
Escaping the Confines of Time: Continuous Browser
Extension Fingerprinting Through Ephemeral Modifications

Konstantinos Solomos
University of Illinois

at Chicago
Chicago, IL, USA
ksolom6@uic.edu

Panagiotis Ilia
University of Illinois

at Chicago
Chicago, IL, USA
pilia@uic.edu

Nick Nikiforakis
Stony Brook University
Stony Brook, NY, USA

nick@cs.stonybrook.edu

Jason Polakis
University of Illinois

at Chicago
Chicago, IL, USA
polakis@uic.edu

ABSTRACT

Browser fingerprinting continues to proliferate across the web.

Critically, popular fingerprinting libraries have started incorpo-

rating extension-fingerprinting capabilities, thus exacerbating the

privacy loss they can induce. In this paper we propose continuous

fingerprinting, a novel extension fingerprinting technique that cap-

tures a critical dimension of extensions’ functionality that allowed

them to elude all prior behavior-based techniques. Specifically, we

find that ephemeral modifications are prevalent in the extension

ecosystem, effectively rendering such extensions invisible to prior

approaches that are confined to analyzing snapshots that capture a

single moment in time. Accordingly, we develop Chronos, a system

that captures the modifications that occur throughout an exten-

sion’s life cycle, enabling it to fingerprint extensions that make

transient modifications that leave no visible traces at the end of ex-

ecution. Specifically, our system creates behavioral signatures that

capture nodes being added to or removed from the DOM, as well as

changes being made to node attributes. Our extensive experimental

evaluation highlights the inherent limits of prior snapshot-based

approaches, as Chronos is able to identify 11,219 unique extensions,

increasing coverage by 66.9% over the state of the art. Addition-

ally, we find that our system captures a unique modification event

(i.e., mutation) for 94% of the extensions, while also being able to

resolve 97% of the signature collisions across extensions that affect

existing snapshot-based approaches. Our study more accurately

captures the extent of the privacy threat presented by extension

fingerprinting, which warrants more attention by privacy-oriented

browser vendors that, up to this point, have focused on deploying

countermeasures against other browser fingerprinting vectors.

CCS CONCEPTS

· Security and privacy→ Browser security.

KEYWORDS

Online Tracking, Browser Fingerprinting, Extension Fingerprinting

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3560576

ACMReference Format:

Konstantinos Solomos, Panagiotis Ilia, Nick Nikiforakis, and Jason Polakis.

2022. Escaping the Confines of Time: Continuous Browser Extension Fin-

gerprinting Through Ephemeral Modifications. In Proceedings of the 2022

ACM SIGSAC Conference on Computer and Communications Security (CCS

’22), November 7ś11, 2022, Los Angeles, CA, USA.ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3548606.3560576

1 INTRODUCTION

Modern web browsers offer an expansive collection of features and

capabilities for improving the user experience, while still allow-

ing users to further expand browsers’ functionality or personalize

their experience by installing browser extensions. The prevalence

of extensions is made evident by a report from Google stating that

łnearly half of all Chrome desktop users actively use extensionsž [4].

However, this personalization suffers from inherent privacy risks:

(i) the list of installed extensions can augment the browser finger-

print that websites generate for a given device, (ii) the intended func-

tionality of extensions can reveal sensitive or personal data about

the user (e.g., religion, medical issues, and nationality) [22]. In other

words, extension fingerprinting presents an additional form of pri-

vacy loss compared to łtraditionalž browser fingerprinting vectors.

Nonetheless, while other browser attributes and characteristics

that contribute to browser fingerprints can be trivially obtained

through dedicated JavaScript APIs, no such capability exists for

obtaining the list of installed extensions. Instead, the presence of

a given extension needs to be inferred through implicit techniques.

In fact, in recent years the research community has demonstrated

various techniques for achieving that goal. Early studies relied on

detecting the presence of specific web-accessible resources [42], a

technique which can be rendered ineffective by countermeasures

deployed by certain browsers or proposed by the research com-

munity [41, 48]. A more robust approach relies on inferring the

presence of extensions based on the side-effects of their executed

functionality (i.e., modifying the page’s DOM [22, 46] or altering the

page’s stylistic properties [28]). More importantly, while extension

fingerprinting has mostly been confined to academic studies,1 re-

cent versions of FingerprintJS [24] (the most prevalent browser

fingerprinting library) actually incorporate such capabilities for

fingerprinting extensions based on traces found in the DOM. This

move has pushed extension fingerprinting into the realm of real-

world privacy threats that can affect users at a wide scale.

A core limitation of all prior studies that infer the presence of

an extension by detecting side-effects caused by its execution (i.e.,

DOM changes), is that they ignore their execution life cycle and

1LinkedIn being the one notable exception [36].

1

CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA. Konstantinos Solomos, Panagiotis Ilia, Nick Nikiforakis & Jason Polakis

only analyze a single snapshot (i.e., the DOM’s state at a single mo-

ment in time). This has significant implications for a fingerprinting

system’s effectiveness as it will essentially be łblindž against any

extensions that make ephemeral modifications (e.g., injecting and

then removing a script). Additionally, the configuration of when to

take that particular snapshot (e.g., prior work compares the DOM

10-15 seconds after the test page is loaded [22, 46]) as well as en-

vironmental aspects that can affect an extension’s execution (e.g.,

the number of installed extensions, CPU load) can further impact

such snapshot-based approaches.

In this paper we introduce the concept of continuous finger-

printing, a fundamentally different strategy that overcomes the

aforementioned limitations, whereby the fingerprinting system

captures the entire life cycle of extensions’ execution. We imple-

ment this concept into Chronos,2 a novel fingerprinting system that

collects fine-grained information about all the changes that occur

within the DOM, including ephemeral modifications (i.e., short-

lived changes that do not leave permanent evidence behind). This

enables our system to capture previously-undetectable behaviors

that subvert all prior fingerprinting approaches which searched

for behavioral fingerprints within a snapshot confined to a single

moment in time. Since our technique necessitates changing the

type of information used in signatures, we leverage the Mutation

Observer [10] JavaScript interface and generate fine-grained sig-

natures storing the order and the type of each modification as the

extension introduced it. Moreover, by applying a set of optimiza-

tion and compression techniques, our system generates signatures

containing the required fine-grained information effectively.

We conduct a comprehensive experimental evaluation of Chronos,

and demonstrate the effectiveness of continuous fingerprinting in

uncovering łstealthyž extensions that exhibit ephemeral modifi-

cations. We find that such transient modifications are extremely

prevalent, as Chronos is able to fingerprint 11,219 unique extensions,

resulting in a 66.9% improvement over state-of-the-art DOM-based

fingerprinting [22]. Our signatures are optimally constructed since

94% contain at least one unique modification that is adequate to dis-

tinguish them. Moreover, our system is highly accurate and efficient

in a multi-extension environment since it has an average signature

matching accuracy of 98%. At the same time, it can also perform

the most demanding signature matching in less than 1.5 seconds.

Overall, our study demonstrates that prior techniques signifi-

cantly undercount the threat of extension fingerprinting by missing

40% of the extensions detected by our system. Moreover, adop-

tion by popular fingerprinting libraries and services will push

extension-fingerprinting into the mainstream, further exacerbat-

ing the privacy risks demonstrated by the research community.

We hope that our findings attract more attention from privacy-

oriented browser vendors that are deploying defenses against gen-

eral browser-fingerprinting techniques, and incentivize them to

also explore countermeasures against extension fingerprinting.

In summary, we make the following research contributions:

• We propose continuous fingerprinting, a novel fingerprint-

ing concept that overcomes the time-based confines of prior

approaches and captures extensions’ execution life cycles.

2Named after Chronos from Greek mythology, a deity that embodied the concept
of sequential time and was associated with the duration of an individual’s life cycle.

• We develop Chronos, a novel system that implements contin-

uous fingerprinting. We explore multiple aspects of contin-

uous fingerprinting and develop strategies for optimizing its

performance both in terms of storage and generated network

traffic, as well as detection accuracy.

• We experimentally evaluate Chronos and demonstrate that

our approach outperforms the state-of-the-art fingerprinting

technique as it enables the detection of a significant number

of undetected extensions.

2 BACKGROUNDANDTHREATMODEL

Here we provides pertinent background information on extensions

and technical details relating to the techniques that we introduce.

Extension structure. Extensions are comprised of different

components that implement the extension’s functionalities and

programmatic logic. The Manifest file allows developers to specify

the background and content scripts, external pages, and permissions

that enable extensions to achieve their desired functionality.

Background scripts. Typically, the extension’s main logic is imple-

mented in the background script using HTML and JavaScript. These

scripts run as individual processes in the context of the browser and

handle the majority of the functionality that content scripts cannot.

Since they cannot access the page directly, they communicate with

the other components (e.g., content scripts) through the Messaging

API and fetch any resources or data required for their functionality.

Content scripts are the only scripts that are injected into the web-

page and directly run on the page. Extensions use them to interact

with and modify the page, while they communicate with the back-

ground script through browser APIs. These scripts are declared

statically in the manifest under an entry that also defines the set of

domains on which the content script will execute. In general, con-

tent scripts use DOM requests to control the page and can also inject

other custom scripts or event listeners that listen for specific events.

Mutation observer interface. The concept of mutation ob-

servers was initially introduced by browsers in the early 2000s

to allow developers to monitor DOM changes [53]. Even though

it was not widely used initially, the API was later updated into a

fine-grained JavaScript interface that monitors the DOM for alter-

ations and modifications [10]. Developers can employ it in their

web applications and use specific options that allow them to ob-

serve the DOM modifications that occur on the target elements,

especially when dynamic changes occur due to users interacting

with the page. Listing 1 shows an example of how the mutation

observer can be used on a target DOM node.

The initial API call of observe configures the MutationObserver

to begin receiving and logging notifications through the callback

function when the DOM change is fired on the target element. The

options object defines the type of mutations that are recorded

through the mutation object and it includes:

• subtree. Monitors the entire DOM subtree of the nodes

connected to target.

• childList. Monitors the target node for additions of new

child nodes and removals of existing nodes.

• attributes. Monitors the changes to the value of attributes

on the target node.

2

CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA. Konstantinos Solomos, Panagiotis Ilia, Nick Nikiforakis & Jason Polakis

This approach has two significant drawbacks that affect its ef-

fectiveness and accuracy in detecting installed extensions and dis-

tinguishing between their modifications. First, it detects that a new

element is added to the page or that an existing one is removed,

but it does not provide information about the existing elements’

modified properties (e.g., height, width, style, and position). The

state-of-the-art framework for DOM-based extension fingerprint-

ing, Carnus [22], compares the document’s outerHTML in the two

snapshots and identifies text keywords that appear or disappear

from the later snapshot, corresponding to the added and removed

DOM elements respectively. However, while this allows it to detect

that, for example, a <div> element was added to the page, it does

not record its properties or whether it was modified multiple times.

While a subset of this information could potentially be retrieved

by repeatedly polling the DOM, such an approach would introduce

considerable overhead while also being unable to capture all of the

asynchronous modifications performed.

Second, the most significant drawback of snapshot-based ap-

proaches is that they can only observe the cumulative result of the

modifications that took place prior to capturing the snapshot. As

such, they miss extensions that alter the page (or the same page

elements) in a similar way, since the snapshot will only include

evidence of the last modifications that łoverwrotež previously com-

mitted ones. Moreover, such approaches also miss extensions that

perform ephemeral modifications (i.e., changes that reverse the

effects of previously committed actions). For instance, we have

observed extensions that add an element to the page and soon af-

ter remove it, or extensions that inject a <script> that removes

itself after execution. Existing approaches that take a snapshot at

a specific point in time will fail to detect such extensions, unless a

snapshot happens to be taken at the exact moment in timewhere the

modifications’ side-effects are still present on the page. When con-

sidering the fact that the execution life cycle of different extensions

will vary, and that browsers execute extensions sequentially when

multiple extensions are present, it becomes obvious that approaches

that rely on snapshots suffer from fundamental drawbacks.

To overcome these limitations and generate accurate fingerprint-

ing signatures, we leverage the MutationObserver interface for

continuously monitoring the page and collecting information about

all the alterations that take place. While an approach that relies on

capturing multiple snapshots of the page’s DOM at specific time

intervals (e.g., every few tens of milliseconds) is conceptually sim-

pler, such a DOM-polling approach will impose prohibitively high

overheads on both the page and the detection system. Furthermore,

even with multiple frequent snapshots, there is no way to ensure

that a single modification is captured in each snapshot. This moti-

vates our design and necessitates utilizing the MutationObserver

mechanism for detecting the modifications.

Honeypage. We follow the methodology of prior work [22]

for exercising extensions and making them reveal their presence.

Specifically, we use a website under our control (dubbed as honey-

page) for identifyingwhichmodifications each extension introduces.

To construct the fingerprinting signatures we visit the honeypage

with a browser that has a single extension installed and wait for

the honeypage to complete loading and the extension to run its

functionality, while collecting all the information about modifica-

tions that occur which are recorded by the MutationObserver. For

each extension we visit the honeypage three times so as to identify

extensions that perform different modifications each time, and ex-

tensions’ modifications that include dynamic content that changes

in a predictable way across visits (e.g., including a timestamp).

To ensure a fair comparison of Chronos to the state of the art,

we will use the honeypage and dataset from Carnus [22]. The hon-

eypage contains a variety of textual and visual elements, media

resources, and ad-fetching scripts used for triggering extensions

and revealing their functionality. The only change in the honey-

page used by our system is that we employ a MutationObserver

to detect and record the modifications instead of capturing a single

snapshot of the page’s DOM after a predetermined amount of time.

Extension filtering. For our analysis we focus on extensions

that run on all domains (i.e., they include the <all_urls> entries in

their manifest), since they are activated and executed on any page

without domain restrictions. This selection strategy allows us to ac-

curately quantify the risk that extension fingerprinting poses to all

users, as anywebsite they visit can employ these techniques and fin-

gerprint those extensions. Compared to the state of the art, although

Carnus [22] did not perform such a filtering on their dataset but

exercised all extensions, we consider our results directly compara-

ble to Carnus. This is because Carnus’ honeysites were situated on

custom domain names thereby triggering only the extensions that

are allowed to execute on arbitrary websites (i.e. the extensions that

execute only on specific domains and websites would never be trig-

gered by Carnus, even if the authors chose not to filter their dataset).

3.2 RecordingMutation Information

Abehavioral modification can be either (i) the addition or removal of

DOM elements and (ii) the alteration of existing elements’ attributes.

The included MutationObserver starts checking for changes as

soon as the page is loaded and the JavaScript code starts executing.

It detects changes as they occur, in an asynchronous fashion, and

for each modification it returns a MutationRecord. To monitor

all the behavioral modifications that occur in the DOM tree, we

configure the mutation observer to target the DOM’s root node (i.e.,

document.documentElement and document.body) and capture all

the childList and attribute mutation types.

Since we are interested in the entire DOM, by monitoring these

two mutation types we are able to capture fine-grained informa-

tion about extension-originating modifications, without the need

to monitor and capture mutation types and properties such as

characterData and subTree. Even though this information is

available to the mutation observer, we found that the knowledge

about the addition/removal of nodes and attribute changes is suffi-

cient for detecting extensions, and that we do not need to further col-

lect information about the DOM structure and the nodes’ hierarchy.

In general, the mutationRecords returned by the mutation ob-

server contain a plethora of information, and a large number of

entries, relating to each observed modification. The majority of

this information, however, consists of properties shared among

multiple mutations’ nodes and thus not helpful for uniquely char-

acterizing a mutation. We do not include those entries since they

provide supplementary information to the childList and attribute

types that we already leverage. In practice, we verified that if a

mutation event is present, it either belongs to the childList or

4

Escaping the Confines of Time: Continuous Browser Extension Fingerprinting Through Ephemeral Modifications CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA.

attributes type mutation record. The mutation object’s additional

entries store redundant information and structural related data that

do not enhance our signature extraction.

To that end, we parse the mutationRecords and consider only

a few specific entries when constructing the fingerprinting signa-

tures. In the case of mutations of the attributes type, we store the

target node identifier and its outerHTML attribute (which includes

the altered values) and ignore the attributes’ individual entries that

can also be found in the mutationRecord.

3.3 Fingerprint Generation

In the remainder of this section we describe our methodology for

constructing the extensions’ fingerprinting signatures and extract-

ing the user’s fingerprint when visiting the attacker’s website.

To construct the fingerprinting signatures, we visit our honey-

page with a browser that has one extension installed at a time,

and the mutationObserver in the honeypage records information

about the mutations that take place. We then parse the obtained

mutationRecords and identify specific entries, based on each mu-

tation’s type, that we use to form our fingerprinting signature. A

similar process is followed when a user visits the attacker’s website

(i.e., our honeypage in this instance). The mutationObserver in

the page collects information about the modifications introduced

by the installed extensions, which we process similarly to the sig-

nature generation and use as the user’s fingerprint. Finally, in order

to determine which extensions the user has installed, we compare

and try to match the extensions’ signatures from our database with

the user’s collected fingerprint.

Dynamicmodifications. During the signature generation pro-

cess we visit the honeypage three times for each extension, to iden-

tify those that perform (i) different modifications in each visit and

(ii) modifications that include dynamic content. After an initial anal-

ysis of the obtained mutationRecords we identified four classes of

dynamic behaviors that alter one or multiple elements in a mutation.

Such mutations need to be identified and handled with caution, as

their dynamic parts can result in the extensions’ signatures not

matching the user’s fingerprint. The four classes of dynamic behav-

iors that we identified are: (i) jQuery injected elements, (ii) extension

WAR URLs, (iii) URL query parameters, and (iv) timestamps.

For the first class, we observe that the jQuery library uses an

internal library called Sizzle to perform CSS queries and modifi-

cations [32]. When the library is called, it injects a <div> element

into the DOM, which has a name of the form sizzle-ID, where

the ID is a unique numeric string reflecting the type of the se-

lection. When the library finishes its querying process, it then

removes the element from the DOM. This identifier is dynamic

and changes every time that the extension runs. To handle this

case of dynamic <div> elements we replace the identifier in the

element’s name with a value representing its size. For example the

name sizzle-1649704082959 is transformed to sizzle-13. This

approach allows us to remove the dynamic parts of a signature ef-

fectively without altering the mutation’s static or immutable parts.

We follow a similar approach for handling the case of WAR

URLs that are included in the mutations. Since an extension’s UUID

changes when multiple extensions are installed in the browser, we

replace the UUIDwith the keyword IDwhen storing themutation in

the signature, without actually altering the path that the extension

requests (i.e., chrome-extensions<ID>/<path>/<resources>).

With regards to requested resources’ URLs that are found in the

DOM modifications, we observed that if an extension requests a

resource from an external URL, either the URL or the query param-

eters might change across runs. This may be part of their intended

behavior, or it might be affected by the state of the DOM (e.g., if

an element is present, the extension fetches a different resource). If

we observe that a URL is stable but its parameters vary, we replace

these parameters with the keyword ID. For example, in the case of

https://s3.amazon.com/content.js?rand=1234, we will store

the URL https://s3.amazon.com/content.js?rand=ID in the

signature. On the other hand, if the resources are dynamic and their

URLs change in an unpredictable way, we replace the resources

name with the keyword Resource without altering their paths. Fi-

nally, we apply the same approach for handling the case of dynamic

timestamps and dates. Specifically, we omit the dynamic values and

only store the mutation’s static part in the fingerprinting signature.

We followed a continuous testing approach for developing this

strategy, by verifying that all dynamic values are detected and han-

dled accordingly. As our evaluation shows (§4), it is uncommon

for extensions to introduce additional dynamic elements that alter

signatures’ structure and content and, thus, our heuristics are com-

prehensive. This process is straightforward and easily applicable,

while also effectively handling the dynamic behavior of finger-

printable extensions. Chronos follows the same approach when

replacing the dynamic values in the signature-generation phase

and during the extraction of users’ fingerprints.

Attributetypes. The attributes type ofmutation record stores

the outerHTML of a style or element modification that was trig-

gered by the extension. Depending on its target, this entry (i.e.,

body or page’s element) either stores a specific modification or ex-

tracts the whole HTML object of the page. For this type we compare

the outerHTML with the original page’s DOM (i.e., when an exten-

sion is not installed) and we extract the specific attribute changes.

This filtering optimizes the content of the mutation record since it

only stores the required information and enhances the fine-grained

fingerprint extraction process.

Fingerprint collection. Since mutation records are triggered

asynchronously, we wait until all the mutation events fire before

storing them in a JSON object. The key in the JSON object is the mu-

tation record’s identifier, which stores the order in which each event

was fired. Each key’s entries are a serialized nested object that stores

the required information for each mutation type. For optimization

purposes and reducing the network overhead, we also compress the

JSON object before sending it back to the server for further analysis.

For compression we use JavaScript’s popular Pako [33] library.

Another crucial dimension for our system functionality per-

tains to when we collect the signature trace. Previous work [22, 46]

reported using a hard threshold of 10-15 seconds, which was empir-

ically measured as sufficient time for an extension to reveal itself.

Since Chronos continuously collects DOM modifications that are

triggered while being performed, we can pinpoint a more accurate

threshold. After extensive experimentation we found that eight sec-

onds are adequate for extensions to load and perform their intended

functionality even when multiple extensions are present. Out of all

the evaluated extensions, only 0.05% performed modifications after

5

CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA. Konstantinos Solomos, Panagiotis Ilia, Nick Nikiforakis & Jason Polakis

Time (t)

t0

var script = createElement('script’);
script.src = “foo.js”

document.appendChild(script);

Extension Execution Cycle

Script injection on page Script removal after execution

t1 t2 t3

…. ….

{type: childList, target: body,
added: []

removed: [{
id: 0,

outerHTML: <script src=foo.js></script>}]
}

Carnus Snapshot

Capture

ts

Mutation_1 Mutation_2

Chronos :

{

1 : {...,added:{foo.js}}
2 : {...,removed:{foo.js}}

}

Carnus : {}

Chronos Captured Mutations Fingerprinting Signatures

script.onload = function() {

this.remove();
};

{type: childList, target: body,
added: [{

id: 0,
outerHTML: <script src=foo.js></script>}]

removed: []
}

Figure 2: Extension execution timeline and continuous fingerprint generation.

the eight-second mark. Those are uncommon extensions that mod-

ify the DOM and interact with dynamic elements (e.g., animations,

live data illustration) while active on the page. However, due to their

continuousmodification of the DOMwe are still able to collect a rep-

resentative set of mutations in under eight seconds. For the remain-

der of the paper we will use this threshold, unless stated otherwise.

Continuous fingerprinting timeline. To further detail the

continuous fingerprint process, we illustrate the fingerprint genera-

tion timeline in Figure 2. In this scenario, an extension performs an

ephemeral modification by injecting a script (foo.js), and remov-

ing it after its execution. At time t0 the extension’s content-script

is running on the page and injects a script tag including the ex-

ternal script. This addition triggers the mutation observer since it

detects the added script element on the page. At a later time t2 the

injected script removes itself since it finished its functionality, and

the mutation observer is triggered again due to the removal of the

previously added script. If we were following the traditional DOM

fingerprinting snapshots like Carnus, we would not have taken a

DOM snapshot during this time. Even if we were instructing Carnus

to take a snapshot every few milliseconds (with all the noise and

overhead that this entails), there would be no guarantee that our

snapshots would have interleaved these addition/removal actions

in a way that would have uncovered the ephemeral script. When

Carnus takes its snapshot at a later time the extension has already

finished its intended functionality and its fingerprint is empty, as if

the extension had no visible side-effects on the DOM. On the other

hand, Chronos’ fingerprint includes one addition and one removal.

This example illustrates the power of continuous fingerprinting

compared to prior snapshot-based approaches in effectively uncov-

ering extensions with ephemeral modifications.

3.4 Fingerprint Matching

Conceptually, detecting a single extension that is present in a user’s

browser is straightforward when leveraging the signatures gener-

ated by Chronos. In practice, however, users may have multiple

extensions installed and several may be triggered on a given page.

Importantly, different extensions may make a subset of identical

modifications or interact with the same elements on the page. As

such, we need to follow a different process for effectively finger-

printing multiple extensions. When a user visits the honeypage, we

extract the fingerprint trace that we have to match with multiple

entries accordingly. For this task, we design a matching algorithm

that distinguishes the fingerprints of a larger fingerprint trace.

Before applying any detection technique, we perform a set of

preliminary processing and filtering. Our algorithm’s input includes

only the fingerprint trace and the set of all fingerprinted extensions.

The first step is to select the subset of extensions with signature

sizes smaller than the fingerprint trace’s. This filtering is essential

since the fingerprint trace’s maximum size is the accumulated size

of the target signatures while it also reduces the number of unnec-

essary comparisons by removing extensions with larger signatures,

as they cannot be part of the fingerprint. Another characteristic

of the signatures is that they can share identical mutation records,

and thus, smaller signatures can form perfect subsets of larger ones.

To avoid this type of mismatch when comparing signatures, we

also sort the set of signatures in descending order based on their

size. Moreover, signatures can have additional unique mutation

records that are sufficient to detect the presence of each extension.

We divide our target signature set into two smaller subsets to op-

timize our search process. The first one includes extensions with

unique mutations, and the second one stores signatures formed by

extensions with non-unique mutations. After applying this final

filtering, we handle each subset of extensions individually.

In the first iteration (lines 2-8), we attempt to detect the signa-

tures formed by unique mutations. For each signature, we compute

the common set between its unique records and the mutations of

the fingerprint trace. We successfully detect the extension if at least

one mutation record matches the signature and the fingerprint trace.

We then remove all of the signature’s mutation records from the

fingerprint trace, and we also store the extension’s ID. We proceed

with this process until the fingerprint trace is empty or until there

are no other signatures left for comparison.

We follow a similar approach for the second part of our algo-

rithm (lines 12-17). Since the search space is the set of signatures

6

Escaping the Confines of Time: Continuous Browser Extension Fingerprinting Through Ephemeral Modifications CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA.

Algorithm 1: Fingerprint matching process for detecting

multiple extensions

Input: Fingerprint Trace, Fingerprint DB.

Output: List of detected extension IDs

1 ID_Vector =[]

2 signatures_set =Fingerprint DB {length ≤ size(fp_trace)}

3 unique_signatures = sorted{signatures_set{unique}}

4 non-unique_signatures = sorted{signatures_set{non-unique}}

5 foreach signature in unique_signatures do

6 common= {signature.unique_records ∪ fp_trace}

7 if common then

8 fp_trace.remove(signature.mutations)

9 ID_Vector.insert(signature.ID)

10 end

11 end

12 foreach signature in non-unique_signatures do

13 found = Boyer-Moore {signature.mutations, fp_trace }

14 if found==True then

15 fp_trace.remove(signature.mutations)

16 ID_Vector.insert(signature.ID)

17 end

18 end

19 return ID_Vector

that do not have unique mutations, and thus we are not able to

distinguish them by just retrieving the shared mutations, we apply

a different matching algorithm. Specifically, we build off of the

Boyer-Moore string search algorithm [47]. The main idea behind

this algorithm is the following: at first, it processes the target string

and creates indexes to store the position of each character. Then

it compares each pattern’s character (starting from the end) to find

a word or the same characters in the target string. When there is

a mismatch, the search slides to the next matching position in the

pattern using the precomputed index value. In our case the target

string is the fingerprint trace, while the pattern is the signature

we are looking for. We iterate through the set of signatures with

common mutations, and for each signature we apply the algorithm

until there is a match. For the matching signatures we remove their

mutations from the fingerprint trace and store them accordingly.

As we show in Section 4, this algorithm is efficient and effective at

matching and detecting fingerprints.

In general, the aforementioned matching process that leverages

both the łdirectž and Boyer-Moore algorithms is effective in distin-

guishing unique signatures. While the Boyer-Moore algorithm can

also be used in a standalone fashion with similar accuracy, our pro-

posed solution that combines them both remains highly accurate

while reducing overhead, as we show in our evaluation.

4 EXPERIMENTAL EVALUATION

In this section we experimentally evaluate Chronos’ extension fin-

gerprinting capabilities. For our analysis we use two datasets:

• Ext1: This dataset contains the extensions used byCarnus [22];

it was collected in March 2018 and it contains 102,482 exten-

sions. After applying the domain filtering rules and omitting

Table 1: Number of extensions detected in each dataset.

Dataset Extensions Fingerprintable (%)

Ext1 27,342 8,385 (30.66%)

Ext2 11,140 3,865 (34.69%)

Total (all extension versions) 12,251

Total (unique extensions) 11,219

the extensions that do not run on every domain, we are left

with 27,342 extensions.

• Ext2: To perform a fine-grained analysis of extension behav-

ior across time, we collected a fresh snapshot of the Chrome

Webstore in December 2021. To avoid any bias from the

same extensions being in two different datasets, we omit

any extensions already present in Ext1 and only collect new

versions of those extensions as well as new extensions. This

dataset contains 11,140 extensions, with 3,144 being new

versions of extensions from Ext1.

Experimental setup. We first deploy our honeysite in a popu-

lar, widely-used web hosting service to perform our experiments.

We leverage Selenium [39] for orchestrating and controlling the

browsers that act as desktop users that visit the honeysite with a

specific extension installed. To increase the efficiency of our exper-

iments, we build our framework into a Docker Container [9], that

allows us to run multiple browsers with different sets of installed

extensions in parallel. For all the experiments, we use an off-the-

shelf desktop machine with a 6-core Intel Core i7-8700, 32GB of

RAM, connected to our university’s network. To reduce potential

extension failures due to mismatched browser environments, for

each dataset, we used the latest version of Google Chrome as well

as one that was contemporary to the time period of each dataset [7]

(i.e., versions: 73.0.3683.68 and 96.0.4664).

Overview. In Table 1 we present a summary of the detected

extensions in our datasets. For the first and oldest dataset, we are

able to uniquely fingerprint ≈31% of the extensions. Similarly, the

percentage for the most recent dataset is ≈35%. In general, our

average detection percentage is strictly better than any prior DOM-

fingerprinting mechanism, while also providing a lower bound

of the fingerprintability of the extension ecosystem. These detec-

tions reflect the inherent behavior of extensions interacting and

modifying the DOM. However, extensions are complex and multi-

dimensional components that provide various capabilities that may

not always result in DOM modifications (e.g., they may employ

the browsers’ popup windows), which results in them not being

fingerprintable by any DOM-based detection system. Moreover,

extensions may also expect different input values, such as specific

content in the honeypage, or user interactions [44], in order to

trigger their DOM-modification logic.

Comparison to prior work. To gain insights regarding the ef-

fectiveness of our approach that relies on continuously fingerprint-

ing browser extensions, we compare our findings with the state-of-

the-art DOM-based extension fingerprinting system, Carnus [22]. In

general, we differentiate the extensions that generate a non-unique

signature and the extensions that have unique signature finger-

prints and can be directly detected by our system. For the remainder

7

CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA. Konstantinos Solomos, Panagiotis Ilia, Nick Nikiforakis & Jason Polakis

Table 2: Detected extensions and signature collisions of Carnus [22] and Chronos.

Carnus Chronos Fingerprintable Extensions

Resolved Collisions
Dataset Detections Collisions Detections Collisions

(Carnus)*
Carnus Chronos

Ext1 6,965 1,521 (21.84%) 11,036 2,651 (24.02%) 1,481 5,444 8,385

Ext2 2,184 287 (13.14%) 4,369 504 (11.54%) 204 1,897 3,865

*Collisions between Carnus’ signatures that are resolved with Chronos’ signatures.

of our analysis, we refer to the extracted signatures as detections

and the unique signatures as fingerprintable extensions.

For a fair and straightforward comparison with our system, we

run Carnus on both datasets. Since Carnus incorporates additional

detection mechanisms (e.g., WAR, intra/inter communication) we

only report the DOM-based behavioral detections. A breakdown

of the results is provided in Table 2 with Carnus detecting 6,965

extensions in the Ext1 dataset and 2,184 in the Ext2 dataset. How-

ever, these detections are not unique due to signature collisions, i.e.,

signatures with the same functionality modifying the same DOM

elements and, thus, we omit those collisions from the resulting

fingerprint signatures. We find that 5,444 extensions are uniquely

fingerprintable in the Ext1 dataset and 1,897 in the Ext2 dataset.

The number we report for the oldest dataset is different than the

number reported in [22] since the authors followed an approach

that allowed mismatches for fingerprints of large size, which in-

cluded 349 additional extensions with colliding signatures in their

final set of fingerprintable extensions. Following the same principle,

we apply our collision approach so as to directly compare the num-

ber of unique fingerprintable extensions. As we detail later, since

our signatures are fine-grained and contain different information

when compared to traditional DOM signatures, we do not include

colliding signatures in the unique fingerprintable set of extensions.

Regarding Chronos’ capabilities, we find that out of the 11,036 de-

tections of Ext1, the 8,385 are uniquely fingerprintable, while from

the 4,369 detections of Ext2, 3,865 are also uniquely fingerprint-

able. As expected, our system fingerprints all of the extensions that

Carnus can fingerprint in both datasets. When comparing directly

to Carnus and its original dataset, we are able to fingerprint 2,941

additional extensions that Carnus misses due to the snapshot-based

observation of the DOM. Similarly, 1,968 extensions (50%) from

Ext2 can only be fingerprinted by Chronos, due to its ability to

capture all modifications that occur within the DOM, even if those

modifications are ephemeral and their traces are erased by subse-

quent modifications. In total, we are able to uniquely fingerprint

4,546 extensions in Ext1 and Ext2 that the state-of-the-art approach

would miss. In general, we verify the efficacy of our continuous

fingerprinting approach since we detect ephemeral behaviors of

extensions (e.g., an injection and removal of a script or short-lived

modifications) that are not detectable by the previous approaches.

Ephemeral modifications. To better understand the behavior

of the extensions that can only be fingerprinted by our system,

we further analyze their signatures. We find that all the 4,546 ex-

tensions include at least one addition and one removal of a page

element. This specific behavior is not something one might expect

from extensions; instead one would expect extensions to simply

perform a consistent or immutable set of modifications on the page.

This expectation is what drove prior fingerprinting strategies. How-

ever, based on our analysis, we find that this behavior is common

for extensions that require information about the DOM’s state or

the browser’s state. We discovered that extensions often inject an

element, which could be a simple div tag, or a standalone script

in order to access those properties. In fact, we find that the ma-

jority of the extensions (≈85%) inject a div tag which is required

for the functionality of the jQuery library. Specifically, when the

extension is present, the library injects a sizzle identifier, which

is the internal component that allows the library to activate its

CSS selectors and perform queries on the DOM [32, 34]. Once the

querying is finished, the library removes the tag element and any

other modification and may proceed with additional functionality.

This behavior is consistent across different jQuery library versions

that employ this type of environment-testing mechanisms.

Our analysis reveals similar behaviors for the remaining exten-

sions (≈15%). Extensions tend to inject a script directly in the page or

under an iframe that accesses the browser’s values and variables. In

the simplest scenario an extension injects a script that verifies that

JavaScript is enabled. We also found cases of extensions reading the

local storage and looking for a specific type of stored variables (e.g.,

whether the page contains a type of resource). When they find the

required queried elements, they send a message to the extension’s

components (e.g., background script) and remove the injected script.

This behavior is exemplified by the popular łAdobe Readerž exten-

sion (over 10M users), as it injects a script for identifying whether a

PDF document is present in the browser. Moreover, similar behav-

iors include script injections for detecting if another ad-blocking ex-

tension is present. Specifically the łSpeedTestž extension, with over

2M users, injects a script that queries the DOM for the existence of

an ad blocker since this information is required for its intended func-

tionality. The aforementioned diversity of extension behaviors was

only uncovered due to our continuous fingerprinting methodology,

and was overlooked by traditional DOM-fingerprinting systems.

Our approach is uniquely suitable for detecting such unpredictable

behaviors and generating the appropriate signatures containing all

of the ephemeral modifications.

4.1 Signature Stability, Size & Characteristics

Signaturecollisions. Next we analyze the identical signatures that

Chronos detected and compare our results to Carnus. In Carnus-

style snapshots, multiple extensions may generate the same signa-

ture due to similar behaviors. By leveraging mutation observers, we

are able to resolve most collisions as our signatures are formed by

continuous modifications and contain comprehensive fine-grained

execution information. Specifically, using our technique our system

resolves ≈97% and ≈71% of the collisions that affect Carnus in each

8

Escaping the Confines of Time: Continuous Browser Extension Fingerprinting Through Ephemeral Modifications CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA.

dataset, respectively. This highlights that the signatures generated

usingmutation records overcome the limitations of traditional DOM

signatures. Nonetheless, in our approach, there are also extensions

with identical behaviors that generate the same signature. We note

that our dynamic identifier-replacement heuristics can result in

collisions, but they are necessary for enabling Chronos to uniquely

fingerprint extensions, since 5,050 fingerprints contain at least one

mutation record with dynamic content which we would miss if

we did not apply the dynamic heuristics. Regarding the collisions,

out of 2,651 in Ext1, 89% exist due to shared jQuery libraries. Also,

6% of the collisions are generated from extensions that perform

identical functionality and are published under different identifiers

by the same developer (e.g.,łOne-Click Summarizerž and łOne Click

Readerž). For the remaining ≈5% of the extensions, we observe

that the collision occurs due to extensions offering similar func-

tionality and employing the same JavaScript interfaces and public

libraries (e.g., for VoIP and Remote Control functionality).For the

Ext2 dataset, the distribution is similar, with 90% of the collisions

generated by the jQuery library, ≈6.5% and ≈3.5% due to the same

developer and functionality respectively.

Signature stability. To understand the stability of Chronos-

derived signatures between different runs of the same extension,

we calculate the number of mutations contained in each of the

three fingerprints generated for each extension (i.e., from the three

executions of each extension). Interestingly, we find that 99.5% of

the signatures have the same number of mutations across runs. The

remaining 0.5% represents highly dynamic extensions whosemodifi-

cations are not deterministic and, thus, the fingerprint’s size varies.

Apart from the size, signatures can also be volatile since mu-

tation signatures can have a dynamic mutation or dynamic parts

in a mutation record, as described in §3.3. Even if a signature has

identical records across runs, parts of the signature might differ due

to this dynamic behavior. Also, different signatures may share the

same mutations due to common libraries. To quantify how these be-

haviors affect the fingerprinting process, we measure the number of

signatures with at least one unique mutation. We find that from the

total 11,219 unique extensions that Chronos detects across datasets,

10,555 (94%) have at least one unique mutation record. Since a mu-

tation record stores the outerHTML of each modification, it has the

potential of being unique. Even if the actions of adding/removing

nodes are common across extensions, the type and the content

of the modification itself can be unique based on the extension’s

purpose and functionality. As we discuss later in this section, this

characteristic has significant implications, as our system is able

to distinguish an extension’s signature by just identifying a single

unique mutation.

Signature statistics. In Figure 3 we present statistics regarding

the signatures’ sizes and structure. Figure 3a depicts the number of

mutation records per signature. We find that 50% of the signatures

contain less than 10 records, while only 5% of the signatures contain

at least 50 mutation records, with the larger signatures storing up to

1,000 records. This trend captures the overall extension ecosystem’s

behavior, where the majority of the extensions perform a specific

set of deterministic modifications. In contrast, only a few extensions

have highly dynamic and elaborate behavior that triggers multiple

mutation events. For instance, the popular weather forecast exten-

sion łForecast Foxž modifies the DOM to create numerous elements

with a graphical UI and real-time information.

In Figure 3b we compare the original size of the mutation ob-

server’s object (i.e., the total number of entries included in the

object), the filtered signature entries that Chronos uses (i.e., outer-

HTML and target entries), and the compressed (and filtered) sig-

nature size that is sent by the client’s device back to the server

for storage. Here we present the original mutation observer’s ob-

ject size only for completeness; in practice we never collect this

object since the website directly applies our filtering strategy dur-

ing the fingerprint’s generation. As can be seen, our strategy of

selecting only the mutation that holds crucial information is highly

efficient since the final signature’s size is 99.5% smaller than the

original object. This confirms that our signature-generation strat-

egy is efficient while still retaining precise information regarding

the modifications that occur over time, which would be missed if

we followed a snapshot-based approach.

Moreover, for the filtered signatures that form our datasets, we

find that more than half require less than 1.5 KB of storage while

less than 3% require 100 KB or more. Similar to Figure 3a, the exten-

sions that perform multiple dynamic non-deterministic modifica-

tions are those that are more demanding in terms of storage. Since

we compress signatures in our experimental setup, we observe an

additional ≈75% size reduction for half of the extensions. These

numbers indicate that our signature generation and collection is

highly efficient since less than 75 KB of compressed data is trans-

ferred over the web during signature collection. Considering that

users may be using smartphones and connecting over limited data

plans, a naive approach of collecting and transferring all mutation

observer records as they occur would have been prohibitive.

4.2 Longitudinal Analysis & Categorization

Extension types&popularity. We classify the fingerprintable ex-

tensions based on their type, as provided by the Chrome extension

store. The most prevalent category is that of łProductivityž with

≈35% ofExt1 and≈45% ofExt2 belonging to this category.Moreover,

we also compute the relative popularity of the detected extensions,

based on the number of downloads on Chrome’s Webstore. Almost

half of the extensions fingerprinted in both datasets have more than

100 users, while≈10% of the extensions havemore than 10,000 users.

Longitudinal analysis. As we mentioned earlier, Ext2 contains

3,144 extensions that are newer versions of extensions from Ext1.

Out of those, 1,032 (32.8%) remain detectable across datasets (i.e.,

they were fingerprintable in the older dataset and remained finger-

printable in the new one). This indicates that certain extensions

remain fingerprintable over time (≈4 years) even if they change their

intended functionality or aspects of their behavior. We also find

that from the initially fingerprintable extensions, 144 (12.2%) stop

being fingerprintable. While not as prevalent, this also reflects how

the extension ecosystem can evolve, since certain extensions may

significantly change their functionality over time or offer the same

features using different browser mechanisms (e.g., browser-popup

windows).While this is an interesting trend, we have nomeans of as-

sessing whether developers made these changes for the express pur-

pose of making their extensions non-fingerprintable. Finally, 12.5%

9

CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA. Konstantinos Solomos, Panagiotis Ilia, Nick Nikiforakis & Jason Polakis

0

0.25

0.5

0.75

1

10
0

10
1

10
2

10
3

E
x
te

n
s
io

n
s
 (

C
D

F
)

Mutation Records

(a) Signature’s number of records per extension.

0

0.25

0.5

0.75

1

100B 1KB 10KB 100KB 1MB 10MB 100MB

E
x
te

n
s
io

n
s
 (

C
D

F
)

Signature size (logscale)

Filtered
Compressed

Original

(b) Extensions’ fingerprint sizes.

Figure 3: Number ofmutation records per signature and signature size for the total number of detected extensions.

of the extensions that were not fingerprintable in the older dataset

are indeed fingerprintable in the new dataset. In general, this exper-

iment highlights that whenever an extension is updated, where de-

velopers might perform multiple modifications to the code and the

functionality, fingerprinting systems should repeat their analysis.

To further quantify these behaviors and better understand the

underlying trends, we compute the signature sizes of the two fin-

gerprints for the 1,032 extensions that are fingerprintable across

versions. We find that 697 extensions (67.5%) did not alter their be-

havior and their fingerprinting signature was identical. Moreover,

for 127 extensions (12.7%), the most recent signature is shorter and

stores fewer mutation records, while the size is greater for 20% of

the signatures. We also explore if the updates alter the signature’s

uniqueness and compute the number of extensions that include

at least one unique mutation record. In the older dataset, 1,014

extensions (≈98.2%) of the common fingerprintable extensions con-

tain unique mutations, while in the most recent dataset that drops

to 97.33%. Despite this slight decline, the rate is relatively stable

over time. We conclude that, apart from the expected shift in the

signatures due to updates, this trend also reflects that JavaScript

libraries and APIs are constantly updated. Accordingly, developers

adapt to these new changes by altering the extension’s behavioral

signatures, which Chronos is still able to detect.

4.3 Multi-Extension Fingerprinting

Here we evaluate Chronos’ capabilities under a realistic deployment

scenario, where multiple extensions are simultaneously installed in

a user’s browser. First, we perform a set of preliminary experiments

to understand the behavior of extensions when they run in a multi-

extension environment, and then perform a large-scale experiment

to quantify our system’s accuracy in a multi-extension setup.

Executiontimeline. At first, we investigate howmultiple exten-

sions interact with each other, the resulting order of their execution,

and how signatures are affected. The exact execution order is not

a significant factor in our system since we are mainly interested

in extracting the extension’s fingerprint and identifying potential

changes due to co-interference (i.e., one extension’s changes affect-

ing or prohibiting another extension’s actions). For this experiment,

we randomly choose extensions and form different subsets contain-

ing up to ten extensions. For each set, we install the extensions,

visit the honeysite and collect the fingerprint traces. To generate

an adequate number of measurements, we run this experiment 100

times for each independent set. We observe that the execution order

is always identical (i.e., extension A runs before extension B), and

the execution is deterministic. This is in line with prior observations

by Picazo-Sanchez et al. [35] who reported that browsers execute

extensions sequentially and that the execution order is based on the

installation date of each extension (i.e., the extension installed first

is executed first). However, we find that currently the execution

order is based on the alphanumeric order of extensions’ UUID (e.g.,

the extension with UUID łabcž will run before the extension with

UUID łxyzž), which could potentially be attributed to a change in

Chrome’s handling of extensions. The finding that extensions’ exe-

cution is sequential is crucial for our analysis, as it results in exten-

sions’ signatures that contain the same number of mutation records.

We also observe that execution interruption between extensions

is not frequent, and it only occurs when extensions are requesting

and fetching external resources. In practice, this type of execution

łinterleavingž occurs when extension A starts its life cycle and then

requests an external resource; during this idle time the browser

will start the execution of the following extension. This scenario

creates inconsistencies whenmultiple highly-dynamic and network-

related events of different extensions run in parallel and introduce

overhead over the browser. However, as we already reported in §4.1,

the majority of signatures are relatively short and stable, and thus

even if interleaving occurs it does not alter the signatures’ trace.

Identical modifications. Another experimental aspect that is

crucial for matching fingerprints is whether different extensions

trigger identical modifications in parallel. In this scenario, multiple

extensions will attempt to alter the same page element or resource,

resulting in a form of łrace conditionž. This interference may affect

the value stored in the mutation record as there are three potential

10

Escaping the Confines of Time: Continuous Browser Extension Fingerprinting Through Ephemeral Modifications CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA.

Table 3: Chronos’ accuracy inmulti-extension settings.

2 3 4 5 6 7 8 9 10

TP (%) 98.33 97.4 96.7 98.21 96.5 98.32 95.84 97.48 98.25

FN (%) 1.67 2.6 3.3 1.79 3.5 1.68 4.16 2.52 1.75

F1 (%) 99.16 98.68 98.32 99.10 98.22 99.15 97.88 98.72 99.12

outcomes: (i) the last extension will perform the same type of modi-

fication and łoverwritež the previous modification, (ii) the extension

will not perform anymodification, or (iii) the extension will perform

a different and non-fingerprinted modification according to its func-

tionality. In the case where nomodification or different modification

occurs, the childList type mutation records will be affected since

they store the information of added and removed nodes, and thus

potential mismatches will be created. However, this behavior will

not affect the attribute type of mutations since we hold the infor-

mation of each attribute change individually, per mutation record.

If an attribute modification is not present or additional attributes

have changed, we can still identify the mutation record uniquely.

In order to handle these mismatches in the attribute types, and

to further quantify this behavior, we run an experiment with ex-

tensions that include at least one attribute mutation record and

capture how the mutation record is altered due to co-interference.

Similar to the previous setup we install sets of up to ten extensions,

selecting random and different extensions every time, and run each

combination 500 times. We find that even when co-interference

alters the content of the mutation records, the attribute mutation

record remains at least 80% identical to the original signature’s mu-

tation record. This result implies that even if the extension does not

perform one of the attribute modifications since another extension

has already completed it, the rest of the attribute modifications will

occur normally. We use this threshold for the rest of our analysis

when we refer to the matching algorithm process

Multi-extension fingerprint. Using the aforementioned in-

sights, we setup a large-scale experiment for evaluating Chronos’

accuracy and efficacy in detecting multiple extensions present in

the same browser. We randomly select N fingerprintable exten-

sions (sets of 2 up to 10) and install them in the same browser. We

focus on fingerprintable extensions, since non-fingerprintable ex-

tensions do not perform page modifications and the execution trace

would not change. If we included non-fingerprintable extensions,

it would artificially inflate our reported accuracy, due to the lower

likelihood of extension co-interference. We visit the honeypage 100

times for each set and compute each run’s scores independently.

For the matching task, we attempt to match a given fingerprint

trace with multiple signatures, using the matching algorithm that

we introduced in §3.4. When comparing attribute mutation records

we use the 80% similarity threshold. Table 3 presents the results

of our evaluation. For our analysis, False Positives reflect those

extension signatures that are not actually in the fingerprint trace

but are misclassified as detected by our system. Conversely, False

Negatives are those signatures that are present in the fingerprint

trace but our system fails to detect them. Importantly we note that

we do not have any False Positives since our signature’s structure

and the matching algorithm do not generate mismatches. Contrast-

ingly, Carnus suffered from 0.5-7.25% false positive rates [22]. Our

system’s accuracy is a direct result of our finding that 94% of the

signatures contain unique mutations, as outlined in §4.1.

Overall, Chronos is highly accurate as it identifies 96ś99% of the

installed extensions. For the remaining cases, we have identified

two different behaviors that lead to mismatches (FN ≈ 1-4%). In

the first case, the modification that the extension attempts to ex-

ecute has already been performed by another extension, and thus

it does not perform it. For example, suppose extension A changes

the page’s background color from white to red, and extension B ac-

cesses the background color’s value to inject a new element. When

extension B reads the page’s background variable, it is different

from the predefined (white), and in that case it will not perform this

specific modification. The second type of mismatch includes those

extensions that perform a dynamic modification that has not been

captured during the extension fingerprinting phase. Interestingly,

we found cases of extensions explicitly injecting debugging mes-

sages (e.g., łSomething is not right at this moment! Please try again

after some time.ž) instead of completing their intended modification.

This behavior could also potentially be used as part of an extension’s

fingerprint since the absence of a specific modification and a łdebug-

gingž modification could reveal the presence of an extension. While

these mismatches are part of the extension’s capabilities, since we

cannot currently predict how or when the extension will perform a

different modification due to the interference from a different exten-

sion, we consider this an interesting future direction. Nonetheless,

despite the potential for co-interference, our experiments demon-

strate that Chronos is highly accurate in a realistic deployment

scenario and always achieves an F1-score higher than 98%.

System performance. As we have detailed previously, we use

a threshold of eight seconds during the extension fingerprinting

phase and when fingerprinting users’ extensions in real-time. This

design decision is crucial since it minimizes the time that the user

is required to stay on the website. By design, we offload all the pro-

cessing of the mutations and detection to the server. In practice, the

website will generate the fingerprinting trace after eight seconds,

compresses it, and send it back to the server. The server is then

responsible for decompressing the fingerprint and extracting the

signature. For each signature, it processes the attributes elements,

dispatches the modifications, and finally, handles the removal and

replacement of the dynamic parts of the signatures.

To test the server-side computation overhead, we employ the

same experimental setup for matching fingerprints from multiple

extensions; we measure the time required for the server to pro-

cess the fingerprint trace and the algorithm to match the trace to

the stored signatures. We run this experiment 100 times for N=10

installed extensions to collect a representative number of measure-

ments that provide an upper bound (i.e., the worst-case scenario).

We find that, on average, the server requires 1.5 seconds to detect

10 installed extensions (stdev 0.8) with a median of 0.25 seconds.

This result is expected if we take into consideration the signatures

sizes (§4.1) and the fact that under this experimental scenario, the

average decompressed fingerprint trace size is only 0.6 MB. These

numbers represent the upper-bound of computational overhead

since, in a realistic scenario where the user has a smaller number

of fingerprintable extensions generating mutations, the signatures

will be significantly smaller. In general, while we find that Chronos

is highly efficient, it can be further optimized if an attacker targets

11

CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA. Konstantinos Solomos, Panagiotis Ilia, Nick Nikiforakis & Jason Polakis

a specific subset of extension or they employ high-end machines

with multi-threading components for processing and decompress-

ing, and dedicated GPUs for more efficient pattern matching.

4.4 Preventing DOM-based Fingerprinting

DOM-based fingerprinting is particularly robust against defenses

since it essentially captures execution artifacts that are inherent

to a given extension’s functionality and, thus, not trivial to pre-

vent. Nonetheless, certain recent studies have proposed DOM-

fingerprinting countermeasures and defenses to protect user’s pri-

vacy and mitigate such attacks [23, 48]. In more detail, Trickel et

al. [48] proposed CloakX, a system that aims to broadly defend

against extension fingerprinting. Their system employs a set of

heuristics that randomize the ID and class HTML attributes. Since

extensions can inject uniquely identifiable elements, this strategy

attempts to hide the existence of such elements and, thus, prevent

behavior-based detection. CloakX also randomizes the Web Ac-

cessible Resources paths, and also injects random tags, attributes,

and custom elements to make fingerprints noisy and non-uniquely

distinguishable. Since the randomization of ID and Class elements

as well as the WAR paths when included in a WAR URL (see §3)

can potentially affect our signatures, we quantify the effect of this

countermeasure against our system.

To replicate the countermeasure’s effect, we follow an approach

similar to our dynamic identifier replacement. Specifically, we re-

place all ID and Class elements with the keyword ‘‘Random’’ and

also replace all references to the chrome-extension://UID/PATH

with <Random-Path>. We apply the aforementioned randomization

heuristics on the entirety of 11,219 unique detections across the

datasets. The countermeasure results in 124 (≈ 1%) fingerprints

becoming non-unique and generating collisions, with no impact on

the remaining fingerprints. Moreover, 92% of the fingerprints still

have at least one unique mutation, hinting at a minor decline (2%)

compared to the original signatures. Regarding the injection of ran-

dom elements and tags, Chronos is effective at identifying dynamic

signatures and filtering out those mutations that are not present

or stable. Even if CloakX was able to inject random elements in

every extension signature, we would still be able to fingerprint the

majority of extensions based on their unique mutations.

In a different direction, the recent work by Karami et al. [23]

proposes a solution specifically for DOM-fingerprinting. Their ap-

proach separates the DOM that the extensions interact with and the

DOM that the page’s scripts access. Their implementation intercepts

various JavaScript APIs and function calls, in order to control which

information is available to the original and the łparallelž DOM. One

of the APIs they target is the Mutation Observer API, which is

integral to our system. Their countermeasure affects our attack as

our system would be unable to perform continuous fingerprinting

through the Mutation Observer API.

Overall, the first proposed solution of CloakX does not affect

the efficacy and efficiency of Chronos, while the second approach

of Simulacrum impacts our system. Both of these defense mecha-

nisms are significant contributions to the extension fingerprinting

ecosystem since they provide solutions for better protecting users.

As neither one has so far been adopted by browsers, we argue that

our work highlights the importance of browsers adopting these de-

fenses and further exploring this space. We expand this discussion

of countermeasures and other complementary defenses in §6.

5 DISCUSSION

Our work is the first one to observe that DOM-based extension-

fingerprinting is not inherently limited to before/after DOM snap-

shots, that prior work has relied upon [22, 28, 45, 46]. Instead, using

modern browser APIs such as the mutationObserver [10], trackers

can be alerted of any change in a page’s DOM and match these

changes against offline-curated, extension-signature databases. In

this way, trackers can fingerprint extensions that present ephemeral

DOM changes, as well as those with colliding signatures under more

coarse-grained fingerprinting schemes. Using this notion of contin-

uous fingerprinting in our Chronos system, we show that trackers

can uncover thousands of additional extensions that were invisible

to prior state-of-the-art DOM fingerprinting techniques. These find-

ings underline the privacy risks of extension fingerprinting, which

can be used not only as an additional source of user-identifying en-

tropy (such as the users’ screen properties and how their graphics

cards renders complex images) but also as a means of uncover-

ing sensitive socioeconomic information about users based on the

extensions that they chose to install [22].

If we take a step back, we can observe that privacy is becoming

a mainstream concern for browser vendors. Browsers like Brave

and Mozilla Firefox are constantly adding privacy-enhancing mech-

anisms in their browsers, ranging from built-in blocklists for stop-

ping advertising and tracking scripts, to randomizing the values

of fingerprintable APIs (e.g., Canvas) and making certain mech-

anisms entirely unavailable to scripts (e.g., APIs related to bat-

tery status) [5, 16]. Even Google Chrome (which traditionally did

not implement extra privacy mechanisms) has been evaluating

novel privacy-preserving user-targeting techniques for advertising,

through its Privacy Sandbox program [18].

Despite all this progress, extension fingerprinting has not at-

tracted the attention of browser vendors in a way that would

protect extension users by default. With the recent addition of

extension-fingerprinting logic to the web’s most popular browser-

fingerprinting library [24], extension fingerprinting is now becom-

ing available at a global scale, in the same way that canvas finger-

printing is currently available. Moreover, the results of this paper

show that the threat of extension fingerprinting was understated in

prior work, with more extensions being fingerprintable than was

originally thought. We therefore argue that it is imperative that

browser vendors include extension fingerprinting in their threat

modeling and start evaluating possible anti-fingerprinting tech-

niques already proposed by academia, ranging from the further ran-

domization of extensions [48], to strict access control where a user’s

decisions about the context in which extensions should and should

not run, supersede those of extension authors [41, 45]. We hope that

this paper serves as additional motivation to kickstart this process.

6 RELATEDWORK

Since the work of Peter Eckersley [12], who was the first to demon-

strate in 2010 with the Panopticlick experiment that fingerprints

can be used to uniquely identify a user’s device and that they

12

Escaping the Confines of Time: Continuous Browser Extension Fingerprinting Through Ephemeral Modifications CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA.

can be easily collected at scale, browser fingerprinting has be-

come notoriously prevalent on the web [1, 8, 21]. It is mainly

used for user identification and tracking [1, 14, 51], but lately

this technique has also been deployed for other purposes, such

as bot detection [11, 20, 52] and augmenting authentication mech-

anisms [3, 11, 25, 29]. Many past works have proposed techniques

for expanding the fingerprinting surface, designed countermea-

sures and mechanisms for detecting fingerprinters and prevent-

ing them from tracking users, as well as conducted studies in

order to measure the prevalence and effectiveness of such tech-

niques [2, 6, 8, 14, 15, 17, 21, 26, 27, 30, 31, 37, 43, 50, 51].

A fingerprinting vector that has become prominent in recent

years is the detection of users’ installed browser extensions. Early

studies in this area relied on detecting the presence of specific

web-accessible resources (WAR) that extensions expose [19, 42]. In

another line of work, Sanchez-Rola et al. [38] and Van Goethem

and Joosen [49] proposed a timing side-channel attack that exploits

browsers’ access control mechanism for extensions’ resources in or-

der to infer their presence. However, the countermeasures deployed

by certain browsers or proposed by the research community [41, 48]

have rendered these techniques ineffective.

More recently the research community proposed techniques that

infer the presence of extensions by identifying the side-effects of

their executed functionality, such as detecting the modifications

to the page [22, 46] or changes to its stylistic properties [28], as

well as monitoring the exchanged messages and the resources they

fetch [22, 45]. The work of Starov and Nikiforakis [46] was the first

to demonstrate that extension fingerprinting is feasible through the

detection of their DOM-based modifications. They built XHound, a

framework that patches the extensions’ source code to place hooks

into the functions that extensions use to query the DOM elements,

and dynamically create these elements on-the-fly in their honey-

pages, aiming to trigger extensions’ functionality. Karami et al. [22]

built the Carnus framework and used it to conduct a large scale

analysis on extension behavioral-based fingerprinting. This frame-

work exercises extensions and generates signatures in an automated

way, in order to detect extensions’ presence based on their DOM

modifications, the messages they exchange and the resources they

fetch. However, both of these detection systems take a snapshot

of the honeypage’s DOM some seconds after the page has loaded

and compare it to the original version of the DOM, neglecting the

aspect of time and thus missing extensions that perform ephemeral

modifications. In a recent work, Solomos et al. [44] investigated

how user interactions affect the fingerprintability of extensions.

Specifically, they designed a system that incorporates user interac-

tions, and detected a large number of extensions that are triggered

only through user interactions. This line of work revealed a new

dimension of extension fingerprinting, and their system could be

used in conjunction with Chronos for detecting extensions.

With respect to extension fingerprinting countermeasures, Sjösten

et al. [41] explored how extensions can reveal their presence when

they inject a WAR in the page and the browser implements UUID

randomization (i.e., Firefox). In this case, the injected resource’s

URL contains the extension’s UUID in its path, and since UUIDs

are unique (due to the randomization) the detection of just a single

extension allows the page to uniquely track the user. As a miti-

gation, Sjösten et al. proposed Latex Gloves, a whitelist-based

mechanism that determines which pages are allowed to interact

with an extension’s WARs and which extensions can interact with

each particular website. Starov et al. [45] explored whether the

artifacts that extensions leave in the page, which make them fin-

gerprintable, are necessary for the extensions’ operation. Similarly

to Karami et al.’s [22], this work considers extensions that can be

detected based on the messages they exchange. They found 3,320

extensions that perform modifications unnecessary for their oper-

ation (2,189 of those extensions inject unnecessary elements into

the DOM and 1,526 set unnecessary attributes). However, since this

work utilizes XHound for their exploration, which is a snapshot-

based system and thus blind to ephemeral modifications, it can only

observe modifications that remain on the page, and misses any un-

necessary temporal artifacts that are inserted to the page and then

removed. Recently Laperdrix et al. [28] proposed a technique that

fingerprints extensions based on the cascading style sheets (CSS)

that certain extensions inject in the page. Their approach relies

on including specific elements in the page that extensions expect

(i.e., are triggered by) and observe changes to their style properties

when particular extensions are installed.We consider this technique

orthogonal to DOM-based extension fingerprinting, as we do not

expect extensions to perform temporal stylistic changes, nor have

we observed any such a behavior during our experiments.

7 CONCLUSION

With browser fingerprinting continuing to proliferate across the

web, extension fingerprinting presents a unique threat to users due

to the two-pronged privacy loss that it incurs. More critically, as

DOM-based extension fingerprinting techniques enter the global

stage, accurate assessments and explorations of this fingerprinting

vector are crucial for drawing more attention from the research

community and incentivizing browser vendors to adopt custom-

tailored countermeasures. To that end, in this paper we uncovered

a previously-overlooked yet prevalent behavior in the extension

ecosystem, wherein extensions perform a series of ephemeral modi-

fications. With prior work overlooking the importance of an exten-

sion’s life cycle, these short-lived changes are essentially untraceable

using state-of-the-art approaches. As a result, prior studies do not

capture the full scale of the threat posed by behavior-based ex-

tension fingerprinting. We presented an extensive experimental

evaluation of our prototype system Chronos that highlights the

importance of employing a continuous fingerprinting strategy as we

are able to uniquely fingerprint 4,546 additional extensions, while

also demonstrating how our fine-grained approach is highly accu-

rate in realistic deployment scenarios where multiple extensions are

installed and modify the page. We hope that our work will be a cata-

lyst for additional privacy protections being deployed by browsers.

Acknowledgements:We would like to thank the anonymous re-

viewers for their valuable feedback. This work was supported by

the National Science Foundation under grants CNS-1934597, CNS-

2211574, CNS-2143363, CNS-2211575, CNS-2126654, CNS-1941617

as well as the Office of Naval Research under grant ONR N00014-20-

1-2720. Any opinions, findings, conclusions, or recommendations

expressed herein are those of the authors, and do not necessarily

reflect those of the NSF or the ONR.

13

CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA. Konstantinos Solomos, Panagiotis Ilia, Nick Nikiforakis & Jason Polakis

REFERENCES
[1] GunesAcar,ChristianEubank, StevenEnglehardt,Marc Juarez,ArvindNarayanan,

and Claudia Diaz. 2014. TheWeb Never Forgets: Persistent Tracking Mechanisms
in theWild. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’14). 674ś689.

[2] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses, Frank
Piessens, and Bart Preneel. 2013. FPDetective: dusting the web for fingerprinters.
In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. 1129ś1140.

[3] FurkanAlaca and P. C. vanOorschot. 2016. Device Fingerprinting for Augmenting
WebAuthentication:ClassificationandAnalysis ofMethods (ACSAC ’16). 289ś301.

[4] Ben Smith. 2019. Google Blog - Update on Project Strobe: New policies for Chrome
and Drive. (2019). https://blog.google/technology/safety-security/update-
project-strobe-new-policies-chrome-and-drive/.

[5] Brave. 2021. Brave Fingerprinting Protections. (2021). https:
//github.com/brave/brave-browser/wiki/Fingerprinting-Protections.

[6] Yinzhi Cao, Song Li, and ErikWijmans. 2017. (Cross-)Browser Fingerprinting via
OS and Hardware Level Features. In 24th Annual Network and Distributed System
Security Symposium, NDSS 2017, San Diego, California, USA, February 26 - March
1, 2017.

[7] Chrome. 2022. ChromeDriver - WebDriver for Chrome. (2022).
https://chromedriver.chromium.org/downloads.

[8] AnupamDas, Gunes Acar, Nikita Borisov, and Amogh Pradeep. 2018. TheWeb’s
Sixth Sense: A Study of Scripts Accessing Smartphone Sensors. In Proceedings
of ACM CCS, October 2018.

[9] Docker. 2022. Accelerate how you build, share, and run modern applications.
(2022). https://www.docker.com/.

[10] MDN Web Docs. 2021. MutationObserver. https://developer.mozilla.org/en-
US/docs/Web/API/MutationObserver. (2021).

[11] Antonin Durey, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. 2021.
FP-Redemption: Studying Browser Fingerprinting Adoption for the Sake ofWeb
Security. In Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA).

[12] Peter Eckersley. 2010. How Unique is YourWeb Browser?. In Proceedings of the
10th International Conference on Privacy Enhancing Technologies (PETS’10).

[13] Emre Erkoca. 2020. MutationObserver and Event Usage. (2020).
https://dev.to/emreerkoca/mutationobserver-and-event-usage-35k6.

[14] Steven Englehardt and Arvind Narayanan. 2016. Online tracking: A 1-million-site
measurement and analysis. In Proceedings of ACM CCS 2016.

[15] Amin FaizKhademi, Mohammad Zulkernine, and Komminist Weldemariam.
2015. FPGuard: Detection and Prevention of Browser Fingerprinting. In 29th IFIP
Annual Conference on Data and Applications Security and Privacy (DBSEC) (Data
and Applications Security and Privacy XXIX), Vol. LNCS-9149. 293ś308.

[16] firefox 2022. Firefox’s protection against fingerprinting. (2022). https:
//support.mozilla.org/en-US/kb/firefox-protection-against-fingerprinting.

[17] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit Baudry. 2018. Hiding in the
crowd: an analysis of the effectiveness of browser fingerprinting at large scale.
In Proceedings of the 2018 world wide web conference. 309ś318.

[18] Google 2022. Chrome Developers: The Privacy Sandbox. (2022).
https://developer.chrome.com/docs/privacy-sandbox/.

[19] Gabor Gyorgy Gulyas, Doliere Francis Somé, Nataliia Bielova, and Claude
Castelluccia. 2018. To extend or not to extend: on the uniqueness of browser
extensions and web logins. In Proceedings of the 2018Workshop on Privacy in the
Electronic Society. ACM, 14ś27.

[20] Karl Hughes. 2021. Bot Detection: Identifying Bot Traffic with Open-source
Browser Fingerprinting Techniques. (2021). https://fingerprintjs.com/blog/bot-
detection/.

[21] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. 2021. Fingerprinting the
Fingerprinters: Learning to Detect Browser Fingerprinting Behaviors. In 2021
IEEE Symposium on Security and Privacy (SP). 1143ś1161.

[22] Soroush Karami, Panagiotis Ilia, Konstantinos Solomos, and Jason Polakis. 2020.
Carnus: Exploring the privacy threats of browser extension fingerprinting. In
Proceedings of the Symposium on Network and Distributed System Security (NDSS).

[23] Soroush Karami, Faezeh Kalantari, Mehrnoosh Zaeifi, Xavier J Maso, Erik Trickel,
Panagiotis Ilia, Yan Shoshitaishvili, AdamDoupé, and Jason Polakis. 2022. Unleash
the Simulacrum: Shifting Browser Realities for Robust Extension-Fingerprinting
Prevention. In 31th {USENIX} Security Symposium ({USENIX} Security 22).

[24] Karl Hughes. 2021. FingerprintJS - Empowering developers to solve fraud at the
source. (2021). https://fingerprintjs.com/blog/browser-fingerprinting-privacy/.

[25] Pierre Laperdrix, Gildas Avoine, Benoit Baudry, and Nick Nikiforakis. 2019.
Morellian Analysis for Browsers: Making Web Authentication Stronger with
Canvas Fingerprinting. InDetection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA). 43ś66.

[26] PierreLaperdrix,NataliiaBielova,BenoitBaudry, andGildasAvoine. 2020. Browser
fingerprinting: A survey. ACM Transactions on theWeb (TWEB) 14, 2 (2020), 1ś33.

[27] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. 2016. Beauty and the
beast: Diverting modern web browsers to build unique browser fingerprints. In

2016 IEEE Symposium on Security and Privacy (SP). IEEE, 878ś894.
[28] Pierre Laperdrix, Oleksii Starov, Quan Chen, Alexandros Kapravelos, and Nick

Nikiforakis. 2021. Fingerprinting in Style: Detecting Browser Extensions via In-
jected Style Sheets. In 30th {USENIX} Security Symposium ({USENIX} Security 21).

[29] Xu Lin, Panagiotis Ilia, Saumya Solanki, and Jason Polakis. 2022. Phish in Sheep’s
Clothing: Exploring the Authentication Pitfalls of Browser Fingerprinting. In 31st
USENIX Security Symposium (USENIX Security 22). 1651ś1668.

[30] Keaton Mowery and Hovav Shacham. 2012. Pixel Perfect: Fingerprinting Canvas
in HTML5. In Proceedings of W2SP 2012.

[31] Martin Mulazzani, Philipp Reschl, Markus Huber, Manuel Leithner, Sebastian
Schrittwieser, Edgar Weippl, and FC Wien. 2013. Fast and reliable browser
identification with javascript engine fingerprinting. In Web 2.0 Workshop on
Security and Privacy (W2SP), Vol. 5.

[32] Neeraj Singh. 2010. How jQuery selects elements using Sizzle. (2010).
https://www.bigbinary.com/blog/how-jquery-selects-elements-using-sizzle.

[33] NPM JS. 2021. Pako in JS. (2021). https://www.npmjs.com/package/pako.
[34] NPM JS. 2021. Sizzle. A pure-JavaScript CSS selector engine designed to be easily

dropped in to a host library. (2021). https://www.npmjs.com/package/sizzle.
[35] Pablo Picazo-Sanchez, Juan Tapiador, and Gerardo Schneider. 2020. After you,

please: browser extensions order attacks and countermeasures. International
Journal of Information Security 19, 6 (2020), 623ś638.

[36] CoreyProphitt. 2017. NefariousLinkedIn. https://github.com/dandrews/nefarious-
linkedin. (2017).

[37] Valentino Rizzo, Stefano Traverso, and Marco Mellia. 2021. Unveiling Web
Fingerprinting in theWild Via Code Mining andMachine Learning. Proceedings
on Privacy Enhancing Technologies 2021, 1 (2021), 43ś63.

[38] Iskander Sanchez-Rola, Igor Santos, and Davide Balzarotti. 2017. Extension
Breakdown: Security Analysis of Browsers Extension Resources Control Policies.
In Proceedings of the 26rd USENIX Security Symposium (USENIX Security).

[39] Selenium. 2022. Selenium is a suite of tools for automating web browsers. (2022).
https://www.selenium.dev/.

[40] SergeyMostsevenko. 2021. Howadblockers canbeused for browserfingerprinting.
(2021). https://fingerprintjs.com/blog/ad-blocker-fingerprinting/.

[41] Alexander Sjösten, Steven Van Acker, Pablo Picazo-Sanchez, and Andrei Sabelfeld.
2019. LATEX GLOVES: Protecting Browser Extensions from Probing and
Revelation Attacks. In 26th Annual Network and Distributed System Security
Symposium. The Internet Society.

[42] Alexander Sjösten, Steven Van Acker, and Andrei Sabelfeld. 2017. Discovering
browser extensions via web accessible resources. In Proceedings of the Seventh
ACM on Conference on Data and Application Security and Privacy. 329ś336.

[43] Alexander Sjösten, Daniel Hedin, and Andrei Sabelfeld. 2021. EssentialFP: Ex-
posing the Essence of Browser Fingerprinting. In 2021 IEEE European Symposium
on Security and PrivacyWorkshops (EuroS PW). 32ś48.

[44] Konstantinos Solomos, Panagiotis Ilia, Soroush Karami, Nick Nikiforakis, and
Jason Polakis. 2022. The Dangers of Human Touch: Fingerprinting Browser
Extensions through User Actions. In 31th {USENIX} Security Symposium
({USENIX} Security 22).

[45] Oleksii Starov, Pierre Laperdrix, Alexandros Kapravelos, and Nick Nikiforakis.
2019. Unnecessarily Identifiable: Quantifying the fingerprintability of browser
extensions due to bloat. In TheWorldWideWeb Conference. 3244ś3250.

[46] Oleksii Starov and Nick Nikiforakis. 2017. Xhound: Quantifying the fingerprint-
ability of browser extensions. In 2017 IEEE Symposium on Security and Privacy
(SP). IEEE, 941ś956.

[47] Jorma Tarhio and Esko Ukkonen. 1993. Approximate boyerśmoore string
matching. SIAM J. Comput. 22, 2 (1993), 243ś260.

[48] Erik Trickel, Oleksii Starov, Alexandros Kapravelos, Nick Nikiforakis, and
Adam Doupé. 2019. Everyone is Different: Client-side Diversification for
Defending Against Extension Fingerprinting. In 28th USENIX Security Sympo-
sium (USENIX Security 19). USENIX Association, Santa Clara, CA, 1679ś1696.
https://www.usenix.org/conference/usenixsecurity19/presentation/trickel

[49] Tom Van Goethem and Wouter Joosen. 2017. One side-channel to bring them
all and in the darkness bind them: Associating isolated browsing sessions. In 11th
{USENIX}Workshop on Offensive Technologies ({WOOT} 17).

[50] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. 2018.
Fp-Scanner: The Privacy Implications of Browser Fingerprint Inconsistencies.
In 27th USENIX Security Symposium (USENIX Security 18). 135ś150.

[51] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. 2018.
FP-STALKER: Tracking browser fingerprint evolutions. In 2018 IEEE Symposium
on Security and Privacy (SP). IEEE, 728ś741.

[52] Antoine Vastel, Walter Rudametkin, Romain Rouvoy, and Xavier Blanc. 2020. FP-
Crawlers: Studying the Resilience of Browser Fingerprinting to Block Crawlers. In
MADWeb’20 - NDSSWorkshop onMeasurements, Attacks, and Defenses for theWeb.

[53] W3C. 2000. Mutation event types. (2000). https://www.w3.org/TR/DOM-Level-
2-Events/events.html#Events-eventgroupings-mutationevents.

14

	Abstract
	1 Introduction
	2 Background and Threat Model
	3 System Design and Implementation
	3.1 Detecting DOM-based Modifications
	3.2 Recording Mutation Information
	3.3 Fingerprint Generation
	3.4 Fingerprint Matching

	4 Experimental Evaluation
	4.1 Signature Stability, Size & Characteristics
	4.2 Longitudinal Analysis & Categorization
	4.3 Multi-Extension Fingerprinting
	4.4 Preventing DOM-based Fingerprinting

	5 Discussion
	6 Related Work
	7 Conclusion
	References

