned image based on the
Cache-Control header included in the response object.
This mechanism requires three components in order to be
tested using CanITrack.

1) File Resource. The user provides an image file as a
resource, whose path is accessible to the Web Server.

2) Network Requests. The user handles two paths relevant to
the browser mechanism on the Web Server:

• Image Request. To be responded with the image file. If
the request is received from the write() method, the
response should include a Cache-Control header to
ensure that the browser stores the image. If the request
is received from the read() method, a global object
should be updated to record the number of requests that
were seen for the requesting domain.

• Number of Accesses. To be responded with the number
of times a request for the image was received from each
requested domain.

// Image Request

if (request.url.includes("/image")) {

if (testPhase == 'write') {

response.set('Cache-Control', 'max-age

=31536000');}

if (testPhase == 'read') {

imageAccesses[req.headers.host]+=1;}

response.sendFile('/path/to/image');}

// Number of Accesses

if (request.url.includes("/accesses")) {

response.send(imageAccesses[request.headers.

host]);}

Listing 5: Sample Network Request Handling for Image Cache.

3) write() and read() methods. These JavaScript meth-
ods will be called by various test scripts on the client-side.

• write(): This method receives a unique, 32-bit iden-
tifier, and a list of domains. For every bit of the
identifier that is equal to ‘1’, it requests an image from
the corresponding domain.

• read(): This method receives a list of domains as
an input. It requests an image from each of the 32
domains. It then requests the server to respond with the
number of requests that had been sent over the network
for each domain. If the image for a domain was served
from the cache, the server wouldn’t have observed any
request for the corresponding domain (i.e., bit 1). All
other domains correspond to bit 0 values.

write (uniqueID, domainList) {

for (let i = 0; i < domainList.length; i++) {

if(uniqueID[i] == '1') {

let image = document.createElement("img");

image.src = `https://${domainList[i]}/

image`;

document.body.appendChild(image);}}}

read (domainList) {

let uniqueID = '';

for (let i = 0; i < domainList.length; i++) {

// Request the image

let image = document.createElement("img");

image.src = `https://${domainList[i]}/image`;

document.body.appendChild(image);

// Check if image was fetched from the server

let response = await fetch(`https://${

domainList[i]}/accesses`);

uniqueID += (await response.text()).trim();}

return uniqueID;

}

Listing 6: Sample Read and Write Methods for Image Cache.

CanITrack’s framework then places and invokes the
write() and read() mechanisms in different first- and
third-party contexts. Since those two methods interact with
the mechanism-specific server-side requests and file resource,
the additional workload for the user includes handling those
requests and providing the resource.

17

TABLE VII: Overview of the caching mechanisms evaluated by CanITrack. Novel tracking vectors are indicated by ✚.

API Write Mechanism Read Mechanism Bits/Page Notes

Cookies Write the identifier using the document.cookie
API

Look at entries in the document.cookie API 32

Storage API:
Local Stor-
age

Call localStorage.setItem() Call localStorage.getItem() 32

IndexedDB Create a new Database and Object Store. Write the
identifier to the Object Store.

Read the identifier from the same Object Store. 32

Cache Stor-
age

Add identifier to URL path and cache the request
using the client-side API.

Access entries from the cache API. 32

File-based Mechanisms:
CSS Cache Create a new link element for a stylesheet. The

server responds with a ’Cache-Control’ header.
Request stylesheets from the server. Requests not
observed at the server were served from the cache.

32

Font Cache Add a new webfont and apply it to an HTML ele-
ment. The server responds with a ’Cache-Control’
header.

Apply the same webfont to an HTML element. The
server observes requests for fonts that were not
served from the cache.

32

Image Cache Create a new img element, set the src, and add it
to the DOM. The server responds with a ’Cache-
Control’ header.

Create a new img element, set the same src, and
add it to the DOM. The server observes requests for
images that were not served from the cache.

32

HTTP Disk
Cache

Create a new Fetch or XHR request for any re-
source. The server responds with a ’Cache-Control’
header.

Send the same Fetch or XHR request. The server
observes requests that were not served from the
cache.

32

Favicon
Cache

The browser requests a favicon based on the link el-
ement. The server responds with a ’Cache-Control’
header.

Revisit the same page. The server observes a request
for favicons that were not served from the cache.

1 [74]

Service Workers:
Variable
Scope

Register a new service worker with is scope set to
’/’, set a value in a variable.

Access the service worker and read back the value
stored in the previously defined variable.

32

Cache Register a new service worker with is scope set to
’/’. Add a cache entry that requests the server for a
32-bit identifier.

Create a fetch request that is intercepted by the
service worker, and the identifier stored in the cache
entry is returned.

32

HTTP Headers and Network Config-based Mechanisms:
Alt-Svc Send a network request for a domain. The server

includes an Alt-Svc header in each response, in-
dicating the availability of HTTP/2 and HTTP/3
services.

Create the same network request. HTTP/2 or
HTTP/3 requests observed at the server indicate
entries in the Alt-Svc cache.

32 [79]

HSTS Send a new HTTP request. The server ugrades the
requests to HTTPS.

Resend the same HTTP requests. The browser up-
grades the request to HTTPS.

32 [78]

HTTP Auth Send a network request including credentials in the
’Authorization’ header.

Send the same requests without providing creden-
tials. The browser adds the ’Authorization’ header
from cache.

32

CORS Pre-
flight

Send a cross-origin request. The browser sends a
preflight request before the actual request.

Send the same cross-origin request. The browser
observes an existing preflight in the cache and does
not send an OPTIONS request.

32 ✚

Accept-CH The server includes client hint values in the ’Accept-
CH’ response header.

The server observes client hints added by the
browser on future requests.

5 ✚

NEL The server includes a reporting URL in the ’NEL’
and ’Report-To’ Headers.

The server receives reports from the browser at the
reporting URL.

32

Chromium-specific Mechanisms:
File System Call the ’window.webkitRequestFileSystem’. Create

a new Directory and store the identifier in a new file.
Call the ’window.webkitRequestFileSystem’. Ac-
cess the previously created directory and file. Return
the identifier.

32

WebSQL Access the DB using ’window.openDatabase’. Use
SQL commands to create a new table and insert the
identifier into a row.

Access the DB and run a ’SELECT’ query to read
the identifier.

32

FLEDGE
API

Add the browser to an interest group, whose owner
is a specific domain.

Run an auction, with a single domain as the buyer. If
the auction is successful, the browser has an interest
group belonging to the domain.

8 ✚

Private State
Token API

Create a new fetch request, and issue a token from
a domain.

Call the ’document.hasTrustToken()’ API to check
if a token exists from the domain.

2 ✚

18

	Introduction
	System Design and Implementation
	Exploring Browser Mechanisms
	Evaluation
	Discussion
	Related Work
	Conclusion
	References
	Appendix

