ReScan: A Middleware Framework for Realistic and Robust
Black-box Web Application Scanning

Kostas Drakonakis Sotiris loannidis Jason Polakis
FORTH Technical University of Crete University of Illinois Chicago
kostasdrk @ics.forth.gr sotiris@ece.tuc.gr polakis@uic.edu

Abstract—Black-box web vulnerability scanners are invaluable
for security researchers and practitioners. Despite recent approaches
tackling some of the inherent limitations of scanners, many have not
sufficiently evolved alongside web browsers and applications, and often
lack the capabilities for handling the inherent challenges of navigating
and interacting with modern web applications. Instead of building an
alternative scanner that could naturally only incorporate a limited set of
the wide range of vulnerability-finding capabilities offered by the multi-
tude of existing scanners, in this paper we propose an entirely different
strategy. We present ReScan, a scanner-agnostic middleware frame-
work that transparently enhances scanners’ capabilities by mediating
their interaction with web applications in a realistic and robust manner,
using an orchestrated, fully-fledged modern browser. In essence, our
framework can be used in conjunction with any vulnerability scanner,
thus allowing users to benefit from the capabilities of existing and future
scanners. Our extensible and modular framework includes a collection
of enhancement techniques that address limitations and obstacles com-
monly faced by state-of-the-art scanners. Our experimental evaluation
demonstrates that despite the considerable (and expected) overhead
introduced by a fully-fledged browser, our framework significantly
improves the code coverage achieved by popular scanners (168% on
average), resulting in a 66% and 161% increase in the number of
reflected and stored XSS vulnerabilities detected, respectively.

I. INTRODUCTION

Web application scanners play a crucial role for security
engineers and developers for uncovering vulnerabilities in
applications and patching them in a timely manner. Black-box
scanners can be extremely useful since they do not require any
a priori knowledge of the target application. However, as the
web ecosystem continues to evolve at a breakneck pace, modern
applications incorporate more complex functionalities, features [32],
APIs [42], and client-side code, and therefore need a fully-fledged,
modern browser environment for their functionality to be fully
exercised and the applications to be accurately tested.

State-of-the-art academic [19], [49], [43] and community-
developed scanners [51], [57], [5], [56], which have seen
wide recognition, suffer from core limitations that hinder their
effectiveness and lead to incomplete scanning, lower coverage and
missed vulnerabilities. First, many existing scanners use raw HTTP
requests to interact with the application instead of a real browser,
thus missing out on dynamically generated DOM content (e.g., new
URLSs or forms) and asynchronous requests. Second, many scanners
are limited to a specific method of navigating the application (e.g.,

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA

ISBN 1-891562-83-5

https://dx.doi.org/10.14722/ndss.2023.24169
www.ndss-symposium.org

extracting static links and HTML forms) or rely solely on client-side
code and events [49]. Applications, however, often make use of
both. Moreover, existing tools typically simply replay requests
when crawling or fuzzing the application, and do not adhere to the
intended and correct execution of steps for moving the application
from one state to another. Another major limitation is that while
scanners can be configured to log into the application, they typically
assume that the authenticated session remains intact for the duration
of the scan, which quite often is not the case. In addition, scanners
can be prone to false positives and negatives for certain types of
vulnerabilities (e.g., XSS) due to their naive approach to verifying
successful injections. Finally, since black-box scanners are not
context-aware of applications’ content and functionalities, they can
spend a significant amount of time redundantly testing similar pages.

Recently, Eriksson et al. [25] highlighted some of these
problems and the importance of taking them all into account when
implementing a web application scanner. These limitations are
further evidenced by the fact that certain scanners attempt to tackle
some of them by offering the ability to be used as a proxy [9], [1],
[3] between a user’s browser and the application, so as to collect
useful information (e.g., event originating requests). However, this
is not a robust or effective strategy, as it requires significant manual
effort and therefore does not scale, and is inherently unable to
address all the limitations. Overall, while certain scanners attempt
to address these limitations, they either only partially address them
or only tackle a subset of the limitations.

Nonetheless, despite their limitations, the aforementioned tools
offer a plethora of different scanning techniques and capabilities
which are undoubtedly of great value. Ideally, overcoming these
limitations would require redesigning these tools or collecting their
individual techniques and re-implementing them from scratch. Un-
fortunately, this is an unlikely and impractical scenario, as it would
require an exorbitant amount of time and engineering effort. Instead,
we propose an alternative strategy for leveraging the capabilities of
existing (and future) scanners while addressing their limitations.

Specifically, we design and implement ReScan, a scanner-
agnostic black-box middleware framework that transparently
enhances web application scanners and addresses the aforemen-
tioned limitations. In more detail, our framework intercepts scanner
requests and provides a realistic state-of-the-art orchestrated browser
environment with a rich set of additional capabilities (e.g., event
triggering, HTTP request tampering). Our system detects new end-
points that reveal further endpoints or trigger asynchronous requests,
to construct a navigation model of the target web application, and
mirrors the scanner’s requests through the browser and the model.

Additional enhancement modules operate concurrently to verify
the validity of the authenticated session and re-authenticate if
needed, detect inter-state dependencies (i.e., submitted values that

TABLE I: Scanners’ features and capabilities.

i Enemy
Feature / System w3af wapiti of the State ZAP
Browser support O O O [)
Navigation model O O [O
Inter-state dependencies O O O O
Client-side events O O @) [
Authentication () D o ([J
FP / FN elimination O O O O
URL clustering O O o O

@: feature supported, (J: partially supported, O: not supported.

appear on and affect other URLs) and cluster similar pages that
would be redundant to audit. In general, ReScan does not require
any information about the scanner’s or app’s internals and does not
make any assumptions; it receives HTTP requests and attempts to
accurately mirror them based on the learned model so as to respect
the navigation workflow. This is done inside the browser, to ensure
realistic interaction and response rendering.

Our extensive evaluation with state-of-the-art scanners
shows that ReScan effectively facilitates the detection of more
vulnerabilities, both for benchmark and modern applications,
while offering a code coverage improvement between 3% and
935% (168% on average). Moreover, we outline several prominent
vulnerability examples that demonstrate the practicality of our
different enhancement techniques and also show that ReScan
can handle more than a single class of vulnerabilities. While
our system induces a considerable performance overhead, due to
the numerous techniques it employs and the unavoidable cost of
leveraging a fully-fledged modern browser, we show that our URL
clustering algorithm can dramatically reduce the total scan time for
a representative modern application, resulting in a 6.7x speedup.

In summary, our research contributions are the following:

e We propose ReScan, a novel black-box middleware framework
that enhances existing vulnerability scanners by transparently
addressing their core limitations. Our system has been
open-sourced [12].

e We design a novel URL clustering algorithm that prevents
scanners from spending valuable time and resources on testing
redundant application endpoints.

e We extensively evaluate our system using popular and state-of-the-
art scanners on a rich set of web applications. We have released
our applications’ Docker images to ensure reproducibility and
facilitate further research [11].

II. CHALLENGES AND DESIGN REQUIREMENTS

Implementing a scanner-agnostic middleware framework
requires solving numerous technical challenges and overcoming
the aforementioned limitations in a way that is transparent to the
scanner, while also providing functionality enhancements without
understanding or tampering with scanners’ internals. Essentially,
the black-box interaction should be bidirectional; the scanner knows
nothing about ReScan and vice-versa. Here we outline some of the
main challenges that our system tackles.

Inter-state dependencies. Certain types of vulnerabilities, such
as stored XSS, are not necessarily triggered directly on the landing
page after the payload is delivered. On the contrary, successful ex-
ploitation (and detection) might require the scanner to visit a different

URL in the application. For instance, consider editing a vulnerable
field on a user’s account page, which is then triggered when visiting
that user’s profile page. ReScan needs to uncover and keep track
of these inter-state dependencies so as to enable detection of said
vulnerabilities, and also account for the order in which a scanner
fuzzes potential injection points and visits URLs they might affect.

Authentication. Modern web apps typically include functional-
ity and resources that are only available post authentication, and also
include account and session management features that terminate ac-
tive sessions. When performing an authenticated scan, at some point
the session might break, e.g., due to following the logout URL or
sending a malformed request that the web application cannot handle
and all session info is invalidated. This directly affects the coverage
and vulnerability detection scanners can achieve, as they might not
be able to detect such state changes on time, or even at all, and
proceed to perform an incomplete scan. ReScan needs to account for
this major limitation as well, by ensuring the session remains valid
for the entire duration of the scan and for all tested functionalities.

False positives & negatives. Scanners typically assert successful
exploitation of certain vulnerabilities by checking whether the
injected payload appears as-is in the application’s response. This is
not foolproof and is prone to false positives, as the mere existence of
the payload inside the DOM does not necessarily imply successful
exploitation. Additionally, a scanner might successfully exploit a
vulnerability but not be able to detect it as the payload’s structure
might have been slightly altered or even completely stripped after
being executed, leading to false negatives. Since we cannot tamper
with each scanner’s internal detection mechanisms, we need to
devise a mechanism so as to eliminate both false positives and false
negatives, or provide additional information to the user about such
possible cases to facilitate triage.

URL clustering. Web app scanners can typically spend a
significant amount of time testing redundant application endpoints,
i.e., pages that are conceptually similar and offer the exact same
functionality. It is apparent that such behavior directly affects their
performance and overall scanning times. Thus, ideally, we need to
prevent scanners from ever learning the existence of such redundant
endpoints, by efficiently and effectively comparing and clustering
them under a single, representative URL.

Response enhancement. Even if we successfully overcome
the core scanner limitations, we still need to communicate
ReScan’s findings back to the scanner, such as request-triggering or
DOM-changing client-side events. Due to our black-box approach,
ReScan cannot directly interact with the scanner and is restricted
to the existing communication channel (i.e., the HTTP connection)
for transmitting artifacts.

Limitations of prior work. In Table I we outline the capabilities
of the different scanners that we evaluate our system on (§ 1), so
as to paint a clear picture of how each one can benefit from ReScan’s
enhancement techniques. As can be observed, only a single scanner
leverages a modern, full-fledged browser environment; the rest
are oblivious to dynamic content, functionalities and client-side
events. Similarly, only one scanner leverages a navigation model
to properly traverse the application, and none of them consider
dependencies between different endpoints of the app. All of them
offer some mechanism to handle authentication, however, some
do so partially, i.e., assume that the authenticated session remains
valid throughout the scan. When it comes to false positives and
negatives, none of them take steps to eliminate them. Similarly,

Requests
Responses
- >IPC

Web App
Scanners

.9

. . ReScan Framework
Fig. 1: Architecture and workflow of the ReScan framework.

for all scanners we find that they spend significant time testing
redundant URLS or can incorrectly exclude pages from scanning
due to deeming them to be similar to other tested pages. Overall, we
find that all scanners do not take into account at least four aspects
that can directly affect their vulnerability detection efficacy and
achieved code coverage. This motivates our novel design approach
of offering a framework that operates as a middleware component
for enhancing the capabilities of any vulnerability scanner.

III. DESIGN AND IMPLEMENTATION

Figure 1 presents an overview of ReScan’s architecture. Our
system consists of a series of modules that operate concurrently and
communicate with each other. The entry point to the system is an
intercepting proxy which captures scanner requests and feeds them
into the system. Next, the intercepted requests are loaded by the
orchestrator and passed on to the browser workers, each of which
has its own browser instance and attempts to accurately mirror the
request in the application. They are also responsible for detecting
new endpoints, e.g., links, forms and event originating requests,
which are all wrapped in a single, enhanced HTTP response and
sent back to the scanner. All discovered endpoints are stored in
the application’s navigation model by the graph worker, which is
leveraged by the browser workers to properly retrace and execute
all necessary steps when executing a request. Each worker utilizes
the authentication helper module to ensure the session is valid.
Meanwhile, the background worker is responsible for inspecting
all data submitted to the application and uncovering infer-state
dependencies (i.e., if a value submitted in a page appears on another
one) which is necessary for detecting certain vulnerabilities (e.g.,
stored XSS). Finally, the URL clustering module employs a novel
algorithm to detect similar pages, and notifies the orchestrator to
filter out such requests and prevent the scanner from spending
valuable time on redundantly testing them. Before describing each
component in detail, we first briefly describe our navigation model
(which is inspired by the approach of Eriksson et al. [25]); additional
details can be found in Appendix B. It is important to stress that while
some of our techniques are inspired by prior work, incorporating
them into our middleware-style architecture is a demanding process
that requires a methodical design strategy and addressing numerous
implementation challenges, as we outline in the following sections.

Navigation model. Our model is realized as a directed graph,
where each node represents the state of the application in terms
of unique URLSs, and edges describe the transitions between states
— the specific actions required to move from one state to another,
like client-side events or forms. Specifically, the edges are one
of five types: GET, FORM, EVENT, IFRAME or REDIRECT.

Thus, when visiting a page we collect all such edges and add them
to the model. Each edge is assigned a unique ID, which consists
of the edge type, the destination URL, and the normalized HTTP
payload (i.e., the set of parameter names present in the payload).
Finally, each edge is also connected to its parent edge, so we can
construct workflows. Incoming HTTP requests from the scanner are
mapped to individual edges, depending on their HTTP method and
whether they carry a payload (e.g., POST data). Subsequently, to
properly execute the request, we recursively construct its workflow
by following the parent edges until we find a safe GET edge,
which based on the HTTP specification [27] is not considered
state-changing and can be safely executed as a starting point. For
requests that cannot be mapped to any edge, i.e., arbitrary requests,
we either directly execute them if they are a GET, or generate and
submit an equivalent HTML form so as to get a response through
the browser for payload-bearing requests.

A. System Components

Intercepting proxy. This component accepts incoming requests
from a scanner, and presents one of the two requirements for our
system’s operation: the scanner must be configured to send its
requests through this proxy. The other is setting the scanner’s timeout
per HTTP request to a large value, so ReScan has enough time to
employ its numerous enhancement techniques. Both capabilities are
supported by all scanners we have encountered so far. Our compo-
nent is built as an add-on script on top of mitmproxy [17]. When a
request is intercepted a new thread is spawned to handle it and our
custom add-on code is executed @)). Initially, the request is appended
to all intercepted requests, along with all other relevant information
(HTTP headers, method, payload and URL). The request thread then
waits to receive its response from the system @), which will be sent
back to the scanner. The only exception are requests towards static
resources that do not have state-changing effects and are directly
proxied to the target application. We achieve this by filtering requests
based on known file extensions, which we list in Appendix A.

Orchestrator. This component periodically loads the intercepted
requests populated by the proxy @), and enqueues any newly
appended requests in a FIFO queue to ensure requests are served by
the browser workers @ in the order they appear. It is also responsible
for initializing and configuring all other components of the system.

Browser workers. The browser workers’ goal is to accurately
mirror each request through a fully-fledged, automated browser by
executing the necessary workflow from the navigation model. We
build the workers by leveraging XDriver [21], a robust Selenium-
based browser automation tool with a rich set of security-oriented
features pertinent to our goal (e.g., extracting HTTP redirection
flows, spoofing request headers). The number of workers is a
configurable parameter.

Serving requests. Initially, each worker reserves a request, con-
structs the corresponding edge ID based on the request information,
queries the graph worker (described later on) so as to fetch the
edge’s workflow @ and proceeds to execute it (@. Before executing
the workflow the worker sets its cookie jar according to the request’s
Cookie header, so as to acquire the necessary state for authentication.
Executing individual edges is rather straightforward; the worker
simply fetches the page, fills and submits a form, and switches the
browser’s focus inside an iframe or triggers an event. We have also
extended XDriver so as to capture events’ asynchronous requests or
redirects with the browser’s internal proxy and make all necessary

modifications before sending it to the application. However, in
certain cases, some edges might not be required or cannot even
be replayed. For instance, an intermediary edge corresponding to a
login form that we previously used to log into the application will
most likely not be present when executing the workflow of an admin
dashboard’s functionality. In such cases, we simply ignore non-
existing, intermediary edges and proceed to the rest of the workflow.
While at this point the scanner’s request has been served @ we still
need to enrich the response before sending it back to the scanner by
leveraging any client-side events and the browser’s JavaScript execu-
tion engine for triggering the events and recording any meaningful
changes to the DOM or any asynchronous requests or redirects.

Event discovery. In order to trigger client-side events, we first
need to identify which HTML elements have registered event
listeners by hooking into them; we achieve this by using jAk’s JS
library [49]. We then iterate over all captured events and attempt to
trigger them; we expanded XDriver to accurately trigger each event.
To detect DOM changes we utilize the MutationObserver API [6]
by registering an observer on each document, which returns all
changes caused by the last fired event. This is much more efficient
compared to prior approaches of constantly scanning the DOM
for relevant changes [25]. The DOM changes we consider are
new links, forms and iframes, since they can reveal new endpoints
of the application to the scanner, and at the same time constitute
potential injection points. Similarly, for asynchronous requests, we
modified jAK’s library to capture all the information our system
needs. We also note that right before triggering each event, we block
all asynchronous requests; after capturing the request information
we do not send the actual request to the application so as to to
avoid possible side-effects due to changing the application’s state
(e.g., logging out or deleting a user). Users can disable our event
discovery module with a simple configuration option, when testing
web applications that do not make heavy use of JavaScript.

Another aspect we have to take into account during this phase
is that elements with events can produce additional elements, which
can also produce others, make DOM changes and so on. To capture
such nested events we follow a BFS approach and start by triggering
all displayed events when loading the page (i.e., level zero events).
After triggering each event we inspect whether any new events ap-
peared and store this dependency link between them, thus construct-
ing event dependency chains. In addition, if an event hides any level
zero events (e.g., due to opening an overlapping menu), we immedi-
ately trigger it once again in an effort to make the base event reappear.
When we are finished with all of a level’s events, we proceed to the
next level and repeat the process. It is important to note that for nested
events we first check if they actually exist and are displayed in the
page in order to trigger them immediately. This is needed since a pre-
vious event might have made permanent changes on the page (e.g., a
sidebar with further events that remains open throughout the interac-
tion with the page). If, however, the nested event cannot be triggered
immediately,we proceed to recursively execute its dependency chain.
The recursion is necessary since an intermediary event of the
dependency chain might also not exist, thus its own chain should be
executed in order to arrive to the final event. All dependency chains
are also depicted in the navigation model as individual edges.

Finally, an exhaustive approach would require performing the
event discovery for each unique edge we execute. In practice,
however, we empirically observed that many similar edges (i.e., same
base URL but different query) land on the same or similar pages and
include the same or many common events; as such, triggering all

HTTP Response

Response Headers

Set-Cooki-é.{ ABC=xyz
Set-Cookie: XXX=999

Response Body \

Rendered source ’

<div id="mydiv"
class="dynamic_classname"> ...
</div>

: Event
[Dynamic DOM / async requests]//‘/—‘ discovery 3

<ahref="login.php”/> fe 1 Teeeeeeien
<form method="POST">..</form>

Inter-state

1SD Sink DOM elements](/‘_ dependencies

<div id="sink1'> ...</div>
<div id="sink2> . ,</d|v>

Pre-rendered source elements]‘,/-' proxy

<div id="mydiv"> ... </div>

Fig. 2: Crafted HTTP response.

events again would be redundant. To address this, for each base URL
we store each event along with its unique CSS selector. For ensuing
requests to the same base URL with differing parameters we skip
any previously encountered events and trigger only the new ones
that may exist, thus significantly reducing the event discovery time.

Inter-state dependencies. It is common for certain parts of a web
application to interact with and affect other parts. For instance, data
submitted in a registration form can be reflected in other pages (e.g.,
the username being shown in the user’s profile). The extraction of
such inter-state dependency links (ISD) is crucial for discovering
certain types of vulnerabilities that are not directly visible on the
landing page after the payload injection but appear on other URLSs,
such as stored XSS. The core idea is to identify if a parameter value
for a given POST request (the ISD source) appears on another page
(the ISD sink). Thus, whenever a browser worker executes a POST
request, mapped to eithera FORM or EVENT edge, it will feed
the request’s edge ID, as well as all parameters and their values to
the Background Worker, which is responsible for detecting such
dependencies.

Assuming we have detected such ISD links, when executing
a POST request the browser worker collects parameters whose
values’ entropy exceeds a threshold to capture the actual scanner
payload being tested, which typically includes several different
characters and has a greater length. Then, for every parameter
it internally fetches ISD sinks associated with it and inspects
whether the value truly appears in their source. If so, the value
and its encapsulating HTML elements are stored, to be used in
the final HTTP response and “carry” the necessary context for the
scanner to properly evaluate its injection. We do not store the entire
sink’s DOM, as it can significantly increase the response size and
corresponding processing time, especially given that a single POST
request might be associated with more than one sinks.

Response enhancement. At this point, the system needs a way
to inform the scanner of newly discovered endpoints or inter-state
dependencies. Since our approach is fully scanner-agnostic, we
treat each scanner as a black-box that produces HTTP requests and
consumes responses. Thus, we need to transcribe each of these newly
discovered artifacts into a final, static HT TP response, in a way that
they are “detected”” and leveraged by scanners. To that end, we ini-
tially append the ISD sinks’ relevant HTML elements and the DOM
changes “as is” to the response (e.g., a dynamically generated form is
appended to the document’s body). In contrast, simple asynchronous
GET requests and redirects are transcribed as new links, while more

composite requests are converted into an equivalent HTML form,
with input fields matching those of the HTTP payload, as well as
the HTTP method of the asynchronous request. During our analysis,
we also observed that modern browsers may alter the structure
of the original page source in regards to syntax semantics. For
instance, if the browser encounters stray element attributes, i.e., only
an attribute name without a value (which can be part of a scanner’s
payload), it will modify their structure, e.g., by appending the =
sign and quotes. For example, consider the following scenario, where
a form field vulnerable to XSS originally has the form <input
name="username" value="user">. The scanner payload,
trying to escape the value attribute, might look like abc ("’ xyz,
which will leave the ’ xyz portion as a new, stray attribute inside
the element and will be converted by the browser to ’ xyz=""
with a leading space, thus preventing the scanner from detecting its
otherwise successful injection. In addition, we use BeautifulSoup [7]
with the html151ib standards-compliant parser [4], to parse and
modify the final HTTP response (e.g., to append sink DOMs for
ISD), which might further alter the payload structure by rearranging
the order of such stray attributes. To overcome this challenge, much
like the ISD approach, when submitting values, by appending the
pre-rendered source’s HTML elements that include the value in the
final HTTP response, we allow the scanner to detect and evaluate
its injections that may have been altered due to this behavior.

Moreover, the application might have set or unset cookies during
the execution of the workflow either with Ser-Cookie response
headers or via JavaScript. Since we capture the response headers for
the last executed edge (i.e., the initial scanner request), and several
scanners do not include a JavaScript execution environment, we
also need to pass this information to the scanner as well. To that
end, we iterate over the browser’s cookie jar, compose equivalent
Set-Cookie headers, and append them in the response so as to
inform the scanner of the current state. The worker then proceeds
to craft the final HTTP response including all relevant information,
i.e., the enriched response body, status code and response headers
and sends it back to the proxy’s request thread waiting for it @
A detailed depiction of how the response is crafted can be seen in
Figure 2. Subsequently, the worker submits all discovered events,
along with all links, forms, iframes and redirects of the page to
the graph worker so they can be included as new edges in the
navigation model @). We provide more technical details on browser
workers and the challenges we had to solve in Appendix C.

Graph worker. This component is responsible for interacting
with the navigation model, and consists of two separate threads.
The first one operates in a read-only manner on the model: it awaits
for browser workers’ requests for specific edges, constructs and
returns the necessary workflow @). The second thread, operating in
a write-only fashion, receives newly submitted edges by the workers
and adds them to the model @.

Background worker. Detecting inter-state dependencies is
crucial for detecting certain types of vulnerabilities. The background
worker’s (BG worker) goal is to detect such dependency links in
a timely manner. During its lifetime, the BG worker constantly
observes the POST requests executed by the browser workers and
identifies ISD sources that might appear in other parts of the appli-
cation. While in practice other HTTP verbs might be used for state-
changing requests as well (e.g. PUT), similarly to prior work [25] we
only consider POST as others are not intended to be state-changing
at all (e.g., GET [27]). Specifically, it initially keeps track of all sub-
mitted values that have an entropy higher that a given threshold. This

is a necessary performance/detection trade-off, so as to eliminate
commonly seen values (e.g., ’1”, “’true””) which would lead to a pro-
hibitive number of candidate ISD sinks being fetched by the browser
workers; we empirically found that a threshold of 1.4 effectively elim-
inates such values. It then queries the graph worker and collects all
the GET, IFRAME and REDIRECT edges found so far, as they
constitute potential ISD sinks. It then proceeds to iteratively fetch
each of these edges and inspect whether any of the submitted, higher-
entropy values appear in its source. If so, it has detected an ISD
sink and immediately notifies the browser workers of the uncovered
dependency, so they can fetch it whenever submitting the ISD source.

Before moving on to the next edge, the BG worker submits
all edges it observes to the graph worker so they can be inspected
as well. This is required as certain sinks might appear only after
submitting the corresponding ISD source (e.g., the URL for editing
a comment appears after posting the comment). The BG worker
will repeatedly visit all potential sinks as long as there are POST
requests executed by the browser workers that have not been fully
inspected (indicating that not all potential sinks have been explored).
While this approach involves a non-negligible number of additional
requests it does not affect the performance, as the BG worker
operates concurrently with the browser workers.

We note that a more straightforward approach would be to
detect ISD links by leveraging the underlying scanner’s requests.
For instance, whenever we execute a workflow, we could inspect the
landing page for previously submitted values. This, however, creates
a strong dependency between our system’s effectiveness and the
underlying scanner; if the scanner decides to fuzz a form and does
not later visit the corresponding ISD sink, either due to not having
discovered it or because it had crawled it earlier, then we would
have no chance of detecting the ISD link on time and the underlying
vulnerability would be missed. With our approach we can effectively
tackle such cases and detect inter-state dependencies on time.

Input pre-filling. Another technical challenge is scanners’ default
behavior when submitting a form. In more detail, when scanners
start fuzzing a form, they will typically use any values already filled
out by the application itself and will submit their own default values
for empty fields. For instance, wapiti sends “default”, while ZAP
uses “ZAP” as their default values. This behavior, however, can
lead to the detection of numerous candidate sinks during our ISD
detection and can significantly affect its performance, as such values
may appear in multiple areas of the application and could stem from
multiple ISD sources. To tackle this issue, right before sending the
final HTTP response back to the scanner, we iterate over all empty
input fields in the page and assign a unique value we generate on
the fly, with an entropy high enough so it can be detected in actual
ISD sinks. This way, scanners will use our unique tokens instead
of their defaults and we can precisely map ISD sources to sinks.

Authentication helper. A common problem with scanners
that execute authenticated scans is that they will submit the valid,
user-provided credentials once but will forget them in subsequent
authentication requests and instead submit their default credentials.
This can occur if the scanner decides to fuzz the login or an account
settings form (i.e., change username or password); this is problematic
since these default credentials do not correspond to a valid user,
thus permanently losing the authentication state for the remainder of
the scan. Similarly, scanners do not infer when they are logged out
(e.g., due to a malicious HTTP request that the application cannot
handle) and continue their (incomplete) scanning irregardless of

the authentication state. To overcome these problems, we develop

an authentication helper module, leveraged by the browser workers.

Credential detection. Initially, the module captures the first
authentication request (i.e., includes a password in its POST
data) and detects the valid user credentials based on common
parameters’ naming conventions. This is based on the assumption
that the first authentication-like request will include the user-defined,

valid credentials, which holds true for all scanners we evaluated.

ReScan will then detect these fields in subsequent requests and will
overwrite them with the valid credentials, thus ensuring the integrity
of the authenticated session.

Oracle. Moreover, again on the first authentication request,
the module will perform a series of steps to dynamically infer an
authentication oracle, conceptually similar to the one proposed
in [21]. In more detail, the worker that performed the login will send
another request to the landing page without containing any cookies,
to obtain an unauthenticated response. The module will then check
if the detected username (or email) or any logout-related string
appears in the authenticated response but not in the unauthenticated
one. If so, it has deduced a robust authentication oracle. If they
appear in both responses, the worker will then fetch the page
containing the login form and check whether the form appears
only in the unauthenticated response. Similar to the first step, if this
yields a positive result we have again found the oracle. For each
subsequent request, right after the execution of its workflow, we
deploy the oracle in a new browser tab so as to check the validity of
the established session. The new tab is required so as to maintain the
main request’s state (e.g., landing page) and execute the remaining
components. During our experimental evaluation we observed that
the overhead induced by executing the oracle in every request is
negligible yet significantly increases robustness.

Relogin. If after the execution of a request the oracle detects
that we have been logged out of the application, the module must
attempt to transparently re-establish an authenticated session. This
can happen if another concurrent worker triggered a logout and
invalidated the session for everyone, or the session broke due to this
specific request. However, at this point we cannot be certain which
is the cause. In any case, the module will revisit the login URL
and try to login with the valid credentials and consult the oracle
to verify that the relogin succeeded. If it succeeds, the worker will
retry the request at hand to ensure that its workflow was executed
properly. If the session breaks again, indicating that this is indeed
the faulty request, we relogin and skip the remaining components
for this request; otherwise we proceed as normal. Finally, if the
relogin fails, we inform all workers to shutdown since we cannot
continue the authenticated scan, indicating that either the credentials
are no longer valid (e.g., the user was deleted or blocked), or that the

application is no longer responsive (e.g., it returns an error message).

However, this behavior can be disabled with a simple configuration
option, so as to allow the scan to continue regardless of a successful
relogin. It is important to note that while the oracle is conceptually
inspired by [21], the entirety of the authentication helper module
and its capabilities is a new contribution, rooted in the challenges
presented by the novel middleware architecture of ReScan.

False positive & negative elimination. Another common
scanner limitation is their susceptibility to false positives (FPs) and

negatives (FNs), especially when testing for XSS vulnerabilities.

This is due to the fact that scanners often verify the success of
their injections based solely on the payload’s existence in the HTTP

response, without verifying if the payload was actually executed.

Therefore, it is clear that a payload that appears “as is” but was
never executed (e.g., due to it being part of an input element’s value
attribute) will lead to a FP. Similarly, even if the payload is executed,
but its structure is altered or completely removed by client-side code,
the scanner will not be able to detect the successful injection, leading
to a FN. Due to our black-box approach, we cannot tamper with each
scanners’ internals and tackle this; we can, however, eliminate or
reduce such cases by providing the user with additional results as a
separate report, which can be intersected with the scanner’s reported
vulnerabilities. To achieve this, we employ the following approach.

First off, for each incoming request, we try to identify if it is
an injection attempt by collecting all query parameters for GET
requests and payload parameters for POST requests, and check
their values against common keywords used among scanners
(e.g., alert, prompt, javascript:). The intuition is that
regardless of the payload structure, most scanners will attempt to
trigger an alert box with their injected code. Then, whenever an
alert box opens throughout the rest of the scan, we extract its text
and try to match it against all detected injections in the previous
step. If the alert text does appear inside any of the injection values,
we can be certain that the detected XSS is a true positive, since it
leads to code execution. If it does not match any of the injection
attempts, it is discarded, as it is a legitimate alert by the application.
It is important to note that the effectiveness of this technique relies
on the underlying vulnerability scanner.

For scanners that do not reuse payloads, i.e., do not alert the
same value for different injection points (e.g., Wapiti), then all FPs
and FNs can be eliminated as each alert box can be exactly mapped
to one injected value. If the scanner does reuse payloads (e.g., ZAP
always tries to execute alert (1)) then any alert box that occurs
will be mapped to all attempted injections so far. Thus, we know
there is at least one XSS vulnerability up to that point, but we cannot
be certain which parameter is vulnerable, nor if there are more than
one. For such cases, we simply inform the user that the confidence
level for the legitimacy of the reported vulnerabilities is lower
and they should account for possible FPs reported by the scanner.
Moreover, if there are no alerts throughout the scan, indicating
that no XSS vulnerabilities were triggered, then any reported
vulnerabilities by the scanner can be safely considered as FPs.

B. URL Clustering

All the enhancement techniques we have devised so far aim
to improve scanners’ code coverage and vulnerability detection
capabilities. However, during our empirical analysis we identified
an orthogonal limitation which affects scanners’ performance. We
observed that scanners are not able to identify similar URLs, which
may include the same or related content but essentially offer the exact
same functionality. For instance, if a web application includes a se-
ries of product URLSs of the form /products.php?pid=X, the
scanner will crawl and audit each URL separately, which can even-
tually lead to the detection of other similar URLSs, specific to each
product (e.g., /products.php?pid=X&action=edit).
Clearly this behavior impacts scanners’ performance, as they spend
resources and time repeatedly testing the same functionality.

Additionally, while some scanners offer some sort of control
mechanism to limit this behavior, they are coarse-grained approaches
that require careful configuration by the end user and can also
wrongfully skip URLSs. For instance, Wapiti offers an option to limit
the crawl’s depth, which can result in skipping important URLs that

appear in deeper levels of the application while similar URLs that
are at the same depth will be redundantly crawled. w3af provides an
option to limit the number of URLs with the same path and set of
query parameters that will be considered during the scan. While this
can decrease the number of discovered similar URLSs, it requires care-
ful examination and proper configuration. More importantly, some
URLs with the same query parameters might need a different thresh-
old than others; for example setting the threshold to 1 would work for
/products.php?pid=X URLSs, as more than a single product
page would be redundant, but for URLs of the form /prod-
ucts.php?pid=X&action=Y, where action can be one
of edit, update, delete, a value of 1 would cause the
scanner to consider only one of these functionalities, thus directly
affecting its coverage and, potentially, the detected vulnerabilities.

It is worth mentioning that prior work on web application
scanning has proposed page clustering algorithms [19], [49];
however, their approach relied solely on a page’s link structure or
did not consider URLs’ query parameter values. Regarding the link
structure, while such a strategy may have been adequate at the time,
modern web applications utilize new methods for navigation and
different functionalities (e.g., stray input or button elements that do
not belong to a form) which are driven by client-side events. Ignoring
these can lead to the incorrect clustering of different pages. On the
other hand, ignoring URL parameter values can lead to subtle but
important inconsistencies. For example, consider two product pages,
with pid=1 and pid=2 and their corresponding sub-URLs for
editing each one, /products.php?pid=X&action=edit.
When the scanner encounters the product URLs, it deems
them to be similar and clusters them under pid=1. When
it visits the editing pages, if it does not take into account the
pid value it used previously, it can end up clustering them
under /products.php?pid=2&action=edit. Thus, if a
vulnerability stems from editing a product’s field and is reflected in
that product’s page, the scanner will miss it as it will edit the second
product but inspect the page of the first one.

To overcome these limitations, we design an advanced URL
clustering algorithm that aims to cluster similar URLSs in real time
when requested by the scanner and prevent it from ever learning
the existence of redundant URLSs, without requiring any specific
configuration by the user.

Page similarity. The first requirement for our algorithm is to
be able to accurately and efficiently identify whether two URLs and
their respective DOMs are in fact similar and should be clustered
together. We consider two URLSs to be similar if they share the same
path, regardless of the URL query parameters. If they are not similar
they are not clustered together; if they are, we still have to investigate
whether their DOMs are similar to decide if they should be clustered
or not. To achieve this, we build upon the normalized DOM-edit
distance metric (NDD), proposed by Vissers et al. [62], which
essentially takes as input two DOM trees and computes the number
of edit operations required to move from one tree to the other.
Initially, we observed that the tree edit distance algorithm they used
at the time (ZSS [63]) was rather slow even for relatively simple
DOMs. Since we need to compute DOM similarity immediately
when a page is requested by the scanner, we cannot afford such
a performance penalty. Thus, we decided to replace the tree edit
distance algorithm with current state-of-the-art, namely APTED,
proposed by Pawlik et al. [47], [48], which offers a significant speed
up. However, in certain cases of more complex DOMs, even this
algorithm had a prohibitive processing time for our use case.

Since designing a more efficient tree edit distance algorithm
is out of scope of this work, the only way to reduce the processing
time is to reduce the size of the algorithm’s input, i.e., the DOMs’
sizes. While [62] adopted a horizontal pruning approach, discarding
all tree nodes below a level of five, such an approach would not
be suitable in our case. This could lead to subtle but important
differences that indicate different functionality between the two
pages (e.g., a form residing in deeper levels of the DOM) not being
considered, leading to pages being incorrectly clustered together.

Thus, we devise our own fine-grained pruning methodology.
When constructing the corresponding trees from the pages’ DOMs
we recursively discard leaf nodes that do not offer any sort of
functionality (e.g., line breaks, paragraph, span, div or font
formatting tags), while maintaining nodes that denote functionality
(e.g., scripts, forms, iframes, buttons and inputs). If a node has all of
its children removed, becomes a leaf node and is a non-functional
tag, it is discarded as well. With this approach, we significantly
reduce the tree size and thus the processing time required for the
NDD computation, while maintaining the important parts of the
tree structure that we should consider when deciding whether two
pages should be clustered.

Moreover, this approach also helps us avoid not clustering
similar pages together due to insignificant differences. For instance,
consider two article pages that should be clustered together as they
offer the exact same functionality and one of them includes a list
of comments, while the other does not have any yet; this would
lead to not clustering these pages together due to these (irrelevant)
nodes. It is important to stress at this point, that two pages that
do not include any functionality denoting nodes (e.g., two static
pages) would be oversimplified and incorrectly clustered together;
however, we employ our NDD variant only for pages that also share
a similar URL, thus avoiding clustering together irrelevant pages.
We refer to our NDD variant as mNDD. If the mNDD between two
DOMs is lower than a predefined threshold, which we identified
experimentally, they are considered similar.

Algorithm. We use an example application that includes a
set of similar and different pages under the same base URL to
illustrate our URL clustering algorithm. Assume an application
that lists two different products pages, with URLs of the form
/products.php?pid=X and pid denoting each product’s
unique ID (either 1 or 2). For the remainder of this section,
all example query strings will refer to the products.php
page, which we omit for brevity. These pages include links to
product-specific pages (?pid=X&action=Y) that offer different
functionalities. The action parameter canbe edit, review
or add, and leads to a page that has a form for editing, reviewing,
or adding the product to the cart, respectively.

At a high level, the core idea of the URL clustering algorithm is
to prevent scanners from learning the existence of redundant URLs
that point to similar pages and offer the same functionality. In this
example, the scanner should either learn (i.e., receive a regular
response) for pid=1 or pid=2 but not both. Moreover, the
algorithm must ensure that the scanner will learn all other functional-
ities and sub-URLs for the same product ID only. For instance, if the
scanner initially learns ?pid=1, then it should also learn all actions
for that product ID only. This is required since executing such a func-
tionality will most likely have an effect only on that product’s page.
Thus, the algorithm needs to keep track of the different URL param-
eters and their values for which the scanner got a response. Finally, it
is crucial that the algorithm also accounts for the arbitrary order the

scanner might request such URLSs; e.g., it is not restrained to request-
ing the ?pid=X URLs first and then moving on to their specific
sub-URLs. Having defined the algorithm’s goals and an example sce-
nario, we next detail the specifics of our URL clustering algorithm.

Firstly, the algorithm considers only GET requests that include
query parameters. We do not include other types of requests (e.g.,
POST) as they do not carry information that is useful for the
clustering process and would only lead to longer running times. The
first time the scanner requests one of these URLs it will get a regular
response and we store all parameters and their values that it learned.
For subsequent requests towards the same base URL with differing
query parameters (either with a different set of parameters or differ-
ent values or both) the algorithm will perform the following steps:

1) Collect all parameters that we have seen before but have a differ-
ent value than the one(s) the scanner has learned. We represent
these parameters with set { X }, and another empty set with {X'}.

2) If there are any new parameters that the scanner has not
requested before, leave them ““as is”” and store their values.

3) Swap the unknown values for the {X \ X’} parameters (the
difference of the two sets) with those previously learned by the
scanner (initially all values are unknown).

4) Internally fetch the swapped and original URLSs (if not already
fetched) and compute the mNDD between them.

5) For similar pages generate a clustering rule (described below)
and stop.

6) If the pages are nor similar: (i) reset { X'}, (ii) pick a parameter
to preserve its original value, (iii) add it to {X'}, and (iv) go
to (3). If no more single parameters remain to preserve their
value, iterate through all combinations of two parameters, then
combinations of three, and so on.

7) If there are no more parameters to swap, stop, as this is
indeed a new page and should be served normally. Store the
original URL’s parameter values for subsequent comparison and
clustering decisions.

Assuming the scanner initially requested and learned ?pid=1,
we next provide a series of cases based on our example scenario
to demonstrate our algorithm’s correctness and to also describe the
generated clustering rules and how they are applied. If ?pid=2
is requested next, since the pid parameter has already been seen
before but with a different value (step 1), it will be swapped with the
known value 1. Then both URLs will be fetched internally, their
mNDD score will be computed and they will be found similar, and
the clustering rule shown in Listing | will be generated (steps 1-5).

and the scanner will internally fetch the original URL and also
?pid=1g&action=edit, compare them using mNDD and infer
that they are again similar, setting the rule shown in Listing 2.

{ llpidﬂ . ll*"’
"action" : "edit",
"redirect" : "?pid=l&action=edit" }

{ "pid" s "ah,

"redirect" : "?pid=1"}

Listing 1: Example of a simple clustering rule.

Essentially, this rule indicates that any incoming request that only has
the pid parameter, regardless of its value, should be redirected to
?pid=1, thus effectively preventing the scanner from ever getting a
response for the other product. This is achieved by sending a crafted
HTTP response back to the scanner, with a 301 status code and the
Location header set to the appropriate URL. The only exception
is when the scanner requests ?pid=1, which will be served as
normal so as to obtain a fresh response for that product’s page.

If the scanner requests ?pid=2&action=edit next,
we have a newly seen parameter (i.e., action) which is not
tampered with throughout the process (step 2). The known
pid parameter will be swapped and processed like before

Listing 2: Example of a subsequent clustering rule.

It is important to note, that the scanner might not have requested
or even seen the swapped URL before; this, however, does not affect
the algorithm’s operation, as it can proactively infer its existence
by considering the previously seen parameters and their values. It
is also necessary, in order to ensure that the scanner will learn the
editing functionality for the same product it learned before.

If the scanner then requests ?pid=1l&action=review, the
pid parameter already includes a known value and is therefore
left as-is. The action parameter, while known, has a different
unknown value compared to before. Thus, it will be swapped with
the value edit, the two URLs will be compared and the algorithm
will infer that they are in fact different pages, since their mNDD score
is higher than the threshold. This leads to not setting any new rules
and the originally requested URL should be served normally (step
7) while storing the newly seen value for the action parameter.

Finally, in a more complex case, if ?pid=2g&action=add
is requested, both parameters are known but yet contain values that
the scanner has not learned. As a result, all parameters will be initially
swapped and the URL ?pid=1lsaction=edit will be fetched
and compared. Since it leads to a truly different page, no rules will
be generated and one of the parameters will be picked randomly
(e.g., pid) to preserve its original value (step 6). The swapped
URL that occurs is ?pid=2&action=edit, which also leads
to a different page. Next, the last remaining parameter will maintain
its value while swapping the other one (?pid=1&action=add).
This indeed lands on a similar page as the original URL and a rule
similar to Listing 2 will be generated, for the add functionality.
Even if these requests occurred in a completely different order,
since scanners can prioritize them differently (e.g., based on when
the URLs were discovered in the application during the crawl), the
algorithm would end up inferring the exact same clustering rules,
with a slightly different order and steps, depending on the known
parameters and their values at the time of processing.

At this point, it is worth noting that a large number of URL
parameters could potentially lead to a state explosion or a prohibitive
processing time, due to the numerous parameter combinations that
would have to be tested. In practice, however, this is a highly unlikely
scenario due to several reasons. First, since the algorithm initially
ignores newly seen parameters and parameters with known values, it
would not have to test and compare all combinations. In addition, for
that to happen all combinations would need to lead to different pages,
as the algorithm stops if it finds a pair of similar pages. Finally,
we have not come across any such case during our experimental
evaluation. In §IV-B we experimentally measure the performance
gain our algorithm offers, and also evaluate its correctness in terms
of achieved code coverage and discovered vulnerabilities.

Implementation details. Our URL clustering functionality
can be enabled with a simple command line parameter; no further
configuration is needed. Initially, the Orchestrator inspects the
scanner requests and locates each GET that includes a query. It
then checks if any of the generated rules applies to the URL,; if so,

Scanner w3af wapiti Enemy ZAP

Vulnerability R-XSS S-XSS | R-XSS S-XSS | R-XSS S-XSS | R-XSS S-XSS 10° £

SCAREF (2007) /- 4/8 JE 37 & -4 = 3/6 _ /’\\\7
WackoPicko (-) 172 -1 2/3 171 212 1/1 212 1/1 g \ ;
Wordpress (5.1) - -n -n % /- /- -n 1% g V)
osCommerce (234.1) | -2 -2 33 5/16 /- /- /- 212 § ™ |
Vanilla (2.0.17) - -n 4 -n /- - - -1 g /

PhpBB (2.0.23) - /- /- -/2t /- /- A -/4f 2 TN

Prestashop (1.7.5.1) | -1% - | 1% - - A =L NN]
Joomla (3.9.6) A /- /- A A - - A 3 , wapiti ——
Drupal (8.6.15) /- /- /- /- /- /- /- -/- 3wl / By
HotCRP (2.102) -1 -/- -1 -/- -/- -/- -/- -/- Standalone %ceas?gaeg x
Total | 16 413 | 59 928 | 212 s | 24 615 o (Black widow, —*—

* The scanner was able to identify the vulnerability only with ReScan, but not during the maximum scan time.

T One of the vulnerabilities was found in a URL that broke the app and was eventually excluded.

TABLE II: Number and type of unique vulnerabilities discovered by each scanner

without (left) and with ReScan (right) for each app.

it immediately crafts an HTTP redirect (@) in Figure 1) and sends it
to the request’s proxy thread, which eventually sends it back to the
scanner. If no rules apply to the URL (initially because none have
been generated) it marks the request as pending and passes it to the
clustering module.It then moves on to subsequent requests that need
to be served, so as not to remain idle while pending requests are
processed, and periodically checks if a new rule has been generated
and applies to the pending URL or whether the request should be
passed on to the browser workers.

The clustering module is comprised of a configurable number of
threads that handle pending requests concurrently. When a request ar-
rives, a thread reserves it and runs the algorithm to decide whether to
serve it normally or infer clustering rules. These threads do not main-
tain their own browser instances, as it would be too expensive, but
need a way to fetch the original and swapped URLSs that occur during
their operation. To that end, we leverage the BG Worker, which apart
from ISD-detection also serves these requests by the mNDD threads.
It also caches the responses in case the same URL is requested later
on. The BG worker constantly checks requests, as they are issued
from the scanner and need to be served as soon as possible.

C. API Abstraction for Future Scanners

As aforementioned, while ReScan can be transparently
leveraged by any scanner as a black-box middleware, future
scanners could greatly benefit from the ability to access ReScan’s
internal knowledge and alter its behavior based on their runtime
needs. As such, in order to unleash ReScan’s full potential and
enable such a symbiotic interaction, we design and implement an
abstraction layer in the form of an APL. A scanner opting to use
the API can request access to ReScan’s ’internal data, such as the
entire app navigation model, detected ISDs, discovered XSS and
more. Moreover, it can alter ReScan’s behavior, by enabling or
disabling any module at runtime, e.g., disabling ISD detection and
sink collection when testing for vulnerabilities that do not have ISD
effects. We detail the various API endpoints in Appendix E.

IV. EXPERIMENTAL EVALUATION

Experimental setup. For our system’s evaluation, we use state-
of-the-art vulnerability scanners that have seen wide adoption,
allowing us to perform a direct comparison. Specifically, we evaluate
ReScan on w3af [51], wapiti [57], Enemy of the State [19] and
ZAP [5], which have been extensively evaluated by prior work [20],
[19], [49], [24], [25]. We refrain from evaluating simple crawlers,
e.g., wget [44], CRAWLJAX [43], even though they could benefit

S W W 0 Vs Py A, Je O He
Chrp GCkonckZ’dpreS:C"'"mefc"”’a "o8g CStagp oMl el OCRp
e

Applications

Fig. 3: Total scan time in seconds for each app/
scanner pair with and without ReScan.

from ReScan, since our main goal is to enhance vulnerability
scanners and measure both their coverage and detection capabilities.
w3af and wapiti serve as a benchmark for more traditional vulnerabil-
ity scanners as they mainly use raw HTTP requests and feature from
minimal to no-Javascript execution engines, while ZAP has more
advanced capabilities that are better suited for modern scanning re-
quirements. Enemy of the state is a popular state-of-the-art academic
scanner, which also introduced the concept of modelling application
states. To be able to evaluate Enemy, we had to make some slight
modifications so as to proxy all of its traffic through ReScan; its core
functionality was left as-is. Finally, it is worth mentioning that we
also attempted to setup jAk [49] for our evaluation, but were unable
to do so, due to the use of certain outdated packages that prevented
it from executing properly. We contacted the authors to aid us in the
setup process, but did not receive a response.

To obtain better code and functionality coverage in the tested
applications, we run authenticated scans by configuring each
scanner to log into them. For ReScan’s configuration, we enabled
four headless Chrome browser workers and all enhancement
techniques described in §III (i.e., ISD detection, event triggering,
as well as the authentication helper and URL clustering modules).
For the event discovery process we consider the events by [25], (i.e.,
(on)input, onchange and compositionstart) and also extend them
to include another set of prominent events that can trigger requests
and cause DOM changes, namely (on)click and (on)submit.

When running the standalone scanners without ReScan, we
enabled the audit plugins both for reflected and stored XSS.
However, when evaluating ReScan we disabled the stored XSS
plugins, as we rely on our ISD module as a substitute. Similarly,
we enabled the AJAX spider plugin for ZAP when running without
our system, but disabled it with ReScan, due to our event discovery
module. These configuration changes however, do not work in
favor of ReScan; on the contrary, by disabling modules we can only
limit our coverage and detected vulnerabilities. Despite that risk,
and in favor of reducing redundant operations as well as proving
our approaches’ practicality, we opt to rely on our own techniques.
We also set the HTTP timeout for all scanners to 999 seconds.
Finally, to avoid long lasting scans that may occur for more complex
applications and complete our evaluation in a reasonable timeframe,
we set each scanner’s maximum scan time to one day. It is important
to stress that apart from the aforementioned configuration options,
all scanners and applications were configured in the exact same way
when running with and without ReScan. We provide more details
on the specific configuration options in Appendix F.

In Table II we list the web applications and the specific versions
we used during our evaluation. We opted to use the same set of appli-
cations as [25], since it includes both legacy and intentionally vulner-
able apps as well as modern, widely used applications. In addition,
using the same applications allows for direct comparison. We created
an individual Docker container for each application, allowing us to re-
set it back to a clean state after each scan; all containers have been re-
leased to facilitate further research in the field [11]. We also enabled
XDebug [50] in each application for capturing precise coverage
information in terms of unique lines of code (LoC) executed during
each scan. Finally, we note that for each application we excluded any
URLSs that might affect the application’s correct deployment (e.g.,
user deletion functionalities, version upgrading), as done in prior
work as well (e.g., [22]) In more detail, we initially identified com-
mon URLs manually. Then, during our test runs our authentication
helper module allowed us to identify more URLs (i.e., when being
logged out and not able to re-login). Inspecting the traces showed that
some functionality broke the app or the user was disabled/blocked.
While such endpoints might also suffer from vulnerabilities, they
pose a risk to correctly auditing other (and usually more) function-
alities. In practice a separate scan should be performed for those
endpoints. This is inherent to black-box scanning and is not a limita-
tion of ReScan; it is rather a matter of correct scanner configuration.

Experiments were done on a commodity desktop with an 8-core
Intel Core i7-4790 CPU 3.60GHz and 12 GB of RAM.

Discovered vulnerabilities. Table II details the results of our
evaluation; we manually verified every discovered vulnerability and
report on the true positives. To deduplicate scanners’ results and
provide a fair comparison, we cluster vulnerabilities following the
same approach as prior work [25]. Regarding false positives, we
found that wapiti reports only one, while ZAP is the scanner most
prone to FPs as it reports 16 FPs across all apps by itself and 20
with ReScan. This increase is expected, as the scanner audits a larger
area of the application when enhanced by our system. Nonetheless,
ReScan is able to identify these injections as potential FPs due
to ZAP reusing the same payload. Regarding true positives, in
most cases ReScan effectively enhances the underlying scanner and
facilitates the detection of more vulnerabilities, both for reflected
and stored XSS. We also observe that the detection capabilities
improve both for benchmark, and more recent applications. When
considering the aggregated results per scanner for all applications, we
find that w3af reports five more reflected XSS with ReScan and nine
additional stored XSS. Moreover, wapiti located four more reflected
and another 19 stored injections, while ZAP has an improvement of
two and nine additional flaws respectively. Enemy of the State ex-
hibited the least improvement but still located four additional stored
XSS; this highlights that while ReScan is naturally dependent on
the underlying scanner’s capabilities, it can still effectively facilitate
vulnerability detection. Overall, the standalone scanners reported
six unique reflected and 13 stored XSS among all applications,
while with ReScan they reported 10 reflected and 34 stored XSS
respectively. Even in the few cases where no additional flaws
were detected, the presence of ReScan does not negatively affect
scanning as the same vulnerabilities were detected both with and
without our system. Detecting the same flaws does not necessarily
mean that the standalone scanner has detected all endpoints of the
application or that it has sufficiently tested it; it might simply mean
that while ReScan covers a larger area of the application, no other
vulnerabilities exist for it to detect. To uncover more insights, we
need to examine the code coverage that was achieved in each case.

10

Code coverage. Table III shows the precise coverage achieved
by our system, as unique LoC executed on the server-side during
the scan, and compares it to the coverage of each individual
scanner. ReScan achieves better coverage in all cases and offers an
improvement of at least 3% and at most 935%, with an average of
168%. To validate the quality of the increased coverage, we manually
sampled and inspected LoC executed only by ReScan and found
that in many cases ReScan-enabled runs reached and tested critical
functionality that the standalone scanners did not. Indicatively, ZAP
could not reach the categories’ editing functionality in osCommerce,
while none of the scanners could post and read draft discussions
in the Vanilla app; both cases led to missing XSS flaws. We
also observe that vanilla scanners reach some LoC which are not
executed by ReScan. After inspecting these cases, we found that
they belong to unauthenticated parts of the application, indicating
that the scanner was logged out and continued as such. ReScan’s
authentication helper module ensured that the scanner remained
authenticated throughout the scan, as intended.

Performance analysis. In Figure 3 we present the total time
required to scan each application both with and without ReScan.
The overhead induced by our system is considerable; however
this is expected due to the numerous enhancement techniques we
apply for each and every intercepted request and the fact that a
full-fledged browsing environment is leveraged. In addition, the
maximum scan time of one day was reached by all scanners for one
of the applications (HotCRP) while in total, 15 of the 40 ReScan-
enabled runs reached this limit. We detail our system’s individual
components’, as well as total processing time per handled request in
Appendix D. Most notably, event discovery can be quite expensive
for applications that heavily rely on Javascript and client-side events,
i.e., on average it takes one to three seconds for nine of the apps,
while Prestashop required 19 seconds. Similarly, fetching ISD sinks
on average took less than two seconds for five applications, while in
the worst cases (Wordpress, Prestashop) it took 11 and 16 seconds
respectively. Other system components, such as fetching and execut-
ing the workflow, constructing the navigation model and crafting the
final HTTP response introduce negligible overhead in most cases,
i.e., less than a second. Interestingly, while executing the crucially-
important authentication oracle after every request might seem costly,
our analysis showed that it only takes up to two seconds for 99% of
requests. Overall, each request can be completed on average within
three seconds for four applications and five seconds for another two,
while Prestashop generally has slower response times and can take
up to 21 seconds. In summary, while the performance overhead
is non-negligible when compared to the standalone scanners, the
significant improvements both in code coverage and vulnerability
detection render this a viable and acceptable trade-off.

Prominent use cases. Next we outline interesting use cases that
highlight the benefits of using our framework.

Vanilla FP. When wapiti scanned the Vanilla forums with ReS-
can it incorrectly reported an XSS vulnerability due to the payload
appearing inside a textarea element (i.e., was not executed).
However, while ReScan detected the injection attempt, due to our
FP-elimination mechanism it correctly did not report a vulnerability.

Wordpress FN. One vulnerability is a reflected XSS stemming
from the submission of a vulnerable field in an AJAX request. The
AJAX response is then reflected in the same page, the payload is
executed and is then dynamically removed from the DOM; thus
neither wapiti, nor ZAP are able to detect their otherwise successful
injection. Since ReScan is agnostic to the presence and structure of

TABLE III: Total lines of code (LoC) executed by ReScan (R), the standalone scanner (S), and common to both of them (R N S).

App / Scanner w3af wapiti Enemy ZAP
R RNS S R RNS S | R RNS s | R RNS S

SCARF 662 533 548 659 596 611 623 261 288 613 578 599
WackoPicko 1,009 888 907 911 692 710 873 433 452 819 684 784
Wordpress 51,612 30,779 30,805 | 53974 30,862 31,134 | 43,731 28908 29,266 | 54,329 33,514 34,484
osCommerce 7,056 2,066 2,074 7,179 6,947 7,140 5,194 2,067 2,067 7,270 6,247 6,925
Vanilla 12247 8,073 8,137 | 12,138 7,936 8717 | 12404 2477 2,479 12,951 8,774 9,568
PhpBB 9,303 2,321 2,330 9,942 3,069 3,091 8,225 6,780 7,018 10,487 4,316 5,259
Prestashop 93,361 14,544 14709 | 96,712 14916 14926 | 28209 19,062 19,062 | 103,955 10,043 10409
Joomla 43,094 14,822 14895 | 54,048 16,505 17476 | 20,113 15527 15876 | 54,711 15448 16,149
Drupal 80,195 26,251 28,655 | 80,620 23,290 25,105 | 70,998 59,998 68,236 | 74,428 28272 30,291
HotCRP 19,109 8,772 8,777 17,737 10,517 11415 | 17,063 14871 14918 15,647 5,463 5,509

the attempted payloads, instead relying on code execution, it is able
to detect and report this missed vulnerability. This clearly highlights
the need for dynamic vulnerability verification. Moreover, we note
that this AJAX call requires a valid CSRF token, demonstrating the
importance of our correct workflow execution.

Vanilla ISD detection. The Vanilla forums’ vulnerability is a
stored XSS that occurs when saving a new discussion as a draft,
and is triggered when viewing the author’s drafts. However, the
sink of the injection (/drafts) is not visible anywhere on the
application before saving the first draft and is only added to the
home page afterwards. Therefore, the scanner would need to re-visit
the home page and actively search for new URLs and visit them,
in order for ReScan to discover the ISD link, all while before the
scanner started fuzzing the source. This highlights the practicality
of the background worker, which operates independently of the
active scan and attempts to find such links before the scanner starts
fuzzing the corresponding ISD source.

A. Other Vulnerabilities

While our evaluation focused on XSS, as they are the most
prevalent bug among our applications and also allow for a direct
comparison with recent work [25], ReScan aims to support any
vulnerability type that scanners might test for. To that end, we
conducted another set of experiments, where we picked known
vulnerabilities from our applications and re-configured the scanners
to use the corresponding auditing plugins, to assess whether our
system can effectively facilitate their detection.

File upload. osCommerce suffers from an unrestricted file
upload vulnerability [10], in the image-upload functionality for a new
product category in the administration panel. Specifically, while the

.htaccess filein the upload directory attempts to prevent access
for a number of executable files, it does not prevent all of them. To
uncover this vulnerability, we configured w3af (with ReScan present)
touseits file upload plugin and pointed it to the vulnerable
upload form, which led to the successful upload of an executable
file and was detected by the scanner. w3af without ReScan, however,
can never reach the upload form as it cannot authenticate in the
application, which also justifies its rather low coverage in Table III.
While the root cause for w3af missing the vulnerability is not specific
to the mechanics behind the vulnerability itself, this highlights the
fact that having the necessary payload to trigger a vulnerability is
only one aspect crucial to a scanner’s success.

Login brute-forcing. For brute-forcing weak account
credentials we opted to use Prestashop, due to its irregular login
form functionality. In more detail, while logins are carried out
through a regular HTML form with its action attribute set to

11

the login page’s URL, upon submission the form sends a request to
a different endpoint; as such the scanner has no way of discovering
it and successfully logging in. ReScan, correctly submits the form
and follows all redirections, and manages to log into the application.
To that end, we enabled w3af’s form_auth brute-force plugin and
pointed it to the administrator’s login page. As expected, w3af
by itself was unable to detect the correct credentials, while with
ReScan it detected and reported the vulnerability.

Blind SQL injection. Since the applications in our dataset did
not include any non-trivial SQL injection vulnerabilities (SQLi), we
opted to install a vulnerable Wordpress plugin, namely GB Gallery
Slideshow v1.5 [2]. One of the HTML forms generated by the
plugin has a registered onsubmit event, which overrides the form’s
default functionality by sending an AJAX request with a completely
different payload. One of the AJAX parameters is vulnerable to a
blind SQLi [8], where successful exploitation is not directly visible
on the landing page but is inferred based on the time required
to get a response. We configured Wapiti to leverage its blindsql
module and pointed it to the page containing the vulnerable form.
As expected, wapiti without ReScan was able to fuzz the form’s
default structure but could not uncover the actual AJAX request
that is sent when correctly submitting the form. In contrast, ReScan
identified the AJAX request through its event discovery process
and transcribed it to a static HTML form in the HTTP response so
Wapiti could identify it too. Later, the scanner fuzzed the correct
request, which was replayed by ReScan through the navigation
model, leading to the detection of the vulnerability.

Overall, while certain ReScan components are tailored towards
specific types of vulnerabilities, such as the ISD detection and FP/FN
elimination for (stored) XSS, the remaining components effectively
facilitate the detection of other types of vulnerabilities as they are
not tied to the vulnerability itself. For instance, realistic rendering
and interaction through a SotA browser, event discovery, correct
workflow execution and maintaining the authenticated state are of
crucial importance for two main reasons. First, all these aid scanners
in discovering further application endpoints and functionalities to
audit. Second, they are necessary for properly executing certain
functionalities, which is a necessary prerequisite for the scanner to
be able to correctly test its payloads and deploy its fuzzing strategy
regardless of the vulnerability type being tested. As such, our system
can effectively be applied to a large class of different vulnerabilities;
by open-sourcing our code, we hope to facilitate other researchers
in the field of black-box web application testing.

B. URL Clustering

It is critical to ensure that our URL clustering algorithm does
not result in scanners missing relevant parts of the application.

mNDD threshold. To identify the optimal threshold for our
mNDD metric, we performed the following experiment. For each of
the applications, we manually compiled three sets of pages. The first
set included pages with completely different URLs and functional-
ities which should not be clustered together, while the second set
included pages with similar URLs and functionalities that should be
clustered. Finally, the third set incorporated pages that had similar
URLS, but should not be clustered due to different functionalities. We
then proceeded to compute the mNDD score for each pair of pages
within each set, where a higher value denotes different pages and a
lower value indicates some similarity. For the pages that should not
be clustered (1st and 3rd set), the minimum mNDD value was 0.014,
setting an upper bound for the threshold. For the pages that should be
grouped together, the maximum mNDD value was 0.009, indicating
a lower bound for the threshold. As there is no overlap between
the range of values for different and similar pages, we opt to use
the lower of the two as our page similarity threshold (i.e., 0.009) to
ensure that we avoid false positives where different pages that happen
to have an mNDD slightly less than 0.014 are clustered. During this
process we encountered a single false positive, in osCommerce,
where two different pages were incorrectly clustered. This was due
to the fact that the two pages were identical in structure even though
they had different functionalities (adding an item and editing an
existing item respectively). However, it is important to note, that
this false positive is not limited to our mNDD approach, as the tree
edit distance value is O for the regular NDD as well. We also note
that while this threshold might not work for all applications, it is
well-suited for most cases as our empirical analysis was conducted
on a dataset that incorporates a diverse set of applications.

Correctness. To assess the correctness of our algorithm, we
relied on the clustering rules that were set for each application
during our main evaluation runs. Specifically, we inspected the
different parameters that were clustered and proceeded to visit the
corresponding pages both with the values that the scanner requested
but were redirected, as well as the final redirection value too. We
then observed whether the pages were in fact similar to each other or
if they were incorrectly clustered together. Among all applications,
this process yielded two cases of false positives. As expected, the
first case was the aforementioned issue with osCommerce described
during our similarity threshold experiment. The second case was for
PhpBB, but only for w3af’s scan. After analyzing the cause for this
false positive, we deduced that it was not caused by our algorithm
or the mNDD metric, but instead, was caused due to w3af’s
inability to maintain an authenticated session in PhpBB, even with
ReScan. In more detail, PhpBB uses a randomly generated sid URL
parameter in all administrator URLs and also sets the same value
in a cookie. After logging in, w3af sent another request without
cookies, ReScan’s authentication helper re-established the session
and the scanner ended up with two different values for sid and the
cookie, effectively creating a mismatch between them and leading to
unauthenticated responses. As a result, while it initially discovered
the existence of post-login URLS, it could not properly request
them and it kept getting an invalid session message in all responses,
leading to the clustering of different pages. This, however, was not
the case for the other two scanners, which got proper, authenticated
responses for these pages and did not cluster them incorrectly.

Performance gain. To measure performance gain we further
analyze wapiti’s run on osCommerce as a representative case,
since the application includes several similar pages that should
be clustered and wapiti also takes the longest among all scanners
to complete its operation. We then proceeded to re-run the scan

12

TABLE IV: Qualitative differences between ReScan and Black Widow.

Feature / System

| Black widow ReScan

Browser support
Navigation model
Inter-state dependencies
Event triggering

- Handle XHR payloads
Authentication helper

- Detect/configure credentials

- Dynamic state oracle

- Re-login

- Retry failed edges
URL clustering
Concurrent workers

000e00eCc000
000000000000

TABLE V: Detection and coverage comparison between the best run of
ReScan and Black Widow for each app.

Detection Coverage
System ReScan Black Widow ReScan Black Widow
App R-XSS S-XSS R-XSS S-XSS LoC
SCARF - 8 - 4 662 593
‘WackoPicko 3 1 2 2 1,009 1,003
Wordpress 1 1 - 1 54,329 62,281
osCommerce 3 16 - 11 7,270 12,193
Vanilla 1 - 1 12,951 10,108
PhpBB - 4 - - 10,487 8,072
Prestashop 1 - - - 103,955 23,166
Joomla - - - - 54,711 50,240
Drupal - - - - 80,620 39,247
HotCRP 1 - - - 19,109 23,241

without the URL clustering module and without a maximum scan
time. The scan with URL clustering enabled took 62,690 seconds
(17.4 hours) while the other scan took 418,622 seconds (116.3
hours), resulting in a ~6.7x speedup.

C. State-of-the-Art Comparison

Our system adopts a novel approach that allows it to leverage
any underlying scanner. Nonetheless, we opt to compare it to
Black Widow (BW) [25], a state-of-the-art scanner, that highlighted
the need to combine features from multiple other systems and
offers certain comparable features. This comparison highlights that
even though BW was designed to incorporate multiple ideas from
prior approaches, it was still built as a standalone tool, and thus is
susceptible to the inherent limitations of a monolithic approach. In
contrast, ReScan is designed to provide researchers with flexibility,
allowing them to leverage the capabilities of any existing system
of their choice, due to its middleware architecture.

Setup. To compare against BW, we downloaded and ran it on all
applications. One minor change we made to its source code was to
support user-defined credentials, as their system uses hardcoded val-
ues for all input fields, including usernames or emails and passwords.
Moreover, we had to fix a few minor runtime exceptions that halted
the tool’s operation, and write a custom parser that de-duplicates the
scanner’s results. We stress that these changes were strictly limited to
necessary modifications for the tool to execute properly and did not
interfere with its overall approach or methodology. While their study
ran each scanner for a maximum of eight hours in the evaluation,
we opted to let BW run for up to one day.

Qualitative differences. As can be seen in Table IV, both
systems use a fully-fledged browser, create a navigation model
based on which they execute workflows and also uncover ISD links.
While ISD detection is conceptually similar, ReScan does not have

any control over when to crawl or fuzz each endpoint, highlighting
the necessity of our BG worker approach. In more detail, BW always
prioritizes form submissions over other edges and re-fetches all GET
edges right before initiating the scanning phase; this results in it first
fuzzying an ISD source and then visiting the corresponding sink,
allowing for the timely detection of ISD links. In contrast, ReScan
cannot make this assumption as it depends on the internals of each
individual scanner; thus, we need to be more generalizable when
handling ISD detection and need to account for arbitrary fuzzing
and crawling orderings due to the underlying scanner design. Addi-
tionally, both systems can discover events and capture asynchronous
requests and DOM changes. However, BW lacks the ability to set
such requests’ payloads dynamically, while ReScan leverages an in-
ternal proxy to do so after the request has left the browser. Regarding
authentication, while BW can submit a login form (with hardcoded
credentials), it cannot infer whether the login was successful or not.
Moreover, while it can re-login to the application if needed, it only
does so when presented with a login form. Applications’ behavior
varies and accessing an authenticated resource or exercising an
authenticated functionality when logged out does not always result
in a login page; thus their system will miss authenticated parts of
target applications. On the other hand, ReScan automatically deduces
a robust authentication oracle and consults it after the execution of
every request and retries any operation that might have failed due
to a broken session. Regarding similar pages, BW clusters pages
and imposes a hard limit on how many similar pages they will
test (if they share the same path but with possibly different URL
query parameters) without considering the actual pages’ content
and functionality. This can incorrectly cluster pages that should be
audited separately. Another main difference is that ReScan operates
in a concurrent fashion, while BW is sequential, directly affecting
its performance as seen in Figure 3. Finally, BW is a standalone tool
that tests only for reflected and stored XSS, leaving a plethora of
other flaws undetected. In contrast, our system operates as a generic
enhancement middleware framework that can accurately replicate
and potentially enhance virtually any test performed by scanners.

Quantitative differences. BW reported two unigue reflected
and 19 stored XSS among all applications, compared to ten and 34
detected by ReScan, as shown in Tables Il and V. Excluding Drupal
and Joomla, for which no vulnerabilities were detected by any scan-
ner, in all but two of the remaining cases there is at least one ReScan-
enabled scan that outperforms BW. In WackoPicko, BW manages to
detect a stored XSS through a comment which needs to be previewed
first and then posted. However, the vulnerable field is not present in
the final submission form, only in the intermediary preview form.
Due to this irregular structure and since scanners attack each form
separately, despite ReScan correctly modeling and executing the
workflow for the final submission form, scanners cannot detect the
flaw as they try to fuzz that form’s fields only. Regarding coverage,
ReScan outperforms BW in seven out of ten applications, and overall
offers an average improvement of 46% in reached LoC. For the three
remaining cases where BW achieved better coverage, it was either
due to the max scan time being reached by all scanners, and since
BW prioritizes form submissions over other edges, it likely managed
to execute more functionalities, BW visited URLSs that were excluded
from the other scanners, as stated in § IV, or it visited unauthenticated
parts of the application due to a broken session. Nonetheless, ReScan
still managed to detect more vulnerabilities in these cases as well.
Performance-wise, as can be seen in Figure 3, BW reached the max
scan time of one day in eight of the applications, highlighting the
shortcomings of their sequential execution.

13

V. LIMITATIONS AND FUTURE WORK

Categorization issues. In certain cases scanners might report
a stored XSS as reflected: When ReScan appends an ISD sink in
the HTTP response, the scanner will detect the vulnerability as a
reflected XSS, as both the injection and its reflection occurred in the
same request-response pair from the scanner’s perspective. However,
there is also a significant advantage to our technique, i.e., inspecting
ISD sinks right after the injection in contrast to scanners’ default
behavior. Scanners will either visit discovered URLS at the end of the
scan, looking for previous stored injections, or will try to re-inject
their payloads and then inspect the URLs. These approaches, how-
ever, are not robust since a change in the application’s state or content
might render the detection impossible at this point. This could be
due to a successful payload being overwritten by one that does not
trigger the vulnerability, or the reflection page or injection point
not being available anymore; directly checking ISD sinks solves
this issue. Moreover, this miscategorization may also occur during
scanners’ regular operation, if a stored injection is reflected directly
in the HTTP response. In this case, the scanner will initially classify
the flaw as a reflected XSS, but later on, when checking for stored
XSS it might be missed as one, due to the aforementioned reasons.

During our evaluation, we reported the discovered vulnerabilities
based on their actual nature, despite being misclassified by the
scanner. The rationale behind this decision is three-fold. First, this
issue is inherent to scanners’ behavior and further exacerbated by
ReScan’s techniques. More importantly, the vulnerable parameter
has been detected, and the effort needed to patch it is the same
regardless of the reported XSS type. Finally, ReScan’s results
provide all necessary information about each vulnerability, i.e.,
identifying the vulnerable parameter, the URL in which it is located,
and where the injection is triggered.

Session sharing. As stated in § III, workers share the authen-
ticated session based solely on the website’s cookies.While this is
sufficient for our experimental setup and application set, in practice,
applications might utilize other APIs and functionalities for their
state and session management (e.g., local/session storage, service
workers etc). We plan to augment our session sharing among workers
to support such alternative approaches as part of our future work.

False positives & negatives. ReScan aims to eliminate FPs and
FNs specifically for XSS flaws. Implementing this capability for
other types of vulnerabilities requires inferring what vulnerability
is being tested in each request and how successful exploitations
would be verified. We consider the development of such modules
for different classes of flaws as part of our future work.

Overhead. Leveraging a fully-fledged browser to appropriately
execute every request, and employing our numerous enhancement
techniques, imposes a considerable overhead in the overall scanning
time. However, due to the significant improvement in code coverage
and vulnerability detection, as well as due to ReScan outperforming
the current state of the art in most cases [25], we believe this to be
an acceptable trade-off which renders the deployment of our system
feasible. Nonetheless, we consider the exploration of additional opti-
mization techniques an interesting future direction. For instance, ReS-
can could identify requests that do not require our enhancement tech-
niques (e.g., edges with no ISD effects or that do not require precise
workflow execution) and directly proxy them to the web application.

Ethical considerations. We note that all vulnerabilities
detected during our evaluation have already been disclosed to the
corresponding vendors by prior studies or researchers.

VI. RELATED WORK

Web application scanning has received considerable attention
from the research community through the years, as both black-
box [25], [31], [19], [49], [22], [55], [54] and white- or grey-box [28],
[14],[26], [30], [37], [60], [52], [29], [53], [45] techniques have been
proposed and thoroughly evaluated. Moreover, several studies have
carried out extensive comparisons between black-box vulnerability
scanners [15], [20], [61], [58], [46], collectively agreeing that such
tools suffer from certain core limitations, such as detecting and
correctly modelling all injection points, replaying the necessary
steps to perform an injection, or their inadequacy on persisting the
authentication state. In the following paragraphs, we relate our work
to the most prominent black-box approaches proposed in prior work.

As early as 2006, Kals et al. [31] designed a simple web
application vulnerability scanner that visited pages, extracted HTML
forms and tested for common XSS and SQL injection payloads.
Later, Doupé et al. [19] highlighted the importance of taking the
application’s state into account for better coverage and implemented
their approach in a state-aware crawler which, however, only
considered static HTML links and forms for detecting state changes,
navigating and clustering similar pages together. As we outlined,
these features only, fall short for navigation and can also incorrectly
cluster pages that offer different functionality (e.g., through input
elements or buttons outside an HTML form). In another line of
work, Duchéne et al. [23], [22] inferred a control flow model for the
application under test and an attack grammar to generate appropriate
payloads for detecting XSS flaws; however, their approaches do not
consider client-side events and require the ability to reset the applica-
tion. Pellegrino et al. proposed jAk [49], which considered client-side
events towards covering a larger part of the application, but did not
use a fully-fledged browser and only considered reflected XSS. More
recently, Eriksson et al. [25] developed an XSS scanner that tackled
some of the limitations we address in our paper. We provide a de-
tailed comparison in §IV-C. Finally, a multitude of other works have
focused on identifying specific flaws, such as client-side XSS [36],
[55], [54], CSRF [16], [33] and unrestricted file uploads [35].

The common thread among all these works is that they suffer
from at least one of the core limitations we highlight in this study.
Moreover, they all constitute standalone tools that target a specific
selection of vulnerability types. In contrast, ReScan aims to address
these challenges in a scanner-agnostic manner irrespectively of the
specific tests carried out by each scanner.

URL clustering has also been used in different domains, e.g., the
detection of phishing pages. Such systems deduce page similarity
either through visual analysis [41], [40], [13], [18] and comparing
benign to suspicious webpages, or by utilizing URL and HTML
related features that mainly focus on a page’s textual contents [38],
[34], [59]. Despite being successful for their respective goals, such
approaches are not suitable in our context. Specifically, a visual
representation of a page might not reflect the subtle yet important
elements that denote different functionality, such as hidden buttons
or input elements [39]. Moreover, two pages’ textual contents might
differ significantly even in conceptually similar pages (e.g., two
product pages with different reviews). Fundamentally, our system
aims to cluster pages that essentially offer the same functionality
regardless of their specific contents and precise appearance.

14

VII. CONCLUSIONS

With web browsers and applications incorporating and support-
ing complex new features and functionality, vulnerability scanners
that operate through raw HTTP requests are facing considerable
obstacles that hinder their detection capabilities. Nonetheless, de-
veloping an alternative scanner for the modern web ecosystem that
replicates all the features offered by existing scanners would require
an exorbitant and infeasible amount of engineering effort. Alterna-
tively, we have opted for a strategy that allows for both forward
and backward compatibility, as our system mediates communication
between applications and scanners that already exist or will be
developed in the future. Apart from mediating communication with
a fully-fledged modern browser, our framework also includes en-
hancement modules that tackle multiple limitations that affect state-
of-the-art scanners. Our experimental evaluation demonstrated how
our framework significantly improves the detection of vulnerabilities
in both benchmark and modern web applications.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
valuable feedback. This work was supported by the National Science
Foundation under grants CNS-1934597, CNS-2211574, CNS-
2143363. Any opinions, findings, conclusions, or recommendations
expressed herein are those of the authors, and do not necessarily
reflect those of the NSF. This work has also received funding
from the European Union’s Horizon 2020 research and innovation
programme under grant agreements No. 883275 (HEIR), No.
883540 (PUZZLE) and No. 101021659 (SENTINEL).

REFERENCES

[1] “spiderman — w3af - Open Source Web Application Security Scanner,” 2013,

http://w3af.org/plugins/crawl/spider_man.

“GB Gallery Slideshow - WordPress plugin — WordPress.org,” 2014,
https://wordpress.org/plugins/gb- gallery-slideshow/.

“Vega Tutorial - How to Set Up Vega to Work with Browser,” 2018,
https://rkhal101.github.io/_posts/WAVS/vega/vega_browser_setup.

“html5lib - PyPL,” 2020, https:/pypi.org/project/html5lib/.

“OWASP. Owasp zed attack proxy (zap),” 2020, https://www.zaproxy.org/.
“MutationObserver - Web APIs — MDN,” 2021, https://developer.mozilla.
org/en-US/docs/Web/API/MutationObserver.

“beautifulsoup4 - PyPL” 2022, https://pypi.org/project/beautifulsoup4/.
“Blind SQL Injection OWASP Foundation,” 2022,
/lowasp.org/www-community/attacks/Blind_SQL._Injection.
“OWASP ZAP - Getting Started,” 2022, https://www.zaproxy.org/
getting-started/.

“Unrestricted File Upload — OWASP Foundation,” 2022, https:
/lowasp.org/www-community/vulnerabilities/Unrestricted_File_Upload.
Docker 2023, https:

[2]
3]

[4]
[5]
[6]

7
[8]

https:
[9]
(10]

(11]

“ReScan-evaluated applications’
//gitlab.com/kostasdrk/rescanApps.

images,”

(12]
[13]

“ReScan repository,” 2023, https://gitlab.com/kostasdrk/rescan.

S. Abdelnabi, K. Krombholz, and M. Fritz, “Visualphishnet: Zero-day
phishing website detection by visual similarity,” in Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security, 2020.
D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna, “Saner: Composing static and dynamic analysis to validate sanitiza-
tion in web applications,” in /EEE Symposium on Security and Privacy, 2008.
J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of the art: Automated
black-box web application vulnerability testing,” in 2010 IEEE Symposium
on Security and Privacy, 2010.

S. Calzavara, M. Conti, R. Focardi, A. Rabitti, and G. Tolomei, “Mitch: A
machine learning approach to the black-box detection of csrf vulnerabilities,”
in IEEE European Symposium on Security and Privacy, 2019.

[14]

(15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

A. Cortesi, M. Hils, T. Kriechbaumer, and contributors, “mitmproxy: A free
and open source interactive HTTPS proxy,” 2022, https://mitmproxy.org/.

F. C. Dalgic, A. S. Bozkir, and M. Aydos, “Phish-iris: A new approach for
vision based brand prediction of phishing web pages via compact visual
descriptors,” 2018 2nd International Symposium on Multidisciplinary Studies
and Innovative Technologies (ISMSIT), 2018.

A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of the state: A
state-aware black-box web vulnerability scanner,” in 21st USENIX Security
Symposium, 2012.

A. Doupé, M. Cova, and G. Vigna, “’why johnny can’t pentest: An analysis
of black-box web vulnerability scanners”,” in ”Detection of Intrusions and

Malware, and Vulnerability Assessment”, 2010.
K. Drakonakis, S. Ioannidis, and J. Polakis, “The cookie hunter: Automated

black-box auditing for web authentication and authorization flaws,”
in Proceedings of the ACM SIGSAC Conference on Computer and

Communications Security, 2020.

F. Duchene, S. Rawat, J.-L. Richier, and R. Groz, “Kameleonfuzz:
Evolutionary fuzzing for black-box xss detection,” in Proceedings of the 4th
ACM Conference on Data and Application Security and Privacy, 2014.

E Duchene, S. Rawat, J.-L. Richier, and R. Groz, “Ligre: Reverse-engineering
of control and data flow models for black-box xss detection,” in 20th Working
Conference on Reverse Engineering, 2013.

S. el Idrissi, N. Berbiche, FE. Guerouate, and S. Mohamed, “Performance evalu-
ation of web application security scanners for prevention and protection against
vulnerabilities,” International Journal of Applied Engineering Research, 2017.

B. Eriksson, G. Pellegrino, and A. Sabelfeld, “Black widow: Blackbox
data-driven web scanning,” in I[EEE Symposium on Security and Privacy, 2021.

V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna, “Toward automated
detection of logic vulnerabilities in web applications,” in Proceedings of the
19th USENIX Conference on Security, 2010.

R. Fielding and J. Reschke, “RFC 7231 -
Protocol (HTTP/1.1): Semantics and Content,”
/ltools.ietf.org/html/rfc723 1#section-4.2.1.

W. G. Halfond, S. R. Choudhary, and A. Orso, ‘“Penetration testing with
improved input vector identification,” in International Conference on Software
Testing Verification and Validation, 2009.

J. Huang, J. Zhang, J. Liu, C. Li, and R. Dai, “Ufuzzer: Lightweight detection
of php-based unrestricted file upload vulnerabilities via static-fuzzing
co-analysis,” in 24th International Symposium on Research in Attacks,
Intrusions and Defenses, 2021.

Y.-W. Huang, E. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo, “Securing
web application code by static analysis and runtime protection,” in Proceedings
of the 13th International Conference on World Wide Web, 2004.

S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic, “Secubat: A web vulnerability
scanner,” in Proceedings of the 15th International Conference on World Wide
Web, 2006.

S. Karami, P. Ilia, and J. Polakis, “Awakening the web’s sleeper agents:
Misusing service workers for privacy leakage,” in Network and Distributed
System Security Symposium, 2021.

S. Khodayari and G. Pellegrino, “JAW: Studying client-side CSRF with
hybrid property graphs and declarative traversals,” in 30th USENIX Security
Symposium, 2021.

J. Lee, P. Ye, R. Liu, D. M. Divakaran, and M. Chan, “Building robust phishing
detection system: an empirical analysis,” in Workshop on Measurements,
Attacks, and Defenses for the Web, 2020.

T. Lee, S. Wi, S. Lee, and S. Son, “FUSE: Finding file upload bugs via
penetration testing,” in Proceedings of the Network and Distributed System
Security Symposium, 2020.

S. Lekies, B. Stock, and M. Johns, “25 million flows later: Large-scale
detection of dom-based xss,” in Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security, 2013.

Hypertext Transfer
2014, https:

X. Li, W. Yan, and Y. Xue, “Sentinel: Securing database from logic flaws
in web applications,” in Proceedings of the Second ACM Conference on Data
and Application Security and Privacy, 2012.

Y. Li, Z. Yang, X. Chen, H. Yuan, and W. Liu, “A stacking model using
url and html features for phishing webpage detection,” Future Generation
Computer Systems, 2019.

X. Lin, P. Ilia, and J. Polakis, “Fill in the blanks: Empirical analysis of the

15

(401

(41]

(42]

(43]

[44]

(45]

(46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

[54]

[55]

[56]
(57]

(58]

[59]

[60]

(61]

[62]

privacy threats of browser form autofill,” in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, 2020.

Y. Lin, R. Liu, D. M. Divakaran, J. Y. Ng, Q. Z. Chan, Y. Lu, Y. Si, F. Zhang,
and J. S. Dong, “Phishpedia: A hybrid deep learning based approach to
visually identify phishing webpages,” in 30th USENIX Security Symposium
(USENIX Security 21),2021.

R. Liu, Y. Lin, X. Yang, S. H. Ng, D. M. Divakaran, and J. S. Dong, “Inferring
phishing intention via webpage appearance and dynamics: A deep vision based
approach,” in 31st USENIX Security Symposium (USENIX Security 22), 2022.

F. Marcantoni, M. Diamantaris, S. Ioannidis, and J. Polakis, “A large-scale
study on the risks of the html5 webapi for mobile sensor-based attacks,” in
The World Wide Web Conference, 2019, pp. 3063-3071.

A. Mesbah, E. Bozdag, and A. van Deursen, “Crawling ajax by inferring
user interface state changes,” in Eighth International Conference on Web
Engineering, 2008.

H. Niksi¢, “Wget - gnu project - free software foundation,” 2020,
https://www.gnu.org/software/wget/.

S. Park, D. Kim, S. Jana, and S. Son, “FUGIO: Automatic exploit generation
for PHP object injection vulnerabilities,” in 315t USENIX Security Symposium,
2022.

M. Parvez, P. Zavarsky, and N. Khoury, “Analysis of effectiveness of black-box
web application scanners in detection of stored sql injection and stored xss
vulnerabilities,” in /0th International Conference for Internet Technology and
Secured Transactions, 2015.

M. Pawlik and N. Augsten, “Efficient computation of the tree edit distance,”
ACM Trans. Database Syst., vol. 40, 2015.

——, “Tree edit distance: Robust and memory-efficient,” Information Systems,
vol. 56, 2016.

G. Pellegrino, C. Tschiirtz, E. Bodden, and C. Rossow, “jak: Using dynamic
analysis to crawl and test modern web applications,” in Research in Attacks,
Intrusions, and Defenses, 2015.

D. Rethans, “Xdebug - Debugger and Profiler Tool for PHP,” 2021,
https://xdebug.org/.

A. Riancho, “w3af - open source web application security scanner,” 2013,
http://w3af.org/.

0. v. Rooij, M. A. Charalambous, D. Kaizer, M. Papaevripides, and
E. Athanasopoulos, “webfuzz: Grey-box fuzzing for web applications,” in
European Symposium on Research in Computer Security, 2021.

M. Shcherbakov and M. Balliu, “Serialdetector: Principled and practical
exploration of object injection vulnerabilities for the web,” in 28th Annual
Network and Distributed System Security Symposium, NDSS, 2021.

M. Steffens, C. Rossow, M. Johns, and B. Stock, “Don’t trust the locals:
Investigating the prevalence of persistent client-side cross-site scripting in the
wild,” in 26th Annual Network and Distributed System Security Symposium,
NDSS, 2019.

B. Stock, S. Pfistner, B. Kaiser, S. Lekies, and M. Johns, “From facepalm
to brain bender: Exploring client-side cross-site scripting,” in Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, 2015.

C. Sullo, “Nikto2 — CIRT.net,” 2022, https://cirt.net/Nikto2.

N. Surribas, “Wapiti : a Free and Open-Source web-application vulnerability
scanner,” 2021, https://wapiti.sourceforge.io/.

L. Suto and C. San, “Analyzing the accuracy and time costs of web application
security scanners,” 2010.

R. Verma and K. Dyer, “On the character of phishing urls: Accurate and robust
statistical learning classifiers,” in Proceedings of the 5th ACM Conference
on Data and Application Security and Privacy, 2015.

A. Vernotte, F. Lebeau, F. Dadeau, B. Legeard, F. Peureux, and F. Piat,
“Efficient detection of multi-step cross-site scripting vulnerabilities,” in 10th
International Conference on Information Systems Security, 2014.

M. Vieira, N. Antunes, and H. Madeira, “Using web security scanners to
detect vulnerabilities in web services,” in IEEE/IFIP International Conference
on Dependable Systems Networks, 2009.

T. Vissers, T. Van Goethem, W. Joosen, and N. Nikiforakis, “Maneuvering
around clouds: Bypassing cloud-based security providers,” in Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, 2015.

[63] K. Zhang and D. Shasha, “Simple fast algorithms for the editing distance

between trees and related problems,” SIAM J. Comput., vol. 18, 1989.

APPENDIX

Here we provide additional details about our framework’s
internal workings, to further shed light on our design decisions and
the technical challenges addressed by our approach.

A. Static file extensions

Requests towards the following file extensions are directly
proxied to the web application: js, json, css, crt,
mp3, wav, wma, ogg, mkv, zip, gz, tar, xz, rar,

z, deb, iso, csv, tsv, dat, txt, log, sgl, xml,
mdb, apk, bat, bin, exe, jar, wsf, fnt, fon, otf,
ttf, ai, bmp, gif, ico, jpeg, png, ps, psd, svg,
tif, tiff, cer, rss, key, odp, pps, ppt, pptx, c,
class, cpp, cs, h, java, sh, swift, vb, odf, xlr,
x1ls, x1sx, bak, cab, cfg, cpl, cur, dl1, dmp,
drv, icns, ini, 1lnk, msi, sys, tmp, 392, 39p,
avi, flv, h264, md4v, mov, mp4, mpeg, rm, swf,
vob, wmv, doc, docx, odt, pdf, rtf, tex, wks,
wps, wpd, woff, eot, xap.

B. Navigation Model Details

Edge IDs. As mentioned in §III, each edge is assigned a unique
ID consisting of its type, the destination URL, and the set of
parameter names in the payload. We ignore the payload values as
they are volatile and can be altered, e.g., when the scanner fuzzes
a form. The payload information is required since two forms may
point to the same URL, but perform different operations in the
back-end, e.g., a login and a signup form that both POST data
to the /auth.php endpoint. We need a way to distinguish the
two different transitions and the edge type and destination URL
alone would not suffice. Additionally, edges are annotated with any
information required to replay them, e.g., for form edges we store
the specific element’s unique CSS selector in the page, while for
events we also store the exact event type.

Mapping requests to edges. Since our system’s input are raw
HTTP requests, we need a way to map them to existing edges in the
navigation model, so we can properly replay the correct workflow.
An incoming request can initially be assigned only two of the five
edge types, i.e., GET or FORM, depending on the HTTP method
and whether it carries a payload. However, in practice, the request
might consider a different edge type, e.g., an asynchronous POST
request triggered by an event. To handle such cases, and only when
we cannot locate an edge with the initial edge type, we simply change
the type and check again. In more detail, a simple GET request can
be mapped to a GET, IFRAME, EVENT or REDIRECT edge,
since it does not include a payload. In contrast, a payload-bearing
request can either be mapped to a FORM or an EVENT edge,
since these are the only edge types that can transmit a payload.

Arbitrary requests. The model is constructed based on the
edges the system observes in each page, i.e., links, forms, events,
iframes and redirections. However, scanners are not restricted to
sending these exact same requests, which we can map and replay
based on the model. Instead, they can send arbitrary requests to
virtually any endpoint of the application. For instance, they can
extract the URL example.com/user/auth/ from a form action (which
is included in the navigation model) and send a request to a part

16

of that URL (e.g., example.com/user/) that has not been observed
by the system so far and is not included in the model. Depending
on the request’s type, we tackle this issue in two ways. For simple
GET requests, we simply execute the request, as GET requests
are not considered state-changing. In contrast, for arbitrary requests
that include a payload (i.e., corresponding to FORM or EVENT
edges) we don’t have any information on the necessary workflow
needed to properly replay them, which might not even exist in the
first place. In this case, we employ a best-effort approach where we
generate a form matching the request (same input fields, action and
HTTP method) on the fly and submit it. This way we can at least get
a properly rendered response through the browser’s environment.

Model reuse. It is worth noting that the constructed navigation
model is not scanner-specific, but rather a generic, high-level repre-
sentation of the web application. In practice, this allows the reuse of
existing models either when reconfiguring a scanner or performing a
completely new scan with another tool, effectively limiting the costly
parts of ReScan’s processing to the first run on a new application.

C. Browser Workers Implementation Details

Request headers. One more aspect we need to consider are
the HTTP request headers sent by the scanner in each request.
Generally, we want to avoid sending the scanner’s headers and
need the browser to send its own to ensure realistic interaction (e.g.,
user-agent, accept-encoding etc.). However, there are a couple of
exceptions to this. Firstly, any cookies sent by the scanner must
be passed through unchanged, which we detail in §III-A. Another
case in which we need to preserve the scanner’s original request
headers is when it tries to inject a payload through them. To do
this, we observe the first incoming requests to learn the scanner’s
default header values and, for subsequent requests, pass through
any headers that had their default values changed.

Events in workflows. Another special case involves EVENT
edges when executing workflows. The main idea is that a client-side
event that reveals further edges when triggered (e.g., other events
or a form), might not be required to be triggered more than once
to reveal these elements; on the contrary, triggering the event again
might make these elements disappear or become inaccessible (e.g.,
removing a dynamically generated form). To address such cases,
when encountering an EVENT edge, we perform a look-ahead
operation on the workflow. In more detail, we check if the last
edge (i.e., the one corresponding to the initial request) is already
present and can be executed, in which case we simply ignore all
intermediary edges. If it does not exist, we check for the second to
last edge and repeat the same process, until we either find an edge
to jump to and continue the execution from there, or end up on the
event edge at hand and continue as normal.

CSREF tokens. When a scanner sends a request containing a
CSREF token, it will include a stale token value, as it was captured
in a previous request. During the execution of its workflow ReScan
will acquire a fresh token value, but in order to correctly submit the
request, it needs to replace the stale scanner value with the new one.
To achieve this after executing the workflow, when we are ready to
send the request (i.e., submit the form or trigger the event) we check
each payload parameter against common token and nonce keywords
and simply ignore the scanner-provided value. For forms we itera-
tively inspect the form’s input elements statically in the DOM, while
for event-originating requests we perform the inspection on-the-wire
using XDriver’s internal proxy. Since this is a best-effort approach

based on common naming conventions for CSRF tokens, it is impor-
tant to note that even if ReScan misses an actual token (i.e., incor-
rectly assumes it is a regular parameter) it does not negatively affect
the underlying scanner, which would miss it even without our system.
Moreover, scanners can typically be configured to ignore specific
parameters, such as CSRF tokens; in such cases, this mechanism
would essentially be idle as the scanner would not fuzz the tokens.

D. Request Processing Performance

In Figure 4, we show the total processing time required for
each request handled by ReScan per application and per individual
component. We note that each CDF has been calculated using the
aggregated requests from all scanners for that application. This
is due to the fact that the time required to handle each request is
irrelevant to the scanner that initiated it, but heavily depends on the
application’s characteristics (e.g. usage and number of Javascript
events, number of detected ISD sinks). Additionally, the totals that
were used to calculate the different components’ CDF differ, as not
all of them are executed on each request. For instance, retrieving
and executing a workflow is applicable to all requests. However,
triggering events is only relevant to pages that include them and
have not been explored before, and collecting ISD sinks is only
relevant to edges for which we have detected them.

As expected, retrieving the correct workflow is negligible as
it can be fetched in less than a second for ~95% of the incoming
requests among all applications. Executing the workflow depends
on its length, i.e. how many steps are needed to correctly execute
the request. For most applications it takes up to three seconds on
average, while for Wordpress and Prestashop it takes five seconds.
This is expected as these two applications have generally slower
response and rendering times, due to their heavy use of Javascript.
Regarding the event discovery process, on average it takes between
one and three seconds for nine applications, while Prestashop needs
19 seconds. However, for 95% of requests Prestashop required up
to 479 seconds, while osCommerce, Drupal, Joomla and Wordpress
took up to 47, 26, 21 and 19 seconds respectively. This is expected as
we perform the event discovery at least once per page, which can be
quite costly for pages with numerous events. For requests that were
associated with ISD sinks that needed to be fetched, on average it
took less than two seconds for four applications, up to six, nine and
10 seconds for another four, 11 seconds for Wordpress and 16 for
Prestashop. Crafting the final HTTP response, as well as submitting
the newly discovered edges to the graph worker, can be completed
within one second for all applications. Executing the authentication
oracle after each request could possibly be quite time consuming. In
reality, for most applications it takes less than two seconds for 99%
of the requests, e.g. SCARF and Wackopicko require less than a
second for almost all requests, while HotCRP and PhpBB take less
than a second for 96% of them. The slowest case, as expected, was
again Prestashop, which needed up to nine seconds to run the oracle
for 90% of incoming requests. Finally, regarding the total processing
time per request, on average each one can be completed within three
seconds for four of the applications, up to five seconds for another
two apps, up to eight, 10 and 14 seconds for HotCRP, PhpBB and
Wordpress respectively, while Prestashop needed up to 21 seconds.

E. ReScan’s API

ReScan’s API endpoints, which we detail next, can be split in
two categories: passive, which aim to provide valuable insights and
information sharing between ReScan and the scanner, and active,

17

which alter ReScan’s behavior at runtime, according to the scanner’s
needs. For instance, if the scanner tests for stored XSS it can enable
the ISD module, but disable it later when testing for a vulnerability
that does not affect other pages, e.g., open redirects. Similarly, it
might disable the authentication helper when it is not required to
maintain the session and avoid running the oracle in every request,
e.g., when brute-forcing for sensitive files and directories. Finally,
disabling the URL clustering module, which will no longer create
any new clusters nor redirect already clustered pages, can be useful
if the scanner wants to perform thorough checks in all pages, e.g.,
harvest e-mails or registered users.

To utilize the API, the scanner simply sends its API requests to
ReScan through the same port it uses to proxy the requests targeting
the web application, i.e., via the same HTTP channel. ReScan
then identifies these API requests and performs the requested
operation. It is worth noting that different components of the system
are responsible for handling different API calls. For example,
retrieving the entire navigation model or a specific workflow
requires communicating with the graph worker, checking the
authentication state requires invoking a browser worker, while
enabling or disabling modules is handled by the orchestrator.

Passive endpoints:

e /graph: Return the entire navigation model for the target
application.

e /workflow: Given a request, return its workflow from the

model.

/1sd: Given a request, return the detected ISD sinks.

/1sdAll: Return all detected ISD sinks and sources.

/auth: Return if we are currently authenticated.

/xss: Return all successful XSS injections so far.

/isClustered: Given a URL, return if clustered and what

cluster it belongs to.

Active endpoints:

e /[enable|disable] ISD: Enable/disable ISD detection and
sink collection.

/ [enable|disable]Auth: Enable/disable authentication
helper.

/ [enable|disable]Events:
discovery.

/ [enable|disable]Clustering: Enable/disable URL
clustering.

Enable/disable event

F. Scanners Configuration

e w3af. We enabled the web_spider plugin for crawling,
the auth.generic plugin for authentication and the xss
plugin for auditing with the persistent_xss parameter
set to true for vanilla runs and false for ReScan.

e wapiti. We wused the wapiti-getcookie utility for
authentication, and enabled the xss and permanentxss
auditing modules, disabling the latter for ReScan.

o Enemy of the State. The following command was issued:

$ jython crawler2.py <target URL>

e ZAP. The spider and ajaxSpider plugins were used
for crawling (ajaxSpider was disabled for ReScan) and
ZAP’s standard authentication module. For auditing, we enabled
the xss module, which incorporates both reflected and
stored XSS detection, while for ReScan we enabled only the
xss_reflected module.

Retrieve workflow ——
Craft HTTP response

Execute workflow —<—
Submit graph edges —e—

Event discovery

Oracle

Collect ISD sinks
Total —e—

WackoPicko

1 10

Var]illa

1 10 100 10 100 1 10 100 10 100
Time (sec) Time (sec) Time (sec) Time (sec)
Prestashop Joomla Drupal HotCRP
e Al VoSt o N S A Oo
S S—
s IS I Dy S .
() : o
: :
100 1 10 100 1 10 100 1 10 100 10 100
Time (sec) Time (sec) Time (sec) Time (sec) Time (sec)

Fig. 4: Requests’ CDF per application, in terms of total as well as individual components’ processing time.

e Black widow. The following command was issued:

$./crawl.py ——url <target URL>
——username <username> ——passwd <password>

e ReScan. The following command was issued:

$./rescan.py ——headless ——workers 4
——isd ——events ——clustering ——auth

——port <proxy port>

18

	Introduction
	Challenges and Design Requirements
	Design and Implementation
	System Components
	URL Clustering
	API Abstraction for Future Scanners

	Experimental Evaluation
	Other Vulnerabilities
	URL Clustering
	State-of-the-Art Comparison

	Limitations and Future Work
	Related Work
	Conclusions
	References
	Appendix
	Static file extensions
	Navigation Model Details
	Browser Workers Implementation Details
	Request Processing Performance
	ReScan's API
	Scanners Configuration

