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Abstract—Power distribution systems are changing due to 
renewable energy integration, electric vehicle penetration and 
active consumers engaging in the energy market. Therefore, util-
ities need to quantify the impact of such changes on the system. 
Power loss is one of the tools to quantify system performance. A 
huge share of losses occurs on the distribution side due to lower 
voltages compared to transmission systems. Existing methods that 
quantify the impact of consumer activities on losses are scenario-
specifc, computationally expensive and do not consider uncer-
tainties associated with power changes. Therefore, the goal of 
this paper is to develop a simpler, yet accurate, probabilistic loss 
sensitivity framework for approximating the impact of random 
power changes on power losses. First, an analytical expression is 
derived to approximate the change in line losses for any given 
deterministic power changes. Then, the analytical expression 
is extended to a probabilistic framework that accommodates 
variability related to power changes. The proposed approach 
is validated via simulation against the traditional load fow-
based sensitivity method using the IEEE 69 node test system. 
Results demonstrate that the proposed approach is accurate and 
computationally effcient. The proposed framework is useful for 
real-time loss monitoring and optimal asset management. 

Index Terms—Active consumer, distribution system, sensitivity 
analysis, power loss, distributed energy resources 

I. INTRODUCTION 

P ower distribution systems across the globe are wit-
nessing various structural changes as a response to 

the exponential growth in energy demand, increased impacts 
of climate change, and aging system infrastructure. There 
is growing investment in green distributed energy resources 
(DERs), e.g., rooftop solar photovoltaic (PV), for the numer-
ous environmental, technical and, economic advantages they 
provide [1]. Yet, if not properly planned, DERs can also pose 
new technical challenges to system operation like increased 
power losses [2], nodal over-voltages [3], and reverse power 
fow [4]. These issues can result in economic losses and 
degradation of overall system effciency. In this regard, the 
sensitivity of system losses to the changes in nodal complex 
power is perceived as a powerful tool that enables system 
planning [5]. For instance, loss sensitivity can be used for 
optimal DER [6] and capacitor [7] placement and sizing, 
feeder reconstruction and network confguration [8] or, optimal 
allocation of electric vehicle (EV) parking lots [9]. Therefore, 
the development of a generic method that studies the impact 
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of DERs on system losses is a crucial aspect of modern 
distribution system planning and real-time monitoring. 

A. Related work 

Prior work on loss sensitivity analysis in distribution sys-
tems can be broadly grouped into two main categories: (1) 
analytical methods, and (2) classical load fow-based methods. 
As far as analytical methods are concerned, the most widely 
used method in the literature is based on computing nodal 
sensitivity factors [10], [11]. In this analytical method, the 
sensitivity of system losses is related to complex nodal changes 
through partial derivatives of line losses with respect to active 
or reactive power injection [12], [13]. The nodal sensitivity 
factor list helps reduce the search space when applying heuris-
tic optimization algorithms for fnding the best location or 
size of the DER [13]. For instance, in [14], [15] an analytical 
method is presented to fnd the optimal bus for installing DG in 
a power distribution system based on bus admittance matrix, 
generation information and load distribution of the system. 
Similarly, authors in [16], [17] propose a loss sensitivity-
based method for placement of DERs in distribution systems. 
Here, loss sensitivity is used to examine the impact of DER 
injection on active power losses, which helps to determine 
optimal locations for DERs in the system [18]. Similar to 
nodal sensitivity factors, there are few analytical methods that 
focus on nodal allocation factors. The main idea of nodal 
allocation factors is to study the contribution of nodal complex 
power changes to system losses. Under this category, three 
popular types are typically used in literature: (1) incremental 
allocation method [19]; (2) Z-bus allocation [20] method, and 
(3) proportional sharing method [21]. In [19], nodal allocation 
factors are based on generator domains (the set of nodes that 
are supplied by each generator) and the set of commons (the 
set of nodes supplied by the same generator). The set of 
domains and commons are computed to determine the contri-
bution of each generator to line fows, and thereby determine 
the contribution to line losses. Similarly, the z-bus allocation 
method is based on Z-bus matrix of the system (inverse 
of admittance matrix Y-bus). Authors in [20] use the Z-bus 
allocation method to determine incentive or penalties to nodal 
load increments considering system losses. However, such 
methods do not scale very-well with regard to computational 
complexity when the analysis is extended to large systems. 
When the size of the test system is small (e.g., 6 nodes [20]), 
it is diffcult to generalize any method to real-world practical 
systems that are characterized by a large number of nodes. This 



is especially problematic when the method involves running 
multiple loops such as in (1) classical load fow analysis to 
capture DER variability [22], or (2) in the Z-bus allocation 
method to compute the set of domains and commons in the 
system. In addition, the incremental sharing method requires 
an algorithmic extension to be applicable for systems larger 
than 4 nodes [19]. Although nodal sensitivity factors help 
guide optimal DER planning strategies [23], results obtained 
from such methods are valid for a given scenario of power 
change. In this case, the nodal sensitivity factor list may 
differ across time considering dynamic load analysis, which 
unfortunately cannot be captured by traditional analytical loss 
sensitivity methods. Other approaches in the literature use 
polynomial chaos theory to compute voltage sensitivity in 
distribution systems [24]. Here, the approach involves fnding 
basis polynomial functions to approximate the voltage change 
as a way to replace brute-force Monte Carlo simulations. 
However, the accuracy of this method depends greatly on the 
number of basis polynomials used to compute the voltage 
sensitivity. For example, for a 2 node distribution system 
with 4 loads, 15 polynomials are required to compute voltage 
sensitivity [24]. Additionally, the computational complexity of 
this method directly varies with the number of polynomials, 
resulting in an accuracy-complexity trade-off [24], [25]. Power 
loss sensitivity can also be determined using the classical 
load fow-based approach [26]. Here, the loss sensitivity is 
computed based on the voltage change due to complex power 
changes at different locations. In this regard, the change in 
voltage can be determined based on the Jacobian matrix of the 
system [27], i.e., partial derivatives of power fow equations 
with respect to nodal voltage magnitude and angles [22]. This 
can be used to determine the change in line current fows, 
which enables computing the changes in line power losses. 
Most of the prior work on loss sensitivity considers compu-
tationally complex traditional methods of sensitivity analysis 
or traditional power fow equations. Such methods may not be 
adequate to address the needs of modern distribution systems 
for the following reasons. First, results obtained from such 
methods are scenario-specifc and the inclusion of dynamic 
behavior of active consumers impacts their consistency. This 
hinders their applicability in real-time applications like fnding 
the optimal location for EV charging or power loss monitoring 
[28]. Second, traditional sensitivity methods are computa-
tionally complex and require simulating a large number of 
scenarios to obtain the sensitivity of each scenario. It is 
important to note that the computational complexity of these 
methods increases with the increase in system size. Finally, 
in distribution systems, complex power changes at active 
consumer sites can be random due to variability in PV power 
outputs or dynamic load behaviors. This is unfortunately not 
considered in traditional analytical and load fow-based sensi-
tivity methods. It should be noted that uncertainties of PV units 
(or DERs in general) can be captured by simulating a large 
number of scenarios, where the sensitivity can be computed. 
However, scenario-based analyses do not scale very well with 
increasing dimensions of variability. As we witness an increase 

in DER penetration, the number of scenarios needed for 
valid statistical inference grows exponentially. Alternatively, 
the proposed probabilistic approach in this paper is accurate, 
simple to implement, and scalable to large systems. This 
is because sampling random variables from well-established 
probability distributions is relatively (and consistently) faster. 
Therefore, this paper addresses these research gaps. 

B. Contributions 

This paper proposes a new probabilistic framework for loss 
sensitivity that helps to study the impact of changes in active 
consumer load patterns or DER injections on power loss in 
distribution systems. The major contributions of this work are 
listed below. 

1) This work derives, for the frst time, an analytical ex-
pression that approximates the changes in line current 
fows due to deterministic complex power variations at 
any node in the system (Theorem 1). The approximation 
error is shown to be upper bounded. 

2) This work further develops analytical expressions to 
study the aggregate impact of multiple active consumers 
changing their complex power simultaneously on power 
losses in the system (Corollary 2). 

3) The derived analytical expressions of line current and 
power loss changes are extended to account for variability 
associated with DER power injections at active consumer 
sites in the system resulting in a unique probabilistic 
sensitivity result. The Jensen-Shannon distance between 
the proposed and simulated loss probability distributions 
is in the order of 10−2 , which demonstrates the high 
accuracy of the proposed method. 

4) The computational complexity of the proposed method is 
signifcantly lower than existing load fow-based meth-
ods, which enables a real-time loss monitoring feature 
that is necessary to guide optimal asset management in 
distribution systems. 

The rest of the paper is organized as follows. Section II in-
troduces the analytical approximation for the change in power 
losses in any line due to DER injections at any node in the 
system. Section III validates the proposed approximation and 
derives an upper bound on the approximation error. Section 
IV accounts for uncertainties in power injections and extends 
the proposed approach to a probabilistic framework to derive 
the probability distribution of change in line current fows 
and losses. Finally, section V concludes the paper with future 
research directions. 

II. ANALYTICAL FRAMEWORK FOR LOSS SENSITIVITY 

Consider a power distribution system with N nodes and L 
lines as illustrated in Fig. 1. The change in complex power 
at any node in the system causes changes in current fow in 
all lines, and thereby, causes changes in line power losses. 
Nodes where complex power varies are called actor nodes 
and lines where the change in current fow or power loss is 
monitored are called monitored lines. This section presents an 
analytical approximation for the change in line currents and 
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Figure 1: An illustration of a distribution system. 

losses at any monitored line (M ) due to change in complex 
power at actor nodes (A) in the system. When power at actor 
node A changes from SA to SA + ΔSA, the current at the 
monitored line changes from IM to IM +ΔIMA, where ΔIMA 

is the change in current fow on the monitored line M due to 
complex power changes at actor node A. The reference node 
throughout this paper is assumed to operate at a unity voltage, 
i.e., 1 6 0◦ p.u. Considering a single actor node, the change in 
current fow at the monitored line M can be approximated 

written as follows, X S∗ X S∗+ΔS∗ 
k k kΔIe = − 

V ∗ +ΔV ∗ V ∗ 
k k kk∈Ne k∈Ne X V ∗(S∗ +ΔS∗) − S∗(V ∗ +ΔV ∗)k k k k k k = 

V ∗(V ∗ +ΔV ∗)k k kk∈Ne 

Using assumption 2, we can rewrite ΔIe as, X ΔS∗ 
kΔIe ≈ (4)

Vk 
∗ +ΔVk 

∗ 
k∈Ne 

Now assume that only one node (say node A ∈ Ne) is 
changing its complex power. The corresponding change in line 
current can be written as, 

ΔIe ≈ 
ΔS∗ 

A 

V ∗ + ΔV ∗ 
A A 

(5) 

The change in line fow can be written in terms of real and 
imaginary parts as follows, 

using Theorem 1. 
ΔV i

A 
r
A ΔV
) + ΔQAV i AΔPAV r(1 + A 

i
A 

(1 + )i
A 

r
AV VTheorem 1. For a single-phase distribution system, the ΔIe ≈ r

AΔV ΔV 
V

))2 + (V i A ))2change in current fow at a monitored line (M ) due to change (V r(1 + A (1 + i
A 

r
AV 

(6)in complex power at an actor node (A) is approximated by, i
A 

r
AΔV ΔV

ΔPAV i A ) − ΔQAV r 
A(1 + (1 + )i

A 
r
AVV 

+ j
ΔS∗ 

AΨMA 
,i

A 
r
AΔV ΔV
))2 + (V i A ))2(V r(1 + A (1 + (1)ΔIMA ≈ i

A 
r
AV ∗ 

A 

, V V 

where, ΔS∗ is the complex conjugate of complex powerA 
change at actor node A, V ∗ is the complex conjugate of base A 
voltage at the actor node A and ΨMA represents the infuence 
indicator between node A and the origin node of line M . For 

where, V r and V i are the real and imaginary parts ofA A 
actor node voltage, respectively. ΔPA and ΔQA are the real 
and reactive power changes at actor node A. Now, using 

nodes impacting the current fow on M , ΨMA can be set to 
1 and 0 otherwise. 

Proof. Consider a single-phase radial distribution system with 
N nodes and L lines with lm−n representing the line con-
necting nodes m and n as shown in Fig. 1. Let e be the line 
connecting the set of nodes Ne with the source node G. The 
downstream current fowing through e can be written in terms 
of complex conjugate of power injections and nodal voltages 
as, 

Ie = 
X 

Ik 

k∈Ne 

= 
X 

k∈Ne 

S∗ 
k . 

V ∗ 
k 

(2) 

When complex power changes at active consumer locations 
(k ∈ Ne) from Sk to Sk + ΔSk, the voltage also changes 
from Vk to Vk +ΔVk. Therefore, the current fowing through 
e changes from Ie to I 

0 
and can be rewritten as,e 

0 X 0 X Sk 
∗ +ΔSk 

∗ 

I = I = . (3)e k Vk 
∗ +ΔVk 

∗ 
k∈Ne k∈Ne 

The change in line fow ( ΔIe = I 
0 − Ie ) at line e can bee 
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Figure 2: Sensitivity due to a single actor node: (a) change in 
line fow ΔIMA. (b) change in active power losses ΔLMA. 
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assumption 2, the change in real and imaginary parts of line 
current fow can be written as, 

ΔPAV r +ΔQAV i ΔPAV i − ΔQAV r ΔS∗ 
A A A A AΔIe ≈ + j = 

(V r)2 + (V i )2 (V r)2 + (V i )2 V ∗ 
A A A A A 

(7) 

For any monitored line M ∈ e, the change in current fow 
will only occur due to complex power changes at A ∈ Ne as 
shown in Fig. 1. Therefore, for any actor node A ∈/ Ne, the 
infuence factor ΨMA can be set to zero. That is, 

ΔS∗ ΨMA 
ΔIMA ≈ A , (8)

V ∗ 
A 

which completes the proof of Theorem 1. Below is a summary 
of the assumptions used throughout the proof of Theorem 1. 

Assumption 1. The reference node operates at unity voltage, 
i.e., 16 0◦ p.u. 

Assumption 2. In distribution systems, the change in nodal 
voltage relative to the actual nodal voltage is small. 

Assuming multiple actor nodes in the system change their 
complex power, the change in current fow through the moni-
tored line M can be written as the sum effect of all individual 
changes as given in Corollary 1. 

Corollary 1. For a single-phase distribution system, the 
aggregate impact of complex power change at multiple actor 

nodes (A ∈ A) on the change in current fow at a monitored 
line (M ) is approximated by, X ΔS∗ 

AΨMA 
ΔIM ≈ , (9)

V ∗ 
AA∈A 

The current sensitivity due to multiple actor nodes is used 
to derive the loss sensitivity due to complex power change at 
active consumer sites. 

Corollary 2. For a single-phase distribution system, the 
aggregate impact of complex power change at multiple actor 
nodes (A ∈ A) on the change in power loss at a monitored 
line (M ) is approximated by," X ΔS∗ 2 

AΨMA 
ΔLM ≈ 

V ∗ 
AA∈A #� X ΔS∗ � 

A+ 2< I ∗ ΨMA 
ZM . (10)M V ∗ 

A∈A A 

where, ZM = RM + jXM is the impedance of the monitored 
line M and I∗ is the complex conjugate of base current fowM 
at line M . 

Proof. Consider again the system shown in Fig. 1. Power loss 
at a monitored line M can be written as [29], 

LM = |IM |2ZM (11) 
= LM,P + jLM,Q (12) 

= |IM |2RM + j|IM |2XM , (13) 

The change in current fow on that line (ΔIM ) can be 
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computed using the analytical expression derived in Eq. (9). 
Therefore, the change in power loss at a monitored line M 
becomes, 

where LM,P and LM,Q are the active and reactive power losses 
at monitored line M , respectively. When the current fow at 
a monitored line M changes by ΔIM , power loss at that line 
changes by ΔLM and can be written as, h i 

ΔLM = |IM +ΔIM |2−|IM |2 ZM (14)h i 
= |ΔIM |2+2<(I ∗ (15)M ΔIM ) ZM . 

" X ΔS∗ 2(a) AΨMA 
ΔLM ≈ 

V ∗ 
AA∈A #� X �ΔSA 

∗ 

+ 2< I ∗ ΨMA 
ZM . (16)M V ∗ 

A∈A A 
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A. Validation of analytical approximation 

In this section, the proposed analytical approximation of the 
change in power losses is validated on the IEEE 69 node test(b) 
system [30]. The base voltage of this test system is 12.66 kV 

Figure 3: Sensitivity due to multiple actor nodes: (a) change and standard base loads are used for the analysis. Classical 
in line fow ΔIM . (b) change in active power losses ΔLM . load fow method is used as a benchmark to evaluate the 



Table I: Complex power change at multiple actor nodes. III. APPROXIMATION ERROR BOUND 

Node ΔS (kVA) Base loading (kVA) 
14 -5+j3 8+j5.5 
24 10+j7 28+j20 
34 15-j5 19.5+j14 
44 20+j20 0 
55 2+j2 24+j17.2 
68 -9-j4 28+j20 

accuracy of the proposed analytical approach. Two scenarios 

This section further investigates the accuracy of the pro-
posed approximation. First, the approximation error is com-
puted and analytically upper-bounded. Thereafter, the bound 
on approximation error is verifed using simulation scenarios 
tested on the IEEE 69 node test system. 

Corollary 3. For a single-phase distribution system, errors 
in approximating the changes in real and imaginary parts of 
line current fows (Er and Ei 

MA, respectively) using (9) are MA 
upper bounded by, 

are created to show the accuracy of approximating the change 
in line current fow as well as losses. For the frst scenario, 
node 15 is chosen randomly to change its complex power and 
the current and loss changes are monitored at line 5 − 6, i.e., 
ΔIr and ΔLr 

5,15, where the superscript r represents the real 5,15 
part. Negative power change could represent increased DER 

X ΔPAΨMA ΔQAΨMA 
Er ≤ + , (17)

V r(1 + Φ1) V i (1 + Φ2)A AA∈A 

X ΔPAΨMA ΔQAΨMA 
Ei ≤ + , (18)

V i (1 + Φ2) V r(1 + Φ1)A AA∈A 

injections (such as PV) or decreased load power. Similarly, � �2i
AV and Φ2 = Φ

−1 
1 .positive power change can result from increased consumption where, Φ1 = r

AV 
or decrease in DER injection. Fig. 2 shows the changes in 

Proof. From Eq. (1), it can be seen that the voltage change real line current and active losses where theory represents the 
compared to actual nodal voltage is small as in Eq. (6) andproposed analytical expression and simulation is the result 

obtained via classical load fow-based method. It can be r
A 
r
A 

thus can be ignored, which yields the approximation in Eq. 
and(7). The error resulting from the assumption that (ΔV 

seen that the proposed analytical approach is accurate in V 
i
AΔVapproximating the change in line current and active power 

losses. The second scenario presents a case where power 
changes at randomly selected actor nodes. Table I reports the 
actor nodes and the respective values of complex power change 
as well as the base kVA loading. The change in real part of 
current fow and active losses for this scenario are illustrated 
in Fig. 3. As can be seen from the fgure, the proposed method 
can approximate not only positive changes but also negative 
changes due to increased PV injection. This demonstrates 
the accuracy of the proposed method in approximating the 
change in line current fow and power loss. The proposed 
approach is generic and can also be applied in the presence 
of various binary equipment such as switches, tap changers, 
and switched capacitors. Such equipment are control action 
enablers that ensure optimal system operation, whereas the 
proposed sensitivity approach could be used as a precursor 
to such control actions. Specifcally, the proposed analytical 
approach does not change due to the presence of switches, 

≈ 0) is upper bounded by Corollary 3. We can compute
V i
A

the approximation error (for real part of change in current) as 
follows, 

Er = ΔIr − ΔÎr , (19)e e 

where ΔIr is the actual change in real part of current fow e 
and ΔÎr is the approximated change in real part of currente 
fow. Therefore, 

" # 
ΔPA(V r +ΔV r) ΔPAV r 

Er A A A = − 
(V r +ΔV r)2 + (V i +ΔV i )2 (V r)2 + (V i )2 

A A A A A A" # 
ΔQA(V i +ΔV i ) ΔQAV i A A A+ − 

(V r +ΔV r)2 + (V i +ΔV i )2 (V r)2 + (V i )2 
A A A A A A 

= E1 
r + Er 

2 

Er can be rewritten as,1 
r
AΔV 

tap changers, or switching capacitors. However, thanks to ΔPA(1 + )r
AV ΔPAh iEr 

1 −=the analytical nature of the proposed approach, it is a trivial i
A 
i
A 

h )2 i i
A)
2(VΔV 

V V r 1 + Ai
A 

(1+
)2task to account for such cases. Specifcally, we only need r

AΔV (V )2r
A(V)2V r(1 + A 1 + 

ΔVand≈ 0 i
A 

r
A 

based distribution system state estimation approaches [31]) to Typically in distribution systems the change in nodal voltage 

)2r
A 

r
A 

ΔV 

V 
V (Vto run the load fow once (or use recently proposed sparsity )2(1+ r

A 

get the base values of voltage, and thereafter the proposed i
A 

r
AΔVcompared to actual voltage is small, i.e., r

Aanalytical method can be applied to compute loss change V ≈ 
0. Therefore, the previous equation can be rewritten as, " #at any monitored line of the system due to change in PV 

generation or load pattern. The complexity of the proposed 1ΔPA
Ermethod in terms of execution time is pretty much constant 1 = − 1 

V r(1 + Φ1) T r 
Aregardless of system size. This is one of the key strengths 

of the proposed approach. The following section derives an 
upper bound on the approximation error to ensure consistency 

i
A 

r
A 
r
A 

ΔV 
V 

ΔV , T i = 1 + Ki , Kr = , Ki =where, T r = 1 + Kr 
i
A 

i
A)
2 

)2 . Considering the ratio of change in voltage (Vof results obtained by the proposed analytical method. and Φ1 = r
A(V 

V

V
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r
AΔVto actual nodal voltage is small, the quantity r

A 
will always V 

r
AΔVbe less than or equal to 1 − , i.e.,V r

A 

Kr 1 
Kr ≤ 1 − Kr ⇒ ≤ 1 ⇒ − 1 ≤ 1 

1 − Kr T r " # 
ΔPA 1 ΔPA− 1 ≤ 

V r(1 + Φ1) T r V r(1 + Φ1)A A 

ΔPA⇒ Er (20)
1 ≤ 

V r(1 + Φ1)A 

ΔQASimilarly, E2 
r ≤ . 

V i (1 + Φ2)A 

Finally, by combining Er and E2 
r , the error in approximating 1 

the real part of current change is upper bounded by, 

ΔPA ΔQA
Er = E1 

r + E2 
r ≤ + . (21)

V r(1 + Φ1) V i (1 + Φ2)A A 

Considering multiple actor nodes changing their complex 
power and repeating the same for imaginary part of current 
change yields, 

X ΔPAΨMA ΔQAΨMA 
Er ≤ + , (22)

V r(1 + Φ1) V i (1 + Φ2)A AA∈A 

X ΔPAΨMA ΔQAΨMA 
Ei ≤ + , (23)

V i (1 + Φ2) V r(1 + Φ1)A AA∈A 

which completes the proof of Corollary 3. 

The tightness of the upper bounds in Corollary 3 are 
validated via simulation on the IEEE 69 node test system. A 
simulation scenario is created where complex power varies at 
nodes 18 and 30 by ΔP = ΔQ ∈ [−50, ..., 50] kW (and kVAr) 
and the change in current fow is monitored on line 5. The 
actual error is computed based on Eq. (19), i.e., the difference 
between numerical results using classical load fow and the 
proposed analytical approach. The error bound is computed 
based on the results provided by Corollary 3. Line 5 is 
randomly chosen to monitor line fow and compute the actual 
and approximation errors. However, the method is generic for 
any pair of actor nodes and monitored lines. Fig. 4 illustrates 
the actual error vs. the error bound for the aforementioned 
simulation scenario. The fgure shows the errors in approxi-
mating real, imaginary and magnitude of current change. It 
can be seen from the fgure that (17) and (18) present a 
tight upper bound for the actual error especially within the 
interval [−20, ..., 20] kW (kVAr), which is consistent with real 
world power change scenarios. Therefore, the error bounds 
developed in Corollary 3 ensure the consistency and accuracy 
of the proposed analytical approach in approximating the 
change in line current. Next, this analytical framework is 
extended to account for variability associated with complex 
power injection (or withdrawal) at multiple active consumer 
sites in the system. 
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Figure 4: Approximation error bound using Corollary 3. 

IV. PROBABILISTIC LOSS SENSITIVITY ANALYSIS 

Complex power at active consumer sites could vary ran-
domly due to the variability associated with DER injections 
(such as rooftop PV units and wind turbines) or due to 
dynamic load patterns. These stochastic processes inevitably 
impact system losses, which in turn leads to economic losses. 
Therefore, modern distribution system operators require an 
accurate, yet computationally effcient, loss monitoring tool 
that accounts for power uncertainties. This helps to guide 
optimal asset management strategies to keep losses minimal 
in a real-time fashion during electric vehicle planning or 
DER control. In this section, Corollaries 1 and 2 are used as 
the starting point to compute the probability distributions of 
change in current and power losses at a particular monitored 
line, respectively. Specifcally, Eq. (8) can be rewritten as 

|VA| 

follows, 

ΔIMA = ΔIr 
MA + jΔIi MA, 

where, 

ΔIr 
MA ≈ 

ΔIi MA ≈ 

ΨMA(ΔPA cos(θA) − ΔQA sin(θA)) 
|VA|

ΨMA(−ΔPA sin(θA) − ΔQA cos(θA)) 
. 

(24) 

Here, θA is the voltage angle of actor node A. Since multiple 
actor nodes impact the current fow at line M , using Corol-
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laries 1 and 2, we conclude that XX 

as part of future work. 
ΨM 1 cos θ1 

⎡ ⎡⎤ ⎤ 
− ΨM1 sin θ1 

ΔIr ΔIi (25)MA + j MA, 
|V1|

ΨM 2 cos θ1 

|V1|
− ΨM2 sin θ1 

|V2| 
ΔIM = 

|V2|
.A∈A X 

" 
2 

A∈A #�X� 
. . . . . 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

ki = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

− ΨMN sin θN 
|VN |

− ΨM 1 cos θ1 
|V1|

− ΨM 2 cos θ1 
|V2|
. . . 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

I ∗ 
M ΔIMA RM 

ΨM N cos θN 
|VN |

− ΨM 1 sin θ1 
|V1|

− ΨM 2 sin θ1 
|V2|
. . . 

ΔLM = ΔIMA + 2< 
kr = 

A∈A X 
" 

2 

A∈A �X� # 

I ∗ 
M+ j ΔIMA + 2< ΔIMA XM . 

A∈A A∈A 

(26) 

DER injection or dynamic load patterns can be modeled as 
a probability distribution to account for the variability. In 
particular, complex power changes (withdrawal or injection) 
at active consumer sites can be modeled as a random vector 
Δs = [ΔP1, ..., ΔPN , ΔQ1, ..., ΔQN ]

T with mean µ = 0 
and a covariance structure captured by the covariance matrix 
ΣΔs. The following subsections highlight the steps followed 
to derive the probability distribution of the squared magnitude 
of the change in current fow that is used in Eq. (26) to 
compute line losses. 

− ΨM N sin θN 
|VN | 2N ×1 

− ΨM N cos θN 
|VN | 2N ×1 

(27) 
Here, θ = [θ1, ..., θN ]

T represents the base voltage angles. 

B. Compute the distribution of ΔIr and ΔIi M M 

It can be seen from Eq. (9) that the change in line current 
fows at a monitored line can be expressed as the aggregate 
changes in current fows caused by every actor node in the 
system. Now, consider random changes in complex power at 
actor nodes as given by the covariance matrix in Eq. (28). 
Using the Lindeberg-Feller central limit theorem, each of the 
probability distributions of ΔIr and ΔIi can be shown toM M Xconverge to a Gaussian distribution as, 

ΔIr
D 

MA ≈ kr
T Δs → N (0, kr

T ΣΔskr), (29)ΔIr 
M = 

A. Construct ΣΔs and compute kr and ki XA∈A 

ΔIi ΔIi M = MA ≈ ki
T Δs 

D→ N (0, ki
T ΣΔski). (30)ΣΔs contains information about the variance of complex 

power change at active consumer locations that represents, for 
instance, the size of PV unit or the load pattern, etc. Off-
diagonal elements of the covariance matrix capture the spatial 
correlation of complex power changes at different actor nodes. 
The spatial correlation is a byproduct of the geographical 
proximity of renewable energy sources. The covariance matrix 
depends on the size of the system and the number of active 
consumers changing their complex power as shown in Eq. (28) 
below. pi and qi are the active and reactive power injection 
or consumption at the ith active consumer site, respectively, 
whereas n , N is the system size. The exact ΣΔs of a 
particular system can be estimated based on historical data 
as discussed in [32], and is out of the scope of this work. If 
a node does not have DER units, the variance of complex 
power of that node can be set to zero and the standard 
kVA loading of that node will be used for the analysis. 
Additionally, the constant terms in (24) are arranged in kr and 
ki vectors. These vectors are functions of the magnitude of 
nodal base voltages and the nodal-line sensitivity relationships 
based system topology (defned by ΨMA ). For each system, 
these vectors are fxed and can be readily computed using 
Eq. (27). It is important to note that the proposed analytical 
methodology to compute loss change is generic and is valid 
for any type of distribution system. However, steps to compute 
the intermediate values of the fnal loss expression could 
vary with the system topology. For instance, the procedure 
to determine ΨMN values of the weight vectors in (27) could 
vary with the system topology. The theoretical derivation of 
exact expressions for other system topology will be pursued 

A∈A 

Here, A is the set of actor nodes resulting in the change 
of current fow at line M . The terms kr

T ΣΔskr , σr 
2 and 

kT ΣΔski , σ2 and ΔIirepresent the variances of ΔIr M ,i i M 
respectively. 

C. Compute the distribution of |ΔIM |2 

The squared magnitude of current change at a monitored 
line M can be written as, 

|ΔIM |2 = (ΔIr M )
2 . (31)M )

2 + (ΔIi 

Since the probability distributions of ΔIr and ΔIr converge M M 
to Gaussian distributions, the square of a Gaussian distribution, 
i.e., (ΔIr )2 and (ΔIi )2 , follows a Gamma distribution with M M 
0.5 as the shape parameter and scale parameter twice the 
variance of the Gaussian distribution [33]. That is, 

(ΔIM
r )2 ∼ Γ(0.5, 2σ2) (32)r 

(ΔIM
i )2 ∼ Γ(0.5, 2σi 

2) (33) 

Typically, in distribution systems the change in real and 
imaginary parts of current fow are correlated. In the proposed 
analytical method, this correlation is captured by Eq. (28) 
and (27). That is, the Gamma distributions in Eq. (32) and 
(33) are correlated by K , kT ΣΔski. The sum of correlated r 
Gamma distributions Γ(0.5, 2σ2) and Γ(0.5, 2σ2) also follows r i 
a Gamma distribution [34],

|ΔIM |2 = (ΔIr M )
2 ∼ Γ(k, θ),M )

2 + (ΔIi (34) 
(σ2+σ2)r iwith scale and shape parameters k = and θ = θ 

2(σ4+σ4+2K2)r i , respectively. 
σ2+σ2 
r i 



r(0.5, 2u~) r(o.s, 2u;) 
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σ2 . . . cov(pn, p1) cov(q1, p1) . . . cov(qn, p1)p1 

. . . .. .. . . . . .. .. . . . 
cov(p1, pn) . . . σp 

2 
n 

cov(q1, pn) . . . cov(qn, qn) 
cov(p1, q1) . . . cov(pn, q1) σ2 . . . cov(qn, p1)q1 

⎢⎢⎢⎢⎢⎢⎢⎢⎣ 
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(28)ΣΔS = 

. . . .. .. . . . . .. .. . . . 
cov(p1, qn) . . . cov(pn, qn) cov(q1, qn) . . . σ2 

qn 2N×2N 

D. Compute the distribution of ΔLr and ΔLi 
M M 

This subsection derives the probability distribution of ΔLr 
M 

and ΔLi based on the approximation in Corollary 2. TheM 
change in power loss at a monitored line M can be written in 
terms of real and imaginary parts as, 

ΔLM M + jΔLi = ΔLr
Mh 

E. Validation via simulation 

This section validates the theoretical expressions derived 
earlier to compute the probability distributions of current and 
loss changes. For simplicity of demonstration, only the real 
parts of both current and loss sensitivity analysis is shown. 
However, the proposed analytical approach is generic and 
can be applied to the imaginary parts as well. The proposedi PLSA method is verifed on the same IEEE 69 node test 

|ΔIM |2+2<(I ∗ 
M ΔIM ) RM h 

= system. A scenario is created where complex power varies i at a randomly selected set of actor nodes A ∈ [5, 7, ..., 25]
+ j |ΔIM |2+2<(I ∗ 

M ΔIM ) XM and the change in current and power losses are monitored on 
line 10− 11. It is assumed that actor nodes are integrated with 
PV units. To account for the variability in PV power outputs, 
complex power change (Δs) among actor nodes is assumed 
to be random following a zero-mean Gaussian distribution 

From (34), |ΔIM |2∼ Γ(k, θ). Therefore, 

ΔLr = Γ(k, θ) + 2<(I ∗ and,M ΔIM ) RMM 

h i 

with the covariance structure shown in Eq. (28). Although 
we assume a Gaussian distribution for power changes, the 
proposed method is generic to any choice of probability

ih 
ΔLi = Γ(k, θ) + 2<(I ∗ 

M ΔIM ) XM .M 

If X ∼ Γ(k, θ), then, ∀a > 0, aX ∼ Γ(k, aθ). Thus, 

ΔLr = Γ(k, RM θ) + 2RM <(I ∗ (35)M ΔIM ), 

ΔLi = Γ(k, XM θ) + 2XM <(I ∗ (36) 
M 

M ΔIM ).M 

Fig. 5 shows a brief fowchart explaining the steps behind 
computing the probability distribution of change in active 
power losses using the proposed analytical approach. 
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Figure 5: A fowchart of the proposed analytical PLSA 

distribution. Additionally, PV power injection among actor 
nodes is correlated due to geographical proximity. Therefore, 
ΣΔs captures those relationships by the off-diagonal covari-
ance terms. For this particular case study, ΣΔs is defned 
as follows. Active power variance on the diagonal is set to 
be 15 kW for nodes integrated with PV units. The reactive 
power variance for those nodes is set to 10 kVAr. For off-
diagonal elements relating the change in active power among 
actor nodes, i.e., cov(ΔPi, ΔPk) = 0.7 where i, j ∈ A and 
i 6= j. Furthermore, the covariance of change in reactive power 
cov(ΔQi, ΔQk) is set to 0.6. Finally, the covariance between 
active and reactive power change cov(ΔPi, ΔQk) is set to 0.3. 
Variance and covariance of PV units in this scenario are kept 
the same for all actor nodes. However, the proposed approach 
is generic to accommodate various types of ΣΔs structures. 
The proposed analytical approach is compared to the bench-
mark results obtain by classical load fow-based sensitivity 
method. For the proposed analytical approach, frstly, the kr 

and ki are computed using Eq. (27), respectively. Then, the 
variance and covariance terms of change in real and imaginary 

� 

�parts of current are computed as, 

kT kT 
r ΣΔskr i ΣΔskrΣΔIM = 

ΣΔs 

� 

kT kT 
i ΣΔskr i ki� (37)
0.8351 −0.0354 

= × 10−3 .−0.0354 0.0787 

Thereafter, the distribution of change in real part of current is 
approach. computed by sampling random variables using Eq. (29). For 
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Figure 6: Probability distribution of change in real part of 
current fow ΔIr for cases a, b, c, d and e.M 

the benchmark results, load fow scenarios are created using 
the covariance matrix defned in (28). To illustrate the effcacy 
of the proposed approach, fve different cases (namely case 
a, b, c, d, and e) are created by varying the number of load 
fow scenarios (as well as the number of random variables 
sampled with the proposed analytical approach). Specifcally, 
we choose 100 simulations vs. 100 random variables, 1k 
simulations vs. 1k random variables, 10k simulations vs. 10k 
random variables, 100k simulations vs. 100k random vari-
ables, and 1m simulations vs. 1m random variables, for cases, 
a, b, c, d, and e, respectively. Fig. 6 shows the distribution 
of real part of current change on line 10-11 for all cases 
using the proposed analytical approach (red) compared to the 
simulation based method (blue). It can be inferred from the 
fgure that the probability distributions shown in cases a, b, c, 
and d are less accurate than the distributions in case e. This is 
because the accuracy of the probability distribution improves 
with the increased number of scenarios (or number of random 
variables in the case of the proposed probabilistic approach). In 
order to make these comparisons objective, we use the Jensen-
Shannon distance (JSD), an information-theoretic similarity 
measure, to validate the accuracy of the proposed probabilistic 
approximation (compared to simulation-based classical load 
fow method) of both distributions of change in current fow 
as well as active power losses. The similarity (or JSD) be-
tween simulations based and theoretical distributions can be 
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Figure 7: Probability distribution of change in active power 
losses ΔLr 

M . 

computed as [35], 
1 1

JSD(P ||Q) = DKL(P ||M) + DKL(Q||M), (38)
2 2 

1where, M = (P +Q) and DKL is the Kullback-Leibler (KL) 2 
divergence metric as a measure of the information lost when 
Q is used to approximate P evaluated at the support x ∈ X 
and can be written as, X � �P (x)

DKL(P ||Q) = P (x) log (39)
Q(x)

x∈X 

The JSD distance is used for validation instead of the KL 
divergence because the JSD is always symmetric, well defned, 
and bounded [36]. JSD can vary between 0 (meaning the two 
distributions are identical) and 1 (meaning the distributions 
are completely different). The JSD between actual simulation-
based and theoretical distributions of change in current fow is 
in the order of 10−2 , which implies that the probabilistic ap-
proximation is accurate when compared to existing simulation-
based method. 

Subsequently, the shape and scale parameters of the Gamma 
distribution in Eq. (34) are computed as k = 0.5913 and 
θ = 0.0015 to obtain the probability distribution of the change 
in active power loss on line 10−11 using Eq. (35). The distri-
bution of change in active power losses is computed for case e 
and illustrated in Fig. 7. The JSD between actual simulation-
based and theoretical distribution of change in active power 
loss is found to be in the order of 10−2 . These results imply 
that it is possible to accurately evaluate the probability of 
line current fow or active power losses exceeding a certain 
threshold (γ). For instance, Table II shows the probability of 
real part of current change exceeding γc = 0.002 kAmps and 
active losses exceeding γl = 0.5 kW using classical method 
and the proposed analytical approach. 

Finally, the computational complexity of the proposed 
method is compared via the execution time taken to compute 
the probability distributions of change in current and power 
loss for a given monitored line M , in this case, line 10 − 11. 

Table II: Probability of exceeding the threshold γ. 

Probability Simulation Theory 
P(|ΔIr |> γc) 0.8630 0.8561M 
P(|ΔLr |> γl) 0.9404 0.9396M 



Table III: Execution time (s). 

Case Simulation Theory 
case a 0.2897 0.0472 
case b 2.1852 0.0482 
case c 19.1739 0.0694 
case d 190.4614 0.0934 
case e 1871.84421 0.2373 

The analysis is implemented with intel i-9 processor for all 
cases illustrated in Fig. 6 and the corresponding execution time 
taken by both approaches is reported in Table III. The proposed 
analytical approach outperforms the classical simulation based 
method regardless of the number of simulations (or random 
variables in the case of the proposed approach) used to obtain 
the probability density curves. This is because sampling ran-
dom variables from well-established probability distributions 
is faster compared the classical scenario-based analysis, which 
require simulating large number of scenarios to achieve the 
required accuracy. This implies that the proposed analytical 
framework accurately approximates the distribution of change 
in current fow and in line losses with signifcantly lower com-
putational effort. It is important to note that the computational 
effciency of the proposed approach is consistent regardless 
of system size or choice of monitored lines. Therefore, with 
the proposed approach, it is possible to signifcantly simplify 
the process of loss monitoring in modern distribution systems, 
which enables various downstream applications such as EV 
and DER planning. 

V. CONCLUSION 

This paper proposes a new probabilistic loss sensitivity 
analysis framework that builds off an analytical approxima-
tion of the change in power losses at a given line due to 
complex power changes at other nodes in the system. First, 
an analytical expression is derived to compute the change in 
line losses for deterministic power changes at one actor node. 
Then, the effect of random power changes at multiple active 
consumer sites is examined using the proposed approach. It 
is shown that the probability distribution of change in line 
power losses is well approximated by a Gamma distribu-
tion. The proposed analytical expressions are validated via 
simulations on the IEEE 69 node test system. Simulation 
results show that approximating the change in power loss 
at any line in the system is highly accurate with a JSD in 
the order of 10−2 . In addition, the proposed approach is 
computationally effcient when compared to traditional load 
fow-based sensitivity methods. The computational advantage 
of the proposed approach makes it a suitable tool for real-time 
optimal resource management to minimize losses. Future work 
includes extending the probabilistic loss sensitivity analysis for 
3-phase unbalanced distribution systems with wide variety of 
network topologies. 
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