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Abstract—Recently, distributed energy resources (DERs) such
as photovoltaic (PV) systems have garnered significant attention
due to their economic and environmental benefits. However,
DERs can also pose new technical challenges to distribution
system operation including under/over voltage issues. In this
regard, voltage violation prediction (VVP) becomes an essential
component of system operation as it enables proactive control
strategies. Unfortunately, classical voltage monitoring techniques
assume full availability of state measurements across all nodes
in the system. In real-world scenarios, distribution systems are
limited with few measurement devices, rendering the system
unobservable. Therefore, this paper proposes a new Bayesian
matrix completion (BMC) based VVP technique that accurately
predicts the probability of nodal voltage violations in unob-
servable (and unbalanced) distribution systems. The proposed
approach is tested via simulations on the IEEE 37 test system.
Results show that the proposed method offers over 90% violation
prediction accuracy with as low as 50% fraction of available data.

Index Terms—Distribution system, Distributed Energy Re-
sources, Voltage Violation, State Estimation, Sensitivity Analysis

I. INTRODUCTION

Distribution system operation has witnessed vast changes in
the last decade due to exponential growth in energy demand
and increased concerns about climate change, which motivated
communities to invest in green DERs such as PV systems. De-
spite the benefits DERs offer to environment and consumers,
e.g., reduced harmful emissions and lower energy prices, it has
been shown that high level of DERs can impact nodal voltage
stability in the system [1]. In this regard, utilities are interested
in exploring efficient impact assessment tools that enable
preemptive voltage violation prediction (VVP). This is mainly
because preemptive monitoring tools significantly reduce the
reliance on reactionary volt/var control strategies and enable
more proactive schemes, in which optimal control signals can
be implemented beforehand to prevent future violations. In this
process, one of the major obstacles that stand in the face of op-
timal distribution system operation is system unobservability.
In practical scenarios, state measurement devices are limited
and exist at a small subset of nodes, rendering the system
uobservable. Additional measurement devices can be installed
to achieve system observability. Yet, this solution is not cost-
effective and can be complex for large systems. Distribution
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system state estimation (DSSE) is an attractive alternative due
to its cost effectiveness and estimation accuracy. Therefore, the
development of efficient VVP that accounts for both complex
power dynamics as well as system observability through DSSE
is a vital step toward system modernization.

Early work on voltage monitoring involved learning from
historical data, through which optimal system operation is
implemented [2] [3]. More recent approaches in literature
use traditional load flow based voltage sensitivity to derive
a look-ahead prediction of nodal voltage states for predictive
control purposes [1], [4], [5]. However, these methods do
not account for uncertainty related to DER injections or load
variability and their reliance on classical load flow based
sensitivity makes them (1) computationally complex; and (2)
non-scalable. Alternatively, authors in [6], [7] use Monte-
Carlo based approaches to account for different DER sizes
and derive the probability of nodal voltage violation. For
example, [6] creates a large number of scenarios with different
electric vehicle deployment capacities considering random
spatial distribution. Similarly, [7] analyzes multiple scenarios
to select the best load model for voltage regulation and loss
minimization applications. It is important to note that such
methods still do not consider temporal uncertainty of DERs
or changeable load patterns but rather focus on analyzing the
impact of multiple scenarios of DER capacities on voltage
states, making them suitable only for planning applications.
Few other methods focus on deep learning based prediction
models for voltage violations such as deep neural network
[8]. However, the hidden layers of such models makes it
difficult to provide guarantee of performance against known
or unknown errors in voltage states. Newer approaches intro-
duce the paradigm of probabilistic voltage sensitivity analysis
(PVSA) that is accurate and more computationally efficient
when compared to classical load flow sensitivity [9]-[11].
However, these studies do not consider distribution system
unobservability. Specifically, [9], [11] assume full knowledge
of temporal voltage states (e.g., voltage current updates) to
derive the probability distribution of predicted voltage states.
However, this is not a realistic assumption since distribution
systems are characterized with low-observability [12].

Therefore, the aim of this paper is to address this research
gap via incorporating Bayesian matrix completion (BMC)
based DSSE within the PVSA framework. The following
summarizes the main contributions of the proposed approach:

« This paper proposes a novel probabilistic VVP mecha-

nism in low-observable unbalanced distribution systems.
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o The proposed approach that integrates DSSE and forecast
based PVSA incorporates uncertainty of complex power
changes due to PV injections and accounts for distribution
system unobservability and measurement errors.

o The unique approach systematically exploits the un-
certainties in system states while computing the VVP
probabilities.

e The proposed approach provides 90% VVP accuracy with
50% fraction of available data, which makes it a suitable
tool for predictive voltage control applications in modern
distribution systems.

II. PROPOSED APPROACH

The proposed VVP technique is summarized in Fig. 1 and
the functional blocks are detailed in this section. It is assumed
that measurements come from SCADA system carrying infor-
mation about active and reactive power as well as real and
imaginary parts of nodal voltages. SCADA measurements are
collected through sensor data aggregation system and sent for
DSSE. It is important to mention that SCADA measurements
are available only at a subset of nodes as highlighted by the
bold circles in Fig. 1. To estimate the states at all nodes, BMC
based DSSE is used and the corresponding estimation variance
is derived. Finally, state estimates, their variance, and available
measurements are used within the PVSA framework to derive
the probability distribution of future nodal voltage states (Vé)
in real-time. This allows for the computation of probability of
voltage violation induced by complex power fluctuations at
any location in the system. It is assumed that complex power
changes occur due to time-varying PV injections and variable
load patterns.

A. BMC based system observability

DSSE task is difficult due to the lack of sufficient mea-
surements making the system unobservable [13]. Consider
an unbalanced distribution system with N nodes. Let X
denote a matrix that contains information on nodal complex
power values, real and imaginary parts of voltage, and voltage
magnitudes for all nodes N in the system. In practice, due to
limited number of measurements in the distribution system,
only some elements of the matrix X are known (i.e., X
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Fig. 1: VVP flowchart.
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is incomplete). BMC aims to complete this matrix X by
estimating the unobserved states based on a suitable low rank
approximation [14]. The low rank property in the matrix X
results due to: (1) spatial correlation between measurements
at different locations; and (2) the correlation between different
types of measurements via power-flow equations. If we assume
that the measurements at the slack bus are known, it is possible
to use the measurements at the non-slack buses to construct
the data matrix.

Let m € N denote the set of phases at all the non-slack
buses. The measurement matrix Z is constructed such that
each row represents a phase and each column represents the
measurement associated with the phase of each bus. For each
b € m, each row of the matrix Z € R"*"™ with n = 5 is
structured as,

[Pb7Qb7%(vb)7%(Vb)v ‘Vb”, (1)

where, P, and Q, represent the active power and reactive
power injections at each phase of non-slack bus b respectively.
The terms R (v;) and 3(vy) represent the real and imaginary
parts of voltage phasors at each phase of non-slack buses,
respectively. Let Q C {1,....,m} x {1,...,n} describe the
known entries in Z. The known entries can also be written
as,

Z;; =X, + Ny, (L,j) e ()

where, X;; and N;; refers to the row entry [ and column entry
7 in the matrix X and N, respectively. The unknown low rank
matrix X is factorized into two matrices as X = ABT. Here,
A is an m X r matrix and B is an n X r matrix such that
rank(X) = r. The matrix X is the sum of the outer-products
of the columns of A and B such that,

k
X =) ab] 3)

where, k > r, a; and b denote the I column of matrix

A and B respectively. The /" row of matrix A and B is
represented by a; and b;, respectively. The low rank matrix
is obtained by setting most of the columns in A and B to
zero. To achieve this condition, the columns of A and B are
associated with Gaussian priors of precisions +;, that is

p(Aly) = HNazlo 7 ) )
=1
p(Bly) = HN 210,77 1,) (5)

During inference, most of the ;’s take large values, thus
forcing the columns of A and B to go to zero. The columns
of A and B have the same sparsity profile enforced by the
common precisions ;. These sparsity priors on the factorized
matrix encourages low-rank solutions. The precision ~; are
assumed to have a Gamma hyperprior given as,

= Gammal(c, 1) (6)

p(n) pi
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The parameters c and d are set to small values to obtain broad
hyperpriors. Using the model (2) and factorized matrices A
and B, the conditional distribution of the observations are
obtained as,

p(ZIA,B)= [[ N(ZylXy,87") ()

(RIS

where [ is the noise precision of each measurement. The joint
distribution is therefore given as,

P(Z,A,B,v) = p(Z|A,B)p(Aly)p(Blv)p(v) (8)

The evaluation of posterior distributions is obtained by mean
field variational Bayes [14]. The posterior distribution of A
and B decompose as independent distributions of their rows.
The approximate posterior distributions of the latent variables
are updated as,

q(ai.) =N (ai.[{a.) , X) ©)
where the mean and covariance are defined as,
(a)T = (8) X} (B))" 2] (10)
! =((8) BBy + 1) (11)
Here,
B/B)= > (BDm)+3) a2

7:(L,g)eQ

and T' = diag(~). Similarly, the posterior density of 5" row
of B is found as,

a(b;.) = N (b;.|(b;.), =3) (13)

where the mean and covariance are defined as,
(bj)T = (B) =5 (A;)T 2T, (14)
=} = ((8)(AJA;) +T) (15)

The posterior density of +; becomes a gamma distribution

c—1+min 2d + {(ala,;) + (bTb,;
alm) o1  exp (—w 2l 2> tbiby)
(16)
with mean,
2c+m+n
= 17
(n) 2d + (ala;) + (bTb.) a7
The required expectations are given by
(alas) = (a)T(as) + 3 (2;1)”, (18)
J
T — T b
(bTb.y) = (ba)T(b.) + zjj (=), (19)
The approximate posterior distribution of ( is given as,
FAD) xmxn
(8) = (FAD) (20)

~ {IZ - Po(ABT) )}
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Fig. 2: PV generation and load profile.

The variance of estimated elements in the complete matrix X
is given as,

W, ; =ir(b; Bibl) + tr(a,. Bhal) + r(TITF)  (21)
where, 7r(-) is the trace. The next subsection describes VVP
in low-observable distribution systems. Specifically, the esti-
mated complete matrix X as well as the variance of estimates
computed in ¥ will be used in a probabilistic sensitivity
analysis framework for VVP.

B. Sensitivity based violation prediction

Voltage can fluctuate at any node (observation node O) in
the system due to complex power changes at another node
(actor node A). Nodal voltages may exceed safe operational
limits (i.e., 0.95 < |V|< 1.05 p.u) due to abrupt complex
power changes at actor nodes, which is undesired for distri-
bution system operation. Recent research [11] has shown that
it is possible to predict such nodal voltage violations using
PVSA. That is, if complex power at a particular actor node A
changes from S4 to S4 + AS4, the voltage changes at any
observation node O from Vg to Vo +AVp. In this process, the
change in voltage AV can be linearly approximated with a
tight upper bound that guarantees accuracy [10]. This approxi-
mation can then used to systematically incorporate uncertainty
associated with complex power changes at actor nodes, which
results in a unique probability distribution of the predicted
voltage magnitude at observation nodes [11]. However, in
actual distribution systems, voltage state measurements are
not available at every node. Therefore, Theorem 1 provides
the probability distribution of predicted voltage magnitude at
observation nodes in low-observable distribution systems.

Theorem 1. For a given unbalanced distribution system, the
predicted voltage magnitude ( \Vg |) at an observation node O
due to complex power changes at multiple actor nodes A €
A in low-observable distribution systems follows a Rician
distribution, i.e.,

\VJ|~ Rician(v,n) (22)
where, v = /T and 1 = /€ with,
41+ 2u2 41+ 2u2
g_or( + 2p) + 07 (1 +247) 23)

oL+ 2u3) + 07 (1 4+ 2u7)
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and,

_ (oRpi + o) (0F + 0F + 20717 + 207 pi7)

B o+ ot + 2042 + 20tp? '
Here, 02 = Wo3 + "X asCy, 07 = ¥o 4 + ] Tasci,
pr = Xos + cfpas, and p; = Xou + ¢ pas. ¥o3
and W 4 represent the variance of real and imaginary parts
of voltage estimates according to (21) whereas Xp 3 and
Xo,4 are the present estimates of real and imaginary parts
of voltage (3), respectively. ¢, and c; are based on system
topology. puas is the mean of change in voltage states with
AS =[AP?, ..., AP? AQY, ..., AQY]T is the vector of com-
plex power changes and ¥ A s is a the covariance matrix that
contains the variance and cross-covariance terms of complex
power change across different actor nodes as shown in Eq.

(12) of [11].

Proof. Let Vg be the present voltage state at observation node
O. 1t is possible to write the predicted future voltage state Vé
in terms of the voltage change introduced by the DERs at actor
nodes, i.e.,

(24)

vE =VE + AV, (25)

where AV is the change in voltage states at observation
nodes that is caused by complex power changes at DERs.
More details on how to compute this voltage change can be
found in [10]. To account for system unobservability, we use
the real and imaginary parts of voltage estimates X 3 and
X 0,4 as well as their estimation variance, i.e., ¥ 3 and ¥ 4,
respectively. Therefore, the present voltage estimates Vg can

be written as,
VB = V5P VEPIT £ [Xo.3, X04]" (26)

Follows from (20), the distribution of present voltage states
follows a Gaussian distribution,

Vg ~N(pp, Bp), with py, = [Xo,3,X0,4]7 @7
and
B Po3 cov(Xo,3,X0,4)
> = |:COU(XO,4a Xo0,3) You voem @y

The distribution of V£ is based on the present voltage. Thus,
the real and imaginary parts of VE £ [V)7 VAT can be
rewritten as VE = [Xo3, X0.4]T + [AVS, AVE]T. Thus,

£ Xo0,3 cTuas| [Ar 6y

Vo N( [XOJ i [CZT#AS} ’ [51‘ Ai] ) @
where, \, = ¥o 3+ cIXasc,, A\, = ¥ou + c/XTagc,,
0 = cov(Xo,3,X0,4) + cTXasc;. The terms cTpag and
cT3agc are the mean and variance of real and imaginary
voltage change caused by complex power changes at all actor
nodes denoted by the subscripts r or 7, respectively. The
distribution of |V |2= (V57)24 (V5 7)? follows a scaled non-
central chi-square with weight £, non-centrality parameter 7
and p = 1 degrees of freedom as [11],

V12~ ex3(7) (30)
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where, ¢ and 7 are given in (23) and (24), respectively.
02 = o3+ cIXasc,, 07 = $ou + c]Basci, pr =
Xo,3+clpas and p, = Xo 4 + ¢] pas. Since the square
root of non-central chi-square random variables follows a
Rician distribution, the magnitude of predicted voltage change

will follow a Rician distribution,
|VCJ;|~ Rician(v, n) 31
where, v = /7 and n = /€. O

III. SIMULATION RESULTS

This section validates the proposed VVP rule in low ob-
servable distribution systems. The method is verified on the
unbalanced 37 node test system [15]. It is assumed that the
system is unobservable with 50% as a fraction of available data
as highlighted by the dark circles in Fig. 1. It is important
to note that the proposed method is generic for any choice
of nodes with missing data since the system is considered
unobservable at 50% fraction of available data [12]. 14 actor
nodes (A = [5, ..., 18]) are randomly selected and integrated
with PV units at phase a. PV active power injection is modeled
as a random process with uncertainty component as,

APy, = S(t) + (1) (32)

where, S(t) is the mean forecast trend of PV active power
injection and r(t) ~ N(0,072,) is a zero mean Gaussian
that incorporates injection variability with variance agv. It is
important to note that PVSA approach is also applicable where
r(t) is non-Gaussian [10]. Fig. 2 shows S(t) as well as the
load pattern of one actor node. The VVP is computed based on
Theorem 1 over the entire time period and Vg for all nodes
where state measurements are unavailable is estimated using
BMC. Two scenarios are analyzed to show the effectiveness of
the proposed method. For the first scenario, it is assumed that
the state estimates ([ X0 3, X0,4]T) are perfect, i.e., no process
noise is injected in (27). The resulting violation prediction
for this scenario is plotted in Fig. 3. This figure shows VVP
using Theorem 1 compared to actual violation count computed
by classical load flow method (simulation). It can be seen
that using state estimates of the BMC, the prediction rule is
accurate in preemptively identifying nodal voltage violations.
Next, we assume that the knowledge of present voltage states
at observation nodes (V) is erroneous with covariance struc-
ture (28) based on the matrix ¥ in (21). Figures 4 and 5
show the mean and variance of real and imaginary parts of
present voltage estimates. It can be seen that the variance of
nodes where measurements are unavailable is higher than that
of nodes where measurements are available. This variance is
used together with errors in state measurements to validate
the accuracy of the proposed approach. For validation, the
simulation setup is repeated for 50 Monte Carlo simulations
over different values of measurement errors and the prediction
error is computed based on the different between the proposed
approach and classical load flow method. It can be seen from
Fig. 6 that it is possible to obtain low prediction errors as
measurement error increases. For typical real world values
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of measurement errors (e.g., at most 5-6% of actual values),
the prediction accuracy is over 90%. This demonstrates the
effectiveness of the proposed method against errors in the
knowledge of present voltage states, which makes it suitable
for proactive control applications.

IV. CONCLUSION

This paper presents an efficient VVP technique that is based
on probabilistic sensitivity of nodal voltages to dynamic PV
injections and variable load patterns. The proposed method
incorporates system unobservability where SCADA measure-
ments are limited to a subset of nodes in the system. For this
BMC provides accurate estimates of present voltage states as
well as their estimation variance. It has been shown through
simulation that the proposed technique is accurate in predicting
voltage violations when compared to actual load flow solution
with as low as 50% fraction of available state measurements.
In addition, the prediction error is found to be over 90%
for different ranges of variance in measurement errors. This
clearly shows that the proposed method is efficient and can
be used for operational monitoring applications in modern
distribution systems. Future research will focus on developing
optimal proactive voltage control strategies using dominant
influencer nodes of voltage fluctuations.
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