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Summary: We propose a Bayesian model selection approach for generalized linear mixed models (GLMMs). We

consider covariance structures for the random effects that are widely used in areas such as longitudinal studies,

genome-wide association studies, and spatial statistics. Since the random effects cannot be integrated out of GLMMs

analytically, we approximate the integrated likelihood function using a pseudo likelihood approach. Our Bayesian

approach assumes a flat prior for the fixed effects and includes both approximate reference prior and half-Cauchy

prior choices for the variances of random effects. Since the flat prior on the fixed effects is improper, we develop a

fractional Bayes factor approach to obtain posterior probabilities of the several competing models. Simulation studies

with Poisson generalized linear mixed models with spatial random effects and overdispersion random effects show

that our approach performs favorably when compared to widely used competing Bayesian methods including DIC

and WAIC. We illustrate the usefulness and flexibility of our approach with three case studies including a Poisson

longitudinal model, a Poisson spatial model, and a logistic mixed model. Our proposed approach is implemented in

the R package GLMMselect (Xu et al., 2023) that is available on CRAN.
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1. Introduction

Generalized linear mixed models (GLMMs) are widely used to model non-Gaussian data

with dependent observations. This type of data is often found in many areas of application

such as epidemiology (Meyer et al., 2017), meta-analysis of multiple clinical trials (Sauter

and Held, 2015), survival analysis (Tawiah et al., 2020), and neuroimaging (Liu et al., 2016).

Even though Bayesian estimation procedures for GLMMs are well established, there are just

a handful of papers that address Bayesian model selection for GLMMs. Currently, most

applied papers use the deviance information criterion (DIC) (Spiegelhalter et al., 2002) to

perform Bayesian model selection for GLMMs (Nouvellet et al., 2021; Tredennick et al.,

2021). Even though the DIC is widely applicable, we show in a simulation study that the

DIC has some undesirable behaviors when applied to GLMMs. To provide more reliable

results, here we develop a novel Bayesian model selection approach for simultanous selection

of covariates and random effects for GLMMs.

Specifically, we focus on GLMMs where each random effect has a covariance matrix that is

the product of an unknown variance component parameter and a known positive semi-definite

symmetric matrix. The class of GLMMs we consider can be used for the analysis of spatial

areal data (Clayton and Kaldor, 1987; Banerjee et al., 2014), genome-wide association studies

(GWAS) (Williams et al., 2022), and longitudinal data (Breslow and Clayton, 1993; Xu et al.,

2016). However, inference for GLMMs is difficult because the integrated likelihood function

is not available in closed form. To deal with the issue of integration of random effects, we

approximate the integrated likelihood function using a pseudo likelihood approach (Wolfinger

and O’Connell, 1993) that leads to a Gaussian likelihood approximation. We then assign a

flat prior for the vector of regression coefficients and an approximate reference prior (Ferreira

et al., 2021) for the variance components of the GLMMs, which is inspired by the reference

prior proposed by Keefe et al. (2019) for Gaussian data. In addition, we also consider a half-
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Cauchy prior for the square root of variance components (Gelman, 2006; Polson and Scott,

2012). Because the prior on the vector of regression coefficients is improper, we develop a

fractional Bayes factor (FBF) approach (O’Hagan, 1995). We note that Porter et al. (2023)

have proposed FBF for Gaussian mixed models for the particular case of spatial areal data. In

contrast, here we consider generalized linear mixed models. In addition, we consider not only

spatial random effects but also many other types of random effects such as overdispersion

random effects and longitudinal random effects. Because we use default priors combined

with FBF, our proposed model selection approach is fully automatic, which obviates the

need for subjective specification of hyperparameters and makes the method more accessible

for practitioners. We call our two proposed model selection approaches the approximate

reference method (ARM) and the half-Cauchy method (HCM).

To compare the performance of our methods ARM and HCM to the performance of the

DIC, the Watanabe-Akaike information Criterion (WAIC) (Watanabe, 2010), and marginal

likelihood computed by INLA under different parameter settings, we present a simulation

study based on Poisson generalized linear mixed models with a spatial random effect and an

overdispersion random effect. In this simulation study, we vary the sample size, coefficient

of non-null covariates, level of spatial dependence, and overdispersion level. The simulation

study shows that DIC and WAIC cannot reliably distinguish the random effect when there is

another random effect. In contrast, our methods ARM and HCM perform well at detecting

covariates and correct dependence structure. In particular, ARM and HCM always correctly

detect the case of no random effects. Finally, while the performances of the DIC and WAIC

do not improve much with large sample sizes, our proposed ARM and HCM have large

improvement with increasing sample size. In addition, the simulation study shows that

marginal likelihood computed by INLA has similar performance to our methods ARM and
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HCM when selecting covariates. However, marginal likelihood computed by INLA does not

perform well when selecting random effects.

Apart from the DIC, WAIC, and marginal likelihood, there are not many other Bayesian

model selection approaches for GLMMs. One such approach proposed by Cai and Dunson

(2006) for simultaneously selecting fixed and random effects in GLMMs assumes that the

subject-specific random effects have a covariance matrix with all its elements being free

parameters to be estimated. As a consequence, the method proposed by Cai and Dunson

(2006) is only aplicable to problems with replications and can not be readily applied to

problems where the vector of observations is a realization from a structured multivariate

distribution such as GWAS data and spatial areal data. In contrast, because we assume

that each random effect has a covariance matrix that is the product of an unknown variance

component parameter with a known positive semi-definite covariance matrix, our methods

ARM and HCM can be applied to longitudinal data, GWAS data, and spatial areal data.

The remainder of this paper is organized as follows. Section 2 describes the GLMMs that

we consider. Section 3 outlines how the pseudo likelihood approach approximates GLMMs

for non-Gaussian data by computing adjusted observations that are modeled using Gaussian

LMMs. Section 4 introduces priors for model selection, the FBF approach for dealing with

improper priors, and posterior computation. Section 5 presents the results of a simulation

study. Section 6 illustrates our method with applications to two case studies. Section 7

concludes with a discussion and future directions.

The online supporting information contains details about the pseudo likelihood method

(Web Appendix A), additional tables for the case studies (Web Appendix B), one additional

case study (Web Appendix C), several additional simulation studies (Web Appendix D), and

additional figures (Web Appendix E).
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2. GLMMs

Consider a response vector yyy = (y1, y2, . . . , yn)
⊤ of n observations. Let XXX be an n by p

matrix of explanatory variables and βββ be the corresponding p-dimensional vector of fixed

effects. Let ZZZj be an n by qj design matrix and αααj be the corresponding qj-dimensional

vector of random effects, j = 1, . . . , Q. Let vectors xxxi and zzzij be the ith rows of XXX and

ZZZj, respectively. Conditional on linear predictors η1, . . . , ηn, the observations y1, . . . , yn are

independent with probability density function belonging to the exponential family, that is

f(yi|ηi) = exp[yiηi − Bi(ηi) + Ci(yi)], i = 1, . . . , n, where the canonical parameter ηi is

modeled as a linear function of fixed and random effects as ηi = xxx⊤
i βββ +

∑︁
j zzz

⊤
ijαααj. Each

observation yi has mean µi = B′
i(ηi) and variance vi = B′′

i (ηi). In addition, we assume that

each vector of random effects αααj has a multivariate normal distribution with mean vector

000 and covariance matrix τjΣΣΣj, where the variance component parameter τj is unknown and

ΣΣΣj is a known symmetric positive semi-definite matrix. For example, if ααα is a vector of

overdispersion random effects then the corresponding matrix ΣΣΣ is an identity matrix.

As another example, in the case of spatial areal data, we assume that ααα is a vector of

spatial random effects that follows a sum-zero constrained Gaussian Intrinsic Conditional

Autoregressive Model (Keefe et al., 2018, 2019), that is,

ααα|τ ∼ N(000, τΣΣΣ), (1)

where ΣΣΣ is a known positive semi-definite covariance matrix that depends on the neighbor-

hood structure of the spatial subregions. Specifically, an adjacency matrixWWW is defined such

that if subregion i and subregion j are adjacent, the entries in cells (i, j) and (j, i) are 1,

otherwise 0. LetDDDw be a diagonal matrix with each diagonal element equal to the summation

of the corresponding row of WWW . Then, the covariance matrix ΣΣΣ is the Moore-Penrose inverse

of DDDw −WWW (Keefe et al., 2018, 2019). We note that computations for this model may be

performed using the precision matrix. In addition, we note that the knowledge about the
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covariance matrix ΣΣΣ has allowed, for the case of Gaussian hierarchical models with ICAR

random effects, the derivation of a reference prior for the parameters (Keefe et al., 2019),

and formal Bayesian model selection (Porter et al., 2023).

3. Pseudo likelihood Function for GLMMs

A key step in Bayesian model selection is to integrate out random effects from the likelihood

function. However, while for LMMs the random effects can be integrated out analytically,

for GLMMs that is not possible. To overcome this difficulty, here we use a pseudo likeli-

hood approach that approximates a GLMM for non-Gaussian data by computing adjusted

observations that are modeled using an approximate Gaussian LMM.

Let ααα represent all random effects and τττ represent all variance components. Then, the

likelihood function with the relevant but intractable integral over random effects ααα is

L(βββ,τττ |yyy) =

∫︂
p(yyy|ααα,βββ)p(ααα|τττ) dααα

=

∫︂ N∏︂
i=1

[︄
exp

{︄
yi

(︄
xxx⊤
i βββ +

∑︂
j

zzz⊤ijαααj

)︄
−Bi

(︄
xxx⊤
i βββ +

∑︂
j

zzz⊤ijαααj

)︄
+ Ci(yi)

}︄]︄
∏︂
j

[︄
(2π)−

qj
2 |τjΣΣΣj|−

1
2 exp

{︄
−
ααα⊤

j ΣΣΣ
−
j αααj

2τj

}︄]︄
dααα. (2)

In Equation (2), the random effects ααα cannot be integrated out analytically. Our method

approximates the integral in Equation (2) with a Gaussian LMM via a pseudo likelihood

approach. For a Gaussian LMM, the corresponding integral can be solved analytically, and

then the likelihood function of parameters has an analytic expression.

The pseudo likelihood approach was first proposed by Wolfinger and O’Connell (1993). The

pseudo likelihood approach is an iterative procedure that starts by writing the model as yyy =

µµµ+ ϵϵϵ, where µµµ = (µ1, . . . , µn)
′ and ϵϵϵ is a vector of errors with cov(ϵϵϵ) = VVV = diag(v1, . . . , vn).

Let ˆ︁αˆ︁αˆ︁α, ˆ︁βˆ︁βˆ︁β, ˆ︁µˆ︁µˆ︁µ and ˆ︁VVV be the current estimates of ααα, βββ, µµµ and VVV . Here, ˆ︁βˆ︁βˆ︁β is initialized at the

estimate from a GLM fit. Now, approximate µi with a first-order Taylor expansion around



6 Biometrics, May 2023

ααα = ˆ︁αˆ︁αˆ︁α and βββ = ˆ︁βˆ︁βˆ︁β. Rearrange all the terms in yyy = µµµ+ ϵϵϵ such that the terms that depend on

yyy, ˆ︁αˆ︁αˆ︁α, ˆ︁βˆ︁βˆ︁β, and ˆ︁µˆ︁µˆ︁µ appear on the left side of the equation and the remaining terms appear on

the right side of the equation. Multiply both sides by ˆ︁VVV −1
. As a result, the left side of the

equation will have y⋆y⋆y⋆ = ˆ︁VVV −1
(yyy − ˆ︁µˆ︁µˆ︁µ) +XXXˆ︁βˆ︁βˆ︁β +

∑︁
j ZZZjˆ︁αˆ︁αˆ︁αj. The vector yyy⋆ is known as the vector

of pseudo-observations or the vector of adjusted observations. Equating yyy⋆ to the right side

of the equation, we obtain the following model for the adjusted observations.

y⋆y⋆y⋆ ≈ XXXβββ +
∑︂
j

ZZZjαααj + ˆ︁VVV −1
ϵϵϵ,

αααj ∼ N(000, τjΣΣΣj),

ϵϵϵ ∼ N(000,VVV ). (3)

Thus, the pseudo likelihood approach assumes that ϵϵϵ follows a Gaussian distribution with

mean vector 000 and covariance matrix VVV . Substituting VVV with ˆ︁VVV in Equation (3), yyy⋆ can be

approximately modeled with the LMM y⋆y⋆y⋆ ∼ N
(︂
XXXβββ,

∑︁
j τjZZZjΣΣΣjZZZ

⊤
j + ˆ︁VVV −1

)︂
. Therefore, we

have the closed-form pseudo likelihood function

p(y⋆y⋆y⋆|βββ, τ) = (2π)−
n
2

⃓⃓⃓⃓
⃓∑︂

j

τjZZZjΣΣΣjZZZ
⊤
j + ˆ︁VVV −1

⃓⃓⃓⃓
⃓
− 1

2

exp

⎧⎨⎩−1

2
(y⋆y⋆y⋆ −XXXβββ)⊤

(︄∑︂
j

τjZZZjΣΣΣjZZZ
⊤
j + ˆ︁VVV −1

)︄−1

(y⋆y⋆y⋆ −XXXβββ)

⎫⎬⎭ . (4)

Further details about the pseudo likelihood approach appear in Web Appendix A. To perform

model selection, we first use the pseudo likelihood function in Equation (4) in an iterative

manner to estimate the parameters and to obtain adjusted observations yyy⋆. We then use these

adjusted observations y⋆y⋆y⋆ rather than the original observations yyy to perform model selection.

4. Model Selection

We perform model selection based on the pseudo likelihood function given in Equation (4).

Similarly to Ten Eyck and Cavanaugh (2018), we use the same vector of adjusted observations

to compare all candidate models’ posterior probabilities. Specifically, we compute the vector



Model selection for GLMMs 7

of adjusted observations using the full model with all candidate regressors and all candidate

random effects. In addition, consider the model space M = {Mc, c = 1 . . . C}, with C

possible models. We assume model Mc has Kc regressors, where XXXc is the corresponding

matrix of explanatory variables and βββc is the corresponding vector of coefficients. Further,

model Mc has Qc types of random effects. Let τττ c = (τc,1, . . . , τc,Qc) be the vector of variance

components of the Qc types of random effects in the model Mc. The integrated likelihood

based on the vector of adjusted observations y⋆y⋆y⋆ is

p(y⋆y⋆y⋆|Mc) =

∫︂ ∫︂
p(y⋆y⋆y⋆|βββc, τττ c)π(βββc, τττ c|Mc) dβββcdτττ c, (5)

where π(βββc, τττ c|Mc) is the prior distribution of (βββc, τττ c) conditional on model Mc. Let π(Mc)

be the prior probability of model Mc. Then, application of Bayes Theorem yields posterior

model probabilities P (Mc|y⋆y⋆y⋆) = p(y⋆y⋆y⋆|Mc)π(Mc)/
∑︁C

r=1 p(y
⋆y⋆y⋆|Mr)π(Mr) ∝ p(y⋆y⋆y⋆|Mc)π(Mc),

In Section 4.1, we specify the priors for model parameters. In Section 4.2, we specify the

priors on the model space. Section 4.3 discusses approximation of the integral in Equation (5).

In Section 4.4, we propose an FBF approach (Porter et al., 2023) to perform model selection

with improper priors.

4.1 Priors for Model Parameters

We consider the approximate reference prior proposed by Ferreira et al. (2021) in the context

of LMMs for βββ and the reciprocal of τ , which is based on the reference prior proposed by

Keefe et al. (2019). In what follows, we consider the implied reference prior for τ obtained

by transformation of variables. For simple notation, let M without subscript represent a

general model, βββ represent the corresponding vector of regressor coefficients, and τ represent

the variance component. In the reference prior (Keefe et al., 2019), all the parameters are

independent. The vector of regression coefficients βββ is assigned a uniform prior on Rp. In

addition, as τ goes to infinity the reference prior π(τ) is proportional to τ−2. Further, as

τ goes to 0 the reference prior is proportional to a constant. Based on the tail behavior
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of the reference prior for τ , Ferreira et al. (2021) proposed the approximate reference prior

π(τ) ∝ (1+ τ
aτ
)−2, where aτ is a hyperparameter. We set aτ equal to 2. The choice of aτ = 2

is equivalent to the choice made by Ferreira et al. (2021) for Gaussian data. In addition, our

simulation study shows that this choice also works well for GLMMs. Hence, for βββ we use the

flat prior π(βββ|M) ∝ 1, and for τ we use the approximate reference prior

π1(τ |M) =
1

2(τ/2 + 1)2
, τ ⩾ 0. (6)

This approximate reference prior is related to the half-Cauchy prior π(τ) ∝ 1
τ2+1

, which

has the same tail behavior. Gelman (2006) proposed a half-Cauchy prior, however, for the

standard deviation of random effects in a two-level Gaussian model. Assuming a half-Cauchy

prior for the square root of the variance component parameter τ implies for τ the prior

density π2(τ) ∝ τ−
1
2 (τ + 1)−1 (Polson and Scott, 2012). Thus, π2(τ) = O(τ−

1
2 ) for τ → 0

and π2(τ) = O(τ−
3
2 ) for τ → ∞. Hence, the half-Cauchy prior for

√
τ has more mass near

zero and more mass for large values of τ than the approximate reference prior for τ given in

Equation (6). Here, we consider two variants of our pseudo-likelihood-based method: ARM,

which uses the approximate reference prior given in Equation (6); and HCM, which uses the

half-Cauchy prior for
√
τ . We compare our methods ARM and HCM to the DIC and WAIC

in the simulation studies presented in Section 5.

4.2 Priors on the Model Space

Let K denote the number of candidate covariates and Q denote the number of candidate

random effects types. For example, in an application where we may have spatial random

effects and/or overdispersion random effects, Q = 2. In addition, let Kc denote the number

of covariates in ModelMc. For fixed effects, we use priors from Scott and Berger (2010), which

automatically correct for multiplicity. Specifically, the prior probability for modelMc withKc

covariates is P (Mc with Kc covariates) = 1/
[︂
(K + 1)

(︁
K
Kc

)︁]︂
. With respect to random effects,

there are 2Q possibilities for inclusion and exclusion of random effects. Assuming that each
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random effect has 0.5 prior inclusion probability, the prior probability for Model Mc with Qc

types of random effects is P (Mc with Qc types of random effects) = 1/2Q. Because usually

in practice the number of candidate random effects types Q is small, a discrete uniform

prior for the inclusion of random effects is reasonable. Assuming a priori independence of

inclusion of fixed effects and random effects, the prior probability for model Mc is P (Mc) =

1/
[︂
2Q(K + 1)

(︁
K
Kc

)︁]︂
.

4.3 Integrated Likelihood Methods

After the priors for parameters have been defined, the integrated likelihood given in Equa-

tion (5) based on the adjusted observations y⋆y⋆y⋆ becomes

p(y⋆y⋆y⋆|Mc) =

∫︂ ∫︂
p(y⋆y⋆y⋆|βββc, τττ c)π(βββc, τττ c|Mc) dβββcdτττ c

∝
∫︂ ∫︂

exp

⎧⎨⎩−1

2
(y⋆y⋆y⋆ −XXXcβββc)

⊤

(︄
Qc∑︂
j

(τcjZZZcjΣΣΣcjZZZ
⊤
cj) +

ˆ︁VVV −1

)︄−1

(y⋆y⋆y⋆ −XXXcβββc)

⎫⎬⎭⃓⃓⃓⃓
⃓
Qc∑︂
j

(τcjZZZcjΣΣΣcjZZZ
⊤
cj) +

ˆ︁VVV −1

⃓⃓⃓⃓
⃓
− 1

2

π(τττ c) dβββcdτττ c.

The vector of regression coefficients βββc can be integrated out analytically. After integrating

out βββc, we can write the integrated likelihood as

p(y⋆y⋆y⋆|Mc) =

∫︂
p(y⋆y⋆y⋆, τττ c|Mc) dτττ c

∝
∫︂

exp

[︃
1

2
y⋆y⋆y⋆⊤

{︁
HHHHHHHHH−1

c XXXc(XXX
⊤
cHHHHHHHHH

−1
c XXXc)

−1XXX⊤
cHHHHHHHHH

−1
c −HHHHHHHHH−1

c

}︁
y⋆y⋆y⋆
]︃

⃓⃓
HHHHHHHHH−1

c (XXX⊤
cHHHHHHHHH

−1
c XXXc)

−1
⃓⃓ 1
2 π(τττ c) dτττ c, (7)

whereHHHc =
∑︁Qc

j (τcjZZZcjΣΣΣcjZZZ
⊤
cj)+

ˆ︁VVV −1
. Note that the vector of variance components τττ c cannot

be integrated out analytically. To compute the integral in Equation (7), we first perform a

logarithm transformation on τττ c. Let δδδc = log(τττ c) be the vector obtained by applying the

logarithm transformation to each element of τττ c. Then, we integrate out δδδc using a Laplace
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approximation to obtain∫︂
p(y⋆y⋆y⋆, τττ c|Mc) dτττ c =

∫︂
p(y⋆y⋆y⋆, exp(δδδc)|Mc) exp(δδδc) dδδδc

≈ (2π)
Qc
2

⃓⃓⃓
q′′(ˆ︁δδδc)⃓⃓⃓− 1

2
exp

{︂
−q(ˆ︁δδδc)}︂ , (8)

where q(δδδc) = −1
2
y⋆y⋆y⋆⊤

[︁
HHH−1

c XXXc(XXX
⊤
c HHH

−1
c XXXc)

−1XXX⊤
c HHH

−1
c −HHH−1

c

]︁
y⋆y⋆y⋆ − 1

2
log |HHH−1

c (XXX⊤
c HHH

−1
c XXXc)

−1|

− log π(exp(δδδc)) + δδδc , ˆ︁δδδc is the point that minimizes q(δδδc), and q′′(δδδc) is the Hessian matrix.

4.4 Fractional Bayes Factors

In order to obtain the posterior model probabilities of interest, we use a fractional Bayes

factor (FBF) approach. The FBF is a modification of the Bayes factor that allows for

improper priors on parameters (O’Hagan, 1995).

To define the usual Bayes factor, let the baseline model Ml be the model with the largest

integrated likelihood in the model space. Then, the Bayes factor BFcl of model Mc ver-

sus the baseline model Ml is defined as the ratio of their integrated likelihoods BFcl =

p(y⋆y⋆y⋆|Mc)/p(y
⋆y⋆y⋆|Ml). Hence, we can compute the posterior probability of model Mc as pro-

portional to its prior probability times its Bayes factor versus the baseline model, that is

P (Mc|y⋆y⋆y⋆) ∝ P (Mc)p(y
⋆y⋆y⋆|Mc)/p(y

⋆y⋆y⋆|Ml) ∝ BFclP (Mc).

Note that the prior on the regression coefficients π(βββc|Mc) ∝ d is improper, where d is

an arbitrary constant. Thus, the Bayes factor computed with the integrated likelihood from

Equations (7) and (8) is only defined up to an unspecified constant of proportionality and

cannot be used to compare models directly.

To solve this problem, we use the fractional Bayes factor (FBF, O’Hagan (1995)) to

approximate the Bayes factor. Porter et al. (2023) developed the fractional Bayes factor

method for Gaussian hierarchical models with ICAR random effects. We use the FBF

approach to train the improper prior so that we can compute a meaningful Bayes factor.

By training the improper prior, we mean using Bayes Theorem to combine the improper
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prior with a fraction of the likelihood to obtain a proper distribution (O’Hagan, 1995;

Porter et al., 2023). We can then use this latter distribution as a trained prior to compute

a meaningful Bayes factor. Specifically, here we train the prior with a fraction b of the

likelihood function. The trained prior density for model Mc is obtained by Bayes Theorem

as πb(βββc, τττ c) = pb(y⋆y⋆y⋆|βββc, τττ c)π(βββc, τττ c|Mc)/
∫︁
pb(y⋆y⋆y⋆|βββc, τττ c)π(βββc, τττ c|Mc) dβββcdτττ c. The integrated

likelihood is then computed as an integral of the product of the likelihood function raised to

1− b and the trained prior. Following O’Hagan (1995), the resulting integrated likelihood of

model Mc, called the fractional integrated likelihood, is equal to

qc(b,y
⋆y⋆y⋆) =

∫︂
p1−b(y⋆y⋆y⋆|βββc, τττ c)π

b(βββc, τττ c) dβββcdτττ c

=

∫︂
p1−b(y⋆y⋆y⋆|βββc, τττ c)

pb(y⋆y⋆y⋆|βββc, τττ c)π(βββc, τττ c|Mc)∫︁
pb(y⋆y⋆y⋆|βββc, τττ c)π(βββc, τττ c|Mc) dβββcdτττ c

dβββcdτττ c

=

∫︁
p(y⋆y⋆y⋆|βββc, τττ c)π(βββc, τττ c|Mc) dβββcdτττ c∫︁
pb(y⋆y⋆y⋆|βββc, τττ c)π(βββc, τττ c|Mc) dβββcdτττ c

. (9)

The size of the training fraction b should be chosen carefully. When b is too small, the

denominator in Equation (9) may diverge. If b is too large, a substantial part of the integrated

likelihood is used to train the prior on the parameters, and then the remaining information

in the integrated likelihood used to update the prior model probabilities will lead to less

distinctive posterior model probabilities. Here, we consider a training fraction size equal to

b = m/n, where m is the equivalent training size. To guide the choice of m in our considered

GLMM context, we use the fact that for LMMs with the reference prior proposed by Keefe

et al. (2019) the minimal value of m that guarantees propriety of the fractional integrated

likelihood is p + 1 (Porter et al., 2023). In particular, in all the GLMM applications we

present in Section 6, the training fraction b = (p+ 1)/n yields well-defined Bayes factors.

Then, the FBF of model Mc versus model Ml is defined as BF b
cl = qc(b,y⋆y

⋆y⋆)
ql(b,y

⋆y⋆y⋆)
. Next, we

compute the posterior probability of model Mc as proportional to the FBF, BF b
cl, times the

prior probability of model Mc, that is P
b(Mc|yyy) = BF b

cl × P (Mc)/
[︂∑︁C

k=1BF b
kl × P (Mk)

]︂
.
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5. Simulation Study

To investigate the performance of our proposed model selection methods ARM and HCM

when compared to the widely used DIC, WAIC and marginal likelihood computed by INLA,

we perform a simulation study for different combinations of parameter settings. Here we

present results for Poisson GLMMs. In the Web Appendix C we present results for Bernoulli

GLMMs. For each combination of parameter settings, we generate 100 datasets. We simulate

samples on regular square grids and consider three sample sizes, n = 100, 400, and 900.

Each sample may have spatial dependence based on a first-order neighborhood structure

modeled with a vector of spatial random effects ααα1 following the ICAR distribution given in

Equation (1). For the variance component τ1 of the spatial random effects, we consider values

0, 0.03, 0.05, 0.1, or 1, where τ1 = 0 implies no spatial dependence. We also consider the

possibility of overdispersion random effect ααα2 in the model. We set the variance component

τ2 of the overdispersion random effect to 0, 0.05, 0.1, 0.5, or 1, where τ2 = 0 implies no

overdispersion. We consider 4 candidate covariates x1i, x2i, x3i and x4i sampled from a

standard normal distribution. We assume that βββ = (β0, β1, β2, 0, 0)
⊤, thus the last two

covariates are not in the true model. Here β0 is the intercept, with values equal to 1, 2,

or 4. We let β1 = β2 with values 0, 0.1, 0.2, 0.3, 0.5, or 1. When β1 and β2 are both

equal to 0, there is no covariate in the true model. Conditionally independent Poisson

observations yi are generated with the GLMM yi|λi
ind∼ Poisson(λi), i = 1 . . . n, with log λi =

β0 + β1x1i + β2x2i + β3x3i + β4x4i + α1i + α2i, spatial random effects ααα1 ∼ N(000, τ1ΣΣΣ), and

overdispersion random effects ααα2 ∼ N(000, τ2III).

For each parameter setting, there are C = 64 candidate models in total. Specifically, there

are 24 possible combinations of fixed effects. In addition, there are 4 possible combinations

of random effects types, one with both spatial random effects and overdispersion random

effects, one with only spatial random effects, one with only overdispersion random effects,
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and one without any random effects. We calculate posterior model probabilities for all 64

models, and we compute posterior inclusion probabilities for each of the 4 covariates, for the

spatial random effect, and for the overdispersion random effect.

We compare our model selection methods ARM and HCM to the DIC, the WAIC and

marginal likelihood computed by the R package INLA (Rue et al., 2009). For the ARM and

HCM, we decide to include a component in the selected model if the posterior inclusion

probability of that component is larger or equal to 0.5, that is, if that component is in

the median probability model (Barbieri and Berger, 2004). For the criteria computed by

INLA, we select the model with the lowest DIC and WAIC values, and the highest marginal

likelihood, respectively. For the three criteria computed by INLA, we consider the INLA

default prior specification as well as our proposed AR prior and HC prior.

[Figure 1 about here.]

Because currently the most widely used criteria for Bayesian selection of GLMMs are the

DIC and WAIC computed with INLA default priors, here we compare these criteria with

our ARM and HCM. We present a comparison of our methods ARM and HCM to DIC

and WAIC computed using our AR and HC priors in Section D4 of Web Appendix D. The

conclusions are similar to those for DIC and WAIC computed with default INLA priors

presented here. Figure 1 presents the probability of each competing method selecting the

correct covariate structure as a function of the value of their regression coefficients β1 = β2.

Here, there are spatial random effects with τ1 = 0.05 and overdispersion random effects with

τ2 = 0.05. Three sample sizes are considered: n = 100, 400, 900. Two values for the intercept

are considered: β0 = 1 and 4. Figure 1 shows that the ARM and HCM perform much better

than the DIC and the WAIC computed with INLA’s default priors . For example, in the most

challenging case considered with n = 100 and β0 = 1, the ARM and HCM have a higher

probability than the DIC and WAIC of selecting the correct covariate structure when their
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regression coefficients β1 and β2 are zero. In addition, as the value of β1 = β2 increases, the

probability of the ARM and HCM to correctly select the true non-null covariates x1 and x2

increases more quickly than that of the DIC and the WAIC. Finally, the probability of ARM

and HCM to correctly select the two non-null regressors increases much closer to one than

those of the DIC and WAIC as the sample size increases and as the intercept value increases.

As the sample size increases, the probability of ARM and HCM detecting covariates with

small coefficients increases substantially. For example, the left panels of Figure 1 show that

when the intercept is equal to 1, the probabilities of our proposed methods choosing the

correct covariates structure when the coefficient is equal to 0.1 are about 10%, 60%, and

90% for sample sizes 100, 400, and 900, respectively.

[Figure 2 about here.]

Figure 2 investigates the impact of different magnitudes of the variance components on

the probability of selecting the correct covariate structure as a function of the value of the

regression coefficients β1 = β2. Panels (a) and (b) of Figure 2 present settings with small

(τ1 = 0.01 and τ2 = 0) and large (τ1 = 1 and τ2 = 1) variance components, respectively. In

both panels, the sample size is n = 400 and the intercept is β0 = 1. In the small variance

components setting, ARM and HCM perform comparably to the DIC and WAIC for small

values of β1 = β2, but our methods ARM and HCM greatly outperform the DIC and WAIC

for moderate to large values of β1 = β2. Meanwhile, in the more challenging large variance

components setting, when β1 = β2 = 0, our ARM and HCM correctly select the model

with no regressor in the model for 100% of the simulated datasets samples. In contrast,

when β1 = β2 = 0, the DIC and WAIC select the wrong covariate structure for 20% of the

simulated datasets, respectively. Finally, as the magnitude of β1 = β2 increases, in comparison

to the DIC and WAIC, ARM and HCM achieve much higher probabilities of selecting the

correct model.
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[Figure 3 about here.]

Figure 3 presents the probability of selecting correct spatial random effects structure as a

function of the value of the variance component for the spatial random effects. Results are

shown for sample sizes n = 100, 400 and 900, and variance of overdispersion random effects

τ2 = 0 and 0.1. Figure 3 shows that the DIC and WAIC have low probability of selecting

the model with no spatial random effects when the true model does not have spatial random

effects; In addition, this performance does not improve much as the sample size increases from

400 to 900. In contrast, our methods ARM and HCM have large probabilities of selecting the

correct spatial random effects structure when the true model does not have spatial random

effects, and have large probabilities of selecting spatial random effects when the variance

component for the spatial random effects is large. Finally, the performance of ARM and

HCM at correctly detecting spatial dependence greatly improves as the sample size increases.

ARM, HCM, DIC and WAIC’s performance when selecting overdispersion random effects

is similar to selecting spatial random effects. Web Figure S1 in the supporting information

presents the probability of selecting correct overdispersion structure as a function of the

value of the variance for overdispersion. Web Figure S1 shows that the DIC and WAIC

have low probability of selecting a model with no overdispersion random effects even when

overdispersion is not present in the true model, and this undesirable performance does not

improve much when the sample size increases. In contrast, our methods ARM and HCM

have large probabilities of selecting correct overdispersion structure when overdispersion is

not present in the true model, and have large probabilities of selecting overdispersion when

the proportion of variance due to overdispersion is large. Finally, the performance of ARM

and HCM at correctly detecting overdispersion greatly improves as the sample size increases.

Web Figures S12, S13, and S14 present a comparison of the performance of INLA marginal

likelihood with our ARM and HCM methods. Web Figure S12 shows that INLA marginal
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likelihood with INLA’s default priors is worse than our methods at selecting covariates

when coefficients of covariates are small. INLA marginal likelihood with INLA’s default

prior or INLA marginal likelihood with our proposed priors are better than our methods

ARM and HCM when the regression coefficient is large. For spatial random effects inclusion,

Web Figure S13 shows that INLA marginal likelihood with any of the considered priors

has difficulties to detect spatial random effects. For overdispersion random effects, Web

Figure S14 shows that when there is no spatial random effects in the model, INLA marginal

likelihood can correctly select overdispersion random effects. However, when there are spatial

random effects in the model, marginal likelihood computed by INLA cannot correctly select

overdispersion random effects. In summary, INLA marginal likelihood with our proposed

priors works well for selection of regressors but does not work well for the selection of random

effects. Meanwhile, our ARM and HCM methods work well in both cases.

6. Case Studies

6.1 Longitudinal Epilepsy Seizure Data

We analyze a dataset on epilepsy seizures previously analyzed by Thall and Vail (1990),

Breslow and Clayton (1993), and others. The data were collected in four biweekly visits

of 59 epileptics during a clinical trial to evaluate the effectiveness of a drug to control

seizures (Leppik et al., 1987). The response variable is the number of seizures yij for patient

i on visit j. The most general model we consider is yij|µij
ind∼ Poisson(µij), with log(µij) =

xxx⊤
ijβββ+α1i+zjα2i+α3ij, ααα1 ∼ N(000, τ1I59), ααα2 ∼ N(000, τ2I59), and ααα3 ∼ N(000, τ3I236), i = 1 . . . 59

and j = 1 . . . 4, where xxxij denotes a 6-dimensional vector with a one for intercept and 5

covariates. The 59 subjects were randomly assigned to a new drug or a placebo. The first

covariate is the treatment indicator (Trt), where Trt=1 indicates that the patient received the

treatment and Trt=0 indicates that the patient received the placebo. The second covariate
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is the baseline level of seizures (Base), equal to the logarithm of the average number of

epileptic seizures per two weeks recorded in the 8-week period before treatment. The third

covariate is the interaction term of Base and Trt. The fourth covariate is the logarithm of

age (Age). And the fifth covariate is the visit number (Visit), with the 4 visits coded as

-3, -1, 1 and 3. Breslow and Clayton (1993) mentioned that preliminary analysis indicated

that the counts were substantially lower during the fourth visit. Thus, they also define a

binary variable V4, such that V4=1 indicates the fourth visit and V4=0 indicates the other

visits. In the model above, βββ is the vector of regression coefficients, ααα1 = (α11, . . . , α1 59) is

the vector of patient-specific random effects, ααα2 = (α21, . . . , α2 59) is the vector of patient-

specific random effects for the slope of the variable Visit with zzz = (−0.3, −0.1, 0.1, 0.3), and

ααα3 = (α311, . . . , α3 59 1, α312, . . . , α3 59 2, . . . , α314, . . . , α3 59 4) is the vector of overdispersion

random effects.

The covariates Trt, Base, Age and Visit can be included in the model independently.

However, the interaction term between Trt and Base is only included when both Trt and Base

are in the model. Thus, there are 20 possible combinations of covariates. For the dependence

structure, we follow the four cases considered by Breslow and Clayton (1993): no random

effects in the model; only patient-specific random effects ααα1; ααα1 and overdispersion random

effects ααα3; ααα1 and patient-specific random effects for the slope of the variable Visit ααα2. Finally,

we assume that the vectors of random effects ααα1, ααα2 and ααα3 are independent. Therefore, the

model space has 80 models, composed by 20 combinations of covariates and 4 possible settings

of random effects.

[Table 1 about here.]

Table 1 presents the posterior inclusion probabilities of the fixed and random effects. Both the

ARM and the HCM indicate that the baseline level of seizures (Base) should be included in

the model. However, the posterior inclusion probabilities do not provide support for any of the
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other covariates. Further, both ARM and HCM strongly indicate that ααα2, the patient-specific

random effects for the slope of the variable Visit should not be included in the model. Finally,

both ARM and HCM strongly indicate the need to include the patient-specific random effect

ααα1 and overdispersion random effect ααα3.

Web Table S1 in the supporting information presents a summary of the model selection

results for the epilepsy data by comparing methods ARM, HCM, DIC and WAIC. A check

mark appears next to the effects (rows) selected by each method (column). In addition, Web

Table S1 presents the selection of fixed effects and variance components based on estimates

and standard errors reported by Breslow and Clayton (1993) for two models fitted with PQL,

which we denote by PQL1 and PQL2. Web Table S2 presents estimates and standard errors

for the parameters based on the full model. Model PQL1 includes random effects ααα1 and ααα2

while Model PQL2 includes random effects ααα1 and ααα3. Interestingly, while the original PQL

method cannot choose between Model PQL1 or Model PQL2, our ARM and HCM clearly

show that the data support exclusion of random effect ααα2 and inclusion of random effects ααα1

and ααα3. Further, the DIC and WAIC agree with the ARM and HCM and also choose random

effects ααα1 and ααα3. Furthermore, in terms of fixed effects the DIC and WAIC are the least

parsimonious, choosing Base, Trt and Trt×Base, while PQL chooses Base and Trt. Finally,

the ARM and HCM are the most parsimonious and choose only the Base covariate.

In addition to selecting more parsimonious models, our ARM and HCM provide more

definitive support for the inclusion or exclusion of each effect in the form of Bayesian

posterior probabilities. For example, the posterior inclusion probabilities of the patient-level

random effects ααα1, overdispersion random effects ααα3, and the covariate Base are all equal to

one. Further, there is a lot less support for the covariate V4, which has posterior inclusion

probability of 0.12 by the ARM and 0.11 by the HCM. Furthermore, both ARM and HCM

provide posterior inclusion probability equal to zero for the interaction between Trt and
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Base. Finally, the simulation study presented in Section 5 shows that we can rely on the

uncertainty quantification provided by the ARM and HCM.

6.2 Spatial Lip Cancer Data

In this section, we present an analysis of the Scottish lip cancer dataset previously analyzed

by Clayton and Kaldor (1987), Breslow and Clayton (1993), Ferreira and De Oliveira (2007),

among many others. This dataset provides the number of male lip cancer cases in the 56

counties of Scotland during the period 1975-1980, as well as the percentage of the work force

employed in agriculture, fishing, or forestry (AFF) as a covariate. The most general model

we consider is yi|µi
ind∼ Poisson(µi), log(µi) = log(ni) +xxx⊤

i βββ + α1i + α2i, ααα1 ∼ N(000, τ1ΣΣΣ), and

ααα2 ∼ N(000, τ2III56), i = 1 . . . 56, where ni is the expected number of lip cancer cases in the

ith county, calculated based on the age distributions by counties. In this analysis, the ni’s

are assumed to be known constants. In addition, the vector xxxi is a two-dimensional vector

with one as the first element and AFF for the ith county as the second element. Further,

ααα1 is a vector of spatial random effects following a sum-zero constrained Gaussian Intrinsic

Conditional Autoregressive model (Keefe et al., 2018) and modeled by Equation (1). Finally,

ααα2 is a vector of overdispersion random effects.

There are two possible combinations for the fixed effects: with or without the covariate

AFF. For the random effects, we follow the options considered by Breslow and Clayton

(1993). When ααα1 and ααα2 are in the model at the same time, the PQL estimate of the

overdispersion variance τ2 is 0. Thus, we consider models with only three random effects

combinations: spatial random effects ααα1; overdispersion random effects ααα2; and no random

effects.

[Table 2 about here.]

Table 2 presents the posterior inclusion probabilities for the fixed and random effects. Both

the ARM and HCM select the model with the covariate AFF and spatial random effect ααα1.
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Web Table S3 in the supporting information presents the DIC and WAIC for the 6 models

considered. In contrast to the results of the ARM and HCM, DIC and WAIC select the

model without the covariate AFF but with spatial random effect ααα1. Web Table S4 in the

supporting information summarizes model selection results for the ARM, HCM, DIC, WAIC,

as well as the selection of model components based on PQL methods reported by Breslow

and Clayton (1993) for two models: PQL1 includes ααα1 and PQL2 includes ααα2. Results from

PQL for the AFF regressor agree with the results from the HCM and ARM. An advantage

of the HCM and ARM over PQL is that they clearly indicate that the model should include

a spatial random effect and not include overdispersion.

7. Discussion

We have proposed a novel Bayesian method for model selection for GLMMs. Our approach

is based on a pseudo likelihood approximation of GLMMs by LMMs leading to a closed

form solution for integrating out the random effects. We consider two priors for the model

parameters. First, we use an approximate reference prior that is uniform for the fixed effects

and has the tail behavior of the half-Cauchy prior for the variance parameters. Second, while

keeping the improper flat prior for the fixed effects, we consider the half-Cauchy prior for

the square root of the variance parameters (Gelman, 2006; Polson and Scott, 2012). Finally,

to deal with the prior impropriety we have developed a fractional Bayes factor approach.

The simulation study has shown that our proposed methods ARM and HCM perform

well for correctly selecting both covariates and dependence structure. ARM and HCM

assign high posterior inclusion probability to covariates with large coefficients and also

high posterior inclusion probability to random effects with large variance components. In

particular, ARM and HCM are better than DIC and WAIC at correctly selecting covariates.

In cases where random effects have large variances, the ability of DIC and WAIC to correctly

select covariates is tremendously reduced. In contrast, ARM and HCM do not suffer as
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badly when selecting covariates in the presence of random effects with large variances. In

addition, DIC and WAIC have high false positive rates and often select null fixed and random

effects. In contrast, ARM and HCM correctly assign low posterior inclusion probability to

null covariates and to null random effects. We also compared our methods with marginal

likelihood computed by INLA. Our results show that when we use INLA with our priors

instead of the default INLA priors, the marginal likelihood computed by INLA and the

marginal likelihood computed by our pseudo likelihood approach work similarly for the

selection of regression coefficients. However, the marginal likelihood computed by INLA

does not work well for the selection of spatial random effects and overdispersion random

effects. Therefore, it seems that our pseudo likelihood approximation works better than the

INLA approximation to the marginal likelihood for the selection of random effects.

We illustrate the application of our proposed methods ARM and HCM with three case

studies. In the first case study, we consider epilepsy seizures as a type of longitudinal

count data. ARM and HCM are more parsimonious, selecting baseline covariate, patient-

level random effects and overdispersion random effects. DIC and WAIC select two more

covariates: treatment and interaction term between baseline and treatment. In the second

case study, we study Scottish lip cancer data as a type of spatial count data. Our methods

ARM and HCM select spatial dependence and covariate AFF, whereas DIC and WAIC

select the model without covariate AFF but include spatial random effects. In the third case

study, presented in Web Appendix C, we look at binary salamander mating data. For fixed

effects, our methods ARM and HCM select WSF and WSF×WSM, whereas DIC and WAIC

select all three covariates. For random effects, our two methods ARM and HCM have totally

different results than DIC and WAIC: while DIC and WAIC select male random effect, our

methods ARM and HCM select female random effect. Given the results from the simulation

study, we recommend the models selected by ARM and HCM.
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There are many potential avenues for future research. One possible future research topic

is the use of Bayesian model averaging for computing credible intervals for regression coef-

ficients. This can be facilitated by the fact that our methods provide posterior probabilities

for different models. Another promising research direction is the use of nonlocal priors for the

fixed effects. Finally, another possible research topic is model selection for GLMMs when the

number of possible regressors is much larger than the sample size. We are currently working

on the latter two research topics and will report the results in a future manuscript.
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Figure 1. Probability of selecting the correct covariate structure as a function of the value
of the regression coefficient, settings: τ1 = 0.05, τ2 = 0.05, n=100 (top row), n=400 (middle
row), n=900 (bottom row), and β0 = 1 (left column), β0 = 4 (right column).
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(a) τ1 = 0.01, τ2 = 0 (b)τ1 = 1, τ2 = 1

Figure 2. Probability of selecting the correct covariate structure as a function of the value
of the regression coefficient, settings: (a) τ1 = 0.01 and τ2 = 0, and (b) τ1 = 1 and τ2 = 1, both
with sample size n = 400 and intercept value β0 = 1. (a) has weak dependence structure. (b)
has strong dependence structure. Dependence structure can affect our method’s performance
for detecting covariates with small coefficients. However, the DIC and WAIC have difficulty
detecting covariates even with large coefficients when spatial dependence is strong.
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Figure 3. Probability of selecting the correct spatial random effects structure as a function of the value of

variance component for spatial random effects. Settings: β0 = 2, β1 = β2 = 1, n=100 (top row), n=400 (middle row),

n=900 (bottom row), and τ2 = 0.1 (left column), τ2 = 0 (right column). If the spatial variance proportion is zero

then there is no vector of spatial random effects in the model, and the correct decision is to not select the vector of

spatial random effects.
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Table 1
Epilepsy data: posterior inclusion probabilities of fixed and random effects

variable ARM HCM

fixed effect

Base 1 1
Trt 0.14 0.04
Trt × Base 0 0
Age 0.03 0.01
VVV4 0.12 0.11

random effect
ααα1 1 1
ααα2 0 0
ααα3 1 1
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Table 2
Lip cancer data: posterior inclusion probabilities of fixed and random effects

variable ARM HCM
fixed effect AFF 0.93 0.92

random effect
ααα1 1 1
ααα2 0 0
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