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Abstract—Power distribution systems are changing due to
renewable energy integration, electric vehicle penetration and
active consumers engaging in the energy market. Therefore, util-
ities need to quantify the impact of such changes on the system.
Power loss is one of the tools to quantify system performance. A
huge share of losses occurs on the distribution side due to lower
voltages compared to transmission systems. Existing methods that
quantify the impact of consumer activities on losses are scenario-
specific, computationally expensive and do not consider uncer-
tainties associated with power changes. Therefore, the goal of
this paper is to develop a simpler, yet accurate, probabilistic loss
sensitivity framework for approximating the impact of random
power changes on power losses. First, an analytical expression is
derived to approximate the change in line losses for any given
deterministic power changes. Then, the analytical expression
is extended to a probabilistic framework that accommodates
variability related to power changes. The proposed approach
is validated via simulation against the traditional load flow-
based sensitivity method using the IEEE 69 node test system.
Results demonstrate that the proposed approach is accurate and
computationally efficient. The proposed framework is useful for
real-time loss monitoring and optimal asset management.

Index Terms—Active consumer, distribution system, sensitivity
analysis, power loss, distributed energy resources

I. INTRODUCTION

P ower distribution systems across the globe are wit-
nessing various structural changes as a response to
the exponential growth in energy demand, increased impacts
of climate change, and aging system infrastructure. There
is growing investment in green distributed energy resources
(DERs), e.g., rooftop solar photovoltaic (PV), for the numer-
ous environmental, technical and, economic advantages they
provide [1]. Yet, if not properly planned, DERs can also pose
new technical challenges to system operation like increased
power losses [2], nodal over-voltages [3], and reverse power
flow [4]. These issues can result in economic losses and
degradation of overall system efficiency. In this regard, the
sensitivity of system losses to the changes in nodal complex
power is perceived as a powerful tool that enables system
planning [5]. For instance, loss sensitivity can be used for
optimal DER [6] and capacitor [7] placement and sizing,
feeder reconstruction and network configuration [8] or, optimal
allocation of electric vehicle (EV) parking lots [9]. Therefore,
the development of a generic method that studies the impact
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of DERs on system losses is a crucial aspect of modern
distribution system planning and real-time monitoring.

A. Related work

Prior work on loss sensitivity analysis in distribution sys-
tems can be broadly grouped into two main categories: (1)
analytical methods, and (2) classical load flow-based methods.
As far as analytical methods are concerned, the most widely
used method in the literature is based on computing nodal
sensitivity factors [10], [11]. In this analytical method, the
sensitivity of system losses is related to complex nodal changes
through partial derivatives of line losses with respect to active
or reactive power injection [12], [13]. The nodal sensitivity
factor list helps reduce the search space when applying heuris-
tic optimization algorithms for finding the best location or
size of the DER [13]. For instance, in [14], [15] an analytical
method is presented to find the optimal bus for installing DG in
a power distribution system based on bus admittance matrix,
generation information and load distribution of the system.
Similarly, authors in [16], [17] propose a loss sensitivity-
based method for placement of DERS in distribution systems.
Here, loss sensitivity is used to examine the impact of DER
injection on active power losses, which helps to determine
optimal locations for DERs in the system [18]. Similar to
nodal sensitivity factors, there are few analytical methods that
focus on nodal allocation factors. The main idea of nodal
allocation factors is to study the contribution of nodal complex
power changes to system losses. Under this category, three
popular types are typically used in literature: (1) incremental
allocation method [19]; (2) Z-bus allocation [20] method, and
(3) proportional sharing method [21]. In [19], nodal allocation
factors are based on generator domains (the set of nodes that
are supplied by each generator) and the set of commons (the
set of nodes supplied by the same generator). The set of
domains and commons are computed to determine the contri-
bution of each generator to line flows, and thereby determine
the contribution to line losses. Similarly, the z-bus allocation
method is based on Z-bus matrix of the system (inverse
of admittance matrix Y-bus). Authors in [20] use the Z-bus
allocation method to determine incentive or penalties to nodal
load increments considering system losses. However, such
methods do not scale very-well with regard to computational
complexity when the analysis is extended to large systems.
When the size of the test system is small (e.g., 6 nodes [20]),
it is difficult to generalize any method to real-world practical
systems that are characterized by a large number of nodes. This



is especially problematic when the method involves running
multiple loops such as in (1) classical load flow analysis to
capture DER variability [22], or (2) in the Z-bus allocation
method to compute the set of domains and commons in the
system. In addition, the incremental sharing method requires
an algorithmic extension to be applicable for systems larger
than 4 nodes [19]. Although nodal sensitivity factors help
guide optimal DER planning strategies [23], results obtained
from such methods are valid for a given scenario of power
change. In this case, the nodal sensitivity factor list may
differ across time considering dynamic load analysis, which
unfortunately cannot be captured by traditional analytical loss
sensitivity methods. Other approaches in the literature use
polynomial chaos theory to compute voltage sensitivity in
distribution systems [24]. Here, the approach involves finding
basis polynomial functions to approximate the voltage change
as a way to replace brute-force Monte Carlo simulations.
However, the accuracy of this method depends greatly on the
number of basis polynomials used to compute the voltage
sensitivity. For example, for a 2 node distribution system
with 4 loads, 15 polynomials are required to compute voltage
sensitivity [24]. Additionally, the computational complexity of
this method directly varies with the number of polynomials,
resulting in an accuracy-complexity trade-off [24], [25]. Power
loss sensitivity can also be determined using the classical
load flow-based approach [26]. Here, the loss sensitivity is
computed based on the voltage change due to complex power
changes at different locations. In this regard, the change in
voltage can be determined based on the Jacobian matrix of the
system [27], i.e., partial derivatives of power flow equations
with respect to nodal voltage magnitude and angles [22]. This
can be used to determine the change in line current flows,
which enables computing the changes in line power losses.

Most of the prior work on loss sensitivity considers compu-
tationally complex traditional methods of sensitivity analysis
or traditional power flow equations. Such methods may not be
adequate to address the needs of modern distribution systems
for the following reasons. First, results obtained from such
methods are scenario-specific and the inclusion of dynamic
behavior of active consumers impacts their consistency. This
hinders their applicability in real-time applications like finding
the optimal location for EV charging or power loss monitoring
[28]. Second, traditional sensitivity methods are computa-
tionally complex and require simulating a large number of
scenarios to obtain the sensitivity of each scenario. It is
important to note that the computational complexity of these
methods increases with the increase in system size. Finally,
in distribution systems, complex power changes at active
consumer sites can be random due to variability in PV power
outputs or dynamic load behaviors. This is unfortunately not
considered in traditional analytical and load flow-based sensi-
tivity methods. It should be noted that uncertainties of PV units
(or DERs in general) can be captured by simulating a large
number of scenarios, where the sensitivity can be computed.
However, scenario-based analyses do not scale very well with
increasing dimensions of variability. As we witness an increase

in DER penetration, the number of scenarios needed for
valid statistical inference grows exponentially. Alternatively,
the proposed probabilistic approach in this paper is accurate,
simple to implement, and scalable to large systems. This
is because sampling random variables from well-established
probability distributions is relatively (and consistently) faster.
Therefore, this paper addresses these research gaps.

B. Contributions

This paper proposes a new probabilistic framework for loss
sensitivity that helps to study the impact of changes in active
consumer load patterns or DER injections on power loss in
distribution systems. The major contributions of this work are
listed below.

1) This work derives, for the first time, an analytical ex-
pression that approximates the changes in line current
flows due to deterministic complex power variations at
any node in the system (Theorem 1). The approximation
error is shown to be upper bounded.

2) This work further develops analytical expressions to
study the aggregate impact of multiple active consumers
changing their complex power simultaneously on power
losses in the system (Corollary 2).

3) The derived analytical expressions of line current and
power loss changes are extended to account for variability
associated with DER power injections at active consumer
sites in the system resulting in a unique probabilistic
sensitivity result. The Jensen-Shannon distance between
the proposed and simulated loss probability distributions
is in the order of 1072, which demonstrates the high
accuracy of the proposed method.

4) The computational complexity of the proposed method is
significantly lower than existing load flow-based meth-
ods, which enables a real-time loss monitoring feature
that is necessary to guide optimal asset management in
distribution systems.

The rest of the paper is organized as follows. Section II in-
troduces the analytical approximation for the change in power
losses in any line due to DER injections at any node in the
system. Section III validates the proposed approximation and
derives an upper bound on the approximation error. Section
IV accounts for uncertainties in power injections and extends
the proposed approach to a probabilistic framework to derive
the probability distribution of change in line current flows
and losses. Finally, section V concludes the paper with future
research directions.

II. ANALYTICAL FRAMEWORK FOR LOSS SENSITIVITY

Consider a power distribution system with A" nodes and £
lines as illustrated in Fig. 1. The change in complex power
at any node in the system causes changes in current flow in
all lines, and thereby, causes changes in line power losses.
Nodes where complex power varies are called actor nodes
and lines where the change in current flow or power loss is
monitored are called monitored lines. This section presents an
analytical approximation for the change in line currents and
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Figure 1: An illustration of a distribution system.

losses at any monitored line (M) due to change in complex
power at actor nodes (A) in the system. When power at actor
node A changes from S4 to S4 + ASy4, the current at the
monitored line changes from Ip; to Ip;+AIps 4, where Alps 4
is the change in current flow on the monitored line M due to
complex power changes at actor node A. The reference node
throughout this paper is assumed to operate at a unity voltage,
i.e., 1/0° p.u. Considering a single actor node, the change in
current flow at the monitored line M can be approximated
using Theorem 1.

Theorem 1. For a single-phase distribution system, the
change in current flow at a monitored line (M) due to change
in complex power at an actor node (A) is approximated by,

INGA 2
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A
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where, AS% is the complex conjugate of complex power
change at actor node A, V is the complex conjugate of base
voltage at the actor node A and V y; 5 represents the influence
indicator between node A and the origin node of line M. For
nodes impacting the current flow on M, V4 can be set to
1 and 0 otherwise.

Proof. Consider a single-phase radial distribution system with
N nodes and L lines with [,,,_,, representing the line con-
necting nodes m and n as shown in Fig. 1. Let e be the line
connecting the set of nodes N, with the source node G. The
downstream current flowing through e can be written in terms
of complex conjugate of power injections and nodal voltages
as,

S*
- L= 7 @)
keN. keN.

When complex power changes at active consumer locations
(k € N) from Sy to Si + ASg, the voltage also changes
from Vj, to Vi + AV},. Therefore, the current flowing through
e changes from I, to I ; and can be rewritten as,
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The change in line flow ( Al, = Ié — I, ) at line e can be

written as follows,

Al, =

keN.
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Using assumption 2, we can rewrite Al, as,

ASF
Al ~ E =k 4

Vi + AV @
keN.

Now assume that only one node (say node A € MN) is
changing its complex power. The corresponding change in line
current can be written as,

ASY

Al  ——2—
Vi+ AV

&)

The change in line flow can be written in terms of real and
imaginary parts as follows,

ARNMHJ¥)+AQMQG+AW)
(Vi(L+5 Vr 4))2 + (Vi( Vi 4))2
APAVi(1+ AVA) AQAVAG +57)

(Vi1 +5 )2 +(Vi(l+ 5 V/g i))2

Al =~

(6)
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where, Vi and V} are the real and imaginary parts of
actor node voltage, respectively. AP and AQ 4 are the real
and reactive power changes at actor node A. Now, using
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Figure 2: Sensitivity due to a single actor node: (a) change in
line flow Alp;4. (b) change in active power losses ALpy 4.



assumption 2, the change in real and imaginary parts of line
current flow can be written as,

A7 o APAVI+AQAVE  APaVi—AQaVE _ AS)
(V)2 + (V4)? (V)2 +(Va)? V?*7)

For any monitored line M € e, the change in current flow
will only occur due to complex power changes at A € N, as
shown in Fig. 1. Therefore, for any actor node A ¢ N, the
influence factor W,; 4 can be set to zero. That is,

AS W4

AIMA% Vv s
A
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which completes the proof of Theorem 1. Below is a summary
of the assumptions used throughout the proof of Theorem 1.
O

Assumption 1. The reference node operates at unity voltage,
ie, 1/0° p.u.

Assumption 2. In distribution systems, the change in nodal
voltage relative to the actual nodal voltage is small.

Assuming multiple actor nodes in the system change their
complex power, the change in current flow through the moni-
tored line M can be written as the sum effect of all individual
changes as given in Corollary 1.

Corollary 1. For a single-phase distribution system, the
aggregate impact of complex power change at multiple actor
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Figure 3: Sensitivity due to multiple actor nodes: (a) change
in line flow AI,;. (b) change in active power losses ALj,.

nodes (A € A) on the change in current flow at a monitored

line (M) is approximated by,

AS Uara

Aly = Z IV 9

AcA A

The current sensitivity due to multiple actor nodes is used

to derive the loss sensitivity due to complex power change at

active consumer sites.

Corollary 2. For a single-phase distribution system, the
aggregate impact of complex power change at multiple actor
nodes (A € A) on the change in power loss at a monitored
line (M) is approximated by,

* 2
ALy ~ [ Y S8t

AcA Vi

Zur.

ASA\I’M'A> (10)

Vi

+2R (1;1 3

AcA

where, Zyr = R+ j X s is the impedance of the monitored
line M and Iy, is the complex conjugate of base current flow
at line M.

Proof. Consider again the system shown in Fig. 1. Power loss
at a monitored line M can be written as [29],

Ly = 1?2y (11)
=Lmp+ilme 12)
= [In|* R + §1In* X, (13)

where Ly p and Ly, ¢ are the active and reactive power losses
at monitored line M, respectively. When the current flow at
a monitored line M changes by ATy, power loss at that line
changes by ALj; and can be written as,

ALy = [|1M n AIM|27|IM|2} Zs (14)

- [|AIM|2+23‘E(I};1AIM)} Zr. (15)

The change in current flow on that line (Al,;) can be
computed using the analytical expression derived in Eq. (9).
Therefore, the change in power loss at a monitored line M
becomes,

AS Wra 2
ALZ\/[ ~ [ Z 7“4/*A[A
AcA A
ASHW,
G S | PV
AcA A
O

A. Validation of analytical approximation

In this section, the proposed analytical approximation of the
change in power losses is validated on the IEEE 69 node test
system [30]. The base voltage of this test system is 12.66 kV
and standard base loads are used for the analysis. Classical
load flow method is used as a benchmark to evaluate the



Table I: Complex power change at multiple actor nodes.

Node | AS (kVA) | Base loading (kVA)
14 -5+j3 8+j5.5
24 10457 28+j20
34 15-j5 19.5+j14
44 20+j20 0
55 242 24+j17.2
68 -9-j4 28+j20

accuracy of the proposed analytical approach. Two scenarios
are created to show the accuracy of approximating the change
in line current flow as well as losses. For the first scenario,
node 15 is chosen randomly to change its complex power and
the current and loss changes are monitored at line 5 — 6, i.e.,
AI7 15 and ALy 15, where the superscript 7 represents the real
part. Negative power change could represent increased DER
injections (such as PV) or decreased load power. Similarly,
positive power change can result from increased consumption
or decrease in DER injection. Fig. 2 shows the changes in
real line current and active losses where theory represents the
proposed analytical expression and simulation is the result
obtained via classical load flow-based method. It can be
seen that the proposed analytical approach is accurate in
approximating the change in line current and active power
losses. The second scenario presents a case where power
changes at randomly selected actor nodes. Table I reports the
actor nodes and the respective values of complex power change
as well as the base kVA loading. The change in real part of
current flow and active losses for this scenario are illustrated
in Fig. 3. As can be seen from the figure, the proposed method
can approximate not only positive changes but also negative
changes due to increased PV injection. This demonstrates
the accuracy of the proposed method in approximating the
change in line current flow and power loss. The proposed
approach is generic and can also be applied in the presence
of various binary equipment such as switches, tap changers,
and switched capacitors. Such equipment are control action
enablers that ensure optimal system operation, whereas the
proposed sensitivity approach could be used as a precursor
to such control actions. Specifically, the proposed analytical
approach does not change due to the presence of switches,
tap changers, or switching capacitors. However, thanks to
the analytical nature of the proposed approach, it is a trivial
task to account for such cases. Specifically, we only need
to run the load flow once (or use recently proposed sparsity
based distribution system state estimation approaches [31]) to
get the base values of voltage, and thereafter the proposed
analytical method can be applied to compute loss change
at any monitored line of the system due to change in PV
generation or load pattern. The complexity of the proposed
method in terms of execution time is pretty much constant
regardless of system size. This is one of the key strengths
of the proposed approach. The following section derives an
upper bound on the approximation error to ensure consistency
of results obtained by the proposed analytical method.

III. APPROXIMATION ERROR BOUND

This section further investigates the accuracy of the pro-
posed approximation. First, the approximation error is com-
puted and analytically upper-bounded. Thereafter, the bound
on approximation error is verified using simulation scenarios
tested on the IEEE 69 node test system.

Corollary 3. For a single-phase distribution system, errors
in approximating the changes in real and imaginary parts of
line current flows (E%, 4 and E' 4, respectively) using (9) are
upper bounded by,

B < Z APA\IJMA AiQA\I/MA , (17)
2 Vit @) Vi(L+ )
. AP,U A U
B < Z Pal¥ara QA Ma (18)
2 VALt @) | VR(LF @)

_(vi\? —_ !
where, @1 = (4 ) and &3 = @7 .
A

Proof. From Eq. (1), it can be seen that the voltage change
compared to actual nodal voltage is small as in Eq. (6) and
thus can be ignored, which yields the approximation in Eq.

(7) The error resulting from the assumption that (AVVTA and
Avi

~ 0) is upper bounded by Corollary 3. We can compute
the approximation error (for real part of change in current) as
follows,

E" = AIT — AIT, (19)

where AI] is the actual change in real part of current flow
and AI] is the approximated change in real part of current
flow. Therefore,

o APA(V:Z + AVAT) B APAVZ{
| (VEHAVD2+ (Vi + AV (VR + (VA)?
n AQA (V4 + AVj) - AQAV}“
(Vi+ AV + (Vi + AV (V)2 + (VE)?
= E] + Ej
ET can be rewritten as,
) APA(1+ 55 AP,
B I T
VAL + 502 |1+ FAl — o] Vi
A TP
Typically in distribution systems the change in nodal voltage
compared to actual voltage is small, i.e., AVT ~ (0 and AVA ~

0. Therefore, the previous equation can be rewritten as

. NS
B=— A |
Vild+ @) |T7
where, T" =1+ K", T" =1+ K', K" = AVVTA, K' = AV‘?

(VA;2 Considering the ratio of change in voltage
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to actual nodal voltage is small, the quantity VVA will always
A

be less than or equal to 1 — AV?, ie.,
K'<1-K'= ’ <1¢i71<1
- 1-Kr — Tr -
APy i < APy
Vi(l+ @) |T" Vil + 9y
APy
=F<—4 (20)
SV + @)
. AQ 4
Similarly, FE) < ———— .
A T )

Finally, by combining E7 and E%, the error in approximating
the real part of current change is upper bounded by,

APy n AQ4
Vi(l4+ @)  Vi(l+ o)
Considering multiple actor nodes changing their complex

power and repeating the same for imaginary part of current
change yields,

E"=E] +Ej < 1)

AP,V AQ AV
< Z : AV A iQA M 22)
VA0 +01) 0 V(L4 @)
AP,V AQ Y
B < Z i AV s A TQA Ma 23)
AcA VA(1+(I)2) VA(1+(I)1)
which completes the proof of Corollary 3. O

The tightness of the upper bounds in Corollary 3 are
validated via simulation on the IEEE 69 node test system. A
simulation scenario is created where complex power varies at
nodes 18 and 30 by AP = AQ € [-50, ..., 50] kW (and kVAr)
and the change in current flow is monitored on line 5. The
actual error is computed based on Eq. (19), i.e., the difference
between numerical results using classical load flow and the
proposed analytical approach. The error bound is computed
based on the results provided by Corollary 3. Line 5 is
randomly chosen to monitor line flow and compute the actual
and approximation errors. However, the method is generic for
any pair of actor nodes and monitored lines. Fig. 4 illustrates
the actual error vs. the error bound for the aforementioned
simulation scenario. The figure shows the errors in approxi-
mating real, imaginary and magnitude of current change. It
can be seen from the figure that (17) and (18) present a
tight upper bound for the actual error especially within the
interval [—20, ..., 20] kW (kVAr), which is consistent with real
world power change scenarios. Therefore, the error bounds
developed in Corollary 3 ensure the consistency and accuracy
of the proposed analytical approach in approximating the
change in line current. Next, this analytical framework is
extended to account for variability associated with complex
power injection (or withdrawal) at multiple active consumer
sites in the system.
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Figure 4: Approximation error bound using Corollary 3.

IV. PROBABILISTIC LOSS SENSITIVITY ANALYSIS

Complex power at active consumer sites could vary ran-
domly due to the variability associated with DER injections
(such as rooftop PV units and wind turbines) or due to
dynamic load patterns. These stochastic processes inevitably
impact system losses, which in turn leads to economic losses.
Therefore, modern distribution system operators require an
accurate, yet computationally efficient, loss monitoring tool
that accounts for power uncertainties. This helps to guide
optimal asset management strategies to keep losses minimal
in a real-time fashion during electric vehicle planning or
DER control. In this section, Corollaries 1 and 2 are used as
the starting point to compute the probability distributions of
change in current and power losses at a particular monitored
line, respectively. Specifically, Eq. (8) can be rewritten as
follows,

Alya = Ay + jAIy 4,

where,
AIT ~ \I/MA(APACOS(QA)—AQASin(HA»
i - \I/MA(fAPA sin(@A) — AQA COS(QA))
AL, , ~ Vi .

Here, 6,4 is the voltage angle of actor node A. Since multiple
actor nodes impact the current flow at line M, using Corol-



laries 1 and 2, we conclude that

Ay = Ala+35 Y Aliya, (25)
AcA AcA
ALy = Z Alpa ’ + 23?(.7}[ Z AIMA) Ry
AcA AcA
+3| > Alua 2 +2§R(1;4 3 AIMA)]XM.
AcA AcA 26)

DER injection or dynamic load patterns can be modeled as
a probability distribution to account for the variability. In
particular, complex power changes (withdrawal or injection)
at active consumer sites can be modeled as a random vector
As = [APy,...,APx,AQ1, ..., AQy]T with mean p = 0
and a covariance structure captured by the covariance matrix
3 as- The following subsections highlight the steps followed
to derive the probability distribution of the squared magnitude
of the change in current flow that is used in Eq. (26) to
compute line losses.

A. Construct X as and compute k, and k;

Y as contains information about the variance of complex
power change at active consumer locations that represents, for
instance, the size of PV unit or the load pattern, etc. Off-
diagonal elements of the covariance matrix capture the spatial
correlation of complex power changes at different actor nodes.
The spatial correlation is a byproduct of the geographical
proximity of renewable energy sources. The covariance matrix
depends on the size of the system and the number of active
consumers changing their complex power as shown in Eq. (28)
below. p; and g; are the active and reactive power injection
or consumption at the i active consumer site, respectively,
whereas n = A is the system size. The exact Xas of a
particular system can be estimated based on historical data
as discussed in [32], and is out of the scope of this work. If
a node does not have DER units, the variance of complex
power of that node can be set to zero and the standard
kVA loading of that node will be used for the analysis.
Additionally, the constant terms in (24) are arranged in k,. and
k; vectors. These vectors are functions of the magnitude of
nodal base voltages and the nodal-line sensitivity relationships
based system topology (defined by W,;4 ). For each system,
these vectors are fixed and can be readily computed using
Eq. (27). It is important to note that the proposed analytical
methodology to compute loss change is generic and is valid
for any type of distribution system. However, steps to compute
the intermediate values of the final loss expression could
vary with the system topology. For instance, the procedure
to determine W,y values of the weight vectors in (27) could
vary with the system topology. The theoretical derivation of
exact expressions for other system topology will be pursued

as part of future work.

r Yayicosby 7 B _‘IJIWI sin 61 7
V1] V1]
Wro cos 04 _ Wposinby
V2| [V2|
Y cosOn _ Yynsinfy
k. — VAl k. — VAl
[ _ Wy sinby ? _ W cosby
V1] V1]
_ Yppsinby _ W cos by
[V2] [V2]
_ Wy nsinOn _ Wy cosOa
L Wal donx1 L Wal daarxi
(27)
Here, 8 = [01, ...,0x7]7 represents the base voltage angles.

B. Compute the distribution of AI%; and AT},

It can be seen from Eq. (9) that the change in line current
flows at a monitored line can be expressed as the aggregate
changes in current flows caused by every actor node in the
system. Now, consider random changes in complex power at
actor nodes as given by the covariance matrix in Eq. (28).
Using the Lindeberg-Feller central limit theorem, each of the
probability distributions of AI%, and AI%, can be shown to
converge to a Gaussian distribution as,

Al = ALy, ~ kT As B N(0,kTSask,), (29)
AcA

3" ALy~ kT As B N0,k Sask:).
AcA

Here, A is the set of actor nodes resulting in the change
of current flow at line M. The terms kTT Sask, 2 Jf and
kIS ask; £ o2 represent the variances of AI}, and A,
respectively.

Alyy = (30)

C. Compute the distribution of |AIp|?

The squared magnitude of current change at a monitored
line M can be written as,

ALy [*= (AI},)? + (AL (31)

Since the probability distributions of A}, and A}, converge
to Gaussian distributions, the square of a Gaussian distribution,
ie., (AI},)? and (AI%,)?, follows a Gamma distribution with
0.5 as the shape parameter and scale parameter twice the
variance of the Gaussian distribution [33]. That is,

(AT5)? ~T(0.5,202) (32)
(AI})* ~T(0.5,207) (33)

Typically, in distribution systems the change in real and
imaginary parts of current flow are correlated. In the proposed
analytical method, this correlation is captured by Eq. (28)
and (27). That is, the Gamma distributions in Eq. (32) and
(33) are correlated by K £ kTTE Ask;. The sum of correlated
Gamma distributions I‘(O 5 ,202) and I'(0.5, 202) also follows

a Gamma dlStI‘letlon 5
Al AIM) + (AIL)? ~ T(k,0), (34)
with scale and shape parameters k = @ and 0 =

2(Uﬁ+a?+2K2)

o? , respectively.



[ o, e cov(pp,p1)
cov(p1,pn) .- o2
SAc— Pn
A5 cov(pr, 1) cov(pn, q1)
Lcov(p1, qn) cov(Pn; qn)

D. Compute the distribution of AL%, and ALY,

This subsection derives the probability distribution of AL,
and ALY, based on the approximation in Corollary 2. The
change in power loss at a monitored line M can be written in
terms of real and imaginary parts as,

ALy = AL}, + jALY,
_ [|A1M|2+2§R(1;;,A1M)] Rus
[ |A T P+ 2R (T3 ATu) | X

From (34), |AIy|*~ T'(k, ). Therefore,

ALY, = [r(k;.,e) n zace(szﬂ,f)}RM and,

ALl = {F(k,@) + 2%(I]*VIAIM)}XM.
If X ~T'(k,0), then, Va >0, aX ~T'(k,af). Thus,

ALy =T (k, Ry0) + 2Ry R(I3, Al ),
ALYy =T (k, X00) + 2X R ALy ).

(35)
(36)
Fig. 5 shows a brief flowchart explaining the steps behind

computing the probability distribution of change in active
power losses using the proposed analytical approach.

Construct covariance matrix Ya
using (26)
Y
Compute constant vectors k and k;
using (27)
v
Compute the probability distribution of AIf, and AL,
using (28) and (29)
| 2
Derive the expression for correlated Gamma distributions
I'(0.5,20%) and I'(0.5, 202) using (33)

7
Compute the probability distribution

of AL}, and ALfM

Topology

18]

DER based distribution system

Y R

Figure 5: A flowchart of the proposed analytical PLSA
approach.

cov(q1,p1) cov(Gn, p1)]

cov(qq, cov(qy,
(q; Pn) (qn> n) (28)
o2 oo cov(qn, p1)

cov(qr, qn) .- Ugn donxaon

E. Validation via simulation

This section validates the theoretical expressions derived
earlier to compute the probability distributions of current and
loss changes. For simplicity of demonstration, only the real
parts of both current and loss sensitivity analysis is shown.
However, the proposed analytical approach is generic and
can be applied to the imaginary parts as well. The proposed
PLSA method is verified on the same IEEE 69 node test
system. A scenario is created where complex power varies
at a randomly selected set of actor nodes A € [5,7,...,25]
and the change in current and power losses are monitored on
line 10 —11. It is assumed that actor nodes are integrated with
PV units. To account for the variability in PV power outputs,
complex power change (As) among actor nodes is assumed
to be random following a zero-mean Gaussian distribution
with the covariance structure shown in Eq. (28). Although
we assume a Gaussian distribution for power changes, the
proposed method is generic to any choice of probability
distribution. Additionally, PV power injection among actor
nodes is correlated due to geographical proximity. Therefore,
3 as captures those relationships by the off-diagonal covari-
ance terms. For this particular case study, 3 as is defined
as follows. Active power variance on the diagonal is set to
be 15 kW for nodes integrated with PV units. The reactive
power variance for those nodes is set to 10 kVAr. For off-
diagonal elements relating the change in active power among
actor nodes, i.e., cov(AP;, AP;) = 0.7 where i,j € A and
1 # j. Furthermore, the covariance of change in reactive power
cov(AQ;, AQy) is set to 0.6. Finally, the covariance between
active and reactive power change cov(AP;, AQ}) is set to 0.3.
Variance and covariance of PV units in this scenario are kept
the same for all actor nodes. However, the proposed approach
is generic to accommodate various types of 3¢ structures.
The proposed analytical approach is compared to the bench-
mark results obtain by classical load flow-based sensitivity
method. For the proposed analytical approach, firstly, the k,
and k; are computed using Eq. (27), respectively. Then, the
variance and covariance terms of change in real and imaginary
parts of current are computed as,

» _ kszskr kZTEAskr
Al =TS Ak kI DAk 37
_ [08351  —0.0354) s
~ 1-0.0354  0.0787 :

Thereafter, the distribution of change in real part of current is
computed by sampling random variables using Eq. (29). For
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Figure 6: Probability distribution of change in real part of
current flow Alj}, for cases a,b,c,d and e.

the benchmark results, load flow scenarios are created using
the covariance matrix defined in (28). To illustrate the efficacy
of the proposed approach, five different cases (namely case
a,b,c,d, and e) are created by varying the number of load
flow scenarios (as well as the number of random variables
sampled with the proposed analytical approach). Specifically,
we choose 100 simulations vs. 100 random variables, 1k
simulations vs. 1k random variables, 10k simulations vs. 10k
random variables, 100k simulations vs. 100k random vari-
ables, and 1m simulations vs. 1m random variables, for cases,
a,b,c,d, and e, respectively. Fig. 6 shows the distribution
of real part of current change on line 10-11 for all cases
using the proposed analytical approach (red) compared to the
simulation based method (blue). It can be inferred from the
figure that the probability distributions shown in cases a, b, ¢,
and d are less accurate than the distributions in case e. This is
because the accuracy of the probability distribution improves
with the increased number of scenarios (or number of random
variables in the case of the proposed probabilistic approach). In
order to make these comparisons objective, we use the Jensen-
Shannon distance (JSD), an information-theoretic similarity
measure, to validate the accuracy of the proposed probabilistic
approximation (compared to simulation-based classical load
flow method) of both distributions of change in current flow
as well as active power losses. The similarity (or JSD) be-
tween simulations based and theoretical distributions can be

T
- = Simulation | |
v = = =Theory
\
\
AY
M .

31 315 32 325

Probability

40 50 60 70 80 90 100

A Lfm_ll (kW)

Figure 7: Probability distribution of change in active power
losses ALY,.

computed as [35],

ISD(P|Q) = 5Dk (PIIM) + 3 Dicn (@M), (39
where, M = %(P +Q) and D, is the Kullback-Leibler (KL)
divergence metric as a measure of the information lost when
@ is used to approximate P evaluated at the support z € X
and can be written as,
P(x)
D(PQ) = > P(@)log (5 )
alPIIQ) = 3 Ploee (5
The JSD distance is used for validation instead of the KL
divergence because the JSD is always symmetric, well defined,
and bounded [36]. JSD can vary between 0 (meaning the two
distributions are identical) and 1 (meaning the distributions
are completely different). The JSD between actual simulation-
based and theoretical distributions of change in current flow is
in the order of 10~2, which implies that the probabilistic ap-
proximation is accurate when compared to existing simulation-
based method.

Subsequently, the shape and scale parameters of the Gamma
distribution in Eq. (34) are computed as £ = 0.5913 and
6 = 0.0015 to obtain the probability distribution of the change
in active power loss on line 10 — 11 using Eq. (35). The distri-
bution of change in active power losses is computed for case e
and illustrated in Fig. 7. The JSD between actual simulation-
based and theoretical distribution of change in active power
loss is found to be in the order of 10~2. These results imply
that it is possible to accurately evaluate the probability of
line current flow or active power losses exceeding a certain
threshold (). For instance, Table II shows the probability of
real part of current change exceeding v. = 0.002 kAmps and
active losses exceeding ~y; = 0.5 kW using classical method
and the proposed analytical approach.

Finally, the computational complexity of the proposed
method is compared via the execution time taken to compute
the probability distributions of change in current and power
loss for a given monitored line M, in this case, line 10 — 11.

(39)

Table II: Probability of exceeding the threshold ~.

Probability Simulation ~ Theory
P(JAT[> ve) 0.8630 0.8561
PALY > ) 0.9404 0.9396




Table III: Execution time (s).

Case Simulation Theory
case a 0.2897 0.0472
case b 2.1852 0.0482
case ¢ 19.1739 0.0694
case d 190.4614 0.0934
case e  1871.84421 0.2373

The analysis is implemented with intel i-9 processor for all
cases illustrated in Fig. 6 and the corresponding execution time
taken by both approaches is reported in Table III. The proposed
analytical approach outperforms the classical simulation based
method regardless of the number of simulations (or random
variables in the case of the proposed approach) used to obtain
the probability density curves. This is because sampling ran-
dom variables from well-established probability distributions
is faster compared the classical scenario-based analysis, which
require simulating large number of scenarios to achieve the
required accuracy. This implies that the proposed analytical
framework accurately approximates the distribution of change
in current flow and in line losses with significantly lower com-
putational effort. It is important to note that the computational
efficiency of the proposed approach is consistent regardless
of system size or choice of monitored lines. Therefore, with
the proposed approach, it is possible to significantly simplify
the process of loss monitoring in modern distribution systems,
which enables various downstream applications such as EV
and DER planning.

V. CONCLUSION

This paper proposes a new probabilistic loss sensitivity
analysis framework that builds off an analytical approxima-
tion of the change in power losses at a given line due to
complex power changes at other nodes in the system. First,
an analytical expression is derived to compute the change in
line losses for deterministic power changes at one actor node.
Then, the effect of random power changes at multiple active
consumer sites is examined using the proposed approach. It
is shown that the probability distribution of change in line
power losses is well approximated by a Gamma distribu-
tion. The proposed analytical expressions are validated via
simulations on the IEEE 69 node test system. Simulation
results show that approximating the change in power loss
at any line in the system is highly accurate with a JSD in
the order of 1072, In addition, the proposed approach is
computationally efficient when compared to traditional load
flow-based sensitivity methods. The computational advantage
of the proposed approach makes it a suitable tool for real-time
optimal resource management to minimize losses. Future work
includes extending the probabilistic loss sensitivity analysis for
3-phase unbalanced distribution systems with wide variety of
network topologies.
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