Exploring the Security and Privacy Risks of Chatbots in
Messaging Services

Jide Edu Cliona Mulligan Fabio Pierazzi
King’s College London King’s College London King’s College London
London, UK London, UK London, UK
Jason Polakis Guillermo Suarez-Tangil Jose Such
University of Illinois at Chicago IMDEA Networks Institute King’s College London
Chicago, US Madrid, Spain London, UK

ABSTRACT

The unprecedented adoption of messaging platforms for work and
recreation has made it an attractive target for malicious actors. In
this context, third-party apps (so-called chatbots) offer a variety of
attractive functionalities that support the experience in large chan-
nels. Unfortunately, under the current permission and deployment
models, chatbots in messaging systems could steal information from
channels without the victim’s awareness. In this paper, we propose
a methodology that incorporates static and dynamic analysis for
automatically assessing security and privacy issues in messaging
platform chatbots. We also provide preliminary findings from the
popular Discord platform that highlight the risks that chatbots pose
to users. Unlike other popular platforms like Slack or MS Teams,
Discord does not implement user-permission checks—a task en-
trusted to third-party developers. Among others, we find that 55%
of chatbots from a leading Discord repository request the “admin-
istrator” permission, and only 4.35% of chatbots with permissions
actually provide a privacy policy.

CCS CONCEPTS

« Security and privacy — Social network security and pri-
vacy; Web application security; Usability in security and pri-
vacy; Privacy protections.

KEYWORDS
Security and Privacy, Messaging platorms, Chatbots, Discord

ACM Reference Format:

Jide Edu, Cliona Mulligan, Fabio Pierazzi, Jason Polakis, Guillermo Suarez-
Tangil, and Jose Such. 2022. Exploring the Security and Privacy Risks of
Chatbots in Messaging Services. In Proceedings of the 22nd ACM Internet
Measurement Conference (IMC ’22), October 25-27, 2022, Nice, France. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/3517745.3561433

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IMC ’22, October 25-27, 2022, Nice, France

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9259-4/22/10...$15.00
https://doi.org/10.1145/3517745.3561433

1 INTRODUCTION

Instant messaging platforms have become an essential collaborative
tool, playing a pivotal role in redefining how people communicate
and interact [36, 37]. By allowing real-time conversational commu-
nication in a virtual workplace, these platforms improve synergy
and promote productivity. Beyond messaging, many of the plat-
forms also support file sharing and videoconferencing. Services like
Slack, Discord, MS Teams, and Telegram are so popular that their
number of active users ranges from millions to billions [23, 50].

However, research has shown that messaging platforms also
suffer from security and privacy issues [32, 39, 40, 54]. More re-
cently, there have been reported security incidents in the media
involving Discord being used to host, distribute and control mal-
ware [7, 9, 30], with >17,000 unique URLs in Discord’s content
delivery network pointing to malware [30]. Research also showed
messaging platforms exposing users’ data within its platform and
connected accounts [33].

Furthermore, most messaging platforms, including those mar-
keted for enterprise, support third-party chatbots (add-ons) [36]
that add extra features to enrich their functionality. The third-party
chatbots request permissions to enhance the users’ conversations
with content from external services, offer customizable features,
or perform specific tasks on behalf of users. While the purpose
of having permissions is to protect users, some permissions may
be dangerous if granted to a malicious application. However, the
permission model is often lax and/or poorly defined as there are no
prevailing standards yet. This is analogous to the evolution observed
in Android’s permissions, which was necessary for addressing the
multitude of flaws identified by research [19, 27, 34, 55].

As third-party chatbots in messaging platforms become increas-
ingly popular for personal and business use, there is a need for
assessing their security and privacy. In this paper, we propose a
novel methodology for automatically assessing security and privacy
issues of a chatbot service. Our analysis pipeline incorporates static
(code and traceability analysis) and dynamic techniques (deploying
deceptive honey-resources for detecting chatbots stealing users’
information). We also apply the methodology to Discord, one of the
most popular of such instant messaging platforms. As our findings
in Discord reveal the inherent risks posed by chatbots and highlight
the need for a more comprehensive analysis of this ecosystem, we
hope that our work will motivate additional research in this space.

IMC 22, October 25-27, 2022, Nice, France

2 THREAT MODEL

Instant messaging platforms offer a fixed set of capabilities that
users expand using chatbots, usually developed by third-parties,
which leverage dedicated APIs provided by the platforms. Chatbots,
unlike mobile apps (which may seem similar), do not run on the end
user’s device. Instead, chatbots are hosted directly by the developer
either in a self-hosted server or in a cloud server (e.g., AWS, GCP,
Azure). This creates a unique attack vector as developers can alter
the chatbot code at any time after installation without the users
being made aware of any change taking place (unless such changes
entail asking for new permission) [13]. This creates a layer of ob-
fuscation that prevents users from detecting what actions a chatbot
takes outside of the explicit user-provided commands it receives.
More importantly, malicious developers could take advantage of
this to potentially sneak malicious code into their software via the
application backend, as has been seen in similar domains [52].

Importantly, for users to take advantage of chatbots’ capabilities,
they need to permit access to their data. This includes data from
the user’s account, such as the user’s email address, text or audio
messages from the channels the chatbot is present in, or sensitive
data inferred from user interactions with the chatbots. Considering
that messaging platforms have become an integral workplace tool
being used for extremely sensitive communication, the need for an
in-depth analysis of the chatbot ecosystem becomes apparent. For
instance, over-privileged chatbots that collect sensitive information
or are endowed with excessive capabilities pose significant secu-
rity and privacy risks [6]. As such, it is important to note that even
though chatbots are subjected to a vetting process, existing research
from other domains [14] showed how malicious developers may
bypass this process. Messaging platforms that support third-party
applications are known to have a very similar architecture (e.g.,
Discord, Slack, MS Teams, and Telegram). For instance, their third-
party applications reside in the cloud, use a two-level access control
system consisting of the OAuth protocol and a runtime policy en-
forcer [13], and their source codes are not publicly available for
analysis, hence they are exposed to similar risks. In this paper, we
aim to understand the risks posed by chatbots in messaging plat-
forms and propose a method and pipeline for uncovering invasive
or malicious behaviors.

3 METHODOLOGY

We design a methodology for automatically assessing security and
privacy issues in messaging platform chatbots. Figure 1 shows an
overview of our analysis pipeline. Recall that chatbots’ software is
not readily available in central repositories. Instead, services run on
developer-controlled servers that get feeds from conversations once
they are triggered in end devices. Users enable (install) the software
through a repository listing the chatbot (typically maintained by
the messaging service or its users). In some cases, the source-code
of the chatbot is shared together with the description of the chatbot
in its listing. To understand the chatbot ecosystem, we first build a
system that crawls existing listings of chatbots. We then design a
method for analyzing chatbots dynamically, and — when available
— statically (traceability and code analysis). We demonstrate the
applicability of our methods to Discord in Section 4.2.

Edu et al.

Complete
Perm Check

Code
Analyzer

; In-Complete
B Perm Check
Discord Slack

» Datt - }
m ata Features
() g Colecion [l Exiraction
Ny .

- - .
___________ | info
H :

~—8 N T
Telegram other T
Bots | @
Messaging ‘ Permissions Policy

Bofts

Complete
Traceability

Analyzer

Partial

Broken

Figure 1: Overview of the Methodology.

Data Collection. Our data collection process traverses listings
of chatbots and extracts attributes such as the permissions they
request, sample commands, their privacy policy, and the link to
their source code repository (if present). For this, we develop a Web
scraper using the Selenium Python framework [48] that automat-
ically crawls the messaging platforms’ websites with third-party
chatbots and extracts all their attributes. Platform providers imple-
ment different anti-scraping strategies, making it challenging to
scrape the repositories. These include captchas and email verifica-
tion. Also, some of the repositories have varying page structures.
Thus: i) We limit the rate at which we generate our requests; ii)
We use “2Captcha”, a Captcha solving service, to overcome the
captchas restriction; iii) We mimic human behavior; iv) We design
our scraper to handle and react to exceptions such as “NoSuchEle-
mentException”, when elements unexpectedly become unavailable,
or “TimeoutException”, when a command takes more than the wait
time.

Traceability Analysis. We perform traceability analysis to under-
stand how developers disclose and justify the data permissions they
request. The Traceability Analyzer collects all data permissions
found in the privacy policy and compares them with the original
set of data permissions requested by the chatbot. This is done to
determine if there is a reported reason for the data request. As done
in other domains [2, 4, 5, 24, 25, 38, 47], we classify disclosure prac-
tices as complete, partial, or broken, depending on how well they
are disclosed. Due to the sheer amount of chatbots, we automate
the traceability analysis through a keyword-based approach [8].
First, we identify words that are often used in privacy policies to
identify data practices in other domains: Collect, Use, Retain, and
Disclose. Collect relates to set of keywords used to describe when
a program collect, gather, or acquire data from the user; Use indi-
cates a program uses or processes the data; Retain means storing
or remembering user data, and Disclose means a that the program
shares or transfers data to another party. We then identified the syn-
onyms of these words and keywords akin to the chatbot ecosystem
obtained from existing chatbot permissions and privacy policies.
When a privacy policy explains how data is collected, used, retain
and disclosed we say that the policy is complete. When any of the
keyword-set is described, we say that the policy is partial, and
broken when none.

Exploring the Security and Privacy Risks of Chatbots in Messaging Services

Dynamic Analysis (Honeypot). In the absence of a direct access
to the software of a chatbot, we develop a dynamic analysis ap-
proach to study remote programs in their environment. For this,
we use a honeypot [51] instrumented with canary tokens (also
known as honeytokens) [46]. Examples of canary tokens include
files, URLs, and email addresses. Our method is based on the as-
sumption that a chatbot should not be interacting with a token
posted in a channel unless it is part of its functionality. We design a
framework for controlled experiments in messaging services to test
available chatbots. Our framework implants unique honeytokens
only available to chatbots under study. Specifically, we test each
chatbot in an independent and isolated messaging environment.
This let us determine which chatbots gain unauthorized access to
the honeytoken, i.e., when it opens a file, accesses a link, or uses
email addresses shared in the chat.

For the honeypot environment to appear active and in use, we

provide a feed of frequent exchange of messages from multiple
(automated) users. To make this feed realistic, our system takes as
input an exchange of real messages. While the Enron emails dataset
is widely used in research for similar purposes [15], our implemen-
tation leverages publicly available messages from social networks
(OSN) like Reddit. Our rationale is that the style of the communica-
tion used in an instant messaging environment is shorter and less
formal than email, thus rendering OSN messages more suitable and
contextually relevant to our study. Our implementation uses four
canary tokens: email, URL, word, and PDF. Canary tokens consist
of unique identifiers embedded in URLs or placed in a document
meta-data. Requesting the URL or opening the document allows us
to receive a signal tied to the token.
Code Analysis. To analyze the risks of third-party chatbots, we
design a mechanism to understand how the platform’s permission
system is used by the chatbots, via program analysis of publicly-
available chatbot code. This mechanism is comprised of three steps.
First, we collect the source-code of the chatbots. For this, we parse
the description in the app listing, retrieve pointers to open source
repositories, and download their source-code. As mentioned in
Section 2, note that not all chatbots make their code available.
Second, we model permission checks through a manual review of
a subset of case studies. For this, we identify the APIs that enable
developers to verify if a user has the right set of permissions to
access a resource. Third, we build an automated approach that
looks for these APIs and determines if a bot conducts the expected
permission checks declared in the documentation (manifest).

4 USE CASE: DISCORD

In this section, we apply the proposed methodology to explore the
security and privacy risks in the Discord ecosystem.

4.1 Discord Ecosystem

Discord Guild: Users in Discord can create or be invited to join
servers called guilds. These guilds are comprised of voice and text
channels, where users can talk or exchange messages. Discord man-
ages access within these guilds using a role-based system. All users
within a guild have a primary role called “everyone”, which provides
some simple permissions to access channels and send messages.
The guild owner and those with the “manage roles” permission [20]

IMC ’22, October 25-27, 2022, Nice, France

) Use External Emojis

Figure 2: Example Discord chatbot installation page.

can then give users further roles with additional permissions. Thus,
roles in Discord can be assigned on both a guild-based level and
a channel-based level. In addition, Discord has both private and
public guilds. Private guilds require an invitation to join, while
public guilds are open for anyone to participate.

Discord Users: Users in Discord can spawn across the whole plat-
form, in text and voice chat, be part of guilds, and participate in
them. Users are classified as “bot” (chatbot) or “normal” users. While
chatbots and normal users share some similarities, chatbots are au-
tomated users that are “owned” by another normal user. Unlike
normal users that have restrictions on the number of guilds they
can be part of, chatbots do not have any limits [21]. Chatbots can
be installed through an OAuth link, and OAuth is used for access
delegation and authorization flows for applications, phones, and
smart devices [41]. Bots in Discord are used for various purposes,
including moderation, role management, scheduling, and other ex-
tra features. Currently, there is no official marketplace for Discord
chatbots, and they are primarily found at “www.top.gg”.

Discord Permissions: Users must have the “manage guild” permis-
sion to install a chatbot into a guild. Upon installation the Discord
chatbot can request permissions to access the messaging platform
resources (see [20] for the complete permission list in Discord).
When installing a chatbot, a screen is shown to the users that de-
tails what information and system resources the application intends
to access (e.g., Figure 2). A user must explicitly grant this access to
continue with the installation. Most chatbots need to access multi-
ple permissions, and permissions can also be changed at any time
after the chatbot is installed.

Discord implements a “permission hierarchy” system, and the
rules are as follows: i) A chatbot can grant roles to other users
of a lower position than its own highest role. ii) A chatbot can
edit roles of a lower position than its highest role, but it can only
grant permissions it has to those roles. iii) A chatbot can only
sort roles lower than its highest role. iv) A chatbot can only kick,
ban, and edit nicknames for users whose highest role is lower
than the chatbot’s highest role. v) Otherwise, permissions do not
obey the role hierarchy. It should be noted that the “administrator”
permission lets the user access all permissions for all channels in
the guild.

Some Discord chatbots may also request additional scopes on
top of the chatbot scope. This can give them extra user data as well
as other privileges. It should be noted that some of these scopes
can only be requested if whitelisted by Discord staff. Likewise,
some of these scopes are only for testing purposes. The bot scope
is by nature required for all chatbots. Once installed in a guild,
users can usually interact with a chatbot by sending a message or
command into a channel. These messages typically contain a prefix,
e.g., “linfo”. As long as the user has the “send message” permission
within the channel, they should be able to interact with the chatbot.

IMC 22, October 25-27, 2022, Nice, France

view audit log [———

use voice activity{
use external emojis

speak{

send tts messages$

Permissions

& manage emoj
manage g
kick members{
embed links
create invitef

connect §
change nickname?
ban members1
attach files
administrator-
add reactions

10 20 30 X 10 50 60
Percentage of Bots

Figure 3: Percentage distribution of top 20 permissions re-
quested by Discord chatbots.

Table 1: Bots distribution by number of developers.

No of Bots Developers (No. & %) No of Bots Developers (No. & %)

1 11,070 89.08% 6 6 0.05%
2 1,089 8.76% 7 4 0.03%
3 185 1.49% 8 2 0.02%
4 50 0.40% 11 1 0.01%
5 19 0.15% 12 1 0.01%

4.2 Discord Measurement

We scrape top.gg, the leading repository of Discord chatbots, navi-
gate the “top chatbot” list, and extract metadata from the chatbots,
which includes the chatbot’s ID, name, URL, tags, permissions, guild
count, description and GitHub link.

Permissions Measurement. We collected a total of 20,915 Dis-
cord chatbots. 74% (15,525) of the chatbots requested valid per-
missions on the installation page; the remaining 26% (5,390) have
invalid permissions due to invalid invite links, have been removed,
or timed out due to slow redirect links. Figure 3 shows the percent-
age distribution of the top 20 permissions requested by the chatbots.
The most commonly requested permission is the “SEND MESSAGE”
permission, which is requested by 9,188 (59.18%) chatbots. This
is followed by the “administrator” permission requested by 8,521
(54.86%). Interestingly, the “administrator” permission allows all
permissions, bypasses channel permission overwrites, and gives
bots access to sensitive user data among others.

Discord Chatbots and Developers: Table 1 shows the chatbots
distribution by the number of developers. From the 12,427 devel-
opers in our dataset, 89% (11,070) have published just one chatbot.
The developer with the highest number of chatbots (namely, devel-
oper editid#6714) has 12 unique chatbots. We also see developers
using third-party development platforms such as “botghost.com”,
“autocode.com”, “discordbotstudio.org” which lower development
barriers. These platforms offer free sample chatbots that develop-
ers can customize regardless of their technical background. This
enables regular internet users to deploy bots without adequately
understanding the ecosystem, resulting in security vulnerabilities
and privacy violations [1].

Discord Chatbots Data Traceability. Discord’s privacy policy
states that chatbots have “access to their end users’ information,
including message content, message metadata, and voice meta-
data” and that they “must use such information only to provide
the SDK/API functionality within their applications and/or ser-
vices” [22]. Notwithstanding, it is unclear how the user data is

Edu et al.

Table 2: Discord Traceability Results.

Features ‘ Count ‘ Percent
Unique active chatbots | 15,525 | 100%
Website Link 5,786 37.27%
Privacy Policy Link 676 4.35%
Privacy Policy 673 4.33%

being used and whether there is sufficient disclosure about it. There
has been increasing ambiguity in the past about the access that
third-party applications have to user’s data, and the Cambridge
Analytica scandal [16] is a prime example of the risks. We look at
chatbot privacy policies to understand how developers disclose and
justify the data permissions they request.

Discord chatbots tend to not have any visible privacy policies on
“top.gg”. This necessitates visiting the chatbot’s website (if present)
for finding its privacy policy document. We automate this process
using the Selenium Python framework and leveraging element
locators [49], which let us identify the HTML DOM element to act
on. If the website link is not available and a privacy policy is not
found, we assume broken traceability. This implies that Discord
users do not know about developers’ data practices and cannot
identify when certain data practices may harm them. Table 2 shows
that there are 5,786 (37.27%) chatbots with a website link, but only
676 (4.35%) of the them have a privacy policy. This indicates that
the remaining 14,852 (95.67%) chatbots have broken traceability, as
they do not have a privacy policy document to disclose how data
is accessed, used, shared, or stored. Furthermore, out of the 676
privacy policy links, only 673 (4.33%) lead to a valid page. Upon
further analysis of these policies, using keyword-based traceability,
we do not find any chatbot with complete traceability. Instead
we find partial traceability as policies do not completely disclose
their data practices. Due to the limitations of the keyword-based
traceability approach, as later discussed in Section 5, we perform a
validation of the traceability results through a random selection of
100 privacy policies and a manual review process. The result shows
that none of these privacy policies was misclassified. Furthermore,
we observed that many of these policies are generic and they are not
tailored to this ecosystem. These results match those observed in
earlier studies [2, 3, 24] where developers were found to be reusing
existing privacy policies verbatim across different domains, and
permissions without modification.

Discord Chatbots Honeypots. We tested a diverse sample of
most-voted chatbots from “www.top.gg” as these chatbots are more
likely to be active and maintained. We considered doing a sample
from the middle and least voted but they were mainly offline or not
being used (i.e., in 0 guilds). The bots tested ranged in guild count
(3M to 25), vote count (876K to 6) and chatbot purpose (such as
gaming, fun, social, music, meme), thus reflecting the diversity of
the general population of chatbots. Besides, many of these chatbots
were present in over 250,000 guilds, and if they were malicious, they
would put many users at risk. In our experiments we create new
private guilds, add a chatbot to the guild using the chatbot invite
link and post messages using automation. We name each guild after
the corresponding chatbots for easy identification. To add a chatbot
to the guild, we need to solve a Google reCAPTCHA. Due to its
affordability and quick solving time, we used the captcha-solving
service “2Captcha” to automate the process. Next, we create the

Exploring the Security and Privacy Risks of Chatbots in Messaging Services

canary tokens and post them as messages to the guild. We use the
guild name as our identifier to detect triggered tokens. We note
that to post a seemingly real conversation we create fake personas
by registering virtual users into Discord. In practice, we found that
when a new account quickly joins many guilds, it is flagged by
Discord, and mobile verification is required. As such, we completed
this step manually. Subsequently, our system ensures that the virtual
accounts post alternating messages so that interactions resemble
legitimate conversations between actual users.

We created 5 virtual users each in 100 guilds and install a total of

500 chatbots on individual guilds. Each guild was populated with
a canary URL, email address, pdf and word document tokens. In
addition, we posted 25 conversational messages to let the guild
appear active. At the time of writing, our system has detected one
chatbot triggering the canary token. The word document and URL
were accessed for a chatbot named “Melonian”. Melonian does not
offer a functionality that would require opening word documents
or visiting URLs. After the triggers, a user posted a message as
the guild’s chatbot that reads “[w]tf is this bro”, which is
clearly not an automated message generated by a bot. It appears
the chatbot owner/developer logged in as the chatbot, potentially
through a third-party service, made a cursory inspection of the
contents of the messages in the guild, and accessed files posted
without authorization. This contradicts Discord’s privacy policy,
which states that developers “must use such information only to
provide the SDK/API functionality within their applications and/or
services” [22]. Furthermore, the owner/developer of the chatbot
could have been infringing computer fraud, misuse or abuse acts
that regulate the unauthorized access to computer material of infor-
mation. They could have also violated data protection legislation
like GDPR or CCPA should the word document contain personal or
confidential information. When looking at what this finding means
to other users of Discord, our result needs to be interpreted with
caution as this particular chatbot is only present in a few guilds
Nevertheless, this result suggests an inherent risk present in the
Discord ecosystem. It also confirms that users would not be able to
detect a breach of their privacy without the trigger of the canary
tokens and subsequent messages.
Discord Chatbots Code Analysis. In Discord, permissions checks
are not enforced by the platform. Instead, the developer of a chatbot
is responsible for checking if the user invoking the chatbot has the
permission to perform any of the actions supported by the chatbot.
As chatbots may have more privileges than a user, failing to check
this permission could lead to re-delegation attacks [18, 29]. We built
a Web scraper that visits the GitHub links extracted from the top.gg
website to check for the presence of the GitHub code section. If
this is found, we then analyze the repository. The scraper will then
check for languages used for the code and extracts the first (main)
language provided for the repository. This will help to pinpoint
what APIs to check afterwards. We traversed over 800 pages from
the “top chatbot” list and recorded information of 15,525 chatbots.
Out of these chatbots, 23.86% (3,705) had GitHub links on their
description page. Furthermore, 60.46% (2,240) of these links lead
us to valid repositories. The rest links take us to user profiles, a
GitHub with no repositories, a GitHub with no public repositories,
or an invalid link.

IMC 22, October 25-27, 2022, Nice, France

Table 3: Discord role checks in JavaScript & Python.

No. | Checks No. | Checks
1 ‘hasPermission (3 member.roles.cache
2 .has(4 userPermissions

From our analysis we find that JavaScript (41%) is the most popu-
lar language, closely followed by Python (32%). This is unsurprising
as both languages have well-documented Discord chatbot libraries,
“discord.js” and “discord.py”. However, there are also some reposito-
ries that we could not identify their language. Manual inspection of
these repositories shows even though these are valid repositories,
they do not contain any source code. Many only have READ.ME
files with chatbot descriptions or commands, or just information on
licensing and changelogs. Considering these chatbots, only 14.39%
(2,234) of the 15,525 chatbots have publicly available source code.
Since Javascript and Python are the most popular languages (73%
together), we check which Discord chatbots developed with these
languages. We identify four ways for permission or role check-
ing within JavaScript and Python (see Table 3) using the method
described in Section 3.

We check the selected source codes for the presence of these
APIs to identify chatbots that are performing permission checking.
In total, we analyzed 925 available JavaScript repositories and 718
Python repositories. Out of these repositories, only 675 (72.97%)
of JavaScript repositories and 19 (2.65%) of Python repositories
contained one of the APIs that are used to perform permission
checking. The rest, 27.02% (250), and 97.35% (699) of JavaScript
and Python repositories, respectively, do not perform any form of
permission checking. This creates the possibility for permission
abuse as users can take advantage of the privilege assigned to a
chatbot for performing unauthorized actions.

5 DISCUSSION AND LIMITATIONS

Here we discuss the key findings and limitations of our study.
Improper Permission Checks. As aforementioned, a bot can not
perform actions if it does not have the corresponding permission.
However, there is the possibility of potential permission abuse in
a situation where a user can take advantage of the privilege as-
signed to a bot to perform actions the user is not permitted to do.
For instance, in Discord, the current permission framework allows
the developer to implement and perform the necessary permission
check. However, this results in it becoming the developer’s respon-
sibility to ensure that the bot retrieves the message’s author and
checks if the user has the required permission before acting for
them. Thus, improper permission checks could leads to permission
re-delegation attacks allowing users to bypass privileges.
Incomplete Traceability. By exploring how permissions are han-
dled and requested, we find that 95.67% of Discord chatbots that
request permissions lack a privacy policy. Importantly, even when
privacy policies are present, they do not adequately disclose their
data practices. This finding highlights the need for a more compre-
hensive analysis of this ecosystem and chatbots’ data practices.
Misunderstanding the permission system. As shown in Fig-
ure 3, in addition to other permissions, the majority of bots request
the admin permission, which encompasses all other permissions.
However, asking for anything in addition to admin is redundant
and may imply that the developer does not completely understand

IMC 22, October 25-27, 2022, Nice, France

the permission system. Hence, there is a need for developers to
better understand the permission system so they can build secure,
privacy-aware bots with the minimal required permissions.
Limitations. A number of important limitations need to be con-
sidered. First, there are thousands of chatbots. Performing dynamic
analysis for all these bots will be challenging and time-consuming.
Through the case of Melonian, we saw that malicious chatbots in
Discord currently involve a manual assessment of the target. This
is a feature we have seen other fraudulent activities do [10, 43]
before attacks get commoditized [11, 42, 53]. While we selected a
diverse sample of bots, we could have overlooked some potentially
bots with issues. Thus, our findings suggest further research in the
area is needed. This includes novel ways to address the challenge
of assessing the compliance of software hosted in the cloud or for
which there is no access to the software itself.

Second, our traceability analysis relies on keyword-based ap-
proaches as there is currently no annotated dataset that can be used
to train a ML model for the different chatbot platforms. However,
words often have multiple meanings and could also be written in
various forms, which could affect the accuracy of the traceability
result. Nevertheless, we note that this does not affect the cases with
broken traceability results (due to the absence of a privacy policy
all together), which represents the vast majority of cases. Exploring
ML techniques for the analysis would be an interesting research
direction, as it has been done for voice assistants [24, 25]. Also, we
could not use any of the existing NLP-based tools [2, 3, 31], because
their ontologies do not cover all the data types in this new ecosys-
tem. Nonetheless, we expect that including privacy policies will
become the norm in the future, as messaging platforms have a more
active interest (or legal requirement) to secure their ecosystems,
similar to what we have seen recently in voice assistants [25].

Third, our code analysis is limited only to a few bots as i) not
all bots’ source codes are available to the public for analysis. ii)
we only considered the bots developed using the JavaScript and
Python libraries. For example, while these sets of bots represent
more than 70% of the bots in the top Discord repository, follow-up
work on other languages is part of our future research. Besides,
malicious bots are less likely to post source code voluntarily.

Fourth, adding a new account to many guilds for the dynamic
analysis often requires mobile verification. We currently complete
this step manually, which takes time. A possible area of future
work would be to develop an automated way of creating virtual
users eliminating the manual mobile verification step. Likewise,
we used our proposed method to explore the risks in the Discord
platform. Scaling our analysis and applying our methodology to
other popular platforms like Slack, MS Teams, and Telegram is also
part of our future work.

Although this is an exploratory work that aims to identify flaws,
misconfigurations, and problematic practices, part of our future
studies is to perform a large-scale measurement that quantifies the
prevalence of such phenomena.

Ethical considerations. Our research fully abides by the ethi-
cal principles guidelines outlined in the Menlo and Belmont Report.
In particular, our system does not intentionally interact with hu-
mans nor collects data containing personal identifiable information.
Moreover, our data collection process of crawling websites and our

Edu et al.

system interacting with chatbots, was done at a rate that does not
create any disruption to other service users.

6 RELATED WORK

Research on Instant Messaging Platform Chatbots. Authors
in [12] studied how instant messaging chatbots extend the collabo-
rative benefits of instant messaging into new areas, while acknowl-
edging potential security and privacy risks. The research in [33]
found that messaging platforms such as Discord, Telegram and
WhatsApp expose users’ sensitive data within the platforms and
other connected third-party accounts such as Twitch, Spotify and
Twitter. For example, Discord was found to expose at least one
social media account for 30% of users. The work in [35] performed
a statistical analysis on chatbot usage for moderation by randomly
joining some Discord guilds. The authors found that larger com-
munities use chatbots for moderation. Chatbots having access to
large communities only furthers privacy concerns. Anyway, the
study is limited by the small sample size used for the analysis and
the manual methodology. In a parallel effort, authors in [13] show
how malicious chatbots can eavesdrop on the user by reading their
messages without permission; launch fake video calls; and automat-
ically merge code into repositories without user approval. However,
unlike our work that uses honeytoken to measure misuse in the
wild, the authors exploited the messaging platform’s access control
model to identify potential malicious practices. In addition, [13]
focuses its analysis on Slack and MS Teams, which have a runtime
mechanism to enforce security policies. Our work shows that Dis-
cord does not implement a runtime enforcer delegating trust on
third party developers, which widens the attack surface.
Detecting Data Misuse by third-parties. There is considerable
research into security analysis techniques and privacy violation
detection, one of which is deception technology. This method aims
to create a fake entity, which can be a file, page or account details, in
a system to entice an attacker [17, 26, 28, 44, 45]. This is commonly
referred to as honeypot (or honeytoken) [51]. The use of honeytoken
is described as a cost-effective, simple to deploy, and highly effective
solution in detecting internal data leak threats [46]. More recently,
a study [28] used honeypots to detect data misuse by third-party
applications on social networks. The authors supplied third-party
applications in Facebook with canary email addresses and analyzed
the emails these accounts received. While our dynamic analysis
experiment is conceptually similar, we focus on a different domain
and in addition to canary emails, we also use URL, word, and PDF
honeytokens within the Discord workspace.

7 CONCLUSIONS

Over-privileged chatbots that collect sensitive information or are
endowed with excessive capabilities pose significant security and
privacy risks. In this paper, we presented a methodology for au-
tomatically assessing the security and privacy issues of chatbots
in instant messaging services. Our methodology is then used to
explore the risks in the Discord service, and our findings reveal the
inherent risks chatbots pose to users’ security and privacy (55% of
bots asking for administrator permissions, lack of traceability, im-
proper use of those permissions) highlighting the need for a more
thorough analysis of this ecosystem. As this technology continue to

Exploring the Security and Privacy Risks of Chatbots in Messaging Services

grow, so will the number of developers and chatbots, which could
usher in a new level of threats and threat actors. Adopting stricter
scrutiny when developers collect data and a continuous rigorous
vetting process by the platform’s provider could help mitigate risks.
We hope our work will motivate additional research in this space,
and the methodology will serve as the basis for future work.

Acknowledgments

This research was funded by EPSRC under grant EP/T026723/1, the
“Ramon y Cajal” Fellowship RYC-2020-029401-I, and the National
Science Foundation (CNS-1934597, CNS-2211574, CNS-2143363).
Any opinions, findings, conclusions, or recommendations expressed
herein are those of the authors.

REFERENCES

(1]

[2

=

[10

[11]

[12

[13

[14]

=
)

[16

Yasemin Acar, Michael Backes, Sven Bugiel, Sascha Fahl, Patrick McDaniel, and
Matthew Smith. 2016. Sok: Lessons learned from android security research for
appified software platforms. In 2016 IEEE Symposium on Security and Privacy (SP).
IEEE, 433-451.

Benjamin Andow, Samin Yaseer Mahmud, Wenyu Wang, Justin Whitaker, William
Enck, Bradley Reaves, Kapil Singh, and Tao Xie. 2019. Policylint: investigating
internal privacy policy contradictions on Google play. In 28th {USENIX} Security
Symposium ({USENIX} Security 19). 585-602.

Benjamin Andow, Samin Yaseer Mahmud, Justin Whitaker, William Enck, Bradley
Reaves, Kapil Singh, and Serge Egelman. 2020. Actions speak louder than words:
Entity-sensitive privacy policy and data flow analysis with policheck. In 29th
{USENIX} Security Symposium ({USENIX} Security 20). 985-1002.

Pauline Anthonysamy, Matthew Edwards, Chris Weichel, and Awais Rashid.
2016. Inferring semantic mapping between policies and code: the clue is in the
language. In International Symposium on Engineering Secure Software and Systems.
Springer, 233-250.

Pauline Anthonysamy, Phil Greenwood, and Awais Rashid. 2013. Social network-
ing privacy: Understanding the disconnect from policy to controls. Computer 46,
6 (2013), 60-67.

Alexandre Bartel, Jacques Klein, Yves Le Traon, and Martin Monperrus. 2012.
Automatically securing permission-based software by reducing the attack surface:
an application to Android. In 2012 Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering. 274-277. https://doi.org/10.1145/
2351676.2351722

Becky Bracken. 2021. Attackers Blowing Up Discord, Slack with Malware. https://
threatpost.com/attackers-discord-slack-malware/165295/. [Online; last accessed
18-August-2021].

Travis D. Breaux, Hanan Hibshi, and Ashwini Rao. 2014. Eddy, a Formal Language
for Specifying and Analyzing Data Flow Specifications for Conflicting Privacy
Requirements. Requir. Eng. 19, 3 (Sept. 2014), 281-307. https://doi.org/10.1007/
500766-013-0190-7

Edmund Brumaghin. 2021. Sowing Discord: Reaping the benefits of collaboration
app abuse. https://blog.talosintelligence.com/2021/04/collab-app-abuse.html.
[Online; last accessed 18-August-2021].

Elie Bursztein, Borbala Benko, Daniel Margolis, Tadek Pietraszek, Andy Archer,
Allan Aquino, Andreas Pitsillidis, and Stefan Savage. 2014. Handcrafted fraud
and extortion: Manual account hijacking in the wild. In Proceedings of the 2014
conference on internet measurement conference. 347-358.

Juan Caballero, Chris Grier, Christian Kreibich, and Vern Paxson. 2011. Measuring
{Pay-per-Install }: The Commoditization of Malware Distribution. In 20th USENIX
Security Symposium (USENLX Security 11).

Stephen Chan, Benjamin Hill, and Sarita Yardi. 2005. Instant messaging bots.
Proceedings of the 2005 international ACM SIGGROUP conference on Supporting
group work - GROUP "05 (2005). https://doi.org/10.1145/1099203.1099221
Yunang Chen, Yue Gao, Nick Ceccio, Rahul Chatterjee, Kassem Fawaz, and
Earlence Fernandes. 2022. Experimental Security Analysis of the App Model in
Business Collaboration Platforms. In 31st USENIX Security Symposium (USENIX
Security 22). USENIX Association, Boston, MA, 2011-2028. https://www.usenix.
org/conference/usenixsecurity22/presentation/chen-yunang-experimental
Long Cheng, Christin Wilson, Song Liao, Jeffrey Young, Daniel Dong, and
Hongxin Hu. 2020. Dangerous Skills Got Certified: Measuring the Trustworthi-
ness of Skill Certification in Voice Personal Assistant Platforms. In Proceedings of
the ACM Conference on Computer and Communications Security (CCS). In press.
William W. Cohen. 2022. Enron Email Dataset. https://www.cs.cmu.edu/~enron/.
[Online; last accessed 15-May-2022].

Nicholas Confessore. 2021. Cambridge Analytica and Facebook: The Scandal and
the Fallout So Far. https://www.nytimes.com/2018/04/04/us/politics/cambridge-

[17

[18

=
2

[20

[21

[22

[23]

[24

[25

[26

[27

[28

[29

[30

[31

[32

[33

[34

[35

[36

IMC 22, October 25-27, 2022, Nice, France

analytica-scandal-fallout.html. [Online; last accessed 18-August-2021].
Emiliano De Cristofaro, Arik Friedman, Guillaume Jourjon, Mohamed Ali Kaafar,
and M. Zubair Shafiq. 2014. Paying for Likes? Understanding Facebook Like Fraud
Using Honeypots. In Proceedings of the 2014 Conference on Internet Measurement
Conference (Vancouver, BC, Canada) (IMC ’14). Association for Computing Ma-
chinery, New York, NY, USA, 129-136. https://doi.org/10.1145/2663716.2663729
Biniam Fisseha Demissie, Mariano Ceccato, and Lwin Khin Shar. 2020. Security
analysis of permission re-delegation vulnerabilities in Android apps. Empirical
Software Engineering 25, 6 (2020), 5084-5136. https://doi.org/10.1007/s10664-
020-09879-8

Michalis Diamantaris, Elias P. Papadopoulos, Evangelos P. Markatos, Sotiris Ioan-
nidis, and Jason Polakis. 2019. REAPER: Real-Time App Analysis for Augmenting
the Android Permission System. Association for Computing Machinery, New York,
NY, USA, 37-48. https://doi.org/10.1145/3292006.3300027

Discord. 2020. Discord Developer Portal — API Docs For Bots And Developers.
https://discord.com/developers/docs/topics/permissions.

Discord. 2020. Users Resource. https://discord.com/developers/docs/resources/
user [Online; last accessed 8-October-2021].

Discord. 2021. Privacy policy. https://discord.com/privacy. [Online; last accessed
18-August-2021].

Pavel Durov. 2020. 400 Million Users, 20,000 Stickers, Quizzes 2.0 and €400K for
Creators of Educational Tests. https://telegram.org/blog/400-million. [Online;
last accessed 04-January-2021].

Jide Edu, Xavi Ferrer Aran, Jose Such, and Guillermo Suarez-Tangil. 2021. SkillVet:
Automated Traceability Analysis of Amazon Alexa Skills. IEEE Transactions on
Dependable and Secure Computing (2021), 14. https://doi.org/10.1109/TDSC.2021.
3129116

Jide Edu, Xavier Ferrer-Aran, Jose Such, and Guillermo Suarez-Tangil. 2022.
Measuring Alexa Skill Privacy Practices across Three Years. In Proceedings of the
ACM Web Conference 2022 (WWW °22). Association for Computing Machinery,
New York, NY, USA, 670-680.

El Bouzekri El Idrissi Younes, El Mendili Fatna, and Magrane Nisrine. 2016. A
security approach for social networks based on honeypots. In 2016 4th IEEE
International Colloquium on Information Science and Technology (CiSt). 638—643.
https://doi.org/10.1109/CIST.2016.7804964

Zheran Fang, Weili Han, and Yingjiu Li. 2014. Permission based Android security:
Issues and countermeasures. Computers & Security 43 (2014), 205-218. https:
//doi.org/10.1016/j.cose.2014.02.007

Shehroze Farooqi, Maaz Musa, Zubair Shafiq, and Fareed Zaffar. 2020. Ca-
naryTrap: Detecting Data Misuse by Third-Party Apps on Online Social Net-
works. Proceedings on Privacy Enhancing Technologies 2020, 4 (2020), 336—354.
https://doi.org/10.2478/popets-2020-0076

Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steve Hanna, and
Erika Chin. 2011. Permission Re-Delegation: Attacks and Defenses. In 20th
USENIX Security Symposium (USENIX Security 11). USENIX Association, San Fran-
cisco, CA. https://www.usenix.org/conference/usenixsecurity11/permission-re-
delegation-attacks-and-defenses

Sean Gallagher and Andrew Brandt. 2021. Malware increasingly targets Discord
for abuse. https://news.sophos.com/en-us/2021/07/22/malware-increasingly-
targets-discord-for-abuse/. [Online; last accessed 18-August-2021].

Hamza Harkous, Kassem Fawaz, Rémi Lebret, Florian Schaub, Kang G. Shin,
and Karl Aberer. 2018. Polisis: Automated Analysis and Presentation of Privacy
Policies Using Deep Learning. In 27th USENIX Security Symposium (USENIX
Security 18). USENIX Association, Baltimore, MD, 531-548. https://www.usenix.
org/conference/usenixsecurity18/presentation/harkous

Stephen Hilt. 2017. Chat App Discord Abused to Attack ROBLOX
Players. https://www.trendmicro.com/en_us/research/17/h/chat-app-discord-
abused-cybercriminals-attack-roblox-players.html. [Online; last accessed 18-
January-2021].

Mohamad Hoseini, Philipe Melo, Manoel Junior, Fabricio Benevenuto, Balakr-
ishnan Chandrasekaran, Anja Feldmann, and Savvas Zannettou. 2020. De-
mystifying the Messaging Platforms’ Ecosystem Through the Lens of Twit-
ter. Proceedings of the ACM Internet Measurement Conference (2020). https:
//doi.org/10.1145/3419394.3423651

Asma Khatoon and Peter Corcoran. 2017. Android permission system and user
privacy — A review of concept and approaches. In 2017 IEEE 7th International
Conference on Consumer Electronics - Berlin (ICCE-Berlin). 153-158. https://doi.
0rg/10.1109/ICCE-Berlin.2017.8210616

Charles Kiene and Benjamin Mako Hill. 2020. Who Uses Bots? A Statistical
Analysis of Bot Usage in Moderation Teams. In Extended Abstracts of the 2020 CHI
Conference on Human Factors in Computing Systems (CHI EA °20). Association for
Computing Machinery, New York, NY, USA, 1-8.

Ruth Lechler, Emanuel Stockli, Roman Rietsche, and Falk Uebernickel. 2019.
Looking Beneath the Tip of the Iceberg: The Two-Sided Nature of Chatbots and
Their Roles for Digital Feedback Exchange. In Proceedings of the 27th European
Conference on Information Systems (ECIS). https://www.alexandria.unisg.ch/
257166/

IMC 22, October 25-27, 2022, Nice, France Edu et al.

[37] Jennie Lin. 2020. Picking Up the Slack: Collaboration Tools to Build Community [46] Penny Ross. 2013. The use of honey tokens in database security. Number COM2013-
and Increase Productivity in Nephrology. Seminars in Nephrology 40, 3 (2020), 0428 in ATINER conference paper series. Atiner.
298 — 302. https://doi.org/10.1016/j.semnephrol.2020.04.009 Nephrology and [47] Zimmeck Sebastian, Story Peter, Smullen Daniel, Wang Abhilasha, Ravichan-
Social Media. derand Ziqi, Reidenberg Joel, Russell N. Cameron, and Sadeh Norman. 2019.

Gaurav Misra, Jose Such, and Lauren Gill. 2017. A Privacy Assessment of Social
Media Aggregators. In Proceedings of the 2017 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining 2017. ACM, 561-568.
Elizabeth Montalbano. 2020. TrickBot Attack Exploits COVID-19 Fears
with DocuSign-Themed Ploy. https://threatpost.com/trickbot-attack-covid-
19docusign-themed-malw/155391/. [Online; last accessed 18-January-2021].
Ruchna Nigam and Kyle Wilhoit. 2017. TeleRAT: Another An-
droid Trojan Leveraging Telegram’s Bot API to Target Iranian Users.
https://unit42.paloaltonetworks.com/unit42-telerat-another-android-trojan-
leveraging- telegrams-bot-api-to-target-iranian-users/. [Online; last accessed
18-January-2021].

Oauth.net. 2020. OAuth 2.0. https://oauth.net/2/.

Jeremiah Onaolapo, Nektarios Leontiadis, Despoina Magka, and Gianluca Stringh-
ini. 2021. {SocialHEISTing }: Understanding Stolen Facebook Accounts. In 30th
USENIX Security Symposium (USENIX Security 21). 4115-4132.

Jeremiah Onaolapo, Enrico Mariconti, and Gianluca Stringhini. 2016. What
happens after you are pwnd: Understanding the use of leaked webmail credentials
in the wild. In Proceedings of the 2016 Internet Measurement Conference. 65-79.
Abigail Paradise, Asaf Shabtai, Rami Puzis, Aviad Elyashar, Yuval Elovici, Mehran
Roshandel, and Christoph Peylo. 2017. Creation and Management of Social
Network Honeypots for Detecting Targeted Cyber Attacks. IEEE Transactions on
Computational Social Systems 4, 3 (2017), 65-79. https://doi.org/10.1109/TCSS.
2017.2719705

Sampsa Rauti. 2020. Towards Cyber Attribution by Deception. Hybrid Intelligent
Systems (2020), 419-428. https://doi.org/10.1007/978-3-030-49336-3_41

MAPS: Scaling Privacy Compliance Analysis to a Million Apps.

Selenium. 2020. Selenium WebDriver. https://www.selenium.dev/. [Online; last
accessed 15-October-2020].

Selenium. 2022. Locator strategies. https://www.selenium.dev/documentation/
webdriver/elements/locators/. [Online; last accessed 06-September-2022].
Craig Smith. 2020. 55 Slack Statistics and Facts (2020) | By the Numbers. https:
//expandedramblings.com/index.php/slack-statistics/. [Online; last accessed
04-January-2021].

L. Spitzner. 2002. Honeypots: Tracking Hackers. Addison-Wesley Longman Pub-
lishing Co., Inc., USA.

SRLabs. 2019. smart spies: alexa and google home expose users to vishing and
eavesdropping. https://srlabs.de/bites/smart-spies/

Rolf Van Wegberg, Samaneh Tajalizadehkhoob, Kyle Soska, Ugur Akyazi, Car-
los Hernandez Ganan, Bram Klievink, Nicolas Christin, and Michel Van Eeten.
2018. Plug and prey? measuring the commoditization of cybercrime via online
anonymous markets. In 27th USENIX security symposium (USENIX security 18).
1009-1026.

Paul Wagenseil. 2019. Discord ’Spidey Bot’ Malware Is Stealing Usernames,
Passwords. https://www.tomsguide.com/news/discord-spidey-bot-malware-is-
stealing-usernames-passwords. [Online; last accessed 18-January-2021].

Yang Wang, Jun Zheng, Chen Sun, and Srinivas Mukkamala. 2013. Quantitative
Security Risk Assessment of Android Permissions and Applications. In Data and
Applications Security and Privacy XXVII, Lingyu Wang and Basit Shafiq (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 226-241.

	Abstract
	1 Introduction
	2 Threat Model
	3 Methodology
	4 Use Case: Discord
	4.1 Discord Ecosystem
	4.2 Discord Measurement

	5 Discussion and Limitations
	6 related work
	7 Conclusions
	References

