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Abstract
Hemorheology is the study of blood flow and the mechanical stresses and kinematics involved. The Casson constitutive 
equation is a popular and simple model used to describe the steady shear rheology of blood, with only two parameters that 
specify an infinite shear viscosity and a yield stress that depend on blood physiology. Previous literature has identified 
hematocrit and fibrinogen concentration as the two most important physiological factors that affect blood flow, but previous 
parameterizations of the Casson model may not be reliable due to the use of non-standardized data sets. This study uses 
machine learning and the largest standardized dataset to improve the parameterization of the Casson model with respect 
to hematocrit and fibrinogen concentration for healthy individuals. The study also employs machine learning to identify a 
potential additional factor, the mean corpuscular hemoglobin (MCH), that may affect blood rheology. The proposed approach 
demonstrates the potential for machine learning to improve the connection between physiology and blood rheology with 
possible implications in cardiovascular diagnostics.
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Introduction

Cardiovascular disease is the leading cause of death in the 
USA, making up a quarter of the national death toll (CDC 
2022). Risk factors of cardiovascular diseases are typically 
diagnosed by classifying anomalies such as high blood pres-
sure or cholesterol (Fryar et al. 2012). Early diagnosis of 
these diseases improves the possibility of successful treat-
ment (Kyrle and Eichinge 2005; Torpy et al. 2007). Risk 
factors are usually assessed by routine biochemical blood 
tests that examine levels such as low-density lipoprotein 
(LDL) cholesterol, blood cell count, and triglycerides 
(MayoClinic 2021). Physicians decide to conduct further 

specific biochemical tests by comparing risk factors to a 
healthy range. While values outside the healthy range are 
indicative of potential disease, they do not provide a possible 
causative link to blood flow, which itself may be important 
in cardiovascular disease diagnostics and prevention (Din-
tenfass 1974; Beris et al. 2021). Consequently, numerous 
researchers are exploring aspects of blood rheology as a 
potential indicator of cardiovascular health as well as a pos-
sible diagnostic of disease (Connes et al. 2016; Hitsumoto 
2017; Javadi et al. 2022; Tabesh et al. 2022).

Given that one primary function of blood is to transport 
oxygen to cells by diffusing through vascular walls, serious 
damage—often irreversible—occurs to tissues with inter-
rupted flow (Dintenfass 1974). For example, an eye disease 
called retinopathy occurs when the smallest capillaries lack 
oxygen and develop a microstroke (Torpy et al. 2007). Hard-
ened red blood cells are a crucial factor behind retinopathy 
and play a key role in the rheology of blood. Many bio-
chemical markers are identified in the presence of patho-
logical conditions, but blood rheology may provide a more 
direct link to the disease’s manifestation. There is evidence 
in the literature for correlations between blood rheology and 
diseases such as sickle cell anemia (Connes et al. 2016), 
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diabetes mellitus (Le Devehat et al. 2004), and hypertension 
(Chien 1986).

There are many attempts from the literature to recom-
mend blood rheology as an important parameter for routine 
blood tests because of its relation to cardiovascular disease 
(Lowe et al. 2000; Baskurt and Meiselman 2008; Lemonne 
et al. 2014; Hitsumoto 2017; Tabesh et al. 2022). There can-
not be a single healthy range for every patient as the mean 
value of blood viscosity is not sufficient to describe the vari-
ability in a healthy population. Therefore, we need a model 
to reduce this variability. The diagnosis must be personalized 
to understand if a change in rheology comes from physiol-
ogy variations or from cardiovascular disease. A physiologi-
cal parameterization of rheology allows a physician to com-
pare a patient’s empirical results against a predicted healthy 
range for a patient’s particular blood rheology. A model that 
quantifies variations of rheology parameters in healthy blood 
could also determine deviations that are presented by drugs 
such as statins or aspirin (Lowe et al. 2000; Rosenson et al. 
2004), or disease such as thrombosis or hypertension (Chien 
1986; Kyrle and Eichinge 2005). For example, the yield 
stress may increase within the healthy range of fibrinogen 
concentration, and it is important to distinguish whether the 
high yield stress is a result of increased fibrinogen concen-
tration or a disease. In industrial manufacturing rheology is 
ubiquitous as a measurement for quality control (Gahleitner 
1999), which is comparable to how blood rheology is seen as 
a potential tool to screen for abnormalities in patient’s blood 
flow. We limit our investigation here to the case of the steady 
shear rheology of blood from healthy donors.

While the prior discussion shows that many disease’s 
manifest in atypical blood rheology, there are already sig-
nificant variation in blood rheology of healthy individuals 
(Horner 2020). The potential for using blood rheological 
measurements to aid in diagnosis of disease states first 
requires a quantitative connection between blood physiol-
ogy and rheological properties in healthy individuals as a 
basis. The work presented here is a step toward developing 
a better, quantitative relationship between blood physiology 
and steady shear blood rheology in healthy individuals by 
exploiting both improvements in experimental data sets for 
healthy donors (Horner 2020) as well as advanced data sci-
ence using machine learning (Beris et al. 2021).

The blood is a dense suspension of red blood cells, white 
cells, and platelets suspended in plasma which is an aqueous 
solution containing on the order of 1000 different proteins 
(Benjamin and McLaughlin 2012). Much of the complex-
ity in its bulk rheological behavior is a consequence of the 
aggregation of red blood cells into rouleaux structures and 
their deformation (Beris et al. 2021). At low shear rates 
( ̇𝛾 <∼ 0.01 s−1 ), red blood cells aggregate into stacks known 
as rouleaux. Rouleaux provides structure to the fluid, cre-
ating a non-zero apparent yield stress, and their breakage 

under flow contributes to a shear-thinning viscosity and hys-
teresis, which makes blood a thixo-elasto-viscoplastic fluid 
(Beris et al. 2021). The rouleaux structure is dependent on 
a plasma protein, fibrinogen, which contributes to the cell-
cell interaction (Baskurt et al. 2011). In the intermediate 
shear rate region ( ∼ 0.01 < 𝛾̇ <∼ 10 s−1 ) blood experiences 
shear thinning from disintegration of the rouleaux stacks 
(Beris et al. 2021). Further shear thinning occurs at higher 
shear rates ( ̇𝛾 >∼ 100 s−1 ) due to red blood cell deformation 
(Beris et al. 2021).

Prior work on this topic focused on two important physi-
ological factors on the steady shear viscosity: the red blood 
cell volume fraction (hematocrit) and a large (450 Å long 
and 90 Å wide) plasma protein responsible for the formation 
of red blood cell rouleaux, known as fibrinogen (Baskurt 
et al. 2011). The hematocrit is relevant because the red blood 
cells are by far the dominant particles in blood by volume 
fraction (36–51%) and size (7–8 μm) and are expected to 
increase blood viscosity as with any suspension (Wagner 
and Mewis 2021). As noted, fibrinogen leads to rouleaux 
network formation and an apparent yield stress, dominating 
the low shear viscosity. While it is known that many other 
cardiovascular risk factors in blood—such as cholesterol, tri-
glycerides, and plasma proteins—have been found to influ-
ence blood rheology even for healthy individuals (Moreno 
et al. 2015; Apostolidis and Beris 2016), we first consider 
only hematocrit and fibrinogen because of their dominant 
impact on blood rheology in healthy individuals.

Steady shear blood rheology based on literature data 
(Chien 1975) with and without fibrinogen shows (a) the 
existence of a non-zero yield stress, manifested by an 
unbounded viscosity as the shear rate approaches zero, that 
is dependent on the presence of fibrinogen and (b) over-
all shear-thinning behavior (Fig. 1). At high shear rates, 
the blood is shear thinning even after the rouleaux are 

Fig. 1   Casson fit to Chien Data with (closed symbols) and without 
(open symbols) fibrinogen in log-log coordinates of blood viscosity 
versus shear rate
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disaggregated as the red blood cells deform and shear-align, 
with both factors depending strongly on hematocrit but not 
expected to depend on fibrinogen. Fits with the Casson equa-
tion, Eq. (1), are also shown (Fig. 1). The Casson equation 
reproduces the whole blood data reasonably well until shear 
rates below 0.1 s−1. The description of the RBC only data 
is poor, indicative of the absence of a viscoplastic behavior 
for that system. In the following work we will only be using 
the Casson equation to fit whole blood data.

As mentioned above, steady shear blood rheology is char-
acterized by a shear-dependent (shear-thinning) viscosity. A 
typical method for clinical assessment of the steady shear 
blood viscosity is to choose a high shear rate (~ 1000 s−1) 
and a low shear rate (~ 1 s−1) for measuring it (Nwose and 
Richards 2011; Choi et al. 2022; Çınar et al. 2022). The 
two measurements are meant to capture rheological behav-
ior primarily attributed to rouleaux at the low shear rates 
and the individual cells at the high shear rates. Equivalently, 
one can transform these two measurements into rheological 
parameters through a fit using a rheological model that also 
has two parameters. Such a model is the Casson constitutive 
equation for steady shear (Casson 1959) with two param-
eters for yield stress and viscosity. These Casson constitutive 
model parameters provide for a more systematic and physi-
cal representation of rheology than just low and high shear 
rate viscosities and can be used to predict the steady flow 
behavior of blood more generally. Furthermore, the ratio of 
Casson viscosity and yield stress is a characteristic time for 
the material that defines the shear rate for when rouleaux and 
viscous contributions to the viscosity are equivalent. These 
model parameters enable a more direct connection to the 
physiology than simply reporting viscosities at fixed shear 
rates as the rouleaux affect the yield stress and the individual 
cells affect the infinite shear viscosity.

There are two principal methods used to connect the 
blood rheology with blood physiology: (1) a correlation of 
constitutive model parameters to physiology through experi-
ments or (2) microscopic simulations that have resolution 
to the level of individual red cells. The microscopic simula-
tions have some distinct advantages with a more direct route 
between the involved microstructure and the macroscopic 
properties. As such, they have provided good results (Fed-
osov et al. 2011; Hoore et al. 2018; Yazdani et al. 2021; 
Javadi et al. 2022) when pathological conditions, such as 
sickle cell anemia, affect parameters such as the shape of 
red blood cells that can be easily captured in microscopic 
simulations. However, these simulations still need to include 
fitted parameters coming from detailed experiments, such 
as those characterizing interparticle forces acting between 
blood cells (Korculanin et al. 2021) as well as the role of 
the many biochemical components in blood that are not 
included in the simulation but present in blood plasma. 
The first approach based on experimental measurements, 

applied in this work, requires extensive, standardized data 
sets of both rheological properties and corresponding blood 
physiology from healthy donors. After selection of a con-
stitutive model for describing aspects of blood rheology as 
well as the independent biochemical factors, parameteriza-
tion involves nonlinear fitting (Apostolidis and Beris 2014). 
While some approaches can be guided by rheological and 
biophysical models, the complexity of the problem quickly 
becomes daunting when considering complex rheological 
equations of state and the extensive range of biochemical 
factors in blood that are known to affect health (Horner et al. 
2019; Armstrong et al. 2022). Therefore, as an alternative 
approach, we restrict this first study to a simple, but robust 
and well understood constitutive model for the steady shear 
rheology of blood (Casson model) and limit ourselves at 
first to the two dominate factors (hematocrit and fibrinogen) 
to develop a quantitative parameterization using a machine 
learning framework and the largest existing standardized 
blood rheometry dataset (referred to as Horner data here-
after) (Horner 2020). This limited study not only serves 
as an illustration of the method but provides information 
already useful for hematologists and those studying blood 
flow more generally. Importantly, adoption of machine learn-
ing methods provides a route to scaling up the research to 
include much more accurate and necessarily complex thixo-
elasto-viscoplastic models for dynamic blood flow (Arm-
strong et al. 2022; Jariwala et al. 2022) and for dramatically 
increasing the number and range of biochemical markers 
that may affect dynamic blood rheology. We also wish to 
note that the macroscopic approach employed here can ben-
efit from results of the microscopic approaches to synergisti-
cally inform and test each other.

Early work on blood rheology by the pioneering scientist 
Ed Merrill at the Massachusetts Institute of Technology in 
part motivates the objectives presented here. Merrill began 
by observing the shear rate dependence on the viscosity of 
blood (Wells and Merrill 1961) and its dependence on the 
hematocrit (Wells and Merrill 1962). Merrill was interested 
in testing the limits of the current viscometry technology 
by searching for the yield stress of blood down to near-zero 
shear rates (Merrill et al. 1963a, b). The yield stress was 
defined asymptotically using the Casson relation (see meth-
ods), which was originally developed for pigment oils (Cas-
son 1959) and first introduced for use in blood rheology by 
the industrial rheologist Scott Blair (Blair 1959). Merrill 
showed the relationship of temperature, hematocrit, and 
fibrinogen to the Casson yield stress at low flow (Wells and 
Merrill 1962; Merrill et al. 1963a, b; Merrill et al. 1966). 
Merrill also correlated the Casson yield stress with endog-
enous fibrinogen as a quadratic function at a constant hema-
tocrit of 40% (Merrill 1969).

Apostolidis and Beris (2014) took inspiration from the 
work of Merrill and developed a parameterization of the 
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Casson equation with hematocrit and fibrinogen using 
data available at that time taken from various literature 
sources. The Apostolidis-Beris parameterization follows 
a more traditional approach, where a model is developed 
using physical arguments, and then, adjustable parameters 
are introduced to fit the experimental data. This param-
eterization found that the Casson viscosity depends only 
on the hematocrit and temperature linearly while the Cas-
son yield stress depends on hematocrit, fibrinogen, and 
temperature nonlinearly (Apostolidis and Beris 2014). 
The data to develop this model was collected from vari-
ous literature sources including measurements on blood 
yield stress in isolation to the Casson model (Merrill 
et al. 1963a, b). The prediction fits the chosen data well 
and should extend to new data. However, as it is shown in 
this work, the Apostolidis-Beris yield stress parameteri-
zation does not properly describe more recent, extensive 
experiments performed under standardized conditions. In 
this work, machine learning allows qualification of that 
hypothesis and produces a new correlation that remains 
to be further validated using additional standardized and 
protocol consistent data. The Apostolidis-Beris parameteri-
zation was extended to include transient rheology from the 
modified Delaware model (Mujumdar et al. 2002) to make 
predictions in thixotropic systems (Apostolidis et al. 2015). 
Apostolidis and Beris attempted to include cholesterol and 
triglycerides into the parameterization of the Casson equa-
tion finding that critical ratios of these variables used in 
cardiovascular disease diagnostics were also important to 
blood rheology (Apostolidis and Beris 2016).

The Horner dataset established a protocol for standard-
izing blood rheometry and avoided effects due to extended 
storage (Horner 2020). The living fluid blood ages ex vivo, 
altering blood rheology parameters with time from with-
drawal. Many studies on blood rheology use data that are not 
standardized and do not account for time from withdrawal 
(Horner et al. 2018). The availability of standardized blood 
rheology measurements has enabled researchers to build 
well-determined physiology and rheology relationships by 
overcoming the challenges associated with non-standard-
ized blood metrology (Horner et al. 2019; Armstrong et al. 
2022). Horner and coworkers (Horner et al. 2018) estab-
lished effective procedures for measuring blood rheometry 
that ensures repeatability and minimizes the ex vivo aging 
effects. Significant aging effects may occur in as little as 
four hours from withdrawal; therefore, the Horner protocol 
calls for blood samples to be loaded on the rheometer within 
15–30 min from withdrawal. The blood is stored at ambi-
ent temperature to avoid a hysteretic effect from cooling the 
sample that lasts even after it reaches the measurement tem-
perature (Horner 2020). Aging affects the rheology of blood 
namely by adenosine triphosphate (ATP) deprivation which 
is required for red blood cells to maintain their deformability 

and aggregability (Horner 2020). These effects are most 
important to the more complex low shear rate behavior of 
blood leading to thixotropy and syneresis (Horner 2020). 
To address syneresis in the low shear rate measurements, 
the protocol extracts the maximum stress that is a result of 
a transient thixotropic response followed by a continuous 
decrease from syneresis (Horner 2020). There are also physi-
cal measurement considerations within the protocol by never 
exceeding a shear rate of 1000 s−1 to avoid irreversible dam-
age of the red blood cells (Horner 2020). The samples are 
conditioned between each measurement by subjecting it to 
300 s−1 for 30 s (Horner 2020). All samples are measured 
in an ARES-G2 rheometer with the double wall Couette, 
which resists the effects of margination and sedimentation 
(Horner 2020). Although both steady and transient data have 
been collected, we use only the steady shear data. Each sam-
ple in this protocol is physiologically characterized with 25 
standard biochemical tests of the blood, gender, and age and 
are publicly available (see Data availability) (Horner 2020).

Engineering and related fields are being transformed 
by data science and machine learning techniques that aid 
in work such as the design and discovery of new materi-
als (Ashraf et al. 2021). Biology and medicine have also 
benefited from machine learning employed to facilitate the 
extraction of relevant features to a disease (Zitnik et al. 
2019). Formulation science is also a useful field to apply 
data science for developing new formulas that create desired 
properties, such as optimal drilling mud properties (Ashraf 
et al. 2021; Magzoub et al. 2021). Machine learning tech-
niques have been used recently in rheological analysis to 
develop constitutive models for a thixo-elasto-viscoplastic 
material (Mahmoudabadbozchelou et al. 2021; Saadat et al. 
2022) which can have similar complexities to a biological 
material. This method shows success because of the many 
components to thixo-elasto-viscoplastic materials that make 
them challenging or sometimes impossible to model with 
physics-based equations. One larger aim of the present work 
is at the interface of biology, rheology, and data science to 
emerge in developing an understanding of the blood rheolog-
ical properties for a healthy person using machine learning 
techniques in a new field termed hemostatistics. In this work, 
we provide a proof of concept application of machine learn-
ing in the field of blood rheology by using it to parameterize 
the modeling of the steady-state case in terms of relevant 
physiological parameters.

This paper is structured in the following format. In the 
“Materials and methods” section, the Casson constitutive 
model is presented and an existing parameterization in terms 
of hematocrit and fibrinogen is reviewed, along with the 
relevant blood data from Horner to be used in this study, 
and finally, an overview of the machine learning technique 
employed. The results of these techniques are presented in 
the “Results” section starting with a validation of Gaussian 
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process regression with synthetic data derived from the 
Apostolidis-Beris parameterization. Then, the results of 
Gaussian process regression parameterization are shown 
with the standardized blood rheometry from Horner data 
(Horner 2020). The results are discussed in the “Discus-
sion” section and conclusions presented in the “Conclu-
sions” section.

Materials and methods

Constitutive model

The Casson equation (Casson 1959) has been used for corre-
lating the steady shear flow of blood with only two material 
parameters: yield stress and shear viscosity,

where τ is the shear stress, 𝛾̇ is the shear rate, τy, C is 
the Casson yield stress, and μC is the Casson viscosity. The 
parameters of the Casson equation are fit to standardized 
steady shear data collected by Horner (Horner 2020) using 
least squares regression. Fitting is done in Casson coordi-
nates as shown in Fig. 2 to calculate the slope and intercept. 
It is a known problem that the Casson equation does not 
fit the low shear rate data of blood well because of more 
complicated behaviors such as viscoelasticity and thixot-
ropy due to rouleaux (Beris et al. 2021). The poor low shear 
rate fit does not affect the present work because all fits were 
obtained over a consistent shear rate range. More extensive 
constitutive equations have been developed to improve the 
description of the viscoelastic and thixotropic effects at low 

(1)
√

τ =
√

τy,C +
√

μCγ̇,

shear rates (Armstrong et al. 2022), but will not be studied in 
this work. The equation to calculate the Casson parameters 
with least squares is as follows,

and

where N is the number of data points in the dataset. The 
Casson equation addresses the steady shear behavior of 
blood in an approximate fashion, which is not sufficiently 
accurate at very low shear rates and misses all transient 
behavior but is useful here as a first approximation and to 
compare with previous blood flow studies and parameteri-
zations. The fits of all twenty healthy donors to the Casson 
model are shown in the SI Sec. 1 and the parameters and 
their uncertainties are summarized in Tables 1 and 2, to be 
presented and discussed in the “Horner data” section.

Apostolidis and Beris parametric estimation

A parameterization developed by Apostolidis-Beris 
describes the Casson yield stress and viscosity in terms of 
hematocrit and fibrinogen (Apostolidis and Beris 2014). The 
Casson yield stress (dyne/cm2) and viscosity (dyne s/cm2) 
are given as,

And

respectively, where H is the hematocrit as a fraction, cf 
is the concentration of fibrinogen as g/dL, Hc is the critical 
hematocrit as a fraction, ηp is the plasma viscosity as dyne 
s/cm2, T0 is a constant reference temperature in Kelvin, and 
T is the temperature in Kelvin. One dyne s/cm2 is equivalent 
to 100 mPa s. The behavior of Casson viscosity is a second-
order polynomial depending on hematocrit and an Arrhenius 
term for temperature adjustment. The Casson yield stress is 
nonlinear with a piecewise function dependent on a critical 
hematocrit value. The critical hematocrit is given as,

(2)
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Fig. 2   Least squares fit of steady shear data in Casson coordinates 
with intercept and slope. The least squares approach calculates a 
bound on the parameters shown. The data shown is from donor I of 
the Horner dataset. Fits for all 20 donors are provided in the supple-
mental information (SI Sec. 1)
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Table 1.   All donors and their Casson viscosity predicted by least 
squares with the Casson equation, the Apostolidis-Beris param-
eterization, Gaussian process regression (GPR) with hematocrit and 
fibrinogen, and GPR with mean corpuscular hemoglobin (MCH) 

included. The shaded donors are outside the healthy physiological 
range and not included in training. Values in italics indicate which 
values for the donors are outside the healthy range

Casson Viscosity, mPa.s
Donor Hematocrit, 

%
Fibrinogen, 

mg/dL
Least Squares Apostolidis-Beris GPR GPR with 

MCH
A 42.6 186 3.0230±0.0004 3.12 3.14±0.179 3.14±0.18

B 41.7 223 3.23265±0.00005 3.06 3.13±0.172 3.12±0.17

C 38.6 249 2.82682±0.00004 2.87 2.93±0.178 2.93±0.18

D 38.9 282 3.03674±0.00005 2.89 3.00±0.176 2.99±0.18

F 35.8 223 2.5428±0.0002 2.71 2.68±0.199 2.73±0.21

G 36.9 271 2.9319±0.0005 2.77 2.83±0.186 2.85±0.19

H 40.8 287 3.3256±0.0003 3.01 3.15±0.172 3.13±0.17

I 41.6 272 3.2022±0.0002 3.06 3.19±0.170 3.17±0.17

J 47 319 3.9964±0.0002 3.41 3.64±0.192 3.65±0.19

K 42.9 142 2.9808±0.0004 3.14 3.10±0.193 3.11±0.19

L 46.2 316 3.3970±0.0003 3.36 3.58±0.187 3.58±0.19

M 43.1 249 3.1308±0.0003 3.15 3.27±0.170 3.26±0.17

N 51.3 247 5.287±0.001 3.71 3.83±0.220 3.89±0.27

O 38.3 333 2.9325±0.0002 2.85 3.02±0.187 3.01±0.19

P 45.2 214 3.3708±0.0002 3.29 3.37±0.176 3.38±0.18

Q 43.6 252 3.0793±0.0002 3.19 3.31±0.170 3.30±0.17

R 43.8 199 3.2398±0.0002 3.20 3.25±0.176 3.25±0.17

S 45.1 210 3.4655±0.0002 3.28 3.36±0.176 3.37±0.18

T 43.4 248 3.0979±0.0002 3.17 3.29±0.170 3.28±0.17

U 43.4 237 3.4155±0.0003 3.17 3.27±0.170 3.27±0.17

Table 2.   All donors and their Casson yield stress predicted by 
least squares with the Casson equation, Apostolidis-Beris param-
eterization, Gaussian process regression (GPR) with hematocrit and 
fibrinogen, and Gaussian process regression with mean corpuscular 

hemoglobin (MCH). The shaded donors are outside the healthy physi-
ological range and not included in training. Values in italics indicate 
which values for the donors are outside the healthy range

Casson Yield Stress, mPa
Donor Hematocrit, 

%
Fibrinogen, 

mg/dL
Least Squares Apostolidis-

Beris
GPR GPR with 

MCH
A 42.6 186 5.09±0.04 3.34 8.08±2.58 7.11±1.82

B 41.7 223 5.823±0.005 3.72 8.03±2.53 8.18±1.83

C 38.6 249 9.019±0.003 3.45 7.17±2.61 7.71±1.86

D 38.9 282 9.714±0.005 4.04 7.43±2.59 8.28±1.87

F 35.8 223 4.15±0.02 2.55 6.03±2.81 6.51±2.01

G 36.9 271 4.05±0.05 3.41 6.67±2.70 6.48±1.91

H 40.8 287 8.42±0.03 4.59 8.09±2.54 8.50±2.10

I 41.6 272 7.47±0.02 4.53 8.26±2.52 7.02±1.82

J 47 319 7.76±0.02 7.06 9.85±2.71 7.55±1.90

K 42.9 142 6.95±0.03 2.78 7.89±2.68 13.41±2.18

L 46.2 316 14.33±0.03 6.73 9.68±2.66 13.61±2.29

M 43.1 249 13.80±0.03 4.49 8.58±2.52 10.79±1.95

N 51.3 247 23.5±0.1 6.67 10.18±3.04 8.35±2.07

O 38.3 333 6.14±0.02 4.75 7.45±2.68 6.70±1.94

P 45.2 214 7.56±0.02 4.36 8.93±2.58 7.48±1.85

Q 43.6 252 8.16±0.02 4.67 8.74±2.52 8.54±2.27

R 43.8 199 8.77±0.02 3.79 8.49±2.56 7.78±1.98

S 45.1 210 9.25±0.01 4.27 8.88±2.58 7.20±1.89

T 43.4 248 7.66±0.01 4.54 8.66±2.52 8.31±1.84

U 43.4 237 9.31±0.03 4.35 8.60±2.52 10.80±1.95
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When the hematocrit is greater than this critical value, 
the Casson yield stress exhibits a nonlinear behavior that 
depends on the square of the difference between hematocrit 
and critical hematocrit and the square of an adjusted fibrin-
ogen concentration. Below critical hematocrit the Casson 
yield stress does not exist. The Apostolidis-Beris param-
eterization finds two uses in this work. First, we develop 
synthetic datasets by randomly choosing hematocrit and 
fibrinogen within a healthy range and calculating the Cas-
son properties with the Apostolidis-Beris equations. The 
synthetic data is then used in the “Validation and evaluation 
of machine learning with synthetic data” section to train 
various algorithms to help decide which algorithm would be 
most suitable to our problem. Second, the parameterization 
becomes a baseline comparison for our improved param-
eterization with machine learning and standardized data.

Horner data

The data for every donor in the Horner dataset, including 
the predicted values from Gaussian process regression and 
the standard deviation, are in Tables 1 and 2. The healthy 
range for hematocrit is 36–47% for females and 41–51% 
for males (Padilla and Abadie 2021). The healthy range for 
fibrinogen concentration is 150–350 mg/dL for both male 
and female (Padilla and Abadie 2021). Three donors were 
excluded from this study because they were outside one of 
these normal ranges but are useful for testing whether the 
model that is developed can detect such deviations.

The Apostolidis-Beris parameterization does not show 
good agreement with the Casson yield stress of Horner data 
(Horner 2020) because of the non-standardized dataset used 
for the Apostolidis-Beris regression (Apostolidis and Beris 
2014). A plot of the Apostolidis-Beris predicted yield stress 
versus measured yield stress is presented in the “Approxima-
tion method implementation of machine learning” section 
(Fig. 5). This poor agreement is a consequence of the non-
standardized datasets used, which involved multiple geom-
etries, temperatures, shear rates, resuspension techniques, 
and did not consider time from withdrawal (Apostolidis and 
Beris 2014). Some measurements were made to extract the 
yield stress at low shear rates independent of the Casson 
model, the yield stress in those measurements is not com-
parable to the Casson yield stress over a larger shear rate 
region. The time from withdrawal is a crucial aspect to blood 
rheology because of the ex vivo aging of the living fluid, 
blood (Horner et al. 2018). Aging will increase the red blood 
cell density, decrease the surface charge of red blood cells, 
and alter membrane properties with unpredictable behavior 
(Horner et al. 2018). These microstructural changes have a 

(6)Hc =

{

0.3126c2
f
− 0.468cf + 0.1764, cf < 0.75

0.0012, cf ≥ 0.75
.

significant effect on the rheological properties. These effects 
on blood rheology emphasize the connection between phys-
iology and rheology must be made with the standardized 
dataset created by Horner and coworkers.

Machine learning

This work employs supervised machine learning algorithms 
(Pedregosa et al. 2011) to parameterize the Casson equation 
with physiology. Supervised learning is a technique where 
all inputs and outputs are labeled, and a function is generated 
to predict the outputs. The hyperparameters are adjusted to 
best fit the training data, and then, the model predicts the 
testing data, which the model has not been exposed to. The 
accuracy is assessed through a chosen metric comparing 
predicted versus actual data for both training and testing, 
such as root mean squared error or mean absolute percent-
age error.

The first method for machine learning is through MAT-
LAB to validate the approach with synthetic data made from 
the Apostolidis-Beris parameterization. The chosen machine 
learning algorithms are stepwise linear regression, fine tree, 
support vector machine, Gaussian process regression, and 
neural network. The commercially available MATLAB 
framework uses automated methods for hyperparameter 
tuning to create an appropriate fit of these models. The pur-
pose of this preliminary study with MATLAB is to screen 
machine learning techniques and decide on a method to fur-
ther study our data with. MATLAB is a standard available 
tool to perform a preliminary unbiased analysis exploring 
the default optimization options. For further analysis, other 
more extensive tools were used and more systematic interro-
gation of hyperparameter tuning on the model performance. 
The Scikit-learn package (Pedregosa et al. 2011) through 
Python was used for this further analysis with the Horner 
dataset (Horner 2020). The only algorithm applied in Python 
uses Gaussian process regression from the Scikit-learn pack-
age as this was found through the MATLAB work to be the 
most successful. Aside from the obvious improvement in 
terms of the prediction accuracy, Gaussian process regres-
sion also offers a standard deviation for each prediction. 
Belonging to the family of non-parametric Bayesian meth-
ods, Gaussian processes have well-defined continuous ana-
lytical solutions for the mean and standard deviation func-
tions for the chosen training set (Rasmussen and Williams 
2006). There are two strategies to produce results in this 
work, called approximation and generalization. The approxi-
mation method uses all the data (N = 17 healthy donors) 
to produce the best model. In the approximation approach, 
the hyperparameters of the kernel are obtained through the 
log-marginal likelihood optimizer in Scikit-Learn. The cho-
sen kernel is the radial basis function plus a white noise 
term as it was found to have the best generalizability across 
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donors and produced physically interpretable behaviors. We 
visualize the predictions as a surface plot to ensure there is 
no overfitting, but we have no metric to address overfitting 
in the approximation approach. The approximation is use-
ful for comparing the root mean squared error to the exist-
ing parameterization. The generalization method is used to 
determine the quality of the Gaussian process regression 
fit by using K-fold cross validation to split the training data 
into K subsets to validate how the model performs on dif-
ferent subsets of data. The optimal hyperparameters for each 
subset are calculated with the internal log-marginal likeli-
hood optimizer through Scikit-Learn. The Gaussian process 
regression model is then compared to the validation data to 
observe how well the parameterization predicts data unseen 
in the training. The results are produced with a constant 
random seed of 1743, the year University of Delaware was 
founded, to provide a blinded train/validation split.

Results

Validation and evaluation of machine learning 
with synthetic data

The MATLAB machine learning user interface is used 
to validate the approach and compare the performance 
of multiple algorithms for initial screening. The data 
used in this section was generated by randomly selecting 
hematocrit and fibrinogen values within the physiologi-
cal range and calculating yield stress and viscosity from 
the Apostolidis-Beris parameterization. The algorithms 
tested are shown in Fig. 3 on a plot of the predicted Cas-
son yield stress versus the Apostolidis-Beris Casson yield 
stress. Figure 3 qualitatively explains each algorithm’s 

description of the nonlinearities in the Apostolidis-Beris 
parameterization of Casson yield stress. The worst per-
forming algorithm is the “Fine Tree” method which is 
more suited for discrete systems instead of continuous 
ones. Table 3 shows the root mean squared error and R2 for 
the training and testing sets of each algorithm. An order 
of magnitude smaller root mean squared error in Gauss-
ian process regression makes the method a good choice 
moving forward. We benchmarked the machine learning 
algorithms in MATLAB and later implemented them in 
Python for reproducibility and automation.

Gaussian process regression on the Horner dataset

Approximation method implementation of machine 
learning

Gaussian process regression is applied to all available data 
to describe the Casson parameters with hematocrit and 
fibrinogen. Figure 4 shows a surface of the Gaussian pro-
cess regression behavior for (a) Casson yield stress with an 
R2 of 0.208 and (b) Casson viscosity with an R2 of 0.687 
according to hematocrit and fibrinogen with one standard 
deviation. The surfaces are visualized here to understand 
the two-dimensional input nature of our problem. However, 
three-dimensional visualizations can be unintuitive for draw-
ing quantitative insight. Therefore, multiple metrics and two-
dimensional figures are used to describe the quality of these 
fits. The residuals of the fits are provided in supplemental 
information (SI Sec. 2). The predicted values for each donor 
are in Tables 1 and 2. To summarize these data better, the 
predicted Casson parameters versus actual Casson param-
eters are plotted (Fig. 5a, b). The Casson viscosity (Fig. 5b) 
predictions follow the ideal line well, as demonstrated by 
the R2 as well, with some data overpredicted and some data 
underpredicted within a small tolerance. The Casson yield 
stress (Fig. 5a) overpredicts the small values in the data and 
underpredicts the larger values meaning Gaussian process 
regression found a predictor that is close to the mean and 
accounts for a large amount of noise.

Fig. 3   Predicted versus actual Casson yield stress for various algo-
rithms employed in MATLAB on Apostolidis synthetic data. Closed 
symbols are data used for training and open symbols are data used for 
testing

Table 3   Root mean squared error (RMSE) and R2 for all algorithms 
training and testing with Apostolidis synthetic data

Algorithm Training Testing

RMSE*103 R2 RMSE*103 R2

GPR 1.87 0.99 0.627 1
Linear 2.27 0.98 1.8 0.99
Tree 15.2 0.17 11.3 0.67
SVM 2.27 0.98 2.15 0.99
NN 5.97 0.87 6.29 0.9
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Generalization method implementation of machine 
learning

The next step is to understand how well the Horner data physi-
ological parameterization of Casson rheology can be generalized 
with machine learning. This work uses a K-fold technique for 
validation where the data is randomly split into folds of data 
as described previously. The metrics used in the validation are 
mean absolute percentage error (MAPE) and root mean squared 
error (RMSE). Similar error in both training and validation veri-
fies that the model is not overfitting and is generalizable to data 
unseen in training. The exact metrics for training and validation 
of machine learning depends on the training and validation split 
of the data; therefore, a K-fold validation technique to split the 
data “K” times is a more representative metric analysis. The 
K-fold splitting results are summarized in Table 4 and Table 5.

The Casson viscosity model is generalizable showing both 
metrics to be on the same order. The Casson yield stress pre-
dictions from Gaussian process regression are not as general-
izable as Casson viscosity because the validation metrics are 
greater than the training metrics. Visual inspection of Fig. 4a 
shows that the prediction surface accounts for noise and does 
not fit each data point perfectly. The reason for this generali-
zation problem in Casson yield stress is lack of data that are 

representative of the entire physiological range. Performing a 
test-train-validation split can bias the model toward the data 
included in the training set and limit its generalizability to data 
that lie outside the chosen range.

Application of machine learning to extend 
physiological inputs

Other physiological characteristics are used to improve the 
parameterization, mainly the Casson yield stress, found in 

Fig. 4   Approximation of a 
Casson viscosity and b Casson 
yield stress from Horner data 
with the Gaussian process 
regression and the standard 
deviation

Fig. 5   Predicted versus actual 
a Casson yield stress and 
b viscosity from Gaussian 
process regression with the 
approximative approach (black 
squares) and the Apostolidis-
Beris parameterization (blue 
diamonds). The straight line 
in these figures indicates full 
agreement

Table 4   K-fold validation of the Gaussian process regression gener-
alization performance for Casson yield stress with mean absolute per-
centage error (MAPE) and root mean squared error (RMSE)

K MAPE, % RMSE, mPa

Training Validation Training Validation

1 16.6 43.2 2.13 2.96
2 19.9 46.6 1.92 3.11
3 6.63 41.8 0.57 5.45
4 26.4 11.7 2.53 1.13
5 5.75E-3 15.9 5.37E-4 1.51
Average 13.9 31.9 1.43 2.83
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the previous section. Horner data includes a list of many 
physiology values that could improve the parameterization 
and demonstrate how machine learning can identify which 
physiological variables significantly affect the rheology of 
blood. An additional factor is included with hematocrit and 
fibrinogen and a new R2 value for the predictions of Cas-
son yield stress is calculated (Fig. 6). The mean corpuscu-
lar hemoglobin (MCH) improved the R2 significantly more 
than the other physiological factors. The MCH was found 
as a direct result of this machine learning study and was not 
expected to affect the blood rheology a priori.

The additional factor of mean corpuscular hemoglobin 
(MCH) is used in Gaussian process regression to predict the 
Casson yield stress in an approximative pattern. Visualizing 
the dependence of Casson parameters on all the physiologi-
cal variables is not possible, but the predicted versus actual 
Casson yield stress is compared (Fig. 7). There is a clear 
improvement in the predictions of the Casson yield stress 
compared to Fig. 5a with an R2 of 0.67, showing a higher 
quality fit over that considering only hematocrit and fibrino-
gen (R2 = 0.208).

Discussion

Comparison of Gaussian process regression 
with Apostolidis‑Beris

A useful metric to compare two models is the root mean 
squared error to establish which model is closer to the 
given data (Ratner 2009; Chicco et al. 2021). The Casson 
yield stress approximation from Gaussian process regres-
sion and Apostolidis-Beris are shown as surface plots 
(Fig. 8a). The Apostolidis-Beris parameterization surface 
shows a clear underprediction compared to the Horner 
data for Casson yield stress with a root mean squared 
error of 5.70 mPa. The machine learning predictions are 
more accurate than the Apostolidis-Beris parameteriza-
tion and improve the root mean squared error to 2.29 mPa 

accounting for noise in the measurements. The Casson 
viscosity approximation from Gaussian process regres-
sion and Apostolidis-Beris are shown as surface plots 
(Fig. 8b). The root mean squared error for Casson viscos-
ity is again decreased from 0.401 mPa s with Apostolidis-
Beris to 0.151 mPa s with Gaussian process regression. 
The machine learning predictions of Casson viscosity 
depends on both hematocrit and fibrinogen, while Apos-
tolidis-Beris only considered hematocrit (Fig. 8b).

To better visualize the variations in Casson yield stress, 
the Gaussian process regression and the Apostolidis-Beris 
parameterization are compared with the viscosity flow curve 
of every donor from the Horner data with the least squares 
fit to data, Gaussian process regression predictions, and 

Table 5   K-fold validation of the Gaussian process regression general-
ization performance for Casson viscosity with mean absolute percent-
age error (MAPE) and root mean squared error (RMSE)

K MAPE, % RMSE, mPa s

Training Validation Training Validation

1 3.88 3.73 0.164 0.124
2 2.99 7.13 0.111 0.320
3 3.12 7.97 0.125 0.270
4 3.99 3.42 0.154 0.148
5 2.34 4.63 0.101 0.189
Average 3.26 5.38 0.131 0.210

Fig. 6   The R2 of Casson yield stress prediction when including a sin-
gle additional factor at a time to the input space. An R2 of zero in this 
figure implies that the machine learning algorithm could not generate 
a meaningful validated correlation. The results for the Casson viscos-
ity are shown in SI Sec. 3
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Apostolidis-Beris predictions (Fig. 9). There is a system-
atic increase of the low shear viscosity in the predictions 
from Gaussian process regression over the Apostolidis-
Beris parameterization. This systematic increase is due to 
the data used for the Apostolidis-Beris parameterization, 
which focused on finding the yield stress at low shear inde-
pendent of the Casson yield stress. In some instances, the 
Apostolidis-Beris parameterization more closely predicts 
the yield stress when compared to the actual data. However, 
the Gaussian process regression more accurately models 
the least squares Casson fit to the data, meaning that these 
predictions are more generalizable. An important insight 
from this analysis is that the Casson yield stress is not a 
physically realizable parameter where there are significant 
deviations at low shear rates from the true behavior (Fig. 9). 
These deviations combined with the rich dynamic transients 
of blood necessitates using a more detailed rheological con-
stitutive model such as the tensorial-Enhanced Structural 

Stress Thixotropic Viscoelastic (t-ESSTV) one developed 
by Armstrong and coworkers (Armstrong et al. 2022). In 
future work, the machine learning approach will be used to 
parameterize the t-ESSTV model with physiology.

In this section the Casson parameter parameterizations 
are shown to improve with machine learning, especially the 
Casson yield stress. The predictions provided in this section 
show a good approximation to all provided data and they 
are better than the existing parameterization. However, the 
Casson viscosity dominates the overall behavior of the Cas-
son flow curve. The data required to make this prediction 
generalizable is discussed in the next section.

Data requirements for generalization

The typical data requirement for machine learning is ten 
times the input dimension. The lack of data for the multidi-
mensional physiology space is relevant to two aspects of this 
study which should be addressed in future work. Overfitting 
may occur when there are not enough features, i.e., physiol-
ogy, to describe the targets, i.e., Casson rheology. Including 
cholesterol, triglycerides, or some other physiology into the 
fit may improve the results. However, more inputs require 
more data to obtain accurate predictions. The limitation to 
the connection of physiology and Casson rheology is that 
the Casson constitutive model is not an appropriate choice 
for blood rheology at lower shear rates. The Casson equation 
typically over predicts the stress at low shear rates and devi-
ates significantly from the true yield stress. This deviation 
means the Casson yield stress does not always scale with 
fibrinogen as expected. A perfect example of this scaling 
issue can be observed in Table 2 where donors T and U 
have the same hematocrit and donor T has a higher fibrino-
gen concentration, yet the Casson yield stress of donor T 
is lower than that of donor U. This result shows the limi-
tations of the current approach with machine learning the 

Fig. 7   Predicted versus actual Casson yield stress when using the 
additional factor of mean corpuscular hemoglobin (MCH) in Gauss-
ian process regression

Fig. 8   Gaussian process regres-
sion and Apostolidis-Beris 
parameterization predictions for 
a Casson viscosity and b Cas-
son yield stress as a function of 
hematocrit and fibrinogen
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connection between physiology and Casson rheology. More 
data is required for a fully confident model, but the current 
approach has shown promise using the largest existing data-
set. These issues are expected to resolve with more experi-
ments or with the development of a high-throughput device 
for measuring blood rheology.

Although the Gaussian process regression algorithm is 
improved from the Apostolidis-Beris predictions, the model 
is still not sufficiently accurate for practical application as 
demonstrated from the K-fold validation for Casson yield 
stress. The connection of hematocrit, fibrinogen, and Casson 
yield stress through Gaussian process regression proved to 

Fig. 9   Viscosity flow curve for every donor from the Horner dataset 
with Casson predictions from least squares (dashed line), Gaussian 
process regression (solid line), and the Apostolidis-Beris parameteri-

zation (dotted line). The gray plots are donors that were not included 
in training because they are outside healthy human range of hemato-
crit or fibrinogen
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be less generalizable than Casson viscosity although meas-
ures, such as K-fold validation, were taken to prevent such a 
situation. This overfitting issue demonstrates why more data 
is required to include more aspects of physiology to develop 
a more robust connection between rheology and physiol-
ogy. Despite the limitations in dataset size, the preliminary 
identification of MCH as the next most important physiology 
to the Casson yield stress is discussed in the next section.

Mean corpuscular hemoglobin

Systematically incorporating physiological variables one at 
a time, as done in the “Application of machine learning to 
extend physiological inputs” section, leverages the power of 
the machine learning framework toward discovering impor-
tant factors in determining the rheology. In the course of 
this work, MCH was identified as an important factor con-
trolling the Casson yield stress. MCH has not been used in 
previous modeling studies, although there are some litera-
ture sources that indicate hemoglobin’s influence on blood 
rheology (Gustavsson et al. 1994; Coppola et al. 2000). One 
work demonstrates a positive correlation of blood viscos-
ity with hemoglobin concentration at various shear rates 
without a constitutive model in both healthy blood and, to 
a lesser effect, in the blood with coronary artery disease 
(Gustavsson et al. 1994). The correlation found here with 
MCH is different because MCH describes the amount of 
hemoglobin per cell, whereas the hemoglobin concentration 
is per volume. The hemoglobin affects the density and size 
of the red blood cells. In this work, we observe an inverse 
correlation between the Casson yield stress and MCH, which 
is also observed in the literature (Hutton 1979, Von de Pette 
et al. 1986). We speculate that a higher MCH value reduces 
the tendency to form rouleaux, thus decreasing the yield 
stress. Further detailed studies are required to address the 
effect of MCH on the cytosol viscosity and how this affects 
the bulk rheology. We expect that a stiffer red blood cell 
increases the modulus and decreases the extent of shear thin-
ning. Such a correlation may be physically rational as MCH 
indirectly describes the size and density of the red blood 
cells. If we compared two donors with the same hematocrit 
and different MCH, the one with a higher MCH will have 
fewer or denser red blood cells, which means less rouleaux 
structure and a lower yield stress. This analysis may explain 
the discrepancy noted for donor T as compared to donor U, 
which had the same hematocrit, but the Casson yield stress 
behaved inversely from the expected behavior based on the 
fibrinogen values. Donor T has a higher MCH, and this addi-
tional factor could potentially result in a lower Casson yield 
stress. Hutton (1979) was the first to recognize a significant 
correlation of whole blood viscosity to iron deficiency (i.e., 
decreasing MCH) and Van de Pette et al. (1986) confirmed 
the results. To our knowledge, there is no recent results on 

the inverse correlation of MCH and blood viscosity and in 
this work the correlation is done with a constitutive model, 
which suggests the effect occurs mainly at low shear rates 
with the Casson yield stress.

An important caveat to this result is that it is only an indi-
cation of a correlation between blood rheology and MCH. 
The Horner dataset is the largest and most detailed dataset 
of its kind on blood rheology, but there is not enough data 
to be certain of the three factor (hematocrit, fibrinogen, and 
MCH) parameterization found in the “Application of machine 
learning to extend physiological inputs” section. For a sta-
tistical basis of the two parameterizations presented in this 
work, the χ2 test and the F-test for variability were performed 
(Table 6). The χ2 parameter decreases with each parameteriza-
tion showing the improvement of the fit. The null hypothesis 
of the F-test states that the variances of two populations are 
equivalent. Therefore, a p-value below 0.05 rejects the null 
hypothesis and declares that the chosen regression model sig-
nificantly reduced the variability of the data.

The results shown in Table 6 indicate that both param-
eterizations significantly reduce the variability of the Casson 
viscosity and that the three parameter model significantly 
reduces the variability of the Casson yield stress, while the 
two parameter model does not. The addition of MCH cer-
tainly improves the mean squared error of the predictions 
with the Horner dataset; however, the correlation could be a 
statistical artifact and more data is needed to investigate the 
underlying physical basis. A common heuristic for machine 
learning accuracy is to require ten times the input dimension 
worth of data; therefore, 30 donors would be needed for an 
accurate parameterization with three physiological factors. 
However, this method will be valuable when determining 
which factors are most significant for the ten parameters in 
the t-ESSTV constitutive model. We suggest the addition 
of MCH into microscopic simulations in an indirect way by 
modifying the size and density of the red blood cells. Micro-
scopic simulations could provide insight on the correlation 
of MCH and Casson yield stress found in this work.

Table 6   Statistical analysis for the two parameterizations of the Cas-
son yield stress and Casson viscosity against the mean

Parameterization χ2 F statistic p
Casson yield stress

Mean 13.4 0 1
H & cf 10.5 1.93 0.104
H, cf, & MCH 4.58 9.82 0.0000265

Casson viscosity
Mean 0.374 0 1
H & cf 0.112 11.6 7.51E-06
H, cf, & MCH 0.112 12.5 5.19E-06
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Personalized healthy range

The chief benefit of a connection between blood physiol-
ogy and rheology is expected to be in diagnostics. To use 
blood rheology as a diagnostic, the healthy range of rheol-
ogy parameters must be established and for personalized 
medicine; this should be known for an individual. The 
average value of blood viscosity is not important in diag-
nostics because of the variation among donors. We use the 
parameterization developed here to reduce this variation and 
improve personalized diagnostics. This work does not pro-
vide a tight correlation to a specific disease, rather a healthy 
range of blood rheology parameters that are unique among 
patients. Predicting Casson parameter dependencies on hem-
atocrit and fibrinogen was the focus of previous sections, but 
as will be shown here, the resultant model predictions with 
standard deviation can be used to determine a healthy range 
of Casson parameters personalized to an individual patient. 
It is important to include the standard deviation calculated 
by Gaussian process regression so there is a bound on the 
predictions. A bound on the rheology predictions emulates 
the healthy ranges used in standard physiological diagnos-
tics. In this section, the machine learning model is used to 
predict some data that was not included in training or testing 
for diagnostic purposes.

A physician could implement the following analysis to use 
this blood rheology parameterization in clinical diagnostics. 
The surface from Gaussian process regression approxima-
tion predictions is shown with an upper and lower standard 
deviation (Fig. 10). There are three donors plotted (Fig. 10) 
which were excluded from training because they are outside 
the healthy ranges of physiology reported by Merck (Padilla 
and Abadie 2021). The steady shear behavior of donors F, 
K, and N is shown in the shaded regions of Fig. 9. The low 
hematocrit (donor F) and low fibrinogen (donor K) donors 
are close to the machine learning healthy range. The high 
hematocrit donor (donor N) is more interesting because the 
prediction is many standard deviations below the actual Cas-
son yield stress. This observation displays how the Gaussian 
process regression predictions and standard deviations are 
valuable for diagnostics. Since the Casson yield stress for 
this donor is far greater than what the healthy range model 
predicts, there is likely some other factor, such as disease, 
contributing to the rheology. The model has few data points 
and from the overfitting problem observed previously it is 
likely that another factor of physiology is responsible for 
deviations in the blood rheology. When the model is trained 
with more donors to account for other physiological factors, 
the deviations from the predicted healthy range may prove to 
represent effects from cardiovascular disease or drugs, such 
as stroke, statins, or aspirin. The results of this initial study 
suggest that the machine learning framework presented here 
along with high fidelity data provides a promising route for 

developing a rheological-based screening diagnostic of car-
diovascular diseases or the influence of drugs.

Conclusions

The present work demonstrates the usefulness of a machine 
learning approach for both developing a connection between 
physiology and rheology of a standardized blood rheometry 
dataset within the context of the Casson model for steady 
blood flow as well as for identifying additional physiological 
factors of interest. Through training and comparison against 
synthetic data, following the Apostolidis and Beris param-
eterization, the Gaussian process regression method is found 
to be the most effective machine learning algorithm for our 
purpose. Comparison of the Apostolidis-Beris parameteri-
zation with more extensive and recent data sets of Horner 
(Horner 2020) shows that the prior correlation underesti-
mated the Casson yield stress due to the use of non-standard 
input data. Using the machine learning algorithm, we pro-
vide an improved correlation between the Casson yield stress 
and the Casson viscosity and the blood physiological prop-
erties of hematocrit and fibrinogen, available to the com-
munity in the form of the machine learning algorithm (see 
Data availability) and graphical correlation. Furthermore, 
we demonstrate how the new model has potential to be used 
in personalized medicine. Another outcome of the work is 
the identification of mean corpuscular hemoglobin (MCH) 
as an additional physiological factor affecting the Casson 
yield stress although more data are needed for a positive 
confirmation. The results of this study suggests a promising 
route for the development of a broader and more inclusive 
connection between blood rheology and physiology that may 
find application in diagnostics as well as modeling of blood 

Fig. 10   Approximation of the personalized healthy range of Casson 
yield stress predicted using Gaussian process regression. Three data 
points not included in training are presented because they are outside 
healthy physiological range
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flow using more complex blood rheology constitutive mod-
els and a broader range of physiological properties.
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