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Buoyant plumes often pulsate, or puff, at a characteristic frequency that depends on the
Richardson number. In many engineering and natural applications, however, interactions
between two or more plumes can substantially affect the puffing frequency. In this study,
we use numerical simulations to investigate how the plume width, W , and the separation
between two plumes, S, affect the puffing frequency. The plumes are formed by injecting
helium into ambient air, and we perform the simulations in two spatial dimensions to
identify scaling laws in the limits of large and small S. We find that the global dependence
on S closely matches that observed in reacting three-dimensional (3D) plumes, indicating
that the plume dynamics are primarily connected to the presence of buoyant forces,
regardless of the source of buoyancy. There is a critical value of S at which the puffing
frequency changes abruptly but, in contrast to 3D reacting plumes, this critical value is
independent of W for the present two-dimensional plumes. Ultimately, we find that the
nonlinear decrease in puffing frequency with increasing spacing can be represented by a
scaling law that depends only on S/W and the inlet Richardson number. These results
allow us to identify four regimes of puffing behavior, corresponding to merged, strongly
interacting, weakly interacting, and noninteracting plumes.
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I. INTRODUCTION

The puffing instability commonly observed in buoyant plumes occurs when lateral entrainment
and vertical buoyancy-driven flow combine to repetitively generate vortices that rise upward against
the direction of gravity. The primary method of characterizing this instability is to compute the
frequency at which vortices are created, commonly referred to as the puffing frequency. This
simple measurement facilitates direct comparisons between experiments, simulations, and stability
analyses (see, e.g., Chakravarthy et al. [1], Bharadwaj and Das [2,3], and Wimer et al. [4]).

In the present study, we seek to understand how the puffing frequency is affected when two
adjacent buoyant plumes interact. Interacting plumes occur, for example, when heat sources are in
close proximity, including in buildings, electronic equipment, or when factories use smokestacks to
release combustion products into the atmosphere. There are also several examples of interacting
reacting plumes where buoyancy is predominantly generated as a result of heat release in the
shear layer. This configuration can be found in closely spaced high temperature burners [5] or
at much larger terrain scales when wildland fires interact [6]. To isolate physical mechanisms
present in reacting plumes, inert buoyant plumes are often used as surrogates to capture essential
flow features such as the puffing phenomenon [7,8] and bulk entrainment for unequal buoyancy
sources.
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The structure and dynamics of interacting plumes are dictated by the competing effects of vortex-
vortex interactions and entrainment. Buoyant plumes in an interacting pair entrain a large amount
of ambient fluid [9], suggesting that vortices produced by the plumes will synchronize but remain
out of phase because the entrainment varies throughout the puffing cycle. That is, when entrainment
by one plume is at a maximum, entrainment by the other plume will be at a minimum, with a
reversal halfway through the cycle. This behavior is in contrast to that observed in the near-field
region behind bluff bodies, where vortices generated between the two adjacent shear layers have a
tendency to synchronize such that they are in-phase and the vorticity in each layer is of opposite
sign [10]. A low-pressure region can also form between interacting plumes (as is also seen, for
example, in twin plane jets [11]), which can cause the plumes to lean toward each other and interact
even more strongly [12].

Much of the prior research on interacting plumes has focused on how the interactions of multiple
nonreacting sources lead to differences in downstream fluid transport. This emphasis stems from
the loss of memory that occurs sufficiently far downstream from the plume source, where the
flow for single plumes becomes self-similar and point-source models can be used [13]. However,
the process by which finite-area sources merge for interacting plumes can significantly alter the
placement of the virtual point source. Kaye and Linden [14] pioneered early theoretical work on
the coalescing process in turbulent axisymmetric plumes, providing a mathematical description of
the merge point and the resulting merged flow. Subsequent studies have focused on entrainment
statistics [15], stratified environments [16], different plume configurations [12,17,18], and the effect
of reactions [19]. Ongoing fluid transport research is generally targeted at specific applications given
the wide range of inlet shapes and source types found in practice.

In the near-field of interacting plumes, by contrast, the primary focus has been on the repet-
itive formation of coherent vortices and the resulting puffing behavior (see, e.g., Cetegen and
Ahmed [20], Wimer et al. [4], Hamins et al. [8]). Of the few researchers who have studied the
frequency for interacting plumes, one clear trend has emerged. As the separation between the
plumes decreases, the puffing frequency increases and the oscillations become out of phase. At a
critical separation, there is a dramatic drop in the frequency and the plumes begin puffing in phase.
After this point, the puffing frequency is relatively insensitive to further decreases in the separation.
These observations were made as early as the 1960s [21] and have been substantiated by a number
of subsequent studies [22–27]. It should be noted that, in these previous studies, the plumes were
generally laminar and chemically reacting. In larger applications, such as line plumes [6], spanwise
vortex breakdown may lead to interactions that are turbulent. Even though the puffing frequency has
been found to scale similarly for laminar and turbulent plumes [4], it is still possible that interacting
turbulent plumes will behave differently than interacting laminar plumes.

Here we build on prior research and use numerical simulations to examine how the puffing
frequency depends on the separation between two identical two-dimensional (2D) helium plumes
for different plume widths. The simulations use adaptive mesh refinement (AMR) to fully resolve
the dynamics of interest while reducing the computational cost. We compute the puffing frequency
for each simulation and seek to answer three primary questions: (i) How does the puffing frequency
for 2D interacting inert plumes depend quantitatively on the plume width and separation? (ii) Are
there clearly identifiable regimes of puffing behavior for different widths and separations?, and
(iii) How do these results compare to previous results for 3D reacting plumes? Previous, primarily
experimental, studies [22,23,28] have provided partial answers to these questions, and here we take
advantage of the precision enabled by simulations to definitively answer these questions for 2D
interacting plumes.

II. NUMERICAL SIMULATIONS

We perform numerical simulations of 2D interacting helium plumes using PeleLM, a second-
order finite-volume code that solves a low-Mach formulation of the Navier-Stokes equations. A
detailed discussion of the relevant transport equations and the numerical implementation is given in
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Refs. [29–31]. By using helium in the simulations, the buoyancy source is not spatially evolving,
by contrast to reacting flows where heat release by chemical reactions provides the primary source
of buoyancy. The present focus on nonreacting plumes is motivated by Bunkwang et al. [28], who
observed that the interactions between adjacent plumes are primarily due to flow, as opposed to
chemical, effects.

The 2D computational domain in each simulation is (4 m)2 with a base grid of 642 grid cells. At
z = 0, Dirichlet boundary conditions are used to specify the inflow. Two streams of helium with den-
sity ρ0 = 0.163 kg/m3 and viscosity µ0 = 1.98 × 10−5 kg/ms flow into the domain through inlets
of width W with velocity V0 = 1 m/s and are separated by distance S. Outside the helium streams,
there is a coflow of air with density ρ∞ = 1.17 kg/m3 and viscosity µ∞ = 1.86 × 10−5 kg/ms
at velocity V∞ = V0/2. This coflow reduces numerical artifacts at the upper domain boundary, a
common problem in low-speed 2D simulations [32] and also supplies ambient fluid between the
two plumes. The helium inflow is transitioned to the coflow using a hyperbolic tangent profile [2].
We use a gravitational acceleration of g = 9.81 m/s2 and all fluids are maintained at a temperature of
T = 300 K. The remaining three boundary conditions are open, allowing ambient air and helium-air
mixture to pass through the boundaries.

The coarse resolution of the base grid is combined with AMR to provide fine resolution near
the plume source while maintaining coarse cells near the open boundaries to mitigate numerical
artifacts [2,3,32]. A total of five levels of AMR are used, providing an effective grid resolution of
approximately 2 mm, which was shown by Wimer et al. [4,29] to be sufficient for obtaining con-
verged puffing frequencies in both laminar and turbulent plumes. To confirm the present resolution,
we performed additional simulations for a subset of the cases with half and double the resolution.
Comparing key metrics (e.g., puffing frequency, critical spacing), we found that the grid resolution
did not impact the results presented herein. We use conservative refinement criteria based on the
vorticity magnitude and cell-to-cell density differences so that the entirety of the plume is resolved
to the finest level up to 0.5 m above the inlet.

The present focus on 2D simulations is motivated by physical considerations, as opposed to
concerns related to the computational cost. By selecting a 2D geometry, there is a finite amount of
ambient fluid between the inner shear layers. This is important because plumes entrain this fluid
and, when S becomes sufficiently small, the plumes will be starved of ambient fluid between the
inner shear layers, leading to a change in the puffing frequency. This is noticeably different than
axisymmetric plumes where, even for S = 0, fluid can still be entrained near the contact point.

In the following, we examine puffing frequencies for a series of both single and double plume
configurations. For the single plume case, we perform eight simulations with widths, W , varying
from 5 to 12 cm while fixing all other parameter values. The single plume cases are used to validate
our simulation results against prior experimental and computational studies of 2D plumes [3,33,34],
as well as to provide data for comparisons with the double plume results. We perform double plume
simulations for W between 5 and 12 cm and S between 0 and 14 cm; in total, 198 different double
plume simulations were performed. All other parameters remain fixed for all simulations.

The resulting simulations span a range of nondimensional numbers and are designed to provide
insights into the dependence of the puffing Strouhal number, St = f W/V0, on the width-based
inlet Richardson number, Ri = (1 − ρ0/ρ∞)gW/V 2

0 and the length-scale ratio S/W , where f is the
puffing frequency. The simulations span Ri from 0.42 to 1.01 and S/W between 0.018 and 2.8.
Although the inlet Reynolds number, Re = ρ0V0W/µ0, also varies in the simulations between 412
and 988, prior research has shown that St varies weakly with Re in buoyancy driven flows, even
through the point of laminar to turbulent transition [35].

III. RESULTS AND DISCUSSION

The puffing behavior for three representative simulations is qualitatively indicated by the instan-
taneous snapshots of the density field shown in Fig. 1. For the single plume of width W = 5 cm in
the top row, the vortex roll-up is regular and symmetric throughout the puffing cycle. The middle
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FIG. 1. Snapshots of the density field for a single plume with W = 5 cm (top row) and interacting plumes
with W = 5 cm and S = 0.6 and 14.5 cm (middle and bottom rows, respectively). Columns from left to right
show the density at time intervals of τ/4, where τ = f −1 is the period of the puffing. The leftmost column
shows where AMR is used to resolve the dynamics, the center column shows where the probes were placed in
the flowfield (red arrows), and the rightmost column shows streamlines.

row in Fig. 1 shows that the puffing dynamics for small separations are quite similar to those for
the single plume, except with a small density deficit near the centerline. When the separation is
larger, as shown in the bottom row of Fig. 1, the flow is asymmetric about the centerline at x = 0,
with the puffing of each plume out-of-phase. This asymmetry is most apparent by noting that the
middle panel in the bottom row is almost an exact reflection about x = 0 compared to the leftmost
and rightmost panels.

To determine the puffing frequency, f , we collected 20 s of streamwise velocity data 15 s after
the start of each simulation (to allow for the decay of initial transients). Fast Fourier transforms were
then applied to the time series to obtain power spectral densities (PSDs), and the peak frequency in
each PSD was considered to be the puffing frequency, f . We examined time series at various spatial
locations and found that the center of each plume approximately 3 mm above the inlet provided
the most precise and consistent measurements of f . In general, however, f was similar across all
spatial locations examined, consistent with the global nature of the associated instability [1]. The
PSD for each case displays a distinct peak at a single frequency and, for the two-plume cases, the
peak frequencies are the same in both left and right plumes (although, as will be shown later, the
phases are not necessarily the same).

For the single plume cases, Fig. 2(a) shows f as a function of W ; St is shown as a function of Ri
in the inset. We then perform a linear least-squares fit and find the single-plume Strouhal number
(Sts) scaling relation

Sts ≈ cRi0.45, c = 0.68. (1)

This relation closely matches previous results for single plumes [3,33,34], although the coefficient
c = 0.68 is slightly higher than other results where c ≈ 0.5–0.6 [3]. However, this small difference
is almost certainly a consequence of the mild coflow V0/V∞ = 0.5, since Bharadwaj and Das [36]
found that the presence of a coflow slightly increases the puffing frequency in axisymmetric plumes.
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FIG. 2. Computed frequency f for (a) single plume simulations as a function of W and for (b) two-plume
simulations as a function of S and W . The inset in (a) shows St as a function of Ri and the dashed lines show
Sts from (1). Panel (b) indicates whether the two plumes puff in phase (squares) or out of phase (circles).

For the two-plume cases, Fig. 2(b) shows that f increases for all S with decreasing W and is
independent of S for sufficiently small and large separations. Figure 2(b) also effectively summarizes
the values of W and S used in each of the 198 two-plume simulations performed here. For
intermediate values of S, f increases with decreasing S until a critical separation, denoted S∗, is
reached and there is an abrupt drop in f . The phase difference between the two plumes is also
indicated in Fig. 2(b), where the puffing goes from in phase to out of phase with increasing S at S∗.
To compute the phase difference, we found the angles of the complex value associated with the peak
frequencies in the PSDs. Using symmetry, the magnitude of the difference between the angles of the
different plumes is then the phase difference between the plumes, which we denote φ. When φ ≈ π ,
the plumes are out of phase, and when φ ≈ 0, the plumes are in phase. For the simulations presented
here, φ ≈ 0 or φ ≈ π in all cases, allowing us to unambiguously define in-phase and out-of-phase
puffing between the plumes.

We quantitatively determine S∗ for each W by iterating through the cases from large S and iden-
tifying the first value of S where the plumes change from out of phase to in phase; S∗ must then lie
between this and the previous value of S. The average of these separations is remarkably consistent
for different W , with S∗ ≈ 1.3 ± 0.1 cm for all but the smallest W , where S∗ ≈ 0.9 ± 0.1 cm. The
error is approximated from the difference in separations used to calculate the average. Although a
similar decrease in puffing frequency was observed for decreasing S in reacting plumes, the present
independence of S∗ on W is in contrast to reacting axisymmetric (i.e., 3D) plumes where the critical
spacing increases with the diameter of the plume, D, as S∗ ∼ D1/3 [28].

Previously, the abrupt frequency change at S∗ has been hypothesized to depend on radiation [22],
vortex dynamics [37], and viscosity [24,28]. In the present study, the consistency of S∗ across all
cases suggests that the critical separation may depend on other parameters not varied here, for
example the viscosity and the buoyancy length scale V 2

0 /g. Determining how S∗ depends on these
and other parameters would require many additional simulations, but this is nevertheless the most
important future research direction suggested by the present study.

To determine a relation for St in the two-plume case, Fig. 3(a) shows St/Sts as a function of
S/W for different Ri (note that Ri is a direct nondimensional surrogate for W in the present study,
since W is the only parameter in Ri that varies in the simulations). With this normalization, Fig. 3(a)
shows that the plumes approach the spacing-independent single plume value St/Sts ≈ 1 for S/W '
1, corresponding to the limit where the two plumes become decoupled and puff independently.
We correspondingly call S/W ' 1 the noninteracting regime and S/W ! 1 the weakly interacting
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FIG. 3. Two-plume puffing Strouhal number St normalized by Sts from (1) as a function of (a) S/W and
(b) (S/W )Ri0.34. Panel (b) shows the empirically determined scaling relation in the strongly interacting regime,
summarized in (2). In both panels, squares indicate in-phase puffing and circles indicate out-of-phase puffing.

regime. Within the weakly interacting regime, St is slightly below the single plume value, although
we do find that St/Sts ≈ 1 by S/W ≈ 3 for all Ri.

The plume oscillations in the weakly interacting regime are out of phase due to variations in the
amount of mass entrained by each plume during the puffing cycle, ultimately causing the two plumes
to entrain mass maximally (or minimally) at different times. Although the present simulations do
not extend far into the noninteracting regime, there is no reason for any phase relationship to exist
between the plumes in this regime, beyond the numerical coupling imposed by the finite size of the
computational domain in the simulations.

For S/W " S∗/W , the two plumes puff in phase and eventually merge as S/W → 0, resulting in a
puffing frequency that corresponds to a single plume of width 2W , giving St/Sts = 21−0.45 = 0.68.
In this merged regime, Fig. 3(a) shows that the computed frequencies are all slightly above St/Sts =
0.68, most likely due to the nonzero coflow velocity. However, the statistical variability of the data in
the merged regime is too large to draw any quantitative conclusions regarding the scaling of St/Sts
for small S/W . For intermediate values of S/W where S/W ! S∗/W and S/W " 1, the plumes are
close and Fig. 3(a) shows that there is a self-induced increase in St/Sts with decreasing S/W . This
is the strongly interacting regime which begins (with decreasing S/W ) at the transitional separation
S/W ≈ 1. This is a common transitional scale in other interacting flows, such as interacting bluff
bodies [38,39].

Although St/Sts nearly collapses for all Ri in the strongly interacting regime, Fig. 3(a) shows
that there is still a residual dependence on Ri. This additional dependence on Ri is accounted for in
Fig. 3(b), where St/Sts is shown as a function of (S/W )Ri0.34. The exponent 0.34 was empirically
determined using a linear regression to give the best collapse of the data in the strongly interacting
regime, and an additional least-squares fit shows that St/Sts = 0.9[(S/W )Ri0.34]−0.32 provides an
accurate scaling relation in this regime. For the interacting double plume configuration we can thus
summarize the dependence of St on S/W and Ri as

St ≈






0.46Ri0.45 for 0 " S/W < S∗/W
0.61(S/W )−0.32Ri0.34 for S∗/W " S/W " 1
0.68Ri0.45 for S/W ' 1

, (2)

where S∗ = 1.3 cm is the critical separation for the present simulations.
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IV. CONCLUSIONS

Using numerical simulations, we have examined the effects of the plume width, W , and sep-
aration, S, on the puffing frequency of 2D interacting helium plumes. Consistent with results for
axisymmetric interacting plumes with reactions, we find that, as S decreases, the frequency increases
nonlinearly until a critical separation, denoted S∗, at which the frequency decreases abruptly. By
contrast to 3D reacting plumes, however, we find that S∗ is independent of W in the present 2D
plumes. For small S/W corresponding to the merged regime, the puffing Strouhal number, St, is
independent of S/W and consistent with results for a single plume with width 2W . Within the
strongly interacting regime for S∗/W " S/W " 1, St increases with decreasing S/W and increasing
Richardson number, Ri. In the weakly interacting regime for S/W ! 1, St is slightly below the single
plume value found in the noninteracting regime. For S/W ' 1, corresponding to the noninteracting
regime, St approaches results for a single plume of width W . The plume oscillations are in phase in
the merged regime, out of phase in the strongly and weakly interacting regimes, and should become
fully decoupled in the noninteracting regime, as shown by Dange et al. [23].

With these conclusions, we have addressed the three questions outlined in the introduction.
However, this study also introduces several new research directions. First, it may be possi-
ble to analytically derive the scaling relationship in the strongly interacting regime, where the
exponents on both S/W and Ri in (2) are close to 1/3. Second, additional simulations explor-
ing different parameters, particularly with differences between sources [14], would enable (2)
to be generalized even further, including a better estimate of S∗ based on inlet parameters.
Finally, extending these results to turbulent 3D line plumes is important for many practical
applications.
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