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SUMMARY: We propose a Bayesian model selection approach for generalized linear mixed models (GLMMs). We
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genome-wide association studies, and spatial statistics. Since the random effects cannot be integrated out of GLMMs
analytically, we approximate the integrated likelihood function using a pseudo likelihood approach. Our Bayesian
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prior choices for the variances of random effects. Since the flat prior on the fixed effects is improper, we develop a
fractional Bayes factor approach to obtain posterior probabilities of the several competing models. Simulation studies
with Poisson generalized linear mixed models with spatial random effects and overdispersion random effects show
that our approach performs favorably when compared to widely used competing Bayesian methods including DIC
and WAIC. We illustrate the usefulness and flexibility of our approach with three case studies including a Poisson
longitudinal model, a Poisson spatial model, and a logistic mixed model. Our proposed approach is implemented in
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1. Introduction

Generalized linear mixed models (GLMMSs) are widely used to model non-Gaussian data
with dependent observations. This type of data is often found in many areas of application
such as epidemiology (Meyer et al., |2017), meta-analysis of multiple clinical trials (Sauter
and Held, 2015), survival analysis (Tawiah et al., 2020), and neuroimaging (Liu et al., [2016)).
Even though Bayesian estimation procedures for GLMMs are well established, there are just
a handful of papers that address Bayesian model selection for GLMMs. Currently, most
applied papers use the deviance information criterion (DIC) (Spiegelhalter et all [2002)) to
perform Bayesian model selection for GLMMs (Nouvellet et al. 2021} [Tredennick et al.,
2021). Even though the DIC is widely applicable, we show in a simulation study that the
DIC has some undesirable behaviors when applied to GLMMs. To provide more reliable
results, here we develop a novel Bayesian model selection approach for simultanous selection
of covariates and random effects for GLMMs.

Specifically, we focus on GLMMs where each random effect has a covariance matrix that is
the product of an unknown variance component parameter and a known positive semi-definite
symmetric matrix. The class of GLMMs we consider can be used for the analysis of spatial
areal data (Clayton and Kaldor, |[1987;|Banerjee et al.,[2014)), genome-wide association studies
(GWAS) (Williams et al., [2022)), and longitudinal data (Breslow and Clayton, |1993; Xu et al.,
2016)). However, inference for GLMMs is difficult because the integrated likelihood function
is not available in closed form. To deal with the issue of integration of random effects, we
approximate the integrated likelihood function using a pseudo likelihood approach (Wolfinger
and O’Connell, 1993) that leads to a Gaussian likelihood approximation. We then assign a
flat prior for the vector of regression coefficients and an approximate reference prior (Ferreira
et al., |2021)) for the variance components of the GLMMs, which is inspired by the reference

prior proposed by Keefe et al. (2019) for Gaussian data. In addition, we also consider a half-



2 Biometrics, May 2023

Cauchy prior for the square root of variance components (Gelman) 2006; [Polson and Scott),
2012). Because the prior on the vector of regression coefficients is improper, we develop a
fractional Bayes factor (FBF) approach (O’Hagan| |1995)). We note that Porter et al.| (2023))
have proposed FBF for Gaussian mixed models for the particular case of spatial areal data. In
contrast, here we consider generalized linear mixed models. In addition, we consider not only
spatial random effects but also many other types of random effects such as overdispersion
random effects and longitudinal random effects. Because we use default priors combined
with FBF, our proposed model selection approach is fully automatic, which obviates the
need for subjective specification of hyperparameters and makes the method more accessible
for practitioners. We call our two proposed model selection approaches the approximate
reference method (ARM) and the half-Cauchy method (HCM).

To compare the performance of our methods ARM and HCM to the performance of the
DIC, the Watanabe-Akaike information Criterion (WAIC) (Watanabel 2010), and marginal
likelihood computed by INLA under different parameter settings, we present a simulation
study based on Poisson generalized linear mixed models with a spatial random effect and an
overdispersion random effect. In this simulation study, we vary the sample size, coefficient
of non-null covariates, level of spatial dependence, and overdispersion level. The simulation
study shows that DIC and WAIC cannot reliably distinguish the random effect when there is
another random effect. In contrast, our methods ARM and HCM perform well at detecting
covariates and correct dependence structure. In particular, ARM and HCM always correctly
detect the case of no random effects. Finally, while the performances of the DIC and WAIC
do not improve much with large sample sizes, our proposed ARM and HCM have large
improvement with increasing sample size. In addition, the simulation study shows that

marginal likelihood computed by INLA has similar performance to our methods ARM and



Model selection for GLMMs

HCM when selecting covariates. However, marginal likelihood computed by INLA does not
perform well when selecting random effects.

Apart from the DIC, WAIC, and marginal likelihood, there are not many other Bayesian
model selection approaches for GLMMs. One such approach proposed by |Cai and Dunson
(2006) for simultaneously selecting fixed and random effects in GLMMs assumes that the
subject-specific random effects have a covariance matrix with all its elements being free
parameters to be estimated. As a consequence, the method proposed by |Cai and Dunson
(2006)) is only aplicable to problems with replications and can not be readily applied to
problems where the vector of observations is a realization from a structured multivariate
distribution such as GWAS data and spatial areal data. In contrast, because we assume
that each random effect has a covariance matrix that is the product of an unknown variance
component parameter with a known positive semi-definite covariance matrix, our methods
ARM and HCM can be applied to longitudinal data, GWAS data, and spatial areal data.

The remainder of this paper is organized as follows. Section 2 describes the GLMMs that
we consider. Section 3 outlines how the pseudo likelihood approach approximates GLMMs
for non-Gaussian data by computing adjusted observations that are modeled using Gaussian
LMMSs. Section 4 introduces priors for model selection, the FBF approach for dealing with
improper priors, and posterior computation. Section 5 presents the results of a simulation
study. Section 6 illustrates our method with applications to two case studies. Section 7
concludes with a discussion and future directions.

The online supporting information contains details about the pseudo likelihood method
(Web Appendix A), additional tables for the case studies (Web Appendix B), one additional
case study (Web Appendix C), several additional simulation studies (Web Appendix D), and

additional figures (Web Appendix E).
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2. GLMMs

Consider a response vector ¥ = (y1,¥2,...,%n) of n observations. Let X be an n by p
matrix of explanatory variables and 8 be the corresponding p-dimensional vector of fixed
effects. Let Z; be an n by ¢; design matrix and a; be the corresponding g¢;-dimensional
vector of random effects, j = 1,...,Q. Let vectors x; and 2;; be the ¢th rows of X and
Z;, respectively. Conditional on linear predictors 7y, ...,n,, the observations v, ..., y, are
independent with probability density function belonging to the exponential family, that is
fyiln:)) = explyimi — Bi(n;) + Ci(y:)], @ = 1,...,n, where the canonical parameter 7; is
modeled as a linear function of fixed and random effects as n; = =8 + > z;;0;. Each
observation y; has mean u; = B.(n;) and variance v; = B/(n;). In addition, we assume that
each vector of random effects a; has a multivariate normal distribution with mean vector
0 and covariance matrix 7;%;, where the variance component parameter 7; is unknown and
Y, is a known symmetric positive semi-definite matrix. For example, if a is a vector of
overdispersion random effects then the corresponding matrix ¥ is an identity matrix.

As another example, in the case of spatial areal data, we assume that a is a vector of
spatial random effects that follows a sum-zero constrained Gaussian Intrinsic Conditional

Autoregressive Model (Keefe et al., [2018, 2019), that is,
a|lt ~ N(0,7%), (1)

where ¥ is a known positive semi-definite covariance matrix that depends on the neighbor-
hood structure of the spatial subregions. Specifically, an adjacency matrix W is defined such
that if subregion ¢ and subregion j are adjacent, the entries in cells (i, j) and (j, i) are 1,
otherwise 0. Let D,, be a diagonal matrix with each diagonal element equal to the summation
of the corresponding row of W. Then, the covariance matrix X is the Moore-Penrose inverse
of D, — W (Keefe et al., 2018, [2019). We note that computations for this model may be

performed using the precision matrix. In addition, we note that the knowledge about the
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covariance matrix X has allowed, for the case of Gaussian hierarchical models with ICAR
random effects, the derivation of a reference prior for the parameters (Keefe et al. |2019)),

and formal Bayesian model selection (Porter et al., 2023).

3. Pseudo likelihood Function for GLMMs

A key step in Bayesian model selection is to integrate out random effects from the likelihood
function. However, while for LMMs the random effects can be integrated out analytically,
for GLMMSs that is not possible. To overcome this difficulty, here we use a pseudo likeli-
hood approach that approximates a GLMM for non-Gaussian data by computing adjusted
observations that are modeled using an approximate Gaussian LMM.

Let a represent all random effects and 7 represent all variance components. Then, the

likelihood function with the relevant but intractable integral over random effects a is

L@.rly) = [ syleBplalr) da
= [T {n (a7 Sslm) - (a1 + Sl ) <}
g o ajTEj_aj

H [(2#) NI Qexp{—T}

j J

dav. (2)

In Equation , the random effects a cannot be integrated out analytically. Our method
approximates the integral in Equation with a Gaussian LMM via a pseudo likelihood
approach. For a Gaussian LMM, the corresponding integral can be solved analytically, and
then the likelihood function of parameters has an analytic expression.

The pseudo likelihood approach was first proposed by Wolfinger and O’Connell| (1993). The
pseudo likelihood approach is an iterative procedure that starts by writing the model as y =
i+ €, where p = (uq, ..., 1) and € is a vector of errors with cov(e) =V = diag(vy, ..., v,).
Let a, B, 1 and V be the current estimates of a, B, p and V. Here, ,’3\ is initialized at the

estimate from a GLM fit. Now, approximate u; with a first-order Taylor expansion around
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a=aand f = B . Rearrange all the terms in y = p + € such that the terms that depend on
y, Q, B, and 1 appear on the left side of the equation and the remaining terms appear on
the right side of the equation. Multiply both sides by 17_1. As a result, the left side of the
equation will have y* = V_l(y -n+X B+ >, Z;@;. The vector y* is known as the vector

of pseudo-observations or the vector of adjusted observations. Equating y* to the right side

of the equation, we obtain the following model for the adjusted observations.

Q

y* XB + ZZjaj + ‘7_16,
J
a; ~ N(0,7,%),
e ~ N(,V). (3)

Thus, the pseudo likelihood approach assumes that e follows a Gaussian distribution with

mean vector 0 and covariance matrix V. Substituting V' with V in Equation , y* can be
~—1

approximately modeled with the LMM y* ~ N (X,B, Zj TijEijT +V ) . Therefore, we

have the closed-form pseudo likelihood function

D=

py*B,7) = (2m)7%

T ~—1
ZTijszj +V
J

exp —%(y*—X,B)T (ZTijszjTﬂL‘A/_l) Y —XB) ;. (4)

J

Further details about the pseudo likelihood approach appear in Web Appendix A. To perform
model selection, we first use the pseudo likelihood function in Equation in an iterative
manner to estimate the parameters and to obtain adjusted observations y*. We then use these

adjusted observations y* rather than the original observations y to perform model selection.

4. Model Selection
We perform model selection based on the pseudo likelihood function given in Equation (4)).
Similarly to/Ten Eyck and Cavanaugh (2018), we use the same vector of adjusted observations

to compare all candidate models’ posterior probabilities. Specifically, we compute the vector
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of adjusted observations using the full model with all candidate regressors and all candidate
random effects. In addition, consider the model space M = {M,, ¢ = 1...C}, with C
possible models. We assume model M, has K. regressors, where X . is the corresponding
matrix of explanatory variables and B, is the corresponding vector of coefficients. Further,
model M, has Q. types of random effects. Let 7. = (7.1, ..., 7. g.) be the vector of variance
components of the Q). types of random effects in the model M,. The integrated likelihood

based on the vector of adjusted observations y* is

Pyt IM,) = / / P(y*1Bo 7o) (Bos 7o M.) dB.dr . (5)

where (8., 7. M.) is the prior distribution of (8.,7.) conditional on model M.. Let m(M.)
be the prior probability of model M.. Then, application of Bayes Theorem yields posterior
model probabilities P(Mcly*) = p(y*|Mo)w(M.)/> ", p(y*|M,)m(M,) o< p(y*|Mo)m(M.),

In Section 4.1, we specify the priors for model parameters. In Section 4.2, we specify the
priors on the model space. Section 4.3 discusses approximation of the integral in Equation (5)).
In Section 4.4, we propose an FBF approach (Porter et al., |2023)) to perform model selection

with improper priors.

4.1 Priors for Model Parameters

We consider the approximate reference prior proposed by [Ferreira et al.| (2021]) in the context
of LMMs for 8 and the reciprocal of 7, which is based on the reference prior proposed by
Keefe et al. (2019)). In what follows, we consider the implied reference prior for 7 obtained
by transformation of variables. For simple notation, let M without subscript represent a
general model, B represent the corresponding vector of regressor coefficients, and 7 represent
the variance component. In the reference prior (Keefe et al., 2019), all the parameters are
independent. The vector of regression coefficients B is assigned a uniform prior on R?. In
addition, as T goes to infinity the reference prior 7(7) is proportional to 772. Further, as

7 goes to 0 the reference prior is proportional to a constant. Based on the tail behavior
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of the reference prior for 7, |[Ferreira et al. (2021)) proposed the approximate reference prior
m(7) o< (14 )%, where a, is a hyperparameter. We set a, equal to 2. The choice of a, = 2
is equivalent to the choice made by [Ferreira et al. (2021)) for Gaussian data. In addition, our
simulation study shows that this choice also works well for GLMMs. Hence, for 8 we use the

flat prior 7(B8|M) o 1, and for 7 we use the approximate reference prior

1

m(T|M) = eI RS,

T = 0. (6)

This approximate reference prior is related to the half-Cauchy prior 7(7) o T%H, which
has the same tail behavior. |Gelman (2006)) proposed a half-Cauchy prior, however, for the
standard deviation of random effects in a two-level Gaussian model. Assuming a half-Cauchy
prior for the square root of the variance component parameter 7 implies for 7 the prior
density my(7) o 772(7 + 1)~! (Polson and Scott, 2012). Thus, m(7) = O(7"2) for 7 — 0
and my(1) = O(772) for 7 — co. Hence, the half-Cauchy prior for \/7 has more mass near
zero and more mass for large values of 7 than the approximate reference prior for 7 given in
Equation @ Here, we consider two variants of our pseudo-likelihood-based method: ARM,
which uses the approximate reference prior given in Equation @; and HCM, which uses the

half-Cauchy prior for /7. We compare our methods ARM and HCM to the DIC and WAIC

in the simulation studies presented in Section 5.

4.2 Priors on the Model Space

Let K denote the number of candidate covariates and QQ denote the number of candidate
random effects types. For example, in an application where we may have spatial random
effects and/or overdispersion random effects, ) = 2. In addition, let K, denote the number
of covariates in Model M.,. For fixed effects, we use priors from |Scott and Berger| (2010)), which
automatically correct for multiplicity. Specifically, the prior probability for model M, with K.
covariates is P(M, with K. covariates) = 1/ [(K +1) (;fc)} . With respect to random effects,

there are 2% possibilities for inclusion and exclusion of random effects. Assuming that each
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random effect has 0.5 prior inclusion probability, the prior probability for Model M, with Q.
types of random effects is P(M, with Q. types of random effects) = 1/29. Because usually
in practice the number of candidate random effects types Q is small, a discrete uniform
prior for the inclusion of random effects is reasonable. Assuming a priori independence of

inclusion of fixed effects and random effects, the prior probability for model M, is P(M.) =

1/ [QQ(K—H)([@]

4.3 Integrated Likelihood Methods

After the priors for parameters have been defined, the integrated likelihood given in Equa-

tion based on the adjusted observations y* becomes

M) = / / P& 1Be, 7o) (Bes 7ol M,) dB.dr.

Q. -1
1 1 .
e //eXp —5(11*—)(6&)T (Z(wzqﬁcﬂ;)w > Y — XBe)
j
Q T
Z(chZCjEchCTj) +V

J

7(T.) dB.dT..

The vector of regression coefficients 8. can be integrated out analytically. After integrating

out B., we can write the integrated likelihood as

sy = [ st dr,
1
x /exp kyﬂ {Hc_lXc(XcTHc_lXc)_1XCTHC_1 —Hc_l}y*
1
H(X[H X )7 ? w(re) dre, (7)
~—1
where H, = Z?“ (102 i Eei Z CT]-)+V . Note that the vector of variance components 7. cannot
be integrated out analytically. To compute the integral in Equation (7)), we first perform a

logarithm transformation on 7.. Let 8. = log(T.) be the vector obtained by applying the

logarithm transformation to each element of 7.. Then, we integrate out é. using a Laplace
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approximation to obtain

/p(y*,'rC|Mc) dr, = /p(y*,exp(66)|MC) exp(d.) dé,

Qc
2

" exp {—q(gc)} , (8)

o~

q// (66)

Q

(2m)

where ¢(0.) = —3y* " [H'X (X H'X.)"' X H' —H'|y* — jlog [ H "X H'X.)™|

—log m(exp(d.)) + 6. , 8. is the point that minimizes q(b.), and ¢"(6.) is the Hessian matrix.

4.4 Fractional Bayes Factors

In order to obtain the posterior model probabilities of interest, we use a fractional Bayes
factor (FBF) approach. The FBF is a modification of the Bayes factor that allows for
improper priors on parameters (O’Hagan) 1995).

To define the usual Bayes factor, let the baseline model M; be the model with the largest
integrated likelihood in the model space. Then, the Bayes factor BF, of model M, ver-
sus the baseline model M; is defined as the ratio of their integrated likelihoods BF, =
p(y*|M.)/p(y*|M,;). Hence, we can compute the posterior probability of model M, as pro-
portional to its prior probability times its Bayes factor versus the baseline model, that is
P(MJy*) o P(M)p(y*|M,) /p(y*|M;)  BE.P(M,)

Note that the prior on the regression coefficients 7(8.|M.) o d is improper, where d is
an arbitrary constant. Thus, the Bayes factor computed with the integrated likelihood from
Equations and is only defined up to an unspecified constant of proportionality and
cannot be used to compare models directly.

To solve this problem, we use the fractional Bayes factor (FBF, (O’Hagan| (1995)) to
approximate the Bayes factor. Porter et al. (2023) developed the fractional Bayes factor
method for Gaussian hierarchical models with ICAR random effects. We use the FBF
approach to train the improper prior so that we can compute a meaningful Bayes factor.

By training the improper prior, we mean using Bayes Theorem to combine the improper
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prior with a fraction of the likelihood to obtain a proper distribution (O’Hagan, (1995}
Porter et al., 2023). We can then use this latter distribution as a trained prior to compute
a meaningful Bayes factor. Specifically, here we train the prior with a fraction b of the
likelihood function. The trained prior density for model M, is obtained by Bayes Theorem
as m(Be, ) = P'W*|Be, T )T (Bes Te| M)/ [ p°(y*|Be, Te)m(Be, Te| M) dBedr.. The integrated
likelihood is then computed as an integral of the product of the likelihood function raised to
1 — b and the trained prior. Following (O’Hagan| (1995), the resulting integrated likelihood of

model M., called the fractional integrated likelihood, is equal to

G(by*) = / P |Bes 7o) n (Bos ) dBudr

i P Ber 7o) (Bos T M)

- / P W T T B r )7 (B ML) dBod
J p(y*|Be,Te)m(Bey Te| M) dB.dr..

TP @ Bort )7 (Borto M) dBodir.

dB.dr,

(9)

The size of the training fraction b should be chosen carefully. When b is too small, the
denominator in Equation @ may diverge. If b is too large, a substantial part of the integrated
likelihood is used to train the prior on the parameters, and then the remaining information
in the integrated likelihood used to update the prior model probabilities will lead to less
distinctive posterior model probabilities. Here, we consider a training fraction size equal to
b = m/n, where m is the equivalent training size. To guide the choice of m in our considered
GLMM context, we use the fact that for LMMs with the reference prior proposed by Keefe
et al. (2019)) the minimal value of m that guarantees propriety of the fractional integrated
likelihood is p + 1 (Porter et al., 2023)). In particular, in all the GLMM applications we
present in Section [6] the training fraction b = (p + 1)/n yields well-defined Bayes factors.
Then, the FBF of model M, versus model M, is defined as BFY = %. Next, we
compute the posterior probability of model M, as proportional to the FBF, BFY, times the

prior probability of model M., that is P*(M.|ly) = BEFY x P(M.)/ [chzl BE} x P(My,)]| .

11
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5. Simulation Study

To investigate the performance of our proposed model selection methods ARM and HCM
when compared to the widely used DIC, WAIC and marginal likelihood computed by INLA,
we perform a simulation study for different combinations of parameter settings. Here we
present results for Poisson GLMMs. In the Web Appendix C we present results for Bernoulli
GLMDMs. For each combination of parameter settings, we generate 100 datasets. We simulate
samples on regular square grids and consider three sample sizes, n = 100, 400, and 900.
Each sample may have spatial dependence based on a first-order neighborhood structure
modeled with a vector of spatial random effects a; following the ICAR distribution given in
Equation . For the variance component 7; of the spatial random effects, we consider values
0, 0.03, 0.05, 0.1, or 1, where 71 = 0 implies no spatial dependence. We also consider the
possibility of overdispersion random effect a in the model. We set the variance component
79 of the overdispersion random effect to 0, 0.05, 0.1, 0.5, or 1, where 75, = 0 implies no
overdispersion. We consider 4 candidate covariates xq;, x9;, x3; and x4 sampled from a
standard normal distribution. We assume that 8 = (B, 31, 52,0,0)", thus the last two
covariates are not in the true model. Here 3, is the intercept, with values equal to 1, 2,
or 4. We let B; = fy with values 0, 0.1, 0.2, 0.3, 0.5, or 1. When 3; and (5 are both
equal to 0, there is no covariate in the true model. Conditionally independent Poisson
observations y; are generated with the GLMM y;|\; nd Poisson(;), ¢ = 1...n, with log A\; =
Bo + B1x1; + Poxe; + Baxsi + Paxai + an; + g, spatial random effects a; ~ N(0,1X), and
overdispersion random effects ag ~ N(0, 7o1).

For each parameter setting, there are C' = 64 candidate models in total. Specifically, there
are 2% possible combinations of fixed effects. In addition, there are 4 possible combinations
of random effects types, one with both spatial random effects and overdispersion random

effects, one with only spatial random effects, one with only overdispersion random effects,
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and one without any random effects. We calculate posterior model probabilities for all 64
models, and we compute posterior inclusion probabilities for each of the 4 covariates, for the
spatial random effect, and for the overdispersion random effect.

We compare our model selection methods ARM and HCM to the DIC, the WAIC and
marginal likelihood computed by the R package INLA (Rue et al., 2009). For the ARM and
HCM, we decide to include a component in the selected model if the posterior inclusion
probability of that component is larger or equal to 0.5, that is, if that component is in
the median probability model (Barbieri and Berger, 2004). For the criteria computed by
INLA, we select the model with the lowest DIC and WAIC values, and the highest marginal
likelihood, respectively. For the three criteria computed by INLA, we consider the INLA

default prior specification as well as our proposed AR prior and HC prior.

[Figure 1 about here.]

Because currently the most widely used criteria for Bayesian selection of GLMMs are the
DIC and WAIC computed with INLA default priors, here we compare these criteria with
our ARM and HCM. We present a comparison of our methods ARM and HCM to DIC
and WAIC computed using our AR and HC priors in Section D4 of Web Appendix D. The
conclusions are similar to those for DIC and WAIC computed with default INLA priors
presented here. Figure (1| presents the probability of each competing method selecting the
correct covariate structure as a function of the value of their regression coefficients f; = fs.
Here, there are spatial random effects with 7, = 0.05 and overdispersion random effects with
79 = 0.05. Three sample sizes are considered: n = 100, 400, 900. Two values for the intercept
are considered: Sy = 1 and 4. Figure [I| shows that the ARM and HCM perform much better
than the DIC and the WAIC computed with INLA’s default priors . For example, in the most
challenging case considered with n = 100 and 5y = 1, the ARM and HCM have a higher

probability than the DIC and WAIC of selecting the correct covariate structure when their

13



14 Biometrics, May 2023

regression coefficients 5, and (35 are zero. In addition, as the value of 31 = 5 increases, the
probability of the ARM and HCM to correctly select the true non-null covariates x; and 9
increases more quickly than that of the DIC and the WAIC. Finally, the probability of ARM
and HCM to correctly select the two non-null regressors increases much closer to one than
those of the DIC and WAIC as the sample size increases and as the intercept value increases.
As the sample size increases, the probability of ARM and HCM detecting covariates with
small coefficients increases substantially. For example, the left panels of Figure |1 show that
when the intercept is equal to 1, the probabilities of our proposed methods choosing the
correct covariates structure when the coefficient is equal to 0.1 are about 10%, 60%, and

90% for sample sizes 100, 400, and 900, respectively.
[Figure 2 about here.|

Figure [2| investigates the impact of different magnitudes of the variance components on
the probability of selecting the correct covariate structure as a function of the value of the
regression coefficients ; = f,. Panels (a) and (b) of Figure [2] present settings with small
(11 = 0.01 and 75 = 0) and large (1, = 1 and 7 = 1) variance components, respectively. In
both panels, the sample size is n = 400 and the intercept is Sy = 1. In the small variance
components setting, ARM and HCM perform comparably to the DIC and WAIC for small
values of 31 = 35, but our methods ARM and HCM greatly outperform the DIC and WAIC
for moderate to large values of #; = 5. Meanwhile, in the more challenging large variance
components setting, when $; = [y = 0, our ARM and HCM correctly select the model
with no regressor in the model for 100% of the simulated datasets samples. In contrast,
when ; = B = 0, the DIC and WAIC select the wrong covariate structure for 20% of the
simulated datasets, respectively. Finally, as the magnitude of 5; = (35 increases, in comparison
to the DIC and WAIC, ARM and HCM achieve much higher probabilities of selecting the

correct model.
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[Figure 3 about here.|

Figure |3| presents the probability of selecting correct spatial random effects structure as a
function of the value of the variance component for the spatial random effects. Results are
shown for sample sizes n = 100, 400 and 900, and variance of overdispersion random effects
75 = 0 and 0.1. Figure [3] shows that the DIC and WAIC have low probability of selecting
the model with no spatial random effects when the true model does not have spatial random
effects; In addition, this performance does not improve much as the sample size increases from
400 to 900. In contrast, our methods ARM and HCM have large probabilities of selecting the
correct spatial random effects structure when the true model does not have spatial random
effects, and have large probabilities of selecting spatial random effects when the variance
component for the spatial random effects is large. Finally, the performance of ARM and
HCM at correctly detecting spatial dependence greatly improves as the sample size increases.

ARM, HCM, DIC and WAIC’s performance when selecting overdispersion random effects
is similar to selecting spatial random effects. Web Figure S1 in the supporting information
presents the probability of selecting correct overdispersion structure as a function of the
value of the variance for overdispersion. Web Figure S1 shows that the DIC and WAIC
have low probability of selecting a model with no overdispersion random effects even when
overdispersion is not present in the true model, and this undesirable performance does not
improve much when the sample size increases. In contrast, our methods ARM and HCM
have large probabilities of selecting correct overdispersion structure when overdispersion is
not present in the true model, and have large probabilities of selecting overdispersion when
the proportion of variance due to overdispersion is large. Finally, the performance of ARM
and HCM at correctly detecting overdispersion greatly improves as the sample size increases.

Web Figures S12, S13, and S14 present a comparison of the performance of INLA marginal

likelihood with our ARM and HCM methods. Web Figure S12 shows that INLA marginal
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likelihood with INLA’s default priors is worse than our methods at selecting covariates
when coefficients of covariates are small. INLA marginal likelihood with INLA’s default
prior or INLA marginal likelihood with our proposed priors are better than our methods
ARM and HCM when the regression coefficient is large. For spatial random effects inclusion,
Web Figure S13 shows that INLA marginal likelihood with any of the considered priors
has difficulties to detect spatial random effects. For overdispersion random effects, Web
Figure S14 shows that when there is no spatial random effects in the model, INLA marginal
likelihood can correctly select overdispersion random effects. However, when there are spatial
random effects in the model, marginal likelihood computed by INLA cannot correctly select
overdispersion random effects. In summary, INLA marginal likelihood with our proposed
priors works well for selection of regressors but does not work well for the selection of random

effects. Meanwhile, our ARM and HCM methods work well in both cases.

6. Case Studies

6.1 Longitudinal Epilepsy Seizure Data

We analyze a dataset on epilepsy seizures previously analyzed by [Thall and Vail (1990),
Breslow and Clayton| (1993), and others. The data were collected in four biweekly visits
of 59 epileptics during a clinical trial to evaluate the effectiveness of a drug to control
seizures (Leppik et al., [1987). The response variable is the number of seizures y;; for patient
i on visit j. The most general model we consider is ;| nd Poisson(f;;), with log(pj) =
T B+ay+zja0+asi;, ay ~ N(0,7115), ay ~ N(0,72159), and az ~ N (0, 731536), i = 1...59
and j = 1...4, where x;; denotes a 6-dimensional vector with a one for intercept and 5
covariates. The 59 subjects were randomly assigned to a new drug or a placebo. The first
covariate is the treatment indicator (Trt), where Trt=1 indicates that the patient received the

treatment and Trt=0 indicates that the patient received the placebo. The second covariate
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is the baseline level of seizures (Base), equal to the logarithm of the average number of
epileptic seizures per two weeks recorded in the 8-week period before treatment. The third
covariate is the interaction term of Base and Trt. The fourth covariate is the logarithm of
age (Age). And the fifth covariate is the visit number (Visit), with the 4 visits coded as
-3, -1, 1 and 3. Breslow and Clayton (1993) mentioned that preliminary analysis indicated
that the counts were substantially lower during the fourth visit. Thus, they also define a
binary variable V4, such that V4=1 indicates the fourth visit and V4=0 indicates the other
visits. In the model above, B is the vector of regression coefficients, a; = (11, ..., 59) iS
the vector of patient-specific random effects, @y = (w1, ..., a3 59) is the vector of patient-
specific random effects for the slope of the variable Visit with z = (—0.3, —0.1, 0.1, 0.3), and
a3 = (311, -+, 3 59 1,312, - - -, X3 59 2, - - - , V314, - - - , A3 59 4) 1S the vector of overdispersion
random effects.

The covariates Trt, Base, Age and Visit can be included in the model independently.
However, the interaction term between Trt and Base is only included when both Trt and Base
are in the model. Thus, there are 20 possible combinations of covariates. For the dependence
structure, we follow the four cases considered by Breslow and Clayton (1993): no random
effects in the model; only patient-specific random effects a;; a; and overdispersion random
effects a3; a1 and patient-specific random effects for the slope of the variable Visit as. Finally,
we assume that the vectors of random effects a1, as and a3 are independent. Therefore, the
model space has 80 models, composed by 20 combinations of covariates and 4 possible settings

of random effects.

[Table 1 about here.]

Table 1 presents the posterior inclusion probabilities of the fixed and random effects. Both the
ARM and the HCM indicate that the baseline level of seizures (Base) should be included in

the model. However, the posterior inclusion probabilities do not provide support for any of the
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other covariates. Further, both ARM and HCM strongly indicate that as, the patient-specific
random effects for the slope of the variable Visit should not be included in the model. Finally,
both ARM and HCM strongly indicate the need to include the patient-specific random effect
a7 and overdispersion random effect as;.

Web Table S1 in the supporting information presents a summary of the model selection
results for the epilepsy data by comparing methods ARM, HCM, DIC and WAIC. A check
mark appears next to the effects (rows) selected by each method (column). In addition, Web
Table S1 presents the selection of fixed effects and variance components based on estimates
and standard errors reported by |Breslow and Clayton| (1993) for two models fitted with PQL,
which we denote by PQL1 and PQL2. Web Table S2 presents estimates and standard errors
for the parameters based on the full model. Model PQL1 includes random effects a; and a;
while Model PQL2 includes random effects a; and as. Interestingly, while the original PQL
method cannot choose between Model PQL1 or Model PQL2, our ARM and HCM clearly
show that the data support exclusion of random effect as and inclusion of random effects a;
and a3. Further, the DIC and WAIC agree with the ARM and HCM and also choose random
effects a; and a3. Furthermore, in terms of fixed effects the DIC and WAIC are the least
parsimonious, choosing Base, Trt and Trtx Base, while PQL chooses Base and Trt. Finally,
the ARM and HCM are the most parsimonious and choose only the Base covariate.

In addition to selecting more parsimonious models, our ARM and HCM provide more
definitive support for the inclusion or exclusion of each effect in the form of Bayesian
posterior probabilities. For example, the posterior inclusion probabilities of the patient-level
random effects a;q, overdispersion random effects a3, and the covariate Base are all equal to
one. Further, there is a lot less support for the covariate V4, which has posterior inclusion
probability of 0.12 by the ARM and 0.11 by the HCM. Furthermore, both ARM and HCM

provide posterior inclusion probability equal to zero for the interaction between Trt and
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Base. Finally, the simulation study presented in Section 5 shows that we can rely on the

uncertainty quantification provided by the ARM and HCM.

6.2 Spatial Lip Cancer Data

In this section, we present an analysis of the Scottish lip cancer dataset previously analyzed
by |Clayton and Kaldor (1987), Breslow and Clayton| (1993)), Ferreira and De Oliveiral (2007)),
among many others. This dataset provides the number of male lip cancer cases in the 56
counties of Scotland during the period 1975-1980, as well as the percentage of the work force
employed in agriculture, fishing, or forestry (AFF) as a covariate. The most general model
we consider is y;| nd Poisson(y;), log(u;) = log(n;) +x; B+ s + asg, ay ~ N(0,712), and
as ~ N(0,72I5), i = 1...56, where n; is the expected number of lip cancer cases in the
i'" county, calculated based on the age distributions by counties. In this analysis, the n;’s
are assumed to be known constants. In addition, the vector x; is a two-dimensional vector
with one as the first element and AFF for the i*" county as the second element. Further,
a; is a vector of spatial random effects following a sum-zero constrained Gaussian Intrinsic
Conditional Autoregressive model (Keefe et al,2018) and modeled by Equation (I]). Finally,
Q> is a vector of overdispersion random effects.

There are two possible combinations for the fixed effects: with or without the covariate
AFF. For the random effects, we follow the options considered by Breslow and Clayton
(1993). When a; and a, are in the model at the same time, the PQL estimate of the
overdispersion variance 75 is 0. Thus, we consider models with only three random effects
combinations: spatial random effects a;; overdispersion random effects as; and no random

effects.
[Table 2 about here.]

Table 2 presents the posterior inclusion probabilities for the fixed and random effects. Both

the ARM and HCM select the model with the covariate AFF and spatial random effect a;.
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Web Table S3 in the supporting information presents the DIC and WAIC for the 6 models
considered. In contrast to the results of the ARM and HCM, DIC and WAIC select the
model without the covariate AFF but with spatial random effect a;. Web Table S4 in the
supporting information summarizes model selection results for the ARM, HCM, DIC, WAIC,
as well as the selection of model components based on PQL methods reported by [Breslow
and Clayton (1993)) for two models: PQLI includes a; and PQL2 includes a. Results from
PQL for the AFF regressor agree with the results from the HCM and ARM. An advantage
of the HCM and ARM over PQL is that they clearly indicate that the model should include

a spatial random effect and not include overdispersion.

7. Discussion

We have proposed a novel Bayesian method for model selection for GLMMs. Our approach
is based on a pseudo likelihood approximation of GLMMs by LMMs leading to a closed
form solution for integrating out the random effects. We consider two priors for the model
parameters. First, we use an approximate reference prior that is uniform for the fixed effects
and has the tail behavior of the half-Cauchy prior for the variance parameters. Second, while
keeping the improper flat prior for the fixed effects, we consider the half-Cauchy prior for
the square root of the variance parameters (Gelman, 2006; Polson and Scott], 2012). Finally,
to deal with the prior impropriety we have developed a fractional Bayes factor approach.
The simulation study has shown that our proposed methods ARM and HCM perform
well for correctly selecting both covariates and dependence structure. ARM and HCM
assign high posterior inclusion probability to covariates with large coefficients and also
high posterior inclusion probability to random effects with large variance components. In
particular, ARM and HCM are better than DIC and WAIC at correctly selecting covariates.
In cases where random effects have large variances, the ability of DIC and WAIC to correctly

select covariates is tremendously reduced. In contrast, ARM and HCM do not suffer as
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badly when selecting covariates in the presence of random effects with large variances. In
addition, DIC and WAIC have high false positive rates and often select null fixed and random
effects. In contrast, ARM and HCM correctly assign low posterior inclusion probability to
null covariates and to null random effects. We also compared our methods with marginal
likelihood computed by INLA. Our results show that when we use INLA with our priors
instead of the default INLA priors, the marginal likelihood computed by INLA and the
marginal likelihood computed by our pseudo likelihood approach work similarly for the
selection of regression coefficients. However, the marginal likelihood computed by INLA
does not work well for the selection of spatial random effects and overdispersion random
effects. Therefore, it seems that our pseudo likelihood approximation works better than the
INLA approximation to the marginal likelihood for the selection of random effects.

We illustrate the application of our proposed methods ARM and HCM with three case
studies. In the first case study, we consider epilepsy seizures as a type of longitudinal
count data. ARM and HCM are more parsimonious, selecting baseline covariate, patient-
level random effects and overdispersion random effects. DIC and WAIC select two more
covariates: treatment and interaction term between baseline and treatment. In the second
case study, we study Scottish lip cancer data as a type of spatial count data. Our methods
ARM and HCM select spatial dependence and covariate AFF, whereas DIC and WAIC
select the model without covariate AFF but include spatial random effects. In the third case
study, presented in Web Appendix C, we look at binary salamander mating data. For fixed
effects, our methods ARM and HCM select WSF and WSFx WSM, whereas DIC and WAIC
select all three covariates. For random effects, our two methods ARM and HCM have totally
different results than DIC and WAIC: while DIC and WAIC select male random effect, our
methods ARM and HCM select female random effect. Given the results from the simulation

study, we recommend the models selected by ARM and HCM.
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There are many potential avenues for future research. One possible future research topic
is the use of Bayesian model averaging for computing credible intervals for regression coef-
ficients. This can be facilitated by the fact that our methods provide posterior probabilities
for different models. Another promising research direction is the use of nonlocal priors for the
fixed effects. Finally, another possible research topic is model selection for GLMMs when the
number of possible regressors is much larger than the sample size. We are currently working

on the latter two research topics and will report the results in a future manuscript.
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Figure 1. Probability of selecting the correct covariate structure as a function of the value
of the regression coefficient, settings: 7 = 0.05, 75 = 0.05, n=100 (top row), n=400 (middle
row), n=900 (bottom row), and fy = 1 (left column), 5y = 4 (right column).
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Figure 2. Probability of selecting the correct covariate structure as a function of the value
of the regression coefficient, settings: (a) 7 = 0.01 and 75 = 0, and (b) 7y = 1 and 7» = 1, both
with sample size n = 400 and intercept value 5y = 1. (a) has weak dependence structure. (b)
has strong dependence structure. Dependence structure can affect our method’s performance
for detecting covariates with small coefficients. However, the DIC and WAIC have difficulty
detecting covariates even with large coefficients when spatial dependence is strong.
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Figure 3. Probability of selecting the correct spatial random effects structure as a function of the value of

variance component for spatial random effects. Settings: So = 2, f1 = 82 = 1, n=100 (top row), n=400 (middle row),

n=900 (bottom row), and 72 = 0.1 (left column), 72 = 0 (right column). If the spatial variance proportion is zero

then there is no vector of spatial random effects in the model, and the correct decision is to not select the vector of

spatial random effects.
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Table 1
Epilepsy data: posterior inclusion probabilities of fized and random effects
variable ARM HCM
Base 1 1
Trt 0.14 0.04
fixed effect  Trt x Base 0 0
Age 0.03  0.01
V4 0.12 0.11
aq 1 1
random effect as 0 0
Q3 1 1
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Table 2
Lip cancer data: posterior inclusion probabilities of fized and random effects

variable ARM HCM
fixed effect AFF 0.93 0.92
Qo 1 1
(D) 0 0

random effect
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