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Richardson and Reynolds number effects on the
near field of buoyant plumes: flow statistics
and fluxes
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The near-field characteristics of highly buoyant plumes, commonly referred to as lazy
plumes, remain relatively poorly understood across a range of flow conditions, particularly
compared with our understanding of far-field characteristics. Here, we perform fully
resolved three-dimensional numerical simulations of round helium plumes to characterize
the effects of different inlet Richardson, Ri0, and Reynolds, Re0, numbers on first- and
second-order statistical moments as well as average vertical fluxes in the near field. For
sufficiently high Re0 at a particular Ri0, heavy air can penetrate the core of the plume,
reminiscent of spikes in the classical Rayleigh–Taylor instability. In the most turbulent
simulation, this penetration becomes so strong that a recirculation zone forms along the
centreline of the plume. Vertical fluxes are found to scale linearly with vertical distance
from the plume inlet, consistent with experimental and numerical observations (Jiang
& Luo, Flow Turbul. Combust., vol. 64, 2000, pp. 43–69; Kaye & Hunt, Intl J. Heat
Fluid Flow, vol. 30, 2009, pp. 1099–1105). We analytically derive this linear scaling
from the governing equations by making a radial entrainment hypothesis whereby ambient
fluid is entrained, on average, only in the radial direction at a finite distance from the
inlet. Through this derivation, we identify physical mechanisms that can cause these
relationships to remain only approximately valid for the present simulations. Lastly, we
identify near-field power-law scaling relations for the flux magnitudes based on Ri0, and
also examine vertical profiles of the non-dimensional Richardson number flux. Ultimately,
insights from the present simulations are used to define near-, intermediate- and far-field
regions in buoyant plumes.
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1. Introduction
Turbulent buoyant jets and plumes are found in a wide range of natural and engineering
problems, including deep-sea hydrothermal vents, volcanic eruptions, fire plumes,
condenser cooling water and products of combustion processes in wildfires and industrial
burners (Lee & Chu 2012; Heskestad 2016). In many of these problems, it would be
prohibitively expensive to numerically model all relevant scales of motion by directly
and exactly solving the Navier–Stokes equations. Consequently, a primary objective of
research on these flows has been to accurately model flow properties using simpler
equation sets, either by reducing the full set of partial differential equations into a set
of ordinary differential equations, or by modelling unclosed terms in Reynolds-averaged
Navier–Stokes simulations or large-eddy simulations. However, there are currently no
reduced models that are universally accurate over the wide range of conditions observed
in real-world applications.

To date, most studies of buoyant jets and plumes have focused primarily on far-field
properties. Considering, for example, axisymmetric buoyant jets and plumes flowing
primarily in the vertical direction against gravity, the seminal study by Morton, Taylor
& Turner (1956) (denoted MTT henceforth) provided far-field predictions based on the
following assumptions: (i) the time-averaged vertical velocity and buoyancy profiles are
self-similar (e.g. Gaussian) at all vertical locations; (ii) the rate of entrainment at the
edge of the flow is proportional to a characteristic velocity; (iii) the flow is statistically
steady; (iv) average pressure gradients in the vertical direction are much greater than in
the transverse direction; (v) the Reynolds number is high, placing the flow in the fully
turbulent regime; (vi) there is negligible mass and thermal diffusion; and (vii) the largest
local density variations are small compared with the ambient density (Hunt & van den
Bremer 2011). Using these assumptions, the continuity and Navier–Stokes equations can
be reduced to a set of ordinary differential equations that describe the time-averaged fluxes
of volume, momentum and buoyancy through transverse planes (Hunt & Kaye 2005).
These ordinary differential equations are

dQ
dz

= 2αJ 1/2,
dJ
dz

= 2
QB
J

,
dB
dz

= 0, (1.1a–c)

where z is the vertical location, α is an entrainment coefficient that is generally assumed to
be constant (Hunt & Kaye 2005; van Reeuwijk & Craske 2015; Ciriello & Hunt 2020) and
Q, J and B are the time-averaged volume, momentum and buoyancy fluxes, respectively.

These equations, which are derived in detail by Hunt & van den Bremer (2011), have
proven useful for describing the far-field characteristics of jets, plumes and forced plumes
(also known as buoyant jets), as shown by Papanicolaou & List (1988) and Shabbir &
George (1994). Using dimensional analysis, these equations can be used to determine the
scaling relationships of the fluxes or flow variables for three-dimensional jets and plumes
as

pure jets: Q ∼ z, J ∼ const., B = 0, δ ∼ z, uc ∼ z−1, (1.2)

pure plumes: Q ∼ z5/3, J ∼ z4/3, B ∼ const., δ ∼ z, uc ∼ z−1/3, (1.3)

where δ is a characteristic time-averaged flow width and uc is the time-averaged centreline
vertical velocity (List 1982; Lee & Chu 2012). Similar scaling relationships can also be
found for non-Boussinesq plumes with an additional density ratio variable (Rooney &
Linden 1996).

In forced plumes, where the momentum flux is larger than the buoyant flux at the
inlet, Papanicolaou & List (1988) showed that there is a transition from jet-like scaling

961 A7-2

1�
�8

:

  

�7
2�7

�0
 �

��
��

��
 3/

�
��

��
��

��
	�

��
��

2:
1.

��
7�

�2�
.�

�!
��

��
��

2�
0.

�

�2

 .
�:

2�!
��

�.
::

https://doi.org/10.1017/jfm.2023.208


Flow statistics and fluxes of buoyant plumes

to plume-like scaling; this transition was subsequently derived analytically by Diez &
Dahm (2007). From these results, it is possible to deduce a ‘virtual origin’, or an ideal
point source of momentum and/or buoyancy flux with initially no mass flux, that entrains
fluid such that upon reaching the z location of the finite-area source, the flow emanating
from the virtual origin has the same fluxes as the finite-area source. This can then be used
to predict flow properties in the far field.

Although MTT theory has been successfully applied to jets, plumes and forced plumes,
it is not immediately applicable to ‘lazy’ plumes where the buoyancy flux is greater than
the momentum flux at the inlet and the assumptions underlying MTT theory become
invalid, particularly in the near field (Turner 1986). Caulfield (1991) showed that, by
rewriting the governing equations in terms of a flux-based Richardson number and
numerically solving the resulting single equation, it is possible to capture certain essential
features of the near-field plume, including ‘necking’ of the flow immediately above the
inlet. The necking phenomenon only occurs in lazy plumes and the location where it
occurs has been predicted analytically by Hunt & Kaye (2005) using the procedure they
proposed in an earlier study (Hunt & Kaye 2001). However, Kaye & Hunt (2009) later
showed experimentally that entrainment can be described by a linear scaling of volume
flux with respect to the downstream distance, contradicting previous theoretical work. This
scaling was further supported by the two-dimensional numerical simulations of Jiang &
Luo (2000b). Thus, while necking can be predicted by the MTT theory, the theory itself
is not generally applicable to lazy plumes without additional modifications to account for
near-field flow features, such as the puffing instability; further generalizations of MTT
have been proposed to account for variable entrainment and unsteadiness in lazy plumes
(Kaminski, Tait & Carazzo 2005; van Reeuwijk & Craske 2015; Carlotti & Hunt 2017;
Ciriello & Hunt 2020).

To develop more accurate models and theories for the near-field dynamics of lazy
plumes, similar to those provided by the MTT theory for the far-field dynamics, we
require a more detailed understanding of near-field volume, momentum and buoyancy
fluxes across a range of conditions. Experimentally, there have been many studies of the
near field of buoyant plumes (Hamins, Yang & Kashiwagi 1992; Cetegen & Kasper 1996;
Cetegen 1997; Colomer, Boubnov & Fernando 1999; Friedl, Härtel & Fannelop 1999;
Epstein & Burelbach 2001; O’hern et al. 2005; Bharadwaj & Das 2017). However, these
studies have focused primarily on flow statistics and the characteristic oscillatory motion
by which coherent vortical structures are periodically shed, often referred to as ‘puffing’.
The only experimental study that quantifies fluxes in buoyant plumes is that of Kaye &
Hunt (2009), who found a linear correlation of volume flux with downstream distance
(although the experimental configuration only supported small density fluctuations).

With recent advances in computational power and techniques, highly resolved
three-dimensional numerical simulations have been performed for buoyant jets and plumes
without the use of a subgrid-scale model, which we term direct numerical simulations
(DNS). Taub et al. (2015) and Marjanovic, Taub & Balachandar (2017, 2019) provide
detailed statistical information from DNS, with a particular emphasis on quantifying
higher-order statistics and comparing their data with existing theoretical predictions under
the Boussinesq approximation. Some DNS are available using a low-Mach approximation
(Jiang & Luo 2000a,b; Nichols, Schmid & Riley 2007; Wimer et al. 2021), but most
of these studies focus primarily on temporal characteristics and puffing. Of these, the
only DNS study to comment on fluxes is that of Jiang & Luo (2000b), who found that
the mass flux in both axisymmetric and planar two-dimensional buoyant plumes varies
approximately linearly with vertical location.
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In the present study, we use three-dimensional DNS to examine flow statistics and
fluxes in the near field of lazy plumes with large density differences. We focus on
the dependence of the average flow structure (quantified using first- and second-order
moments) and average fluxes on the inlet Richardson and Reynolds numbers. Previous
studies have shown that the Richardson number has a leading-order effect on the
temporal dynamics of the flow (Cetegen & Kasper 1996; Wimer et al. 2020), but less is
known about the dependence of fluxes on this non-dimensional parameter. The Reynolds
number does not appear in any of the theoretical predictions of flux behaviour or in
prior empirical relationships for the puffing frequency, primarily because theoretical
developments assume a high-Reynolds-number flow. However, many buoyant plumes are
not necessarily of high Reynolds number (Hunt & Kaye 2001), and it is important to
understand the conditions for which the flow transitions to turbulence. Additionally, the
Reynolds number controls small-scale structure for many fluid instabilities, including the
Rayleigh–Taylor (RT) instability (Wei & Livescu 2012), which is likely the most relevant
fluid instability in the near field of lazy plumes (O’hern et al. 2005).

Although our focus here is only on Richardson and Reynolds number effects, it is
likely that the present results also depend on other non-dimensional numbers. Of these,
the Atwood number (or some other equivalent density-based non-dimensional number) is
likely to be an important parameter in dictating the average plume structure. This can be
anticipated from studies of non-Boussinesq plumes (Ricou & Spalding 1961; Rooney &
Linden 1996), as well as from studies of asymmetric mixing in RT instabilities (Livescu
et al. 2010). However, here we perform all simulations with helium and air, resulting in a
large Atwood number relevant to reacting plumes, where the formation of hot combustion
products results in a density ratio roughly equivalent to that of helium and air (Cetegen
& Ahmed 1993). Exploration of different Atwood numbers, including very small values
where Boussinesq plume theory would be more applicable, is an important direction for
future work, but we do not pursue this here.

In the next section, we provide a brief discussion of the numerical simulations, which
are performed using adaptive mesh refinement (AMR) in the low-Mach code PeleLM (Day
& Bell 2000; Nonaka, Day & Bell 2018). In § 3, we present statistics computed from
the simulations. We discuss the results in § 4, with a particular emphasis on providing
theoretical support for the results in § 3. We then conclude in § 5.

2. Numerical simulations
We perform numerical simulations of three-dimensional helium buoyant plumes using
the low-Mach governing equations as described by Rehm & Baum (1978) and Majda &
Sethian (1985). These equations allow for density variations due to molecular mixing but
not from pressure variations. We solve the governing equations using PeleLM (Nonaka
et al. 2018), a scalable hydrodynamics code that uses AMReX, a software framework for
block-structured AMR (Zhang et al. 2019). The simulations analysed here are the same as
those described in Meehan, Wimer & Hamlington (2022), where we also provide a more
extensive description of the numerical implementation.

To model the plumes, we use a Dirichlet boundary condition at z = 0 m (i.e. the bottom
of the domain) that represents a circular region of radius R0 = 0.125 m where pure helium
is injected into the domain at a prescribed inflow velocity, U0. There is no co-flow and
the rest of the bottom boundary is modelled as a no-slip wall. At the helium–air interface
on the bottom boundary, we use a hyperbolic tangent profile with smoothing factor φ =
2.5 × 10−3 m to smoothly transition the inflow velocity and properties into the quiescent
air (Michalke 1984; Meehan et al. 2022). The fluids are fixed at a temperature of T =
961 A7-4
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Parameter Symbol Value(s) Dimensions

Nominal inflow radius R0 0.125 m
Gravitational acceleration g 0.18–176.8 m s−2

Nominal inflow velocity U0 9.8–97.6 cm s−1

Density of helium ρ0 ≈0.163 kg m−3

Viscosity of helium µ0 ≈1.98 × 10−5 kg m−1 s−1

Density of air ρ∞ ≈1.17 kg m−3

Richardson number Ri0 2–63 —
Reynolds number Re0 100–1000 —

Table 1. List of dynamically relevant parameters used to determine the inlet Richardson, Ri0 = (1 −
ρ0/ρ∞)gR0/U2

0 , and Reynolds, Re0 = ρ0U0R0/µ0, numbers in the buoyant plume simulations. Values in the
third column prefaced with ≈ are only approximate. The complete set of parameters for all simulations is
provided in Meehan et al. (2022).

300 K. The remaining five computational boundaries are modelled as Neumann boundary
conditions to allow air to be entrained through the side boundaries and the helium–air
mixture to convect out of the top boundary.

To examine effects due to varying inlet Richardson, Ri0 = (1 − ρ0/ρ∞)gR0/U2
0, and

Reynolds, Re0 = ρ0U0R0/µ0, numbers, the gravitational acceleration, g, and U0 were
varied while fixing the remaining parameters. In total, 18 different simulations were
performed, spanning Ri0 between 2 and 63, and Re0 between 100 and 1000. We vary U0
and g in the simulations to independently vary Ri0 and Re0 while maintaining R0 constant.
The computational domain is large enough (either 1.5 or 2.0 m to a side, with a height
equal to the side length) to ensure that flow features of interest are far from the outer
computational boundaries and AMR is used to add grid resolution where required.

All statistics are computed using approximately 100 turnover times based on the period
of the puffing oscillations in each simulation, τ ∗ = 1/f ∗, where f ∗ is the expected puffing
frequency from the relation f ∗R0/U0 = 2e−1(Ri0/2)2/5 (Wimer et al. 2020). Statistics
were collected only after letting the flow develop for approximately 20τ ∗, which is when
the flow was found to have achieved a statistically stationary state. Table 1 provides a
summary of the parameters and conditions for the simulations examined in this study.

Additional details of the AMR strategy used in the simulations, including detailed
convergence tests, are provided in Meehan et al. (2022). Briefly, vorticity and cell-to-cell
density differences were used to determine where grid refinement should occur, and three
levels of refinement were used to resolve the flow to a finest resolution of just under
2 mm. This resolution was also shown in Wimer et al. (2020, 2021) to be sufficient
for capturing the mean flow structure and dynamics in buoyant plumes similar to those
examined here.

It should be noted that the numerical simulations were performed in a Cartesian
coordinate system; however, the spatial statistical symmetry of the flow is in the azimuthal
direction for a cylindrical coordinate system with origin at the centre of the inlet (i.e. the
flow is statistically axisymmetric). To maximize the statistical convergence of the moments
and fluxes computed here, we use both temporal and azimuthal averages, requiring
appropriate transformations from Cartesian to cylindrical coordinates for non-scalar
quantities (e.g. velocity components). The interchanging of coordinate systems and the
presence of varying grid resolution due to the AMR also require a series of interpolation
steps to compute averages and fluctuations. This can result in large errors if appropriate
measures are not taken in the interpolation method. In Appendix A, we outline a
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Figure 1. Time series of the density field over &t ≈ τ ∗ at Ri0 = 6.3 for Re0 = 100 (a–e), Re0 = 316 ( f –j) and
Re0 = 1000 (k–o). Panels (a, f,k) show where the grid is refined, with grey indicating two levels of refinement
and black indicating three levels of refinement. Panels (e,j,o) include the in-plane direction of the velocity
vector (not scaled with velocity magnitude).

space-filling nearest-neighbour interpolation strategy for azimuthal averages and use
an Akima spline strategy (De Boor 1978) for the averaged fields needed to compute
fluctuating variables.

3. Results
Qualitative characteristics of the simulated plumes are indicated in figure 1, which shows
time series of the density field over a time span of τ ∗ for Re0 = 100, 316 and 1000, all at
Ri0 = 6.3. For each Re0, there is a buoyancy-driven acceleration of the helium at the base
of the plume, leading to a contraction of the flow and the formation of vortical structures.
This process repeats in a periodic manner, leading to the characteristic puffing behaviour
widely observed in buoyant plumes; the temporal characteristics of these plumes are the
primary focus of Meehan et al. (2022).

Figure 1 also shows the transition from laminar to turbulent flow. As Re0 increases,
increasingly fine vortices are formed and there is penetration of air into the core of
the plume, increasing the density along the centreline. This is clearest in figure 1(k),
where the density is higher due to mixing with ambient air along the centreline near
the inlet. This penetration of high-density ambient fluid is similar to the formation of
downward-propagating high-density ‘spikes’ observed in classical RT instabilities.

In the following, we examine the dependence of the plumes on Ri0 and Re0 by
considering statistics of the vertical velocity and density, as well as average fluxes. The
averaging and interpolation procedure outlined in Appendix A is used to calculate all
statistics and fluxes.
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Figure 2. Time and azimuthal averages of vertical velocity ūz/U0 (a–e) and density ρ̄/ρ0 ( f –j) for Ri0 = 6.3
and (a, f ) Re0 = 100, (b,g) Re0 = 178, (c,h) Re0 = 316, (d,i) Re0 = 562 and (e,j) Re0 = 1000. Dashed lines are
contours of velocity- and density-based flow widths, δu/2R0 (a–e) and δρ/2R0 ( f –j), respectively.

3.1. First-order velocity and density statistics
Figure 2 shows r–z fields of average vertical velocity, ūz/U0, and density, ρ̄/ρ0, for
Ri0 = 6.3 and all Re0, where the overline indicates an azimuthal and temporal average.
Immediately above the inlet, the flow narrows and accelerates vertically, as is also indicated
by the profiles of centreline vertical velocity uc(z) ≡ ūz(r = 0, z) in figure 3. This figure
shows that, as Ri0 increases, the location of peak uc generally decreases for all Re0, while
the smallest value of Ri0 in figure 3(a) shows that the lowest values of Re0 have increasing
uc, even at z/R0 = 5.

Both figures 2 and 3 show that, for Ri0 = 6.3, the Re0 = 178 plume accelerates up to at
least z/R0 = 5, with the Re0 = 100 case having a maximum uc at z/R0 ≈ 3–4 and the three
highest values of Re0 having peak velocities at z/R0 ≈ 2–3. This non-monotonicity in uc
with increasing Re0 is a result of the complex vortex dynamics that arises in the puffing
instability as the flow transitions from laminar to turbulent; this transition is discussed in
more detail in Meehan et al. (2022). As Ri0 increases, figure 3 shows that changes in uc
become monotonic with increasing Re0 (e.g. in the Ri0 = 20 and 63 cases).

Corresponding trends are observed for ρ̄ in the bottom rows of figures 2 and 3, where
the increase in ρ̄ becomes more rapid along the centreline as both Ri0 and Re0 increase.
Once again, for the two lowest values of Ri0, the centreline profile ρc(z) ≡ ρ̄(r = 0, z) is
smallest for Re0 = 178, reflecting the non-monotonicity in the trends of uc with increasing
Re0 at low Ri0. For the two largest values of Ri0 in figure 3, the trends in ρc are monotonic
with increasing Re0.
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Figure 3. Centreline average vertical velocity uc/U0 (a–d) and centreline average density ρc/ρ0 (e–h) for
(a,e) Ri0 = 2, (b, f ) Ri0 = 6.3, (c,g) Ri0 = 20 and (d,h) Ri0 = 63. Line colours correspond to different
Reynolds numbers, Re0.

Figure 3 shows that there is an additional flow transition as the core of the plume is
penetrated by heavier ambient fluid for Ri0 = 20 with Re0 > 100, and Ri0 = 63 for all
Re0. This phenomenon is distinguished by the abrupt change in ρc near z = 0 (e.g. in
figure 3h) and by negative values of uc in the very near field. That is, the penetration of
heavier fluid becomes so strong that, on average, there is a recirculation zone along the
centre of the plume, marked by uc < 0. This penetration is reminiscent of that found in RT
instabilities and, henceforth, we refer to this phenomenon as a RT ‘spike’. This penetration
is particularly remarkable because, despite the plume having a non-zero upward injection
of helium, the spikes are strong enough to create recirculation.

Flow widths can also be computed from the average vertical velocity and density fields.
The contours δu/2R0 and δρ/2R0 are shown in figure 2, where δϕ is the flow width
corresponding to the radial location at which the average variable of interest, ϕ, has
decreased (increased) by 50 % from its centreline value for vertical velocity (density). This
definition is used so that each flow width is roughly equivalent to the nominal diameter at
the inlet; i.e. δρ(z = 0) ≈ δu(z = 0) = 2R0.

The contours in figure 2 indicate how the flow necks, corresponding to a contraction and
expansion of the flow as a function of vertical location. Quantitatively, the neck is defined
as the minimum flow width and the vertical profiles of δu and δρ in figure 4 reveal that the
neck is typically in the range z/R0 ≈ 1–2. Below the neck, the flow rapidly contracts,
shrinking the width and increasing the centreline velocity. Above the neck, turbulent
mixing increases and both the vertical velocity and density discrepancy (i.e. ρc − ρ0) along
the centreline diminish. Generally, the peak in uc occurs at the neck location.

Figure 4 allows us to directly compare δu and δρ for different Re0 for each Ri0, where
all figure panels also have the same axes to facilitate additional comparisons between
different Ri0 and flow width definitions. Very close to the inlet for z/R0 ! 0.5, δu and
δρ are very similar for different Re0. Farther downstream, the flow widths increase after
the neck is reached, where larger Re0 generally results in larger flow widths. Sufficiently
far downstream in the more turbulent cases, δu and δρ generally become similar for

961 A7-8

1�
�8

:

  

�7
2�7

�0
 �

��
��

��
 3/

�
��

��
��

��
	�

��
��

2:
1.

��
7�

�2�
.�

�!
��

��
��

2�
0.

�

�2

 .
�:

2�!
��

�.
::

https://doi.org/10.1017/jfm.2023.208


Flow statistics and fluxes of buoyant plumes

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
0.2

0.4

0.6

0.8

δ ρ
(z

)/2
R 0

δ u(
z)

/2
R 0

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

z/R0 z/R0 z/R0 z/R0

100
178
316

562
1000

(b)(a) (c) (d )

(e) ( f ) (g) (h)

Figure 4. Flow widths based on the average vertical velocity δu (a–d) and average density δρ

(e–h) for (a,e) Ri0 = 2, (b, f ) Ri0 = 6.3, (c,g) Ri0 = 20 and (d,h) Ri0 = 63. Marker shapes and colours
correspond to different Reynolds numbers, Re0.

different Re0. This is most apparent for Ri0 = 20–63 at z/R0 ≈ 4–5. Near the inlet at
locations below z ≈ R0, there is good agreement between δu and δρ for different Re0, with
better agreement for low Re0 when the flow is laminar. However, the flow widths diverge
for higher Re0, which is likely associated with the breakdown of the shear layer and vortex
roll-up via Kelvin–Helmholtz instability. The neck locations computed from the minima
of δu and δρ converge to z ≈ R0 as Ri0 and Re0 increase, consistent with the experiments
of Epstein & Burelbach (2001). This consistency between different flow widths has been
observed previously in the far field of pure plumes (Craske, Salizzoni & van Reeuwijk
2017), but this is the first time that it has been shown in the near field of lazy plumes with
large density differences.

The dependence of the average radial plume structure on Ri0 and Re0 is indicated in
figures 5 and 6. Note that the profiles in figure 5 are normalized by the local centreline
velocity, uc, and the local flow width, δu, while in figure 6 the profiles are normalized
by fixed inlet values. In figure 5, we show the radial profiles of ūz for different vertical
locations, and we include the top-hat profile used for the inlet and a Gaussian profile
using the plume width. From these profiles, it can be seen that there is a transition from a
smoothed top-hat profile at the inlet to a far-field Gaussian profile with increasing vertical
distance. The Gaussian profile is associated with far-field plume scaling, and all cases in
figure 5 approximately attain far-field behaviour by z/R0 = 5.

This transition, however, is complicated by the presence of coherent structures
associated with the puffing instability. This can be seen most clearly in figure 6 where
we show radial profiles of ρ̄ at the same vertical locations as in figure 5. At z = R0/2,
there is a small plateau in the density profile along the shear layer as a result of the
puffing instability. Additionally, the low-Re0 profiles show that there is no mixing near
the centreline while the higher-Re0, more turbulent, cases do mix, consistent with the
observation that RT spikes penetrate into the core of the plume and increase helium–air
mixing. Higher above the inlet, helium continues to mix with air, with generally greater
mixing as Ri0 and Re0 increase (although some non-monotonicity is present, consistent
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Figure 5. Radial profiles of ūz normalized by uc for (a,e,i) Ri0 = 2, (b, f,j) Ri0 = 6.3, (c,g,k) Ri0 = 20 and
(d,h,l) Ri0 = 63 at vertical locations z/R0 = 0.5 (a–d), z/R0 = 2 (e–h) and z/R0 = 5 (i–l). Line colours
correspond to different Re0. Dashed lines are the smoothed top-hat velocity profile prescribed at the inlet
and dash-dotted lines are Gaussian profiles expected in the far field.

with results from figures 3 and 4). Lastly, plumes with RT spikes have greater mixing
rates; this can be seen most clearly for the Ri0 = 20 case where there are no RT spikes for
Re0 = 100 and as the flow propagates downstream, the mixing is slower than larger Re0
with RT spikes.

Figure 5 shows that there is a distinctive peak in ūz away from the centreline near the
inlet (i.e. at z/R0 = 0.5) for all Ri0 and sufficiently high Re0. This off-centre peak is the
result of the rapid acceleration that occurs along the shear layer where the two fluids
interact, as well as the formation of downward-propagating high-density ambient fluid
into the core of the plume associated with RT spikes.

We further examine these off-centre peaks in figure 7, which shows the radial location of
maximum ūz at each vertical location, coloured by the relative magnitude of the maximum
velocity in the radial direction at each z (i.e. maxr(ūz)/uc). For each Ri0, the locations of
maximum velocity are in good agreement for all Re0. However, with increasing Re0, the
ratio maxr(ūz)/uc increases substantially and, as Ri0 increases, the ratio increases more
quickly. This highlights the important role of Re0 in determining the average structure of
lazy plumes, even for highly turbulent conditions.
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Figure 6. Radial profiles of ρ̄ normalized by ρ0 for (a,e,i) Ri0 = 2, (b, f,j) Ri0 = 6.3, (c,g,k) Ri0 = 20 and
(d,h,l) Ri0 = 63 at vertical locations z/R0 = 0.5 (a–d), z/R0 = 2 (e–h) and z/R0 = 5 (i–l). Line colours
correspond to different Re0.

3.2. Second-order velocity and density statistics
Second-order fluctuating statistics of velocity and density appear in higher-order models of
plume dynamics that account for deviations from MTT theory, such as in van Reeuwijk &
Craske (2015), and can also be used to characterize the intensity of turbulent fluctuations in
the flow. In the following, we use the buoyancy-based velocity scale (gR0)

1/2 to normalize
ui because of the important role played by gravity in destabilizing the flow and causing
variability. We found that this scale provided a better collapse of the data between different
Ri0 than U0. Density is normalized in all cases by ρ∞.

Figure 8 shows radial profiles of all non-zero second-order moments formed from
the fluctuating density ρ′ and the fluctuating velocities u′

r, u′
θ and u′

z at z = R0/2. This
vertical location is within the region of the flow dominated by the puffing and each of
the fluctuating variables is calculated with respect to azimuthal and temporal averages as
ϕ′ = ϕ − ϕ.

The first row of figure 8 indicates that, for Ri0 = 2, ρ′ρ′ is only non-zero for r/R0 " 0.4
and has a magnitude that increases monotonically with Re0. As Ri0 increases, ambient air
increasingly penetrates the core of the plume, leading to non-zero values of ρ′ρ′ even at
r/R0 = 0. For sufficiently large Ri0 and Re0, ρ′ρ′ approaches a uniform profile from the
centreline to the outer edge of the shear layer, then smoothly approaches zero.
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Figure 7. Radial locations of maximum ūz at each vertical location z for (a) Ri0 = 2, (b) Ri0 = 6.3,
(c) Ri0 = 20 and (d) Ri0 = 63. Colour indicates the value of maxr[ūz(r, z)]/uc(z) at each z. Shapes correspond
to different Re0 according to the legend in (a).

The outer edges of this plateau are close to the location where u′
ru′

r is a maximum,
as shown in the second row of figure 8. This is where the outer edges of the vortices
reside in the puffing-dominated region, and the peaks in u′

ru′
r broaden with increasing Ri0

and Re0. The third row of figure 8 shows that the profiles of u′
θu′

θ remain small within
the core of the plume for small Ri0, but then increase along the centreline for larger Ri0
and Re0. In general, u′

zu′
z in the fourth row of figure 8 has the largest magnitude of the

on-diagonal stresses (i.e. u′
ru′

r, u′
θu′

θ and u′
zu′

z), with maxima away from the centreline.
There is a general correspondence between the locations of local minima in u′

ru′
r and local

maxima in u′
zu′

z.
The profiles of ρ′u′

r and ρ′u′
z in the fifth and sixth rows of figure 8 are primarily negative

for all cases and over all r/R0. Physically, this means that lower than average density fluid
is transported radially outward (in the case of ρ′u′

r) and vertically upward (for ρ′u′
z) at

higher than average velocities, while higher than average density fluid is transported more
slowly. There are, however, some confined regions near the outer edge of the shear layer
(e.g. for Ri0 = 2 and Ri0 = 6.3) where these statistics are positive. The turbulent shear
stress u′

ru′
z in the last row of figure 8 varies from negative to positive as a function of

radius and becomes smaller in magnitude with increasing Ri0 and Re0.
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Figure 8. Second-order statistics at z = R0/2 of (a–d) ρ′ρ′/ρ∞ρ∞, (e–h) u′
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different Re0.
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Figure 9 shows the same second-order statistics farther above the inlet at z = 2R0. The
plateau in the density fluctuations has shifted and broadened in the lower Ri0 cases and, for
higher Ri0, the profiles are less variable with maxima near the centreline. The magnitude
of ρ′ρ′ is generally much smaller for larger Ri0 due to the highly mixed state. The two-peak
feature in u′

ru′
r is now a single peak that is closer to the centreline for the more turbulent

plumes and u′
θu′

θ has larger magnitudes that are generally comparable to u′
ru′

r. In general,
u′

zu′
z is roughly an order of magnitude larger than u′

ru′
r and u′

θu′
θ . Profiles of ρ′u′

r and ρ′u′
z

are again generally negative, but with much greater magnitudes and variability than at
z = R0/2 in figure 8. The shear stress u′

ru′
z also becomes predominantly positive at the

higher vertical location. In general, for the more turbulent cases, the radial profiles are
qualitatively similar to far-field statistics in pure plumes, such as those presented in Wang
& Law (2002).

The results in figures 8 and 9 can be summarized in a series of key observations. First,
radial profiles that incorporate ρ′ are zero close to the centreline when RT spikes are
not present. Second, extrema in the radial profiles within the puffing region are generally
off the centreline due to the presence of coherent vortical structures associated with the
puffing instability. Finally, once the flow becomes sufficiently turbulent, we find that the
flow is partially isotropic, such that u′

ru′
r ≈ u′

θu′
θ , and streamwise velocity fluctuations

dominate the other components, with |u′
z| ) |u′

r| and |u′
z| ) |u′

θ |.

3.3. Flux statistics
Many theories for predicting the far-field behaviour of buoyant jets and plumes – most
notably the MTT theory encompassed by (1.1a–c) – are focused on time-averaged fluxes
(Hunt & van den Bremer 2011). A number of attempts have been made to extend these
theories to more flows and scenarios that violate the fundamental assumptions outlined in
§ 1 (Rooney & Linden 1996; Bloomfield & Kerr 2000; Diez & Dahm 2007; Woodhouse,
Phillips & Hogg 2016; Carlotti & Hunt 2017), including the near field of lazy plumes (Hunt
& Kaye 2005). To provide appropriate statistics for the development of these theories,
particularly in the near field, we examine the dependence of time-averaged fluxes on Ri0
and Re0.

The time-averaged fluxes considered here are summarized in table 2. With these
definitions, the fluxes approach the nominal flux value at the inlet (i.e. at z = 0) as φ → ∞.
For example, the mass flux at the inlet would be

lim
φ→∞

M(0) = ρ0U0A0, A0 = πR2
0, (3.1)

where A0 is the inlet area. In the present study, we use φ < ∞ (specifically, φ = R0/50)
to ensure that increases in the grid resolution do not cause larger gradients at the base of
the plume, which is particularly important when studying small-scale quantities.

In figure 10, we show how volume, mass, buoyancy, density-weighted momentum and
density-weighted kinetic energy fluxes (Q, M, B, P and D, respectively; see table 2) vary
as a function of vertical distance. Each of the fluxes is normalized by the inlet value F0 ≡
F(0), where F represents an arbitrary flux quantity. We use density-weighted versions of
momentum and kinetic energy fluxes because these are more physically relevant in buoyant
jets with large density differences (van den Bremer & Hunt 2010). All of the fluxes in
figure 10 are approximately linear, except for B, which approaches nearly uniform values
for all cases immediately above the inlet. Moreover, normalization of the fluxes by the inlet
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Figure 9. Same statistics as in figure 8, but at vertical location z = 2R0.
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Dimensional flux Definition Dimensions

Volume flux Q(z) ≡ 1
T

∫ tf

t0

∫

A
uz dA dt m3 s−1

Mass flux M(z) ≡ 1
T

∫ tf

t0

∫

A
ρuz dA dt kg s−1

Density-weighted momentum flux P(z) ≡ 1
T

∫ tf

t0

∫

A
ρuzuz dA dt kg m s−2

Buoyancy flux B(z) ≡ 1
T

∫ tf

t0

∫

A
g(ρ∞ − ρ)uz dA dt kg m s−3

Density-weighted kinetic energy flux D(z) ≡ 1
T

∫ tf

t0

∫

A

1
2
ρ(u · u)uz dA dt kg m2 s−3

Table 2. List of all time-averaged dimensional flux quantities and their definitions examined in this paper.
Note that T ≡ tf − t0 and we use A to denote the cross-sectional area normal to the vertical direction.

values leads to a good collapse for different Re0 at a given Ri0, except for Q and M for
the two lowest values of Re0.

Vertical gradients of M, P and D in figure 11 provide clearer indications of the extent
of linear scaling. Note that we omit Q because it is closely related to M through bulk
parameters. This connection occurs because the flow only entrains ambient fluid, and the
first two rows of figure 10 show that the slopes differ only by a constant factor. We also
omit B in figure 11 since it is roughly equal to a constant beyond z/R0 ≈ 0.5.

The gradients of M in figure 11 indicate that, beyond z/R0 ≈ 0.5, each profile is
essentially constant with a gradual upward trend as a function of vertical distance. While
P and D look roughly linear in figure 10, the gradients in figure 11 show that this is only
approximately true, particularly for z/R0 ! 1–2 where there is a local maximum gradient
for most of the values of Ri0 and Re0 considered here. For the highest values of Ri0 and
Re0, these maxima become less prominent for the gradients of P , but remain for the
gradients of D. It should be noted that, as the integrands of the flux definitions in table 2
increase in order (i.e. there are more variables in the integrand), the gradients become
noisier because higher-order quantities require longer temporal averaging to achieve full
statistical convergence.

The linear variations of flux quantities in figures 10 and 11 differ from far-field scaling
laws for pure plumes, which are generally nonlinear. In contrast, quantities derived from
first-order moments (e.g. centreline and radial profiles, flow widths, etc.) were shown
in § 3.1 to approach far-field characteristics by z/R0 ≈ 3–5. We show in § 4 that this
discrepancy can be resolved by assuming that, at some outer radius R < ∞, ambient fluid
is entrained perfectly laterally, implying ρ(r = R) = ρ∞, ūr(r = R) < 0, ūθ (r = R) < 0
and ūz(r = R) = 0. This results in flux scalings different from those obtained by assuming
self-similar profiles.

This assumption is valid for the present simulation configuration due to the lower
boundary condition surrounding the inflow (e.g. a wall), which promotes lateral
entrainment and a relatively slow convective velocity compared with a buoyant jet.
Although boundary conditions were not discussed in Kaye & Hunt (2009) or Jiang &
Luo (2000b), both of whom showed linear scaling of fluxes in buoyant plumes, George
(1990) and Shabbir & George (1994) comment on the effects of boundary conditions for
buoyant jets. We provide a detailed derivation of the linear flux profiles under this set of
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Figure 10. Average fluxes (a–d) Q, (e–h) M, (i–l) B, (m–p) P and (q–t) D, as defined in table 2,
normalized by the respective inlet values for (a,e,i,m,q) Ri0 = 2, (b, f,j,n,r) Ri0 = 6.3, (c,g,k,o,s) Ri0 = 20 and
(d,h,l,p,t) Ri0 = 63. Colours correspond to different values of Re0.

assumptions, as well as identifying the region of validity for the present simulations, in
§ 4.1.

An additional consequence of the lateral entrainment is that when ambient fluid is drawn
inward by the plume immediately upon injection of the helium, the laterally entrained
ambient fluid flows along the wall (i.e. the prescribed uz(r > R0, θ, 0) = 0 outside of the
helium) and forms a boundary layer. This boundary layer is the likely reason we see modest
increases in B above the prescribed inlet value B0; with the boundary layer, a small amount
of ambient fluid is directed upwards, leading to increases in uz, which is embedded in the
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Figure 11. Vertical gradients of fluxes (a–d) M, (e–h) P and (i–l) D, with flux quantities normalized by
the respective inlet values and R0 for (a,e,i) Ri0 = 2, (b, f,j) Ri0 = 6.3, (c,g,k) Ri0 = 20 and (d,h,l) Ri0 = 63.
Colours correspond to different values of Re0.

computation of B. Similarly, the smaller dM/dz values for z/R0 ! 0.5 are likely due to
the boundary since the boundary layer restricts the amount of fluid entrained by the plume.
It should be noted that the boundary layer does not adhere to classical flat-plate boundary
layer structure since the flow is radially contracting, causing the ‘free-stream’ velocity and
pressure to be non-constant, resulting in differences in the governing equations. A detailed
analysis would be interesting, particularly for contexts outside of the present work, such as
viscous inhalant flows (True & Crimaldi 2017), but we leave this as future work.

4. Discussion

4.1. Analytical derivation of linear vertical profiles of mass and volume fluxes
The results in § 3 indicate that the vertical profiles of M and Q are linear, even in the
highly turbulent cases and beyond the neck of the plume where the flow is turbulent and
expected to approach far-field nonlinear relations. Using experiments and simulations,
respectively, Kaye & Hunt (2009) and Jiang & Luo (2000b) also found similar linear
vertical profiles in the near field. Here we show that these linear profiles can be derived
analytically by assuming that there is strictly lateral entrainment at a finite radius R away
from the plume inlet.

We begin by defining an axisymmetric control volume that extends radially from the
centreline to r = R and vertically from the base to z = Z, as shown in figure 12. At r = R,
we assume that ρ(r ≥ R, z) = ρ∞ and ūθ (r ≥ R, z) = ūz(r ≥ R, z) = 0. We also assume
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Figure 12. Instantaneous snapshots of the density field (a) and vertical velocity field (b) with red dashed lines
indicating the control volume used in § 4.1 and § 4.2.

that the radial velocity is stress-free at the bottom boundary, giving ūr(r > R0, z = 0) < 0.
Note that this is slightly different from the no-slip bottom boundary condition used in the
simulations. The assumption that ūz = 0 at r = R is the primary difference between this
study and previous studies based on MTT theory. However, this assumption leads to a
substantial simplification in approximating the fluxes, and is consistent with the simulation
results. This is shown in the first row of figure 13, where ūz is close to zero at r = 4R0 for
all Ri0 and Re0 considered here. Generally, ūz gradually increases with respect to vertical
distance, but the magnitude never increases above roughly 3 % of U0.

Because the variation of ūz with z is relatively small, we further assume that ∂ ūz/∂z =
0 at r = R. As a consequence of this assumption, we require that rūr be a constant at
r = R. This can be seen by considering the Reynolds-averaged continuity equation for a
statistically azimuthally symmetric flow in cylindrical coordinates, namely

∂

∂r
(rρur) + ∂

∂z
(
rρuz

)
= 0, (4.1)

where all derivatives with respect to time (t) and azimuthal direction (θ ) are zero due to
symmetry. With the assumption of constant density at r = R, this can be written as

1
r

∂

∂r
(rūr) + ∂ ūz

∂z
= 0 at r = R. (4.2)

With the assumption that ∂ ūz/∂z = 0 at r = R, we thus obtain

rūr(R, z) = f (z), (4.3)

for sufficient large r. Here, f (z) is an unknown function of z. To estimate this function,
we show Rūr at r = 4R0 for the present simulations in the second row of figure 13. For
z/R0 ! 0.5, Rūr increases in magnitude; this is a result of the boundary layer formation
that was discussed at the end of § 3.3. Beyond this region, Rūr is approximately constant
or varies only slightly for many of the simulations; the most significant variations are
seen in the less turbulent simulations. Given these results, we approximate Rūr as being
independent of z. This assumption is further supported by the fact that buoyancy is the
primary driver of entrainment and does not vary much spatially, as shown in figure 10.
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Figure 13. Demonstration of applicability of the assumptions used in § 4.1 for (a,e,i) Ri0 = 2,
(b, f,j) Ri0 = 6.3, (c,g,k) Ri0 = 20 and (d,h,l) Ri0 = 63. Line colours correspond to different Re0. As a function
of z/R0, we show the normalized vertical velocity at r = 4R0 (a–d); the quantity Rūr (e–h); and the change in
Rūr between r = 3.5R0 and r = 4R0, specifically &(Rūr) ≡ Rūr|R=4R0 − Rūr|R=3.5R0 (i–l).

Therefore, we are left with

Rūr(R, z) ≈ constant ≡ −cq. (4.4)

The negative sign in front of cq ensures that cq > 0, since ur < 0 and r ≥ 0.
With respect to the necessary size of R for these various assumptions to be valid, the last

row in figure 13 shows how the quantity Rūr changes for different choices of R. We show
that &(Rūr) = Rūr|R=4R0 − Rūr|R=3.5R0 is very close to zero outside of the boundary layer
for all of the present simulations, indicating that R = 4R0 is a sufficiently large radius for
the present assumptions to be valid.

Based on these assumptions, we can derive scaling relations for the mass flux, M, and
the volume flux, Q. Integrating (4.1) radially from r = 0 to the outer boundary of the
control volume at r = R yields

d
dz

∫ R

0
ρuzr dr ≈ ρ∞cq. (4.5)

Replacing the integral in (4.5) with the definition of M from table 2 and integrating with
respect to z gives the linear scaling relation

M(z) ≈ M0 + 2πρ∞cqz, (4.6)

where M0 ≡ M(z = 0) is the mass flux at the inlet. This derivation relies on conservation
of mass and the assumptions that ūz(r = R) = 0, rūr(r = R) ≈ constant and ρ(r = R) =
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ρ∞ at some R < ∞. Other studies that predict the average mass flux scales differently,
such as M ∼ z5/3, depend on the flow exhibiting a self-similar profile, which in general is
not true in the near field of lazy plumes (Hunt & Kaye 2005).

We analytically obtain a linear vertical profile for the volume flux Q using (4.6) and the
fact that the buoyancy flux, B, is constant and equal to B0 at all vertical locations. The
helium introduced at the inlet provides the only source of buoyancy in the flow and, since
helium is introduced nowhere else in the domain, B must be constant in z. This can also
be shown analytically by considering the transport equation for the helium mass fraction
and is supported by the nearly constant vertical profiles of B in figure 10; the detailed
derivation is provided in Appendix B. Based on the definitions of Q, M and B in table 2,
we can write B as

B(z) =
∫ R

0
g(ρ∞ − ρ)uz2πr dr = g(ρ∞Q − M) = B0. (4.7)

At the inlet, we additionally obtain g(ρ∞Q0 − M0) = B0, which then gives the relation

ρ∞Q − M = ρ∞Q0 − M0. (4.8)

Finally, using the linear relation in (4.6) we obtain the linear relation for Q given by

Q(z) ≈ Q0 + 2πcqz. (4.9)

We see in figures 10 and 11 that, outside the very near field where the boundary layer
impacts entrainment, Q and M are close to linear relationships, particularly for the more
turbulent cases, and B is roughly constant. However, even for the simulations where
gradients of Q and M are extremely close to constant, we still do not see D scaling
linearly, as we discuss in § 4.2.

4.2. Vertical profiles of momentum and kinetic energy fluxes
Figures 10 and 11 show that the vertical profiles of P and D are close to linear, but with
significant deviations, particularly close to the inlet. We can examine the reasons for these
approximately linear profiles beginning with the governing equation for the kinetic energy,
which is obtained from the momentum equation

∂(ρui)

∂t
+

∂(ρuiuj)

∂xj
= − ∂p

∂xi
+ (ρ − ρ∞)gi + ∂

∂xj

[
µ

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3
δij

∂uk

∂xk

)]
,

(4.10)
where ∂p/∂xi is the fluctuating pressure gradient relative to the hydrostatic gradient ρ∞gi.
Rather than directly examining the vertical momentum equation resulting from (4.10), we
use the governing equation for kinetic energy as a starting point for the analysis. The
kinetic energy accounts for the large radial velocities due to the puffing instability and, as
will be seen, results in the buoyancy flux appearing as a source term.

Contracting ui with (4.10) and assuming high-Reynolds-number flow such that viscous
effects can be neglected (where Re0 " O(102) in all the present simulations), we obtain
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an equation for the kinetic energy (i.e. ρuiui) given by

∂(ρuiui)

∂t
+

∂(ρuiuiuj)

∂xj
≈ −2ui

∂p
∂xi

+ 2(ρ − ρ∞)uigi. (4.11)

Taking a temporal and azimuthal average of (4.11) and writing the left-hand side in
cylindrical coordinates then gives

1
r

∂(rρuiuiur)

∂r
+ ∂(ρuiuiuz)

∂z
≈ −2ui

∂p
∂xi

+ 2(ρ − ρ∞)uigi, (4.12)

where we have assumed that the flow is steady and axisymmetric. Multiplying (4.12) by r
and integrating from 0 to R gives

rρuiuiur|R0 + d
dz

∫ R

0
ρuiuiuzr dr ≈ −

∫ R

0
2ui

∂p
∂xi

r dr +
∫ R

0
2(ρ − ρ∞)uigir dr. (4.13)

The lower bound of the first term on the left-hand side is zero. The upper bound can
be simplified because of the assumption that uz and uθ are zero at r = R. Further using
a Reynolds decomposition for the velocities and assuming that fluctuating quantities at
r = R are much smaller than the average terms (for example, ūrūr ) u′

ru′
r), we obtain

rρuiuiur|R0 ≈ rρ∞ū3
r |R. We know from the continuity equation that, at r ≥ R, the quantity

rūr is approximately constant with respect to r, as shown in (4.4). Therefore, we expect
that ū3

r r ≈ −c3
q/r2. For sufficiently large R, we have c3

q/R2 ≈ 0, ultimately implying
that rρuiuiur|R0 ≈ 0. Using this approximation and the definition of the density-weighted
kinetic energy flux (D) from table 2, we can then rewrite (4.13) as

dD
dz

≈ −
∫ R

0
ui

∂p
∂xi

2πr dr +
∫ R

0
(ρ − ρ∞)uzg2πr dr, (4.14)

where the gravitational acceleration is assumed to be purely in the negative z direction.
The last term on the right in the above equation is equivalent to B0, which finally gives

dD
dz

≈ −
∫ R

0
ui

∂p
∂xi

2πr dr + B0. (4.15)

Although this equation is approximate, it relies only on the assumptions of high-Re0,
statistically stationary, axisymmetric flow, with non-fluctuating primarily radial flow for
r ≥ R that decays as r−2.

The approximately linear scaling of D can be understood from (4.15) to arise when
the second term on the right-hand side dominates the first term. To examine this result,
figure 14 shows dD/dz, B and B0 for Ri0 = 2, Re0 = 100 and Ri0 = 20, Re0 = 1000. In
the near field below the neck of the plume, a linear scaling relationship does not appear
to hold well, but farther downstream beyond z ≈ R0, dD/dz asymptotically approaches a
constant value. For Ri0 = 2, Re0 = 100, this value is very close to the predicted value ofB0
from § 4.2. For Ri0 = 20, Re0 = 1000, the constant value deviates from B0. We also show
the computed value B to highlight that this discrepancy is not a result of the non-idealities
associated with the boundary layer. Rather, this is likely a result of the velocity–pressure
gradient term (i.e. the first term on the right-hand side of (4.15)) becoming increasingly
important as Ri0 increases.

961 A7-22

1�
�8

:

  

�7
2�7

�0
 �

��
��

��
 3/

�
��

��
��

��
	�

��
��

2:
1.

��
7�

�2�
.�

�!
��

��
��

2�
0.

�

�2

 .
�:

2�!
��

�.
::

https://doi.org/10.1017/jfm.2023.208


Flow statistics and fluxes of buoyant plumes

0

Fl
ux

es

0.2

0.4

0.6

0.8

1.0

1.2
(×10–3)

1 2 3 4

dD/dz
B0
B

1 2 3 4
0

2

4

6

8

10

12

z/R0 z/R0

(b)(a)

Figure 14. Comparison of vertical profiles of dD/dz, B0 and B for (a) Ri0 = 2, Re0 = 100 and (b) Ri0 = 20,
Re0 = 1000.

4.3. Parametric scaling of flux magnitudes
Figure 11 shows that the flux gradient magnitudes vary in a systematic way between
different Ri0. Using dimensional analysis based on inlet parameters, it can be shown that

(ρ0U0R0)
−1 max

(
dM
dz

)
= fM(Ri0, Re0), (4.16)

(ρ0U2
0R0)

−1 max
(

dP
dz

)
= fP(Ri0, Re0), (4.17)

(ρ0U3
0R0)

−1 max
(

dD
dz

)
= fD(Ri0, Re0), (4.18)

where fF denotes an unknown function for arbitrary flux F and other non-dimensional
groups held constant in the present simulations (e.g. ν∞/ν0 and ρ∞/ρ0) are omitted from
the analysis. In the above expressions, we consider the scaling of the maximum values
of each flux gradient over all z. Based on figure 11, this maximum value is close to the
z-independent constant value for dM/dz and to the peak values near z/R0 ≈ 1 for dP/dz
and dD/dz.

Figure 15 shows the dependence of the maximum flux gradient values on Ri0 and Re0.
For the two smallest values of Re0, dM/dz has a complex non-power-law dependence on
Ri0, particularly for small Ri0. However, for large Ri0 in the two lowest Re0 cases, and for
all Ri0 in the three largest Re0 cases, the maximum value of dM/dz nearly exactly follows
a Ri1/3

0 scaling law, with no dependence on Re0. Figure 15 shows that the maximum values
of dP/dz and dD/dz have essentially no dependence on Re0 for all cases considered here,
with ∼Ri2/3

0 and ∼Ri0 scaling-law dependencies on Ri0, respectively.
The reason for these Ri0 scalings can be inferred by considering the dependence of

the maximum values on the inlet parameters. Based on the results in figure 15 and the
definition of Ri0, we obtain

max
(

dM
dz

)
∼ ρ0R0 (gU0R0)

1/3 , (4.19)
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Figure 15. Maximum values of the flux gradients (a) dM/dz, (b) dP/dz and (c) dD/dz as functions of Ri0.
Flux gradients are normalized by inlet parameters and results are shown for different Re0. Dashed black lines
show scaling relations.

max
(

dP
dz

)
∼ ρ0R0 (gU0R0)

2/3 , (4.20)

max
(

dD
dz

)
∼ ρ0R0 (gU0R0) . (4.21)

Because the definitions of M, P and D involve first-, second- and third-order products
of the velocity, respectively, the relations above imply that the velocity magnitude in
the simulations scales as (gU0R0)

1/3. Considering that Ug ≡ (gR0)
1/2 is a velocity scale

associated with gravitational effects and U0 is the velocity associated with the jet inlet
velocity, these results imply that the velocity magnitude in the near field of lazy plumes
is comprised of a U1/3

0 jet-like contribution and a U2/3
g gravitational contribution. That is,

the near-field velocity magnitude is dominated in these simulations by the gravitational
contribution.

It should be noted that, as seen in figure 15(a), there is a complex dependence
on Re0 in the vertical mass flux gradient dM/dz, particularly for flows with
lower Re0. As convection becomes stronger through increases in Ri0 and Re0, the
trends for max(dM/dz)/(ρ0U0R0) more closely align with ∼ Ri1/3

0 , indicating that
max(dM/dz)/(ρ0U0R0) is becoming independent of Re0. The dependence of dP/dz and
dD/dz on Re0, however, is weak and, as a result, dP/dz and dD/dz primarily depend
on Ri0. This leads to the data in figure 15(b,c) closely following the proposed scaling
relationship.

Because dM/dz is approximately equal to a constant for z/R0 " 1.0 due to lateral
entrainment, the results in § 4.1 can be combined with the scaling relation for dM/dz
in (4.19) to estimate the parametric dependence of cq in (4.6). Taking the gradient of (4.6)
and solving for cq yields

cq = 1
2πρ∞

dM
dz

. (4.22)

A value of cq is computed for each sufficiently large Reynolds number case by substituting
the value of max(dM/dz) for dM/dz in (4.22). We then normalize cq by (gU0)

1/3 as
estimated through (4.19); this yields a set of values that are approximately equal. We
do not include ρ0 or R0 in the normalization since these were not varied in the present
simulations. An average of each of these values is taken and denoted b. This allows us to
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say that
cq ≈ b(gU0)

1/3, b ≈ 0.015. (4.23)

This value for b is specific to the present helium–air simulations and additional studies
that vary other parameters, such as the fluid types or R0, are needed to further generalize
the relationship.

Finally, we note that the cq referred to herein is distinct from the constant typically used
in the entrainment hypothesis (Morton et al. 1956). In the latter case, the constant refers to
the entrainment velocity being proportional to a local characteristic velocity, such as the
time-averaged centreline velocity. This difference is most apparent when considering that
the centreline velocity varies significantly by around an order of magnitude (see figure 3)
but dM/dz varies much less, particularly for z/R0 " 0.5.

4.4. Vertical scaling of the flux-based Richardson number
It has been common in research on buoyant plumes to define an entrainment coefficient in
terms of a local flux-based Richardson number, RiF , typically formed using dimensional
arguments (List & Imberger 1973; Hunt & van den Bremer 2011). Here we use dimensional
analysis and define RiF as

RiF (z) ≡
(

ρ2
0

25π2ρ4
∞

)1/4
BM3/4

D5/4 . (4.24)

Because we cannot assume that the flow is predominantly in the vertical direction in the
near field, we use D instead of P in the present analysis; the latter is traditionally used
in the far field (List & Imberger 1973; Hunt & van den Bremer 2011) to define RiF . By
contrast to prior approaches, we also do not use an entrainment coefficient in the definition
of RiF since the goal here is to understand global properties of lazy plumes, rather than
develop new entrainment theories. It should be noted that, by design, the definition in
(4.24) reduces to simply Ri0 when φ → ∞. That is,

Ri0 = lim
φ→∞

RiF (0), (4.25)

necessitating the constant pre-factor in (4.24), which also includes ρ0 and ρ∞. Since φ <
∞ in our simulations, Ri0 ≈ RiF0 , where RiF0 ≡ RiF (0).

In figure 16, we show RiF/RiF0 and RiF as a function of z for each of the simulations.
In the near field for z ! R0, there is a scaling of ∼z−1 for all simulations. There is also
little dependence on Re0 in this region, particularly compared with the dependence on Ri0.
Farther downstream, there is a transition to a scaling of ∼z−1/2 for small Ri0 and a much
smaller decay rate with z for larger Ri0. This ∼z−1/2 scaling can be obtained by applying
the linear relations derived in § 4.1 and § 4.2 to (4.24), where M ∼ z, B ∼ constant and
D ∼ z, leading to RiF ∼ z−1/2.

Figure 16 highlights another important property of RiF in the near field of buoyant
plumes. Namely, profiles of RiF (z) without normalization by RiF0 are similar for all Ri0
and Re0. This is particularly noteworthy given that Ri0 and Re0 vary across the present
simulations by at least one order of magnitude, and the plumes span both laminar and
turbulent regimes. The physical explanation for this collapse is, at present, unclear, but
is an important direction for future research, particularly with respect to understanding
invariant plume properties across the laminar to turbulent transition.
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Figure 16. Behaviour of a flux-based Richardson number RiF as a function of z, where (a) shows RiF

normalized by the inlet value RiF0 and (b) shows RiF . Dashed black lines in (a) show scalings with z, where
the number next to the line corresponds to the slope in log space.

5. Conclusions
A series of high-fidelity numerical simulations with AMR have been performed to model
the injection of helium into quiescent air and to examine the near-field properties of
buoyant plumes. Specifically, we focus on how the inlet-based Richardson and Reynolds
numbers, denoted Ri0 and Re0, respectively, impact the flow statistics and vertical fluxes.

From the flow statistics, we found that as Re0 increases, there is a change in flow
structure where heavy air penetrates the core of the plume in the near field, resembling
spikes in a RT instability. This is apparent using centreline density discrepancy profiles
where, just above the inlet plane, there is an immediate decrease from the inlet value. The
specific value of Re0 where this change occurs depends on Ri0, but is roughly consistent
with the critical Reynolds number associated with the puffing frequency discussed in
Meehan et al. (2022). For one of our most turbulent plumes at Ri0 = 63.2, Re0 = 316,
the penetration of air was so strong that a recirculation zone forms, as indicated by a
negative centreline vertical velocity. We find that, below the neck of the plume, there is
good agreement between density- and velocity-based flow widths. Additionally, there is
generally good agreement between the locations of the flow width minimum and the peak
in centreline velocity.

With respect to the fluxes, we found that volume, mass, momentum and kinetic energy
fluxes all scale approximately linearly with respect to vertical distance above the inlet.
Overall, these findings are consistent with the experimental observations of Kaye & Hunt
(2009) and numerical findings of Jiang & Luo (2000b). We show that the volume and
mass flux relationships can be derived by assuming that the flow is entrained in the radial
direction. The deviation from linear scaling below the neck of the plume is likely due to
a boundary layer forming along the wall surrounding the inlet. The deviation from linear
scaling is much stronger for the momentum and kinetic energy fluxes, likely as a result of
neglecting the effects of the mechanical pressure. We also show that the peak magnitudes
of the mass, momentum and kinetic energy flux vertical gradients can be described by
relatively simple scalings with respect to Ri0, where the characteristic velocity is found to
be comprised of one part jet momentum velocity and two parts buoyancy driven velocity.
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Lastly, a flux-based Richardson number defined using dimensional arguments shows that
there are some interesting plume properties with respect to vertical scaling and inlet
parameters that could be useful for modelling.

Based on these results and prior research on buoyant plumes, we can more clearly
describe the different flow regions, particularly in the near and intermediate fields, using
flow widths, centreline profiles and flux scaling relationships.

The near field is the region immediately above the inlet with the following properties:
(i) the mass and volume fluxes are roughly linear with some interference of the boundary
layer very close to the inlet; (ii) the flux-based Richardson number scales approximately
as z−1; (iii) the flow widths based on vertical velocity or density (or helium mass fraction)
converge towards the centreline; (iv) the maximum velocity along the radial profile is
off-centre, also converging towards the centreline; and (v) there are coherent oscillations
that lead to a characteristic puffing frequency.

The intermediate field is the region where the fluid has convected downstream and
near-field behaviours begin to dissipate, but far-field properties do not yet apply. In this
region, the flow has the following properties: (i) the flow widths (defined using uz, ρ
or helium mass fraction) grow, often in a linear fashion; (ii) the mass and volume flux
scale linearly with z; (iii) there is a shallower scaling of the flux-based Richardson number
(compared with the near field); and (iv) self-similar profiles (generally Gaussian profiles)
begin to develop for the more turbulent plumes. The important distinction here is that
while the flow appears to mimic the far field in some respects, there is still memory of the
inlet conditions, leading to a deviation from anticipated far-field properties.

We classify the far field as the region where the flow has convected so far downstream
that the profiles are completely self-similar and the flow loses all memory of the inlet
conditions. Using this idea and a few other assumptions (see Hunt & van den Bremer
(2011) for more details), the flow can be modelled using a virtual point source of
momentum and buoyancy with a location that is modulated such that the conditions of
the finite-area source (i.e. the physical plume) and the virtual source align far enough
downstream. We do not go into great detail discussing the far field because the bulk of
previous literature has focused on this region; see Hunt & van den Bremer (2011) and
references therein for further discussion.

Finally, a primary motivation for studying helium–air mixtures has been to understand
buoyancy-driven effects in reacting flows, without additional complications due to
chemical reactions. In reacting flows, temperature variations due to chemical heat release
provide a spatially varying source of buoyancy above the inlet, as opposed to the present
configuration where density differences are caused purely by the introduction of helium at
the inlet and the buoyancy flux is invariant of vertical location.

Despite the differences between reacting and non-reacting buoyancy-driven flows,
some aspects of the present analysis can be applied to reacting flows. For example, the
derivations of the volume and mass flux vertical profiles in § 4.1 only required the use
of the continuity equation and the assumption of lateral entrainment of ambient fluid. If
this type of entrainment is also found in reacting plumes, such as pool fires, we would
expect these relations to hold exactly despite the presence of chemical reactions. Indeed,
calculations of the mass flux in fire plumes (McCaffrey 1979; Hinkley 1986; Zukoski 1994;
Jiang & Luo 2003) show that, in the very near field, there is in fact a linear variation of the
mass flux with vertical location.

Although it is encouraging that the analytical relations in § 4.1 are supported by
observations of reacting flows, substantially more research is required to understand the
properties of other flux quantities in the presence of chemical reactions. In particular,
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momentum and kinetic energy flux profiles may be substantially affected by density and
viscosity variations due to heat release, and additional parameters may be required to
describe the scaling of flux magnitudes (as in § 4.3).
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Appendix A. Azimuthal averaging
To obtain the most converged statistics possible, it is important to use all axes of symmetry.
The homogeneous dimension for the present simulations is the θ direction, but averaging
over θ is not readily accessible since the simulations were conducted using a Cartesian
coordinate system. Interpolation is thus required to average over θ . This appendix outlines
a number of different methods to perform this interpolation and quantifies the numerical
error associated with each.

A.1. Methodology
Consider simulation data that were produced on a two-dimensional uniform rectilinear
product grid with nx + 1 points in the x direction and ny + 1 points in the y direction,
with cell-centred coordinates (x0, y0), (x0, y1), . . ., (x0, yny), . . ., (xnx, yny). At each point,
we have a flow variable q at each location, qij ≡ q(xi, yj). These data possess azimuthal
symmetry about (x, y) = (0, 0) that we wish to utilize. Let Q̄(r) be the true, continuous,
azimuthally averaged field of the flow variable q, as given by

Q̄(r) = 1
2π

∫ 2π

0
q(x, y) dθ, (A1)

with the discrete analogue being Q̄k(rk). The relation between the Cartesian and
cylindrical grid is

x = R cos θ, y = R sin θ, (A2)

for any given R. If the grid spacing for Q̄k is uniform with width &r, then rk is

rk = k&r + &r
2

, for k = 0, 1, 2, . . . , nr − 1. (A3)

Since we have many cells in the computation, we compute small chunks of Q̄k, denoted
q̄k,m, such that

Q̄k = 1
2π

∑

m
q̄k,m. (A4)

The objective is to compute q̄k,m from the Cartesian data with sufficiently high accuracy
and sufficiently low computational cost in order to produce meaningful results.
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Note that in this definition we have assumed that the simulation data are defined
on a two-dimensional, uniform rectilinear product grid; however, the present simulation
data are three-dimensional and non-uniform. We have reduced the dimensionality to the
x, y plane for presentation purposes and note that the third dimension (z) is addressed
using equivalent standard interpolation methods (e.g. we do not illustrate how to linearly
interpolate in the z dimension). Additionally, regarding the uniformity of data produced
using an AMR simulation, the data exist as a hierarchy of nested grids that are uniform for
a given grid. The interpolation of the data is done on each grid (i.e. a uniform grid).

We use a space-filling nearest-neighbour interpolation, which goes as follows: the value
of qij with coordinates (xi, yj) represents the flow with boundaries x ∈ [xi − &x/2, xi +
&x/2] and y ∈ [yj − &y/2, yj + &y/2], and, therefore, if any rk with bounds rk ∈ [rk −
&r/2, rk + &r/2] overlaps that cell region, that cell value qij is added to q̄k,m weighted
by the overlap area. The advantage of this algorithm is that it is low order, and thus not
too computationally demanding. Additionally, compared with simple nearest-neighbour
interpolation, all rk are filled even if the Cartesian grid is much coarser than the grid
we wish to interpolate to. However, due to its low order of accuracy, there is artificial
smoothing that may distort the statistics derived from these averages.

To derive the area bounded between edges of a radial grid, first consider how one would
compute the area under the top half-plane of a circle centred at (x, y) = (0, 0) and of radius
R. Using (A2) and after some algebra, we can write y as a function of x as

y(x) = R sin
[
cos−1

( x
R

)]
= R

[
1 −

( x
R

)2
]1/2

. (A5)

We can integrate this quantity exactly from x = 0 to x = R to get the area of a quarter
circle, πR2/4. If we now want to determine the area bounded by two vertical lines at x0
and xf with the restriction 0 ≤ x0 < xf ≤ R, the arc of radius R and the x axis y = 0, we
simply need to integrate (A5) from x0 to xf , yielding

∫ xf

x0

R
[

1 −
( x

R

)2
]1/2

dx = R
x

[

x
(

1 − x2

R2

)1/2

+ R sin−1
( x

R

)]∣∣∣∣∣

xf

x0

. (A6)

Adding generality, we can instead consider the area bounded by some horizontal line y0 >
0 rather than y0 = 0 by subtracting y0 in the integrand of (A6) to obtain
∫ xf

x0

R
[

1 −
( x

R

)2
]1/2

− y0 dx = R
x

[

x
(

1 − x2

R2

)1/2

+ R sin−1
( x

R

)]

− y0x

∣∣∣∣∣

xf

x0

. (A7)

Some care must be taken in the bounds of integration for this case. In particular, if R2 −
y2

0 ≤ x2
f , then the edge of the circle intersects the lower bound at x = (R2 − y2

0)
1/2 and

integration should only be performed to xf = (R2 − y2
0)

1/2. Additionally, if R2 ≤ x2
0 + y2

0,
then the area bounded between the lines is zero.

The derivation thus far has essentially calculated the area overlapped by an infinitely tall
rectangle with bounds x0 ≤ x ≤ xf , y0 ≤ y ≤ ∞ and a circle of radius R. We use this result
to now determine the area bounded by a finite box y0 ≤ y ≤ yf < ∞ and two concentric
circles. This result is used to weight the cell qij in computing the azimuthally averaged
field.

We first consider the area that overlaps a finite box with bounds x0 ≤ x ≤ xf , y0 ≤ y ≤ yf
and a circle with radius R. Let g(x0, xf , R, y0) be a function equal to either side of (A7).
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Then the area bounded by the two shapes is

A(x0, xf , y0, yf , R) = g(x0, xf , R, y0) − g(x0, xf , R, yf ). (A8)

As discussed before, the integration bounds need special attention. In particular, even
though the two terms on the right-hand side of (A8) have the same x integration bounds,
they would need to be adjusted if x2

0 + y2
0 < R2 < x2

f + y2
0, or if x2

0 + y2
f < R2 < x2

f + y2
f .

The area bounded between two concentric circles and the finite box is then simply

w(x0, xf , y0, yf , r0, rf ) = A(x0, xf , y0, yf , rf ) − A(x0, xf , y0, yf , r0), (A9)

where r0 and rf are, respectively, the inner and outer circles with r0 < rf . Relating this
to the original problem, letting wij,k represent the weight of cell qij for q̄k, then wij,k as
defined in (A9) can be computed by setting

x0 = xi − &x
2

, y0 = yj − &y
2

, r0 = rk − &r
2

,

xf = xi + &x
2

, yf = yj + &y
2

, rf = rk + &r
2

.





(A10)

Generalizing this result for all i, j, we can say that

Q̄k = 1
π
[
(rk + &r/2)2 − (rk − &r/2)2

]
∑

i

∑

j

qijwij,k, (A11)

where the pre-factor on the right-hand side comes from the area spanned for a given rk.
Note that, in practice, we do not use all i, j simultaneously, only for a given grid (i.e. a
subset) and we simply sum over all m grids to obtain Q̄k. Also note that this derivation is
only valid for cells in the first quadrant, x ≥ 0, y ≥ 0. Additional measures were taken for
cells in the remaining three quadrants to ensure the area was properly computed.

To illustrate this technique, we provide an example in figure 17. In figure 17(a), we show
the area (or weight) of the Cartesian cells used for computing the average at Q̄(r1) and
the associated computation. Once the average for all radial locations has been computed,
we need to use these data to subtract an average from the instantaneous field to produce a
fluctuating field, which is subsequently used for various statistics. A demonstration of how
to weight the average field is provided in figure 17(b), which follows the same technique
as outlined above to find the radial weighting for the Cartesian cell.

A.2. Validation
In this section, we show that the error corresponding to the interpolation method outlined
in § A.1 is sufficiently small for the purposes of the results presented here. The first form
of validation we use is to show that the azimuthally averaged field is equal to the sum of
the terms that decompose the original field using a Reynolds decomposition, namely that

ϕϕ = ϕ ϕ + ϕ′ϕ′. (A12)

The computation of ϕ′ϕ′ requires subtraction of the azimuthally averaged field prior to an
additional azimuthal average, unlike the left-hand side of (A12) or the computation of ϕ,
both of which only require one azimuthal average. Thus, if the left- and right-hand sides of
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x, r x, r

y y

r0r0 r1 r2 r2r1

A00q00 + A10q10 + A11q11 + A01q01 A1Q–1 + A2Q–2

π[(r1 + $r/2)2 − (r1 − $r/2)2]
Q–(r1) = q–(x1, y1) =

$x $y

(b)(a)

Figure 17. Demonstration of space-filling nearest-neighbour azimuthal averaging. (a) Nearest-neighbour
computing azimuthal average. The azimuthal average is computed using the cells that overlap the area bounded
by the polar grid weighted by the area. (b) Nearest-neighbour expanding azimuthal average. The azimuthally
averaged field is expanded back onto the Cartesian grid by weighting the areas contained within the cell.
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Figure 18. Fields of the average vertical velocity ūz (a,d), average vertical velocity fluctuations u′
zu′

z
(b,e) and the error field as computed from (A13) (c, f ) for two different simulations: Ri0 = 2, Re0 = 100
(a–c) and Ri0 = 20, Re0 = 1000 (d–f ).

(A12) differ, this is entirely due to the interpolation methods. We let ϕ ≡ uz and the error
is defined as

Error ≡ ūzūz + u′
zu′

z − uzuz. (A13)

Results are shown in figure 18 for the simulations Ri0 = 2, Re0 = 100 and Ri0 = 20, Re0 =
1000. The error fields are several orders of magnitude smaller than the individual fields
themselves, which is sufficient for the purposes of the present investigation.

The second validation test involves the comparison of azimuthally averaged fields and
the raw Cartesian data. We do this using the volume flux, Q, because it is a simple matter to
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Figure 19. Computed volume flux Q using the Cartesian data (solid lines) and the azimuthally averaged data
(dashed lines), as shown in (A14), for various Re0 at (a) Ri0 = 2 and (b) Ri0 = 20.

calculate the integral definition of Q in both Cartesian and cylindrical coordinate systems,
namely

Q(z) = 1
tf − t0

∫ tf

t0

∫

A
uz dA dt =

∫ R

0
ūz2πr dr. (A14)

The noticeable distinction between the two is that the integral that involves A can be done
directly using the Cartesian data, even with the data being multi-resolution, because we
simply need to interpolate the data to some z, then sum the value of uz multiplied by the
cross-sectional area of the cell for all of time. The integral in the radial direction, however,
uses the azimuthally averaged value of ūz, which is subject to error. This error, unlike the
error shown in figure 18, ensures that the interpolation does not spatially distort the data,
which is particularly important near the centreline.

In figure 19, we present the computed Q using the Cartesian data and using the
azimuthally averaged data for various Re0 at Ri0 = 2 and Ri0 = 20. Overall, both
computations are in very good agreement. There is a small discrepancy for some cases
at Ri0 = 2, but this does not impact the main conclusions presented in the paper. The
computed Q is almost identical for Ri0 = 20.

Appendix B. Derivation of the buoyant flux vertical profile
In § 4.1, the invariability of the buoyant flux, B, was used to show that the volume flux
scales linearly as a function of downstream distance. In this appendix, we provide detailed
support for this assumption.

We begin with the species transport equation for the helium mass fraction, YHe, which
is written as

∂(ρYHe)

∂t
+ ∂(ρuiYHe)

∂xi
= ∂

∂xi

(
ρD

∂YHe

∂xi

)
, (B1)

where D is a constant diffusion coefficient. Applying an ensemble average and combining
terms, we have

∂

∂xi

(

ρuiYHe − ρD
∂YHe

∂xi

)

= 0. (B2)
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In flows where convection dominates the dynamics, diffusion is negligible, as can be
shown using simple non-dimensionalization. This leads to

∂

∂xi

(
ρuiYHe

)
= 0. (B3)

Using a cylindrical coordinate system we obtain

∂

∂r
(
ρurYHer

)
+ ∂

∂z
(
ρuzYHer

)
= 0, (B4)

and integrating radially from r = 0 to r = R with the same conditions assumed in § 4.1
results in

d
dz

∫ R

0

(
ρuzYHe

)
r dr = 0. (B5)

We note that, due to the binary fluid mixture, ρ, YHe and the mass fraction of air (Yair) are
related through the relationships

1
ρ

= YHe

ρ0
+ Yair

ρ∞
, YHe + Yair = 1. (B6)

Using (B6) in the integrand of (B5) then gives

ρuzYHe = ρ0

ρ∞ − ρ0

(
ρ∞ūz − ρuz

)
. (B7)

Therefore,
∫ R

0

d
dz
(
ρuzYHe

)
2πr dr = ρ0

ρ∞ − ρ0

(

ρ∞
dQ̄
dz

− dM̄
dz

)

= 0. (B8)

The quantity in the parentheses is related to dB/dz through a constant factor. Therefore,
dB/dz = 0 and B must remain constant as a function of z.

One last point we acknowledge is that from figure 10, it can be seen that B increases
above B0, and in some larger Ri0 by approximately 10 %. This is a consequence of a
boundary layer adding upward velocity along the lower boundary, as discussed at the end
of § 3.3.
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