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Abstract

The mass-conserving convective Allen-Cahn (MCAC) equation is an important component of phase
field modeling for the multiphase fluid coupled with a flow field. It inherits the maximum bound
principle (MBP) from the classic Allen-Cahn equation, in the sense that the time-dependent solution
under appropriate initial and boundary conditions preserves a uniform point-wise bound in the
absolute value for all time. In this paper, we develop two structure-preserving numerical schemes
for the MCAC equation based on the operator splitting approach. In particular, the advancing
of the MCAC equation at each time step is split into two (first-order splitting in time) or three
(second-order splitting in time) stages, and each of the stages consists of either a mass-conserving
AC equation or a transport equation. The mass-conserving AC part is then discretized by using the
classic finite volume approximation in space and the stabilized exponential time differencings in time
and the resulting system can be efficiently solved via fast Fourier transform based algorithms. The
transport part is solved by explicit strong stability preserving Runge-Kutta substeppings combined
with a maximum-principle-satisfying finite volume method. Optimal error estimates are derived for
the proposed fully-discrete schemes, as well as preservation of the discrete MBP and conservation
of the mass. Various numerical examples are also presented to verify the theoretical results and
demonstrate the performance of the proposed schemes.

Keywords: Convective Allen–Cahn equation, mass conservation, maximum bound principle,
operator splitting method, exponential time differencing, reconstruction

1. Introduction

The flows with multiple constitutive components have occurred in many important industrial
problems, such as the drop coalescence and retraction in viscoelastic fluids [57]. The phase field
method (or the diffuse interface method) [2, 17, 56, 46] is a very popular approach for modeling the
motion of multiphase flows, for instance, the Cahn-Hilliard (CH) equation and the Allen-Cahn (AC)
equation, which have been commonly used as two classic phase field models in the past decades
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(see [4, 1, 8, 6, 40, 11] and the references cited therein). Introducing the free energy functional

E[u] =
ε2

2
(∇u,∇u) + (F (u), 1), (1)

where ∇ is the gradient operator, (·, ·) is the standard L2 inner product and F (u) gives a potential
function, the CH equation is a fourth-order (in space) equation and viewed as the H−1-gradient
flow of E[u], while the AC equation is a second-order equation and regarded as the L2-gradient
flow of E[u]. Our study in this work focuses on the AC equation. It is well-known that the CH
equation conserves the total mass but the classic AC equation does not. The mass conservation is
often an indispensable structure for many physical phenomena and so does the phase-filed model
coupled with incompressible flows.

In [56], a mass-conserving fluid-transported AC equation was derived using an energetic varia-
tional approach in the following general form:

∂u

∂t
+ v · ∇u = ε2∆u+ f(u)− λ(t), x ∈ Ω, t > 0,

d

dt

∫
Ω
u dx = 0,

(2)

where Ω ∈ Rd (d = 2, 3) is an open, bounded Lipschitz domain, ∆ = ∇2 is the Laplacian operator,
the unknown u(x, t) ∈ R is the order parameter, v(x, t) ∈ Rd is the bulk incompressible velocity
field (i.e., ∇·v = 0), f = −F ′ is a nonlinear function, and ε is a parameter related to the thickness
of the transition layers. Here, λ(t) plays a role of the Lagrangian multiplier to conserve the mass
along the time. When the velocity field v is not present, J. Rubinstein and P. Sternberg [44]
proposed to set

λ(t) =
1

|Ω|

∫
Ω
f(u(x, t)) dx (3)

(|Ω| is the Lebesgue measure of Ω) to establish the so-called mass-conserving AC (MAC) equation:

∂u

∂t
= ε2∆u+ f̄(u) (4)

with f̄(u) = f(u)− 1
|Ω|
∫

Ω f(u) dx. Therefore, we consider in this paper the following mass-conserving

convective Allen-Cahn (MCAC) equation:

∂u

∂t
+ v · ∇u = ε2∆u+ f̄(u). (5)

Under suitable boundary conditions, it is easy to verify that the classic Allen-Cahn equation [1]
satisfies the dissipation law with respect to the energy (1) in the sense that

d

dt
E[u] =

∫
Ω

δE

δu

∂u

∂t
dx = −

∫
Ω

∣∣ε2∆u+ f(u)
∣∣2 dx ≤ 0. (6)

The MAC equation (4) inherits this same energy decaying property (6) as it was derived by mini-
mizing E[u] under the mass-conservation constraint. However, such energy dissipation can not be
theoretically guaranteed anymore for the MCAC equation (5).
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The maximum bound principle (MBP) is another important structure of the AC equation [1] .
We will show that MCAC equation also shares this property in the sense that if the initial value
and/or the boundary values are point-wisely bounded by a specific constant in the absolute value,
then the solution is also bounded by the same constant everywhere for all time. MBP is an useful
mathematical tool to study physical features of the AC-type equation [15, 43], especially for the
logarithmic type potential F (·). In this case, if the numerical scheme does not satisfy the MBP,
complex values may occur in the numerical simulations due to the logarithm arithmetic, which
could further lead to unphysical solutions. For the classic AC equation, discrete MBP-preserving
numerical methods have been thoroughly studied in recent years. For its spatial discretization,
a partial list includes the works on the lumped-mass finite element method [53], finite difference
method [25], finite volume method [42] and so on. For its temporal integration, the stabilized
linear semi-implicit schemes [51, 54] were shown to preserve the MBP unconditionally for the first-
order scheme and conditionally for the second-order scheme. In [34], H. Liao et al. show the
second order BDF scheme with variable time steps is energy stable, and conditionally preserves the
MBP. Some nonlinear second-order schemes were presented in [35] which preserve the MBP for the
time-fractional AC-type equations . In addition, some cut-off postprocessing methods were studied
in [28, 55] to preserve the MBP. For the MAC equation, energy-dissipative and mass-conserving
schemes were designed in [27] by introducing two different mass correction operators. In [45], Shen
et al. investigated the stabilizing MBP-preserving schemes for the convective Allen-Cahn equation
using the finite difference discretization with the upwind scheme in space, and later Shen and Zhang
designed a MBP-preserving scheme with a higher-order accurate finite difference scheme in [47].
However, both of them only considered the first-order implicit explicit (IMEX) scheme in time.

The exponential time differencing (ETD) method [3, 10, 20] was recently applied with the
stabilizing technique to preserve the MBP for semilinear parabolic equation in [12, 13]. Based on the
Duhamel’s formula, the ETD methods integrate the temporal integrals exactly after approximating
the nonlinear terms by polynomial interpolations. The ETD method is applicable to a large class
of equations, particularly those with a stiff linear part [32, 25, 26, 7, 9]. The first- and second-
order stabilized ETD schemes were first applied to the nonlocal Allen-Cahn equation [12] with
unconditional preservation of the MBP, and then in [13] an abstract framework for MBP-preserving
ETDRK schemes was established, which was later further extended to the conservative Allen-Cahn
equations in [29, 23]. Recently, some third- and fourth-order MBP-preserving schemes for the
Allen-Cahn equation were developed in [22, 30, 24, 60] based on the integrating factor Runge-Kutta
(IFRK) method, and an arbitrarily high-order ETD multistep method was proposed by enforcing
the maximum bound with extra cut-off postprocessing in [28]. The major computational cost of the
ETD method comes from the action of the matrix exponential on a vector, and the Krylov subspace
method [41, 16] provides an effective way for its calculation. If the spatial mesh is regular, fast
Fourier transform (FFT) based algorithms could be employed to further improve the efficiency
[26]. As an important component of the model equation (5), the convective term may increase the
difficulty of constructing efficient MBP-preserving numerical schemes. There exist several works on
preserving the MBP for the convective Allen-Cahn equation by utilizing the upwind strategy for
spatial discretization. In [45], a first-order unconditionally MBP-preserving numerical scheme was
designed by using the upwind finite difference method. Later first- and second-order unconditionally
MBP-preserving upwind ETD schemes were proposed in [5]. However, the resulting linear systems
in those upwind methods involve variable-coefficients due to the convective term and consequently
causes the failure of the FFT-based fast solvers. Moreover, the upwind strategy leads to the first-
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order accuracy in space with certain strict CFL stability conditions [59], thus is hard to capture
well the dynamical interface behavior of phase evolution in practice.

To improve the spatial accuracy, we must take good care of the convective term in (5) and
design higher order spatial approximations for the flux. Essentially, we plan to treat the convective
term as a transport equation corresponding to the conservation law since there have been many
efficient high-order numerical schemes for its treatment. Among them the essentially non-oscillatory
(ENO) and weighted essentially non-oscillatory (WENO) schemes [49, 39, 48] have been widely
studied. Liu and Osher [38] designed the third-order scheme in the sense of flux approximation
which preserves the local maximum principle and the non-oscillatory property by introducing the
limiter. However, such limiter depends on the maximum value of the reconstruction polynomial
over the chosen stencils, and is difficult to implement in high dimensional spaces. Later on, Liu and
Osher’s limiter was relaxed in [61] by focusing on finding the maximum value of the reconstruction
polynomial on the quadrature points instead of the whole cell, and maximum-principle-satisfying
high-order schemes were successfully developed under the finite volume and discontinuous Galerkin
frameworks.

Our paper aims to design structure-preserving (i.e., MBP-preserving and mass-conserving) effi-
cient numerical methods for the MCAC equation (5). Motivated by [33, 58, 36, 37], we first use the
operator splitting method to decouple the MCAC equation at each time step into a split system
consisting of MAC and transport equations. The resulting MAC equations naturally satisfy the
MBP and can be efficiently solved by the stabilized ETD schemes with FFT as discussed above.
At the same time, the limiter-based maximum-principle-satisfying finite volume scheme [61] with
explicit strong stability preserving Runge-Kutta (SSPRK) stepping is adopted to solve the resulting
transport equation.

The rest of this paper is organized as follows. In Section 2 we briefly review and derive the
conditions for the MCAC equation to satisfy the MBP. In Section 3, the first- and second-order op-
erator splitting schemes are first presented which decouple the MCAC equation into some transport
and MAC equations, then the corresponding subsystem solvers are discussed in detail. In Section 4,
fully discrete schemes for the MCAC equation with MBP-preservation and mass-conservation are
proposed together with their error analysis. In Section 5, various numerical experiments are car-
ried out to verify the theoretical results and demonstrate the performance of the proposed schemes.
Finally, some concluding remarks are drawn in Section 6.

2. Maximum bound principle for the MCAC equation

Let us briefly review and derive the conditions for the MCAC equation (5) to hold the MBP
property. Assume that f : Dom(f)(⊂ R) → R is a continuously differentiable nonlinear function
and the initial condition is given by

u(x, 0) = u0(x), x ∈ Ω. (7)

For simplicity, we also assume that the periodic boundary condition is imposed for a rectangular
domain Ω =

∏d
i=1(ai, bi), and note that the results obtained below also can be easily extended to

the homogeneous Neumann boundary condition case. For some appropriate nonlinear function f
and velocity field v, the MCAC equation (5) admits a unique smooth solution by the classic theory
for the semilinear parabolic equations [52]. Following the analysis in [44], the following assumption
on f is important for establishing the MBP for (5).
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Assumption 2.1. There exists a constant β > 0 such that [−β, β] ⊂ Dom(f), f(β) < f(−β) and

f(β) ≤ f(w) ≤ f(−β), ∀w ∈ [−β, β].

Moreover, for any ε > 0 sufficiently small, it holds that

f−1(f(β)) ∩ (β − ε, β) = ∅ and f−1(f(−β)) ∩ (−β,−β + ε) = ∅.

Note that if the function f satisfies f(M) ≤ f(w) ≤ f(m) for w ∈ [m,M ], then an affine
mapping can transform f into the form in Assumption 2.1 as suggested in [29, 13]. Therefore, we
only focus on the situation stated in Assumption 2.1. Two such typical potentials are widely used
in phase field modeling: one is the double-well potential:

F (u) =
1

4

(
u2 − 1

)2
, f(u) = u− u3, (8)

where Dom(f) = R and β ∈ [2
√

3
3 ,∞), and the other is the Flory-Huggins potential:

F (u) =
θ

2
[(1 + u) ln(1 + u) + (1− u) ln(1− u)]− θc

2
u2, f(u) =

θ

2
ln

1− u
1 + u

+ θcu, (9)

where θc > θ > 0, Dom(f) = (−1, 1) and β ∈ [ρ, 1) with ρ denoting the positive root of f(ρ) =

f
(
−
√

1− θ
θc

)
.

Given a terminal time T > 0, under Assumption 2.1, we can show that the MCAC equation (5)
satisfies the MBP as stated in the following proposition.

Proposition 2.2. [MBP for the MCAC equation] Suppose that the Assumption 2.1 is satisfied,
v ∈ C([0, T ]; [C1(Ω)]d)∩C([0, T ]×Ω), and u ∈ C1((0, T );C2(Ω))∩C([0, T ];C1(Ω)) is a solution to
the problem (5) on the time interval [0, T ]. If the initial value ‖u0‖∞ ≤ β (‖ · ‖∞ is the L∞ norm),
there holds

‖u(·, t)‖∞ ≤ β, ∀ t ∈ [0, T ].

Proof. Define t∗ = max {0 ≤ t ≤ T |‖u(·, s)‖∞ ≤ β, ∀ s ∈ [0, t]} and t∗ is well-defined by the conti-
nuity assumptions on the exact solution u(x, t). Thus we need to show t∗ = T . By contraction, we
suppose that 0 ≤ t∗ < T such that ‖u(·, t∗)‖∞ = β. Then there exists a sequence {tk} such that
tk ↓ t∗ and ‖u(·, tk)‖∞ > β (k = 1, 2, · · · ). Let us choose {xk} with |u(xk, tk)| = ‖u(·, tk)‖∞ > β,
then for some convergent subsequence xk → x∗ ∈ Ω (denoted as the original sequence {xk} for
simplicity), we have u(x∗, t∗) = β and u(xk, tk) > β as tk → t∗, xk → x∗ (or u(x∗, t∗) = −β and
u(xk, tk) < −β). Without loss of generality, let us assume u(x∗, t∗) = β and u(xk, tk) > β. Due to
the periodic boundary condition, we can simply treat x∗ ∈ Ω (since the gradient ∇u(·, t∗) vanishes
at x∗ if x∗ is on the boundary), and the following estimates hold by Taylor expansion

∂u

∂t
(x∗, t∗) ≥ 0 and ε2∆u(x∗, t∗) ≤ 0. (10)

Based on (10) and the equation (5), we then obtain

f̄(u(x∗, t∗))−∇ · (vu)|(x∗,t∗) ≥ 0.
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Recalling ∇ · v = 0 and ∇u(x∗, t∗) = 0, it can be further reduced to

f̄(u(x∗, t∗)) = f(β)− 1

|Ω|

∫
Ω
f(u(x, t∗)) dx ≥ 0. (11)

On the other hand, since f(u(x, t∗)) ≥ f(β) for any x ∈ Ω, we have

f(β)− 1

|Ω|

∫
Ω
f(u(x, t∗)) dx ≤ 0

and the equality holds if and only if f(u(x, t∗)) ≡ f(β). If u(x, t∗) is not a constant function on Ω,
the continuity and the Assumption 2.1 would imply f(β)− 1

|Ω|
∫

Ω f(u(x, t∗)) dx < 0, contradicting

(11). On the other hand, if u(x, t∗) = β is a constant for all x ∈ Ω, it follows that u(x, t) = β is
the solution to the equation (5) for all t > t∗,x ∈ Ω. This contradicts the assumption t∗ < T . To
conclude, we have t∗ = T and the proof is completed.

It is worth noting that under the framework in [13, 14], the Laplacian operator ∆ generates a
contraction semigroup {S∆(t)}t≥0 with respect to the supremum norm on the subspace of C(Ω)
satisfying the periodic boundary condition. Moreover, we have the following lemma regarding the
semigroup generated by A = ∆− αI, where I is the identity operator and α ≥ 0 is a constant.

Lemma 2.3. [13] The operator A generates a contraction semigroup {SA(t)}t≥0 with respect to
the supremum norm on the subspace of C(Ω) that satisfies the periodic boundary condition. Fur-
thermore, it holds

‖SA(t)u‖∞ ≤ e−αt‖u‖∞, ∀u ∈ C(Ω), t ≥ 0.

Thanks to Lemma 2.3, we next introduce a constant parameter κ > 0 for the MCAC equation
(5) for the purpose of stabilizing its nonlinear term in the temporal discretization. Note that
∇ · (vu) = v · ∇u since ∇ · v = 0. Let us reformulate (5) in the following equivalent form:

∂u

∂t
+∇ · (vu) = Lκu+ f̄κ(u), x ∈ Ω, 0 < t ≤ T, (12)

where Lκ = ε2∆− κI, f̄κ(u) = κu+ f̄(u) and the stabilizing constant κ satisfies

κ ≥ max
|ξ|≤β

|f ′(ξ)|. (13)

Note that κ in (13) is always well-defined since f is continuously differentiable. Furthermore, the
nonlinear term f̄κ(u) bears the following properties.

Lemma 2.4. [29] Under Assumption 2.1 and the requirement (13), it holds that
(I) |f̄κ(ξ)| ≤ κβ for any ξ ∈ [−β, β];
(II) |f̄κ(ξ1)− f̄κ(ξ2)| ≤ 3κ|ξ1 − ξ2| for any ξ1, ξ2 ∈ [−β, β].

3. Operator splitting method for the MCAC equation and subsystem solvers

In this section, we will consider the operator splitting method and corresponding subsystem
solvers for solution of the stabilized equation (12) (which is equivalent to the original MCAC
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equation (5)). Choosing a uniform time step size τ = T
N with N > 0 an integer, we have the time

steps as {tn = nτ}Nn=0.

3.1. Operator splitting schemes

The operator splitting technique is adopted to decouple the convection part and the MAC part
of (12). According to [21], the first-order operator splitting (in time) of (12) containing two stages
can be expressed as: given u0(x) = u0(x), for n = 0, 1, · · · , N − 1, find un+1(x) = u∗∗(x, τ) such
that

∂u∗(x, s)

∂s
=Lκu∗(x, s) + f̄κ(u∗(x, s)), s ∈ [0, τ ] & u∗(x, 0) = un(x), (MAC)

∂u∗∗(x, s)

∂s
=−∇ · (v(x, tn + s)u∗∗(x, s)), s ∈ [0, τ ] & u∗∗(x, 0) = u∗(x, τ). (Transport)

(14)
As shown in [21, Chapter IV], the above scheme (14) bears a splitting error of O(τ) and we state
the result in Lemma 3.1.

Lemma 3.1. [21] Assume that v ∈ C1((0, T ); [C1(Ω)]d) and the exact solution to the MCAC
equation (5) u ∈ C2((0, T );C2(Ω)). Let {un}Nn=0 be the numerical solution produced by the first-
order splitting scheme (14). Then there exists a constant C > 0 independent of τ , such that

‖u(·, tn)− un‖∞ ≤ Cτ, 1 ≤ n ≤ N. (15)

Next we consider the second-order operator splitting (in time) scheme, also called “Strang
splitting”, which contains three stages. Since the convection term contains the time-dependent
velocity field, we will put the transport equation at the middle stage and the MAC equations at
the first and third stages. Then the second-order operator splitting of (12) can be expressed as:
given u0(x) = u0(x), for n = 0, 1, · · · , N − 1, find un+1(x) = u∗∗∗(x, τ/2) such that

∂u∗(x, s)

∂s
=Lκu∗(x, s) + f̄κ(u∗(x, s)), s ∈ [0, τ/2] & u∗(x, 0) = un(x), (MAC)

∂u∗∗(x, s)

∂s
=−∇ · (v(x, tn + s)u∗∗(x, s)), s ∈ [0, τ ] & u∗∗(x, 0) = u∗(x, τ/2), (Transport)

∂u∗∗∗(x, s)

∂s
=Lκu∗∗∗(x, s) + f̄κ(u∗∗∗(x, s)), s ∈ [0, τ/2] & u∗∗∗(x, 0) = u∗∗(x, τ). (MAC)

(16)
As shown in [21, Chapter IV], the above scheme (16) bears a splitting error of O(τ2) and we state
the result in Lemma 3.2.

Lemma 3.2. [21] Suppose that v(x, t) ∈ C2((0, T ); [C2(Ω)]d) and the exact solution to the MCAC
equation (5) u ∈ C3((0, T );C2(Ω)). Let {un}Nn=0 be the numerical solution produced by the second-
order splitting scheme (16). There exists a constant C > 0 independent of τ , such that

‖u(·, tn)− un‖∞ ≤ Cτ2, 1 ≤ n ≤ N. (17)

We then construct numerical methods for solving the two subsystems: the MAC equations and
the transport equations resulting from the operator splitting schemes (14) and (16). To simplify
the description, we only discuss the two-dimensional (d = 2) case and all results can be easily
extended to the three-dimensional (d = 3) case. Let us introduce the uniform mesh Ωh of domain

7



Ω as set of nodes xi,j = (xi, yj) with xi = a1 + ih, yj = a2 + jh, 0 ≤ i ≤ Nx and 0 ≤ j ≤ Ny, where
h = b1−a1

Nx
= b2−a2

Ny
. We will use the finite volume methods for spatial discretization. The control

volume Ki,j associated with the nodes (xi, yj) is defined to be (xi−1/2, xi+1/2) × (yj−1/2, yj+1/2)
and set Ωh = {Ki,j}. Denote ūi,j(t) as the cell average of u(x, t) on the control volume Ki,j ,
i.e., ūi,j(t) = 1

h2

∫
Ki,j

u(x, t) dx for any Ki,j ∈ Ωh and t ≥ 0. To deal with the period boundary

condition, we have ūNx±i,j(t) = ū±i,j(t) and ūi,Ny±j(t) = ūi,±j(t) for 0 ≤ i < Nx and 0 ≤ j < Ny.
The discrete L2 norm ‖ · ‖h, and the L∞ norm ‖ · ‖∞,h are respectively given by

‖u‖h :=

√√√√h2

Nx−1∑
i=0

Ny−1∑
j=0

u2
i,j , ‖u‖∞,h := max

0≤i≤Nx−1,0≤j≤Ny−1
|ui,j |,

and the discrete total mass M(ū) is computed by

M(ū) =
h2

4

Nx−1∑
i=0

Ny−1∑
j=0

(ūi,j + ūi+1,j + ūi,j+1 + ūi+1,j+1) = h2
Nx−1∑
i=0

Ny−1∑
j=0

ūi,j ,

where the last equality comes from the periodic boundary condition.

3.2. Exponential time differencing finite volume method for the MAC equation

Let us consider the MAC equation (4) with u(0) = u0. Integrating the equation over the control
volume Ki,j and applying the finite volume approximation, we obtain a space-discrete system as:

∂Ūi,j(t)

dt
= ε2

Ūi+1,j(t) + Ūi−1,j(t) + Ūi,j+1(t) + Ūi,j−1(t)− 4Ūi,j(t)

h2
+ f̄(Ūi,j(t)) (18)

with Ūi,j(0) = (ū0)i,j := 1
h2

∫
Ki,j

u0(x) dx and f̄(Ūi,j(t)) = f(Ūi,j(t))−M(f(Ūi,j(t))). By denoting

∆h as the discrete operator of ∆, we can express (18) as

∂Ūh(t)

dt
=ε2∆hŪh(t) + f̄(Ūh(t)),

where Ūh(t) is the discrete function defined on Ωh with Ūh(xi, yj , t) = Ūi,j(t). Consequently, we
can rewrite (18) in the stabilized form as:

∂Ūh(t)

dt
=Lκ,hŪh(t) + f̄κ(Ūh(t)), (19)

where Lκ,h = ε2∆h−κIh, and Ih is the identity operator on the discrete grid function. If we regard
Ūh(t) as a vector of length NxNy with elements arranged first in x-coordinate then in y-coordinate,
then the discrete operators Lκ,h, ∆h and Ih also can be regarded as square matrices of dimension
NxNy ×NxNy. By modifying the arguments in [50], we can prove the following result.

Lemma 3.3. Suppose that Assumption 2.1 holds, the exact solution to the MAC equation (4)
u ∈ C1((0, T );C4(Ω)), and ‖u0(·)‖∞ ≤ β. Let Ūh(t) be the numerical solution produced by the
scheme (18). There exists a constant C > 0 depending only on u, Ω, T , and ε, such that

‖u(·, t)− Ūh(·, t)‖∞,h ≤ Ch2, ∀ t ∈ [0, T ]. (20)
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Proof. By Taylor expansion, we can approximate u(x, t) on Ki,j by

u(x, t) = u(xi,j , t) +∇u(xi,j , t) · (x− xi,j) +
1

2
(x− xi,j)

2 :: (∇∇u(xi,j , t))

+
1

6
(x− xi,j)

3 ::: (∇∇∇u(xi,j , t)) +O(|x− xi,j |4).

Integrating over any Ki,j ∈ Ωh and dividing h2 on both sides, we have

ūi,j = u(xi,j , t) +

∫
Ki,j

(x− xi,j)

h2
· ∇u(xi,j , t) +

∫
Ki,j

(x− xi,j)
2

2h2
:: (∇∇u(xi,j , t)) dx

+

∫
Ki,j

(x− xi,j)
3

6h2
::: (∇∇∇u(xi,j , t)) dx +O(h4)

= u(xi,j , t) +
h2

24
∆u(xi,j , t) +O(h4),

(21)

where the second equality comes from the fact that xi,j is the center of Ki,j thus
∫
Ki,j
∇u(xi,j , t) ·

(x− xi,j) dx = 0 and
∫
Ki,j

(x− xi,j)
3 ::: (∇∇∇u(xi,j , t)) dx = 0. The five-point central difference

scheme for the Laplacian has second-order accuracy in space, i.e.,

∆u(xi,j , t) =
u(xi+1,j , t) + u(xi−1,j , t) + u(xi,j+1, t) + u(xi,j−1, t)− 4u(xi,j , t)

h2
+O(h2).

Plugging (21) into the above equation, it yields

∆u(xi,j , t) =
ūi+1,j(t) + ūi−1,j(t) + ūi,j+1(t) + ūi,j−1(t)− 4ūi,j(t)

h2

− h2

24
∆
u(xi+1,j , t) + u(xi−1,j , t) + u(xi,j+1, t) + u(xi,j−1, t)− 4u(xi,j , t)

h2
+O(h2)

=
ūi+1,j(t) + ūi−1,j(t) + ūi,j+1(t) + ūi,j−1(t)− 4ūi,j(t)

h2
− h2

24
∆2u(xi,j , t) +O(h2).

Hence,

ε2∆u(xi,j , t) = ε2
ūi+1,j(t) + ūi−1,j(t) + ūi,j+1(t) + ūi,j−1(t)− 4ūi,j(t)

h2
+O(h2). (22)

Next, we turn to the nonlinear term. Since f is continuously differentiable, we obtain

1

|Ω|

∫
Ω
f(u(x, t)) dx =

1

|Ω|

Nx−1∑
i=0

Ny−1∑
j=0

∫
Ki,j

f(u(x, t)) dx

=
1

|Ω|

Nx−1∑
i=0

Ny−1∑
j=0

∫
Ki,j

f(ūi,j(t)) dx +
1

|Ω|

Nx−1∑
i=0

Ny−1∑
j=0

∫
Ki,j

(f(u(x, t))− f(ui,j(t))) dx

+
1

|Ω|

Nx−1∑
i=0

Ny−1∑
j=0

∫
Ki,j

(f(u(xi,j , t))− f(ūi,j(t))) dx =M(f(ūi,j(t))) +O(h2),

9



where the fact that xi,j is the center of the cell Ki,j and (21) are used. Therefore,

f̄(ui,j(t)) = f̄(ū(xi,j , t)) +O(h2). (23)

Following Proposition 2.2 and [29], both the numerical solution Ūh(t) and the exact solution u(x, t)
are bounded in the maximum norm by β. Therefore, the nonlinearity can be controlled easily [29],
and by Duhamel’s Principle, we can obtain the estimate (20) in view of (21), (22) and (23). The
details are omitted here for brevity.

We then apply the ETD schemes for temporal integration of the stabilized space-discrete system
(19). For this space-discrete case, we have the semigroup SLκ,h(t) = eLκ,ht, which is a matrix

exponential. Denoting Ūnh as the numerical approximation of Ūh(tn), we compute Ūn+1
h as follows:

• First-order ETD scheme (denoted as Ūn+1
h = sETD1-MAC (Ūnh , τ))

Ūn+1
h = eLκ,hτ Ūnh +

∫ τ

0
eLκ,h(τ−s)f̄κ(Ūnh )ds.

• Second-order ETDRK scheme (denoted as Ūn+1
h = sETDRK2-MAC (Ūnh , τ))

˜̄Un+1
h = sETD1-MAC (Ūnh , τ)

Ūn+1
h = eLκ,hτ Ūnh +

∫ τ

0
eLκ,h(τ−s)

(
τ − s
τ

f̄κ(Ūnh ) +
s

τ
f̄κ( ˜̄Un+1

h )

)
ds.

Note that FFT-based fast algorithms can be easily used for the implementation of the above
sETD1-MAC and sETDRK2-MAC stepping schemes, see [13, 29] for details.

3.3. High-dimension reconstruction

Reconstruction process is well-studied in ENO and WENO schemes [48] to obtain high-order
fluxes. We will employ the 2D reconstruction based on the cell averages. Given the cell averages
{ūi−2+m,j−2+n}3m,n=0 on the cells {Ki−2+m,j−2+n}3m,n=0, our reconstruction process is to find the
bi-quadratic polynomial Ri,j(x, y), such that

1

h2

∫ x
i−2+m+1

2

x
i−2+m− 1

2

∫ y
j−2+n+1

2

y
j−2+n− 1

2

Ri,j(x, y)dxdy = ūi−2+m,j−2+n, 0 ≤ m, n ≤ 3.

In [48], the WENO interpolation and the WENO reconstruction were bridged by using the primitive
function for the reconstruction polynomial. Following this way, we introduce the primitive function

ri,j(x, y) =

∫ x

x
i− 5

2

∫ y

y
j− 5

2

Ri,j(η, ξ)dη dξ, (24)

and it is clear that

ri,j(xi− 3
2

+m, yj− 3
2

+n) = h2
m∑
p=0

n∑
q=0

ūi−2+p,j−2+q, 0 ≤ m,n ≤ 3. (25)

10



We then consider the tensor-product Lagrangian interpolation (where the degree of each variable
is at most 3) based on the values at the half-grid points from (25). The one-dimensional Lagrange
interpolation functions on {xi− 3

2
+m, 0 ≤ m ≤ 3} and {yj− 3

2
+n, 0 ≤ n ≤ 3} are respectively given by

Imx (x) =

∏
l 6=m(x− xi− 3

2
+l)∏

l 6=m(xi− 3
2

+m − xi− 3
2

+l)
, Iny (y) =

∏
l 6=n(y − yj− 3

2
+l)∏

l 6=n(yj− 3
2

+n − yj− 3
2

+l)

for 0 ≤ m,n ≤ 3. Therefore,

ri,j(x, y) = h2
∑

0≤m,n≤3

m∑
p=0

n∑
q=0

ūi−2+p,j−2+qI
m
x (x)Iny (y). (26)

Since Ri,j(x, y) =
∂2ri,j(x,y)
∂x∂y , we have

Ri,j(x, y) = h2
3∑
p=1

3∑
q=1

ūi−2+p,j−2+q

3∑
m=p

3∑
n=q

dImx (x)

dx

dIny (y)

dy

= h2
3∑

m=1

3∑
n=1

dImx (x)

dx

dIny (y)

dy

m∑
p=1

n∑
q=1

ūi−2+p,j−2+q.

(27)

For convenience, we list the derivatives dImx (x)
dx on the stencils associated with the center K0,0 and

h = 1, while other cases can be treated via translation and scaling:

dI1
x(x)

dx
=

1

2

(
3x2 − x− 9

4

)
,

dI2
x(x)

dx
= −1

2

(
3x2 + x− 9

4

)
,

dI3
x(x)

dx
=

1

6

(
3x2 + 3x− 1

4

)
.

By the interpolation properties, it is easy to prove the following result.

Lemma 3.4. Assume u(x, y) ∈ C3(Ω) and let Ri,j(x, y) be given in (27) on the cell Ki,j. For any
(x, y) ∈ Ki,j, it holds Ri,j(x, y)− u(x, y) = O(h3).

3.4. Maximum-principle-satisfying finite volume method for the transport equation

Let us consider the transport equation:

∂u

∂t
+∇ · (vu) = 0, (28)

with u(0) = u0, where the impressible velocity field v = (v1, v2) and thus

∇ · (vu) = (v1u)x + (v2u)y.

Note the above transport equation is to carry the order parameter u moving with the velocity v,
and thus under the periodic boundary condition it will not change the maximum and minimum
values of u along the time, which is also called the maximum principle of the equation (28).

Introducing α1 = max |v1(x, t)| and α2 = max |v2(x, t)|, where the maximums are taken over

11



(x, t) ∈ Ω× [0, T ], the finite volume approximation of (28) in space is given by

∂Ūi,j
∂t

=− 1

h2

∫ y
j+1

2

y
j− 1

2

h1[U−
i+ 1

2
,y
, U+

i+ 1
2
,y

]− h1[U−
i− 1

2
,y
, U+

i− 1
2
,y

]dy

− 1

h2

∫ x
i+1

2

x
i− 1

2

h2[U−
x,j+ 1

2

, U+
x,j+ 1

2

]− h2[U−
x,j− 1

2

, U+
x,j− 1

2

]dx,

(29)

with Ūi,j(0) = (ū0)i,j := 1
h2

∫
Ki,j

u0(x) dx, where U− and U+ represent the left and right limits,

respectively, and h1[·, ·] and h2[·, ·] are certain monotone fluxes. The Lax-Friedrichs fluxes are
adopted in our work, i.e.,

h1[u,w] =
1

2
(v1u+ v1w − α1(w − u)) , h2(u,w) =

1

2
(v2u+ v2w − α2(w − u)) .

To obtain the values at the half-grids, the reconstruction is needed based on the cell-averaged value
Ū . Assuming the reconstruction polynomial Ri,j(x, y) is found through (27), the two integrals in
(29) can be approximated by quadratures with sufficient accuracy due to Lemma 3.4. Here, we
shall employ the Gaussian quadrature with 2 points, which is exact for single variable polynomials
of degree 3. Denote Sxi = {xζi : ζ = 1, 2} as the Gaussian quadrature points on [xi− 1

2
, xi+ 1

2
], and

Syj = {yζj : ζ = 1, 2} the Gaussian quadrature points on [yj− 1
2
, yj+ 1

2
]. For example, the Gaussian

quadrature points on [−1
2 ,

1
2 ] are {−

√
3

6 ,
√

3
6 } with the corresponding weights w1 = 1

2 , and w2 = 1
2 .

Meanwhile we also introduce the quadrature points Ŝxi = {xµi : µ = 1, 2, 3} as the Gauss-Lobatto

quadrature points on [xi− 1
2
, xi+ 1

2
], and Ŝyj = {yµj : µ = 1, 2, 3} the Gauss-Lobatto quadrature points

on [yj− 1
2
, yj+ 1

2
]. For instance, the Gauss-Lobatto quadrature points on [−1

2 ,
1
2 ] are {−1

2 , 0,
1
2} with

the corresponding weights wµ = {1
6 ,

2
3 ,

1
6}. On the generic cell Ki,j , we denote xi+ 1

2
,ζ as the point

(xi+ 1
2
, yζj ) and xζ,j+ 1

2
as the point (xζi , yj+ 1

2
). The same rule applies for other grid points with the

subscripts ζ and µ. The forward Euler scheme for time integration of (29) for (28) then reads:
given Ūn, compute

Ūn+1
i,j =Ūni,j − τFi,j(Ūn), (30)

where

Fi,j(Ūn) =
2∑
ζ=1

(
h1[Un−

i+ 1
2
,ζ
, Un+

i+ 1
2
,ζ

]− h1[Un−
i− 1

2
,ζ
, Un+

i− 1
2
,ζ

]

+ h2[Un−
ζ,j+ 1

2

, Un+
ζ,j+ 1

2

]− h2[Un−
ζ,j− 1

2

, Un+
ζ,j− 1

2

]
)wζ
h
.

The CFL condition of the above forward Euler scheme is that

(α1 + α2)
τ

h
≤ 1

6
, (31)

However, Ūn+1
i,j obtained from (30) with the values on the half-grid quadrature points evaluated

by Rni,j(x, y) generally does not satisfy the maximum principle possessed by the transport equation
(28), where the superscript n indicates the dependency on the values at t = tn. X. Zhang and
C.-W. Shu [61] designed an efficient limiter approach to bound the maximum and minimum values
on the quadrature points, and we will adopt their strategy in this work.
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Define the special quadrature point set Si,j =
(
Sxi ⊗ S

y
j

)
∪
(
Sxi ⊗ Ŝ

y
j

)
∪
(
Ŝxi ⊗ S

y
j

)
∪ (xi, yj),

where ⊗ denote the tensor product. Note that we add the grid point (xi, yj) into Si,j since we want
to bound its value too. Then, the modified forward Euler scheme can be stated as follow:

S1. Use the two-dimensional cell averages to obtain the reconstruction polynomial Rni,j(x, y):

{Ūni,j}
reconstruction−−−−−−−−→ Rni,j(x, y).

S2. Calculate the values of Rni,j(x, y) on the quadrature point set Si,j , and find the limiter θ on
each cell such that

θ = min

{∣∣∣∣ Mβ − Uni,ζ
Mn
i,j − Uni,ζ

∣∣∣∣, ∣∣∣∣ mβ − Uni,ζ
mn
i,j − Uni,ζ

∣∣∣∣, 1
}
, (32)

where Mn
i,j = max(x,y)∈Si,j R

n
i,j(x, y) and mn

i,j = min(x,y)∈Si,j R
n
i,j(x, y). Here Mβ and mβ are

the maximum and minimum values of the exact solution u (which will be specified later in
our complete numerical schemes for the MACAC equation).

S3. Evaluate the half-grid point values via the following polynomial

R̃ni,j(x, y) = θ(Rni,j(x, y)− Ūni,j) + Ūni,j . (33)

which is then plugged into (30) to update Ūn+1
i,j .

Remark 3.5. As shown in [61, 62, 31], the transport velocity field v plays an important role on
preserving the maximum bound, and the divergence-free property should be maintained locally on
each cell. The required CFL condition (31) is usually more strict than that allowed by the ETD
schemes used for the MCAC equation in Section 3.2. As a consequence, we better conduct the
substepping to evolve the transport equation from tn to tn+1 as needed.

The above 3 steps (S1,S2,S3) perform one step of the forward Euler scheme, and we shall refer
such one Euler step as

Ūn+1
h = MP-FEuler-Transport (Ūnh , tn, τ,Mβ ,mβ).

As shown in [61],“MP-FEuler-Transport” can maintain the accuracy of the scheme for smooth
solutions. More generally, if the substepping is used from tn to tn+1, we denote such process as

Ūn+1
h = MP-FEuler-Transport-Substep (Ūnh , tn, τ,M,Mβ ,mβ)

where M denotes the number of substeps and each substep is a one forward Euler stepping with
the small time step size τ

M . To achieve second-order temporal accuracy, we use the second-order
explicit strong stability preserving Runge-Kutta (SSPRK2) scheme which consists of two forward
Euler steps at each time step:

ˆ̄Un+1
i,j = Ūni,j − τFi,j(Ūn),

ˆ̄Un+1
i,j =

1

2
Ūni,j +

1

2
( ˆ̄Un+1

i,j − τFi,j(
ˆ̄Un+1)).

(34)
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We refer the corresponding SSPRK2 substepping from tn to tn+1 for (28) as

Ūn+1
h = MP-SSPRK2-Transport-Substep (Ūnh , tn, τ,M,Mβ ,mβ),

which contains M substeps of the SSPRK2 stepping with the small time step size τ
M .

Lemma 3.6. Suppose that v ∈ C1((0, T ); [C3(Ω)]2) and u ∈ C2((0, T );C4(Ω)) is the exact solution
to the transport equation (28). Under the CFL condition (31), there exists a constant C > 0
independent of τ and h, such that

‖u(·, tn+1)− Ū∗h‖∞,h ≤ ‖u(·, tn)− Ūnh ‖∞,h + C(τ2 + τh2), 0 ≤ n ≤ N − 1. (35)

where Ūnh is any approximation of u(·, tn) with ‖u(·, tn)− Ūnh ‖∞,h = O(h2) and

Ū∗h = MP-FEuler-Transport-Substep (Ūnh , tn, τ,M,Mβ ,mβ).

Proof. Let ūi,j(t) be the cell average of u(t) over the cell Ki,j ∈ Ωh. Since Ri,j(x, y) is the recon-
struction polynomial defined by (27), for any (x, y) ∈ Ki,j , Taylor expansion gives

u(x, t) = u(xi,j , t) +∇u(xi,j) · (x− xi,j) +
1

2
(x− xi,j)

2 :: (∇∇u(xi,j , t)) +O(h3), (36)

and ūi,j(t)− u(xi,j , t) = O(h2). Taking the integral of (28) over Ki,j , we have

dū(xi,j , t)

dt
=− 1

h2

∫ y
j+1

2

y
j− 1

2

h1[u(xi+ 1
2
, y), u(xi+ 1

2
, y)]− h1[u(xi− 1

2
, y), u(xi− 1

2
, y)]dy

− 1

h2

∫ x
i+1

2

x
i− 1

2

h2[u(x, yj+ 1
2
), u(x, yj+ 1

2
)]− h2[u(x, yj− 1

2
), u(x, yj− 1

2
)]dx.

(37)

It is also easy to see that

dū(xi,j , t)

dt

∣∣∣
t=tn

=
du(xi,j , t)

dt

∣∣
t=tn

+O(h2)

=
u(xi,j , tn+ 1

M
)− u(xi,j , tn)

τ/M
− τ

2M

d2u(xi,j , tn)

dt2
+O

( τ2

M2
+ h2

)
.

(38)

By the interpolation properties, u(x) = R̃i,j(x, y) + O(h3) for any x ∈ Ki,j (R̃i,j is the modified
reconstruction polynomial according to the numerical limiter on Ki,j in (33)), (37) and (38) then
lead to

u(xi,j , tn+ 1
M

) = u(xi,j , tn)− τ

Mh

2∑
ζ=1

(
h1[R̃u,n

i+ 1
2
,ζ
, R̃u,n

i+ 1
2
,ζ

]− h1[R̃u,n
i− 1

2
,ζ
, R̃u,n

i− 1
2
,ζ

]

)
wζ

− τ

Mh

2∑
ζ=1

(
h2[R̃u,n

ζ,j+ 1
2

, R̃u,n
ζ,j+ 1

2

]− h2[R̃u,n
ζ,j− 1

2

, R̃u,n
ζ,j− 1

2

]

)
wζ +

τ2

2M2

d2u(xi,j , tn)

dt2

+ C

(
τh2

M
+

τ3

M3

)
,

where C is a generic positive constant independent of h and τ , and R̃u,n
i+ 1

2
,ζ

= R̃u,ni,j (xi+ 1
2
, yζ) with

14



the superscript u indicates that the reconstruction is decided from the values of u.

Let en =
(
eni,j

)
Nx×Ny

with eni,j = un(xi,j) − Ūni,j . For the transport equation (28), h1 and h2

are linear in both u(xi,j , tn) and Ūni,j once the coordinates are specified and the parameter θ in the

modified reconstruction on cell Ki,j is fixed (the one used in the reconstruction for updating Ūn+1
i,j ).

Subtracting (30) from the above equation, we can obtain the error equation as follows:

e
n+1/M
i,j = eni,j −

τ

Mh

2∑
ζ=1

(
h1[R̃e,n

i+ 1
2
,ζ
, R̃e,n

i+ 1
2
,ζ

]− h1[R̃e,n
i− 1

2
,ζ
, R̃e,n

i− 1
2
,ζ

]

)
wζ

− τ

Mh

2∑
ζ=1

(
h2[R̃e,n

ζ,j+ 1
2

, R̃e,n
ζ,j+ 1

2

]− h2[R̃e,n
ζ,j− 1

2

, R̃e,n
ζ,j− 1

2

]

)
wζ + C

(
τh2

M
+

τ2

M2

)
.

Next we replace the polynomial R̃e,n(x, y) by the modified reconstruction polynomial ˜̃Re,n(x, y) with
the limiter (32) determined by eni,j with max{eni,j} and min{eni,j} replacing Mβ and mβ , respectively.

By Lemma 3.4, extra errors of O(h3) would be introduced and we have

e
n+1/M
i,j = eni,j −

τ

Mh

2∑
ζ=1

(
h1[ ˜̃Re,n

i+ 1
2
,ζ
, ˜̃Re,n

i+ 1
2
,ζ

]− h1[ ˜̃Re,n
i− 1

2
,ζ
, ˜̃Re,n

i− 1
2
,ζ

]

)
wζ

− τ

Mh

2∑
ζ=1

(
h2[ ˜̃Re,n

ζ,j+ 1
2

, ˜̃Re,n
ζ,j+ 1

2

]− h2[ ˜̃Re,n
ζ,j− 1

2

, ˜̃Re,n
ζ,j− 1

2

]

)
wζ + C

(
τh2

M
+

τ2

M2

)
.

By the CFL condition, the above reconstruction using ˜̃Re,n(x, y) is maximum bound preserving,
which immediately implies

‖en+1/M‖∞,h ≤ ‖en‖∞,h + C

(
τh2

M
+

τ2

M2

)
. (39)

Applying the telescoping on (39) from tn to tn+1, we can obtain (35) which completes the proof.

Lemma 3.7. Suppose that v ∈ C2((0, T ); [C3(Ω)]2) and u ∈ C3((0, T );C4(Ω)) is the exact solution
to the transport equation (28). Under the CFL condition (31), there exists a constant C > 0
independent of τ and h, such that

‖u(·, tn+1)− Ū∗∗h ‖∞,h ≤ ‖u(·, tn)− Ūnh ‖∞,h + C(τ3 + τh2), 0 ≤ n ≤ N − 1. (40)

where Ūnh is any approximation of u(·, tn) with ‖u(·, tn)− Ūnh ‖∞,h = O(h2) and

Ū∗∗h = MP-SSPRK2-Transport-Substep (Ūnh , tn, τ,M,Mβ ,mβ).

Proof. The SSPRK2 stepping with the step size τ
M can be expressed as

˜̄U
n+1/M
i,j = Ūni,j −

τ

M
F(Ūni,j),

Ū
n+1/M
i,j =

1

2
Ūni,j +

1

2

(
˜̄U
n+1/M
i,j − τ

M
F( ˜̄U

n+1/M
i,j )

)
.
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Correspondingly, the exact solution u(xi,j , tn + τ/M) satisfies
ũ
n+1/M
i,j = u(xi,j , tn)− τ

M
F(u(xi,j , tn)) = u(xi,j , tn+1/M ) +O

( τ
M
h2
)
,

u(xi,j , tn+1/M ) =
1

2
u(xi,j , tn) +

1

2
ũ
n+1/M
i,j − τ

2M

(
F(ũ

n+1/M
i,j ) +O(h2)

)
+O

(
τ3

M3

)
.

Under the CFL condition, the above equation gives

‖u(xi,j , tn+1/M )− Ūn+1/M
i,j ‖∞,h

≤ 1

2
‖u(xi,j , tn)− Ūni,j‖∞,h +

1

2
‖ũn+1/M

i,j − ˜̄U
n+1/M
i,j ‖∞,h +O

( τ3

M3
+
τh2

M

)
≤ ‖u(xi,j , tn)− Ūni,j‖∞,h +O

( τ3

M3
+
τh2

M

)
.

Let en =
(
eni,j

)
Nx×Ny

with eni,j = u(xi,j , tn)− Ūni,j be the error function. The error growth can

be controlled as

‖en+1/M‖∞,h ≤ ‖en‖∞,h +O

(
τ3

M3
+
τh2

M

)
. (41)

Applying the telescoping on (41) from tn to tn+1, we can obtain (40) which completes the proof.

Remark 3.8. For the phase-field equation coupling with the incompressible Navier-Stokes or other
equations, the velocities at the fractional steps are not available. As a remedy, one could borrow
the idea from local time-stepping methods [19, 18] and interpolate the velocities for those values.

4. Fully-discrete structure-preserving schemes and error analysis

Now, we are ready to present the operator splitting based fully-discrete structure-preserving
schemes for the MCAC equation (12) (or (5)) and corresponding error analysis.

Given Ū0
h = Ūh(0) with {Ūi,j(0) = (ū0)i,j}, for n = 0, 1, · · · , N − 1, compute Ūn+1

h by:

• First-order (in time) scheme (MBP-FEuler-sETD1):
Ū∗,n+1
h = sETD1-MAC (Ūnh , τ),

Ūn+1
h = MP-FEuler-Transport-Substep (Ū∗,n+1

h , tn, τ,M,Mβ ,mβ)

with Mβ = max{Ū∗,n+1
h }, mβ = min{Ū∗,n+1

h }.

(42)

• Second-order (in time) scheme (MBP-SSPRK2-sETDRK2):

Ū
∗,n+1/2
h = sETDRK2-MAC (Ūnh ,

τ

2
),

Ū∗∗,n+1
h = MP-SSPRK2-Transport-Substep (Ū

∗,n+1/2
h , tn, τ,M,Mβ ,mβ)

with Mβ = max{Ū∗,n+1/2
h }, mβ = min{Ū∗,n+1/2

h },

Ūn+1
h = sETDRK2-MAC (Ū∗∗,n+1

h ,
τ

2
).

(43)
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Remark 4.1. In the above MBP-FEuler-sETD1 and MBP-SSPRK2-sETDRK2 schemes, at the
second stage of each time step, we set Mβ and mβ as the maximum and minimum values of the
ETD solution of the MAC equation from the first stage, instead of β and −β, due to the important
fact that the transport equation does not change the maximum and minimum values of the solution
imposed by its initial values under the periodic boundary condition.

4.1. Structure preservation

Now we show the proposed MBP-FEuler-sETD1 and MBP-SSPRK2-sETDRK2 schemes pre-
serve the discrete maximum bound principle and conserve the total mass.

Lemma 4.2. (Discrete MBP) Suppose that Assumption 2.1 and the requirement (13) are satis-
fied. The schemes (42) (MBP-FEuler-sETD1) and (43) (MBP-SSPRK2-sETDRK2) preserve the
discrete MBP under the CFL condition (31), i.e., if (α1 + α2) τ

Mh ≤
1
6 and ‖Ū0

h‖∞,h ≤ β, then
‖Ūnh ‖∞,h ≤ β for any n ≥ 0.

Proof. It suffices to prove that each component of the schemes (42) and (43) preserves the maximum
bound. First of all, it is shown in [29] that the stabilized ETD method preserves the discrete MBP
unconditionally for the MAC equation. Secondly, the discrete MBP of the MP-FEuler-Transport
scheme is proved under the CFL condition (31) in [61]. Moreover, the SSPRK2 stepping is just
a convex combination of two forward Euler steps (indeed it is a TVD scheme). Therefore, the
MBP-preservation of the MP-SSPRK2-Transport-Substep follows.

Lemma 4.3. (Mass conservation) Suppose that Assumption 2.1 and the requirement (13) are
satisfied. The schemes (42) (MBP-FEuler-sETD1) and (43) (MBP-SSPRK2-sETDRK2) conserve
the mass under the CFL condition, i.e., if (α1 + α2) τh ≤

1
6 , then

M(ŪNh ) =M(ŪN−1
h ) = · · · =M(Ū0

h). (44)

Proof. We only need to show that the mass is conserved by each component of the schemes (42)
and (43). First, according to [29, Lemma 4.1 and 4.2], we have for MBP-FEuler-sETD1,

h2
Nx−1∑
i=0

Ny−1∑
j=0

Ū∗,n+1
h = h2

Nx−1∑
i=0

Ny−1∑
j=0

Ūnh ,

and for MBP-SSPRK2-sETDRK2,
h2

Nx−1∑
i=0

Ny−1∑
j=0

Ū
∗,n+ 1

2
h = h2

Nx−1∑
i=0

Ny−1∑
j=0

Ūnh ,

h2
Nx−1∑
i=0

Ny−1∑
j=0

Ūn+1
h = h2

Nx−1∑
i=0

Ny−1∑
j=0

Ū∗∗,n+1
h .

Now we are only left with proving the mass-conservation of the MP-FEuler-Transport with M = 1.
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Summing (30) over i = 0, . . . , Nx − 1 and j = 0, . . . , Ny − 1 yields

Nx−1∑
i=0

Ny−1∑
j=0

Ūn+1
i,j =

Nx−1∑
i=0

Ny−1∑
j=0

Ūni,j − τ
2∑
ζ=1

Ny−1∑
j=0

Nx−1∑
i=0

(
h1[Un−

i+ 1
2
,ζ
, Un+

i+ 1
2
,ζ

]− h1[Un−
i− 1

2
,ζ
, Un+

i− 1
2
,ζ

]

)
wζ

− τ
2∑
ζ=1

Nx−1∑
i=0

Ny−1∑
j=0

(
h2[Un−

ζ,j+ 1
2

, Un+
ζ,j+ 1

2

]− h2[Un−
ζ,j− 1

2

, Un+
ζ,j− 1

2

]

)
wζ ,

where the periodic boundary condition implies

Nx−1∑
i=0

(
h1[Un−

i+ 1
2
,ζ
, Un+

i+ 1
2
,ζ

]− h1[Un−
i− 1

2
,ζ
, Un+

i− 1
2
,ζ

]

)
= h1[Un−

Nx− 1
2
,ζ
, Un+

Nx− 1
2
,ζ

]− h1[Un−− 1
2
,ζ
, Un+
− 1

2
,ζ

] = 0.

The other terms vanish similarly, thus MP-FEuler-Transport conserves the mass, i.e.,

Nx−1∑
i=0

Ny−1∑
j=0

Ūn+1
i,j =

Nx−1∑
i=0

Ny−1∑
j=0

Ūni,j ,

which completes the proof.

4.2. Error estimates

Now we present the error estimates for the schemes (42) (MBP-FEuler-sETD1) and (43) (MBP-
SSPRK2-sETDRK2).

Theorem 4.4. (Error estimate of MBP-FEuler-sETD1) Suppose that Assumption 2.1 and the
requirement (13) are satisfied, the velocity field v ∈ C1((0, T ); [C3(Ω)]2), the exact solution u to
the MCAC equation (5) belongs to C2((0, T );C4(Ω)), and the initial data ‖u0(·)‖∞ ≤ β. Let
{Ūnh }n≥0 be the numerical solution generated by the MBP-FEuler-sETD1 scheme (42). Then for
any sufficiently small τ and h satisfying the CFL condition (31), it holds

‖u(·, tn)− Ūnh ‖∞,h ≤ C
(
τ + h2

)
, 0 ≤ n ≤ N, (45)

where the constant C > 0 is independent of τ and h.

Proof. Let un(x) (x ∈ Ω) be the numerical solution obtained by the first-order operator splitting
scheme (14). Lemma 3.1 indicates that, in order to obtain (45) it suffices to show that there exists
a constant C > 0 independent of h and τ , such that

‖un − Ūnh ‖∞,h ≤ C
(
τ + h2

)
, 0 ≤ n ≤ N. (46)

When n = 0, it is is trivial by the choice of the initialization Ū0
h . For the simplicity, we denote unI

as the restrictions of un on the grid points Ωh (the same notations will apply to other functions
defined on Ω). We note that the MBP property ensures un(x) and Ūnh are point-wisely bounded by
β in absolute value, and the nonlinear function f (and f̄κ) can be treated as a Lipschitz function.

From tn to tn+1 for n ≥ 0, based on the assumptions of the theorem and the properties of the
semilinear parabolic equations and transport equations, u∗(x, s) and u∗∗(x, s) (x ∈ Ω, s ∈ [0, τ ])
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in (14) are sufficiently smooth. On the domain Ωh, u∗I(0) = unI , and by the finite difference
discretization, we have for s ∈ [0, τ ],

∂u∗I(x, s)

∂s
= Lκ,hu∗I(x, s) + f̄κ(unI (x)) +O(τ + h2), x ∈ Ωh. (47)

The Duhamel’s principle implies,

u∗I(τ) = eLκ,hτ unI +

∫ τ

0
eLκ,h(τ−s)f̄κ(unI ) ds+O(τh2 + τ2).

Define the error function En(x) = unI (x) − Ūnh (x) for x ∈ Ωh and n ≥ 0. Subtracting the first
equation in the scheme (42) from the above equation, we obtain

u∗I(τ)− Ū∗,n+1 = eLκ,hτEn +

∫ τ

0
eLκ,h(τ−s)(f̄κ(unI )− f̄κ(Ūnh ))ds+O(τh2 + τ2).

Recalling the MBP property, by the discrete version of Lemma 2.3 [29, 13], Lemmas 2.4 and 3.3,
we can get

‖u∗(τ)− Ū∗,n+1‖∞,h ≤ e−κτ‖En‖∞,h + 3κ‖En‖∞,h
∫ τ

0
e−κ(τ−s)ds+O(τ2 + τh2). (48)

Next, thanks to Lemma 3.6, the estimate on the second part of of the scheme (42) can be given as

‖En+1‖∞,h = ‖u∗∗(τ)− Ūn+1
h ‖∞,h ≤ ‖u∗(τ)− Ū∗,n+1‖∞,h + C(τ2 + τh2). (49)

Combining (48) with (49), noticing 1 − s ≤ e−s ≤ 1 + s (s > 0), we get

‖En+1‖∞,h ≤e−κτ‖En‖∞,h + 3κ‖En‖∞,h
1− e−κτ

κ
+ C(τ2 + τh2)

≤(1 + 2κτ)‖En‖∞,h + C(τ2 + τh2), 0 ≤ n ≤ N − 1.

(50)

Thus, the discrete Gronwall inequality with (50) and ‖E0‖∞,h = O(h2) gives (46), which completes
the proof.

Theorem 4.5. (Error estimate of MBP-SSPRK2-sETDRK2) Suppose that Assumption 2.1 and the
requirement (13) are satsified, the velocity field v ∈ C2((0, T ); [C3(Ω)]2) and u ∈ C3((0, T );C4(Ω))
is the exact solution to the MCAC equation (5), and the initial data ‖u0(·)‖∞ ≤ β. Let {Ūnh }n≥0

be the numerical solution generated by the MBP-SSPRK2-sETDRK2 scheme (43).Then for any
sufficiently small τ and h satisfying the CFL condition (31), it holds

‖u(·, tn)− Ūnh ‖∞,h ≤ C
(
τ2 + h2

)
, 0 ≤ n ≤ N, (51)

where the constant C > 0 is independent of τ and h.

Proof. Let un(x) (x ∈ Ω) be the numerical solution obtained by the second-order Strang operator
splitting scheme (16). Lemma 3.2 ensures that, in order to obtain (51) it suffices to show that there
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exists a constant C > 0 independent of h and τ , such that

‖un(·)− Ūnh ‖h ≤ C
(
τ2 + h2

)
, 0 ≤ n ≤ N. (52)

Following the notations and arguments in the proof of Theorem 4.4, from tn to tn + 1 for n ≥ 0,
based on the the first step of the scheme (16), we can get

u∗I

(τ
2

)
= eLκ,h

τ
2 unI +

∫ τ
2

0
eLκ,h( τ

2
−s)
(
τ − 2s

τ
f̄κ(unI ) +

2s

τ
f̄κ

(
u∗I

(τ
2

)))
ds+O(τ3 + τh2),

Recalling the error function En(x) = unI (x)−Ūnh (x) and subtracting the first equation in the scheme
(43) from the above equation, we have

u∗I

(τ
2

)
− Ū∗,n+ 1

2
h = eLκ,h

τ
2 En +

∫ τ
2

0
eLκ,h( τ

2
−s)
(
τ − 2s

τ

(
f̄κ(unI )− f̄κ(Ūnh )

))
ds

+

∫ τ
2

0
eLκ,h( τ

2
−s)
(

2s

τ

(
f̄κ

(
u∗I

(τ
2

))
− f̄κ( ˜̄U

∗,n+ 1
2

h )

))
ds+O(τ3 + τh2),

where ˜̄U
∗,n+ 1

2
h = sETD1-MAC (Ūnh ,

τ
2 ). From (48), we have

‖u∗I
(τ

2

)
− ˜̄U

∗,n+ 1
2

h ‖∞,h ≤ (3− 2e−κ
τ
2 )‖En‖∞,h + C(τ2 + τh2).

Using the MBP property, we can proceed to get

‖u∗I
(τ

2

)
− Ū∗,n+ 1

2
h ‖∞,h ≤ e−κ

τ
2 ‖En‖∞,h + 3κ‖U∗

(
·, τ

2

)
− ˜̄U

∗,n+ 1
2

h ‖∞,h
∫ τ

2

0

2s

τ
e−κ( τ

2
−s)ds

+ 3κ‖En‖∞,h
∫ τ

2

0

τ − 2s

τ
e−κ( τ

2
−s)ds+ C(τ3 + τh2)

≤(1 + 9κτ)‖En‖∞,h + C(τ3 + τh2). (53)

By Lemma 3.7, under the CFL condition, we have the following estimate on the second equation
in the scheme (43):

‖u∗∗I (τ)− Ū∗∗,n+1
h ‖∞,h ≤ ‖u∗I

(τ
2

)
− Ū∗,n+ 1

2
h ‖∞,h + C(τh2 + τ3). (54)

Next, by the similar arguments for deriving (53), we obtain

‖En+1‖∞,h ≤ (1 + 9κτ)‖u∗∗I (τ)− Ū∗∗,n+1
h ‖∞,h + C(τh2 + τ3). (55)

Combing (53)-(55), for some constant Cκ > 0 depending on κ, we reach

‖En+1‖∞,h ≤ (1 + Cκτ)‖En‖∞,h + C(τh2 + τ3), 0 ≤ n ≤ N − 1. (56)

Thus, the discrete Gronwall inequality with (56) and ‖E0‖∞,h = O(h2) gives us (52), which com-
pletes the proof.
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5. Numerical experiments

In this section, we present various numerical examples to verify the theoretical results and
demonstrate the performance of the proposed two schemes, MBP-FEuler-sETD1 (42) and MBP-
SSPRK2-sETDRK2 (43), for solving the MCAC equation (5). The computational domain is set to
be Ω = [0, 1]d.

5.1. Convergence tests

We consider the MCAC equation (5) in two dimensions (d = 2) with the initial condition

u0(x, y) = cos(2πx) cos(2πy),

and the thickness parameter ε = 0.1. In addition, the nonlinear reaction f = −F ′ is given by the

double-well potential case, i.e., f(u) = u − u3, and thus the bounding constant β = 2
√

3
3 . The

stabilizing coefficient is chosen as κ = 3 to satisfy the requirement (13). The terminal time is set
to be T = 0.5. We choose the velocity field

v = e−t[sin(2πy), sin(2πx)]T .

The solution obtained by MBP-SSPRK2-sETDRK2 with h = 1/1024 and τ = 1/2048 is adopted
as the benchmark solution for computing the numerical errors at the terminal time. We first
set M = 1, which means that no substepping is used in the transport equation solver. With τ
decreasing by a factor of 2, h decreasing by a factor of roughly

√
2 for MBP-FEuler-sETD1 and 2

for MBP-SSPRK2-sETDRK2. The numerical results on the discrete L∞ and L2 errors along the
time-space grid refinement and corresponding convergence rates are reported in Table 1. The first-
order convergence is clearly observed for MBP-FEuler-sETD1, and for MBP-SSPRK2-sETDRK2,
the convergent rates initially are higher than two but gradually decreases to be close to two. Next,
we test the effect of substepping M = 10. We use MBP-SSPRK2-sETDRK2 with h = 1/1024 and
τ = 1/1024 to generate the benchmark solution. The numerical results on the discrete L∞ and L2

errors along the time-space grid refinement and corresponding convergence rates are reported in
Table 2. We again observe the similar convergence behavior as that of the case of M = 1.

Table 1: Numerical results on the discrete L∞ and L2 errors and corresponding convergence rates for the MBP-
FEuler-sETD1 and MBP-SSPRK2-sETDRK2 schemes with M = 1.

τ
MBP-FEuler-sETD1 MBP-SSPRK2-sETDRK2

h L∞ Error Rate L2 Error Rate h L∞ Error Rate L2 Error Rate
1/32 1/16 1.1274e-01 - 5.6793e-02 - 1/16 6.7898e-02 - 2.6305e-02 -
1/64 1/23 4.8982e-02 1.20 2.5412e-02 1.16 1/32 1.2884e-02 2.40 4.6348e-03 2.50
1/128 1/32 2.4268e-02 1.01 1.2344e-02 1.04 1/64 1.6587e-03 2.96 6.8019e-04 2.77
1/256 1/45 1.2895e-02 0.91 6.1584e-03 1.00 1/128 3.0517e-04 2.44 1.2386e-04 2.46
1/512 1/64 6.8748e-03 0.91 3.1424e-03 0.97 1/256 7.0718e-05 2.11 2.8486e-05 2.12

5.2. MBP tests

In this subsection, we numerically investigate the discrete MBP of the proposed schemes in long-
time phase separation processes governed by the MCAC equation (5) with the thickness parameter
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Table 2: Numerical results on the discrete L∞ and L2 errors and corresponding convergence rates for the MBP-
FEuler-sETD1 and MBP-SSPRK2-sETDRK2 schemes with M = 10 .

τ
MBP-FEuler-sETD1 MBP-SSPRK2-sETDRK2

h L∞ Error Rate L2 Error Rate h L∞ Error Rate L2 Error Rate
1/16 1/16 4.4959e-01 - 2.1578e-01 - 1/16 8.9967e-02 - 3.1431e-02 -
1/32 1/23 1.5397e-01 1.55 7.4041e-02 1.54 1/32 1.9435e-02 2.21 7.4245e-03 2.08
1/64 1/32 6.4828e-02 1.25 3.0636e-02 1.27 1/64 3.4128e-03 2.51 1.6692e-03 2.15
1/128 1/45 3.0456e-02 1.09 1.3926e-02 1.14 1/128 8.1959e-04 2.06 3.9305e-04 2.09
1/256 1/64 1.4907e-02 1.03 6.7183e-03 1.05 1/256 1.9468e-04 2.07 9.1946e-05 2.10

ε = 0.01. For simplicity, we only test MBP-SSPRK2-sETDRK2 (43) since the basic components of
MBP-FEuler-sETD1 are similar. We start the simulations at time t = 0 with the initial configura-
tion given by

u0(x, y) = 0.9 sin(20πx) sin(20πy),

and the cell-averaged quantities are computed accordingly. The convection velocity field is again
set to be

v = e−t[sin(2πy), sin(2πx)]T ,

which eventually approaches to zeros when the time t becomes very large. The time step size,
the number of substeps (for the transport equation solver), and the spatial grid size are chosen as
τ = 0.01, M = 10, and h = 1/256, respectively.

We first test the case of double-well potential function (8) with the bounding constant β = 2
√

3
3

and the stabilizing constant κ = 3. Figure 1 presents the configurations of the numerical solutions
at the times t = 0.5, 30, 70, 100, 150, and 200 respectively, which shows a steady-state is gradually
reached along the time evoltuion. The dynamics of the supremum norm, mass and energy (defined
in (1)) are plotted in Figure 2. It is observed that the discrete MBP is well preserved where the

red solid line is y = 2
√

3
3 which gives the theoretical maximum bound. Furthermore, we find the

supremum norm of the numerical solution in fact quickly approaches the red dashed line y = 1 which
is the maximum bound of the classic AC equation in this case. In addition, it is easy to see that
the mass is numerically conserved perfectly and the energy (defined by (1)) decays monotonically
along the time (although theoretically the energy dissipation law is not guaranteed anymore for the
MCAC equation).

Next we test the case of Flory-Huggins potential function (9) with the parameters θ = 0.8 and
θc = 1.6. The bounding constant is now β ≈ 0.9868 for this case and the stabilizing coefficient
is taken as κ = 28.87 to satisfy the requirement (13). Figure 3 presents the configurations of the
numerical solution at t = 0.5, 30, 70, 100, 150, and 200 respectively. The corresponding dynamics
of the supremum norm, mass and energy are plotted in Figure 4. It is shown that the discrete
MBP is well preserved, the mass is perfectly conserved, and the energy decays monotonically along
the time. In this case, the red solid red is y = 0.9868 which gives the theoretical maximum bound,
but we find that the supremum norm of the numerical solution again quickly approaches the red
dash line y = 0.9575 which is the maximum bound of the classic AC equation. By comparing the
coarsening phenomena in Figures 1 and 3, we observe that both cases of potential functions produce
very similar steady states at the end although they follows some different intermediate dynamics
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Figure 1: Numerical solutions at the times t = 0.5, 30, 70, 100, 150, and 200 respectively (from left to right) for the
MCAC equation (5) with the double well potential (8) in two dimensions.

along the time evolution.

5.3. 3D simulations

In this subsection, some 3D simulations are reported for the MCAC equation with ε = 0.01. The
initial configuration is the quasi-uniform state obtained by setting u0 = 1.8(rand(·) − 0.5), where
rand(·) is the Matlab function which generates pseudorandom values from the standard uniform
distribution on the open interval (0, 1). The velocity field is chosen as

v = [y − 0.5, 0.5− x, 0]T ,

which is time-independent and rotates around the center (0.5, 0.5) in the xy-plane at each vertical
level. We use MBP-SSPRK2-sETDRK2 (43) to simulate the case of double-well potential function
(8), thus the stabilizing coefficient κ = 3 is used. The other used parameters are τ = 0.01, M = 10,
and h = 1/128. Figure 5 shows the iso-surfaces formed by the zero level set (i.e. u = 0) of the
numerical solution and the snapshots of the two cross-sections z = 0.5 and x = 0.5 at the times t =
0, 1, 5, and 20 respectively. The ordering and grain coarsening process are clearly observed along
the time evolution, together with the rotating behavior in the xy-plane due to the specially imposed
velocity field. The corresponding evolutions of the supremum norm, mass increments (comparing
to the initial mass) and energy are shown in Figure 6. It is again easy to see that the energy decays
monotonically, and the discrete MBP and mass equation are perfectly preserved.
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Figure 2: Evolution of the supremum norm (left), mass (middle), and energy (right) of the numerical solution for the
MCAC equation (5) with the double well potential (8) in two dimensions.

6. Conclusion

In this paper we have developed two structure-preserving numerical schemes, MBP-FEuler-
sETD1 and MBP-SSPRK2-sETDRK2, for solving the MCAC equation based on the operator
splitting approach. Each time stepping of the MCAC equation is split into two (first-order splitting
in time) or three (second-order splitting in time) stages, each of them consisting of either a MAC
equation or a transport equation. For the MAC part, the finite volume approximation is applied
for spatial discretization and then the stabilized exponential time differencing schemes are used for
time integration. Note that FFT-based fast algorithm can be used to efficiently calculate the ma-
trix exponential acting on the vectors in the implementation of the MAC solver. For the transport
part, the explicit SSPRK method for time integration is combined with a limiter-based maximum-
principle-satisfying finite volume discretization in space, in which a substepping procedure is also
adopted to deal with the CFL condition in order to match large time step sizes allowed by the MAC
solver. In addition to preservation of the discrete MBP and conservation of the mass, we also show
that, while MBP-FEuler-sETD1 is first-order accurate in time and MBP-SSPRK2-sETDRK2 is
second-order accurate in time, both schemes are second-order accurate in space. Various numerical
examples are also presented to verify the theoretical results and demonstrate the performance of
the proposed schemes. As an important application, the MCAC equation is one of the essential
components for phase field modeling of the multiphase fluid system coupled with a flow field de-
scribed by Stokes or Navier-Stokes equations, thus how to extend the proposed schemes to solution
of such more complex models is subject to our future research.
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