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Abstract.
The sources of the astrophysical neutrino flux discovered by IceCube remain
for the most part unresolved. Extragalactic core-collapse supernovae (CCSNe)
have been suggested as potentially able to produce high-energy neutrinos. In re-
cent years, the Zwicky Transient Facility has discovered a population of excep-
tionally luminous supernovae, whose powering mechanisms have not yet been
fully established. A fraction of these objects fall in the broader category of type
IIn CCSNe, showing signs of interaction with a dense circumstellar medium.
Theoretical models connect the supernova photometric properties to the dy-
namics of a shock-powered emission, predicting particle acceleration. In this
contribution, we outline the plan for a search of high-energy neutrinos target-
ing the population of superluminous and type IIn supernovae with the IceCube
Neutrino Observatory.

1 Introduction
The IceCube Neutrino Observatory is a large-volume neutrino detector based on an array of
photomultipliers submerged in the Antarctic ice [1]. In the past decade, IceCube has discov-
ered and characterised an astrophysical flux of high-energy neutrinos [2–4] which could be
the key to identifying the origin of ultra-high-energy cosmic rays. While high-energy neutrino
emission has been associated with different astrophysical objects, the majority of the flux ob-
served by IceCube remains unresolved. Multi-messenger observations suggest that a signif-
icant fraction of the flux must originate in sources that are faint in high-energy gamma rays.
Shock-powered transient phenomena observed in optical bands with suppressed gamma-ray
emission are candidate neutrino sources [5]. Among these, type IIn core-collapse supernovae
exhibit narrow lines in their spectrum that are a signature of interaction with a dense circum-
stellar medium. No high-energy neutrino excess has been previously observed from CCSNe
with IceCube [6]. A search for high-energy neutrinos from a selected sample of supernovae
powered by shock interaction could help in determining the origin of astrophysical neutrinos
and in constraining the shock-interaction models for hadronic particle acceleration [7, 8].

2 The nature of the most luminous supernovae
In core-collapse supernovae (CCSNe), a large amount of gravitational energy is converted
into low-energy neutrinos, thermal photons and kinetic energy of the ejecta. In Fig. 1, an
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overview of interesting subpopulations of CCSNe observed by the Zwicky Transient Facility
Bright Transient Survey [9, 10] is given. An especially luminous subset of hydrogen-rich
(type II) supernovae is represented by type IIn SNe, identified by narrow lines in their opti-
cal spectrum. This feature is a signal of interaction of the SN ejecta with the circumstellar
medium (CSM). The shocks propagating in such environment may accelerate particles to rel-
ativistic energies. The interaction of the accelerated protons with the cold protons and nuclei
in the dense CSM can result in the production of high-energy neutrinos [8] (see Fig. 2, left).
Thanks to high-cadence wide-field astronomical surveys, populations of both hydrogen-poor
(type I) and hydrogen-rich (type II) superluminous supernovae have been discovered in re-
cent years [11]. Type II SLSNe are most likely interaction-powered and can be considered as
an extension of the IIn population. Hydrogen-poor SLSNe represent a new, separate, class of
SNe, likely powered by the combination of magnetar activity and CSM interaction. As both
mechanisms can be responsible for particle acceleration, these sources will be considered in
a future extension of this work. Type IIP SNe are excluded from this analysis, being less
promising high-energy neutrino sources [7].

Figure 1. Distribution of the apparent magnitude (mAB) as a function of absolute magnitude (MAB)
for selected subpopulations of type I (right) and type II (left) of core-collapse supernovae observed by
the Zwicky Transient Facility in either ZTF-g or ZTF-r band. The following populations are omitted:
Type-II SNe that lack a subtype classification, stripped-envelope SNe of type IIb, Ibn and Icn, and all
subtypes classified as peculiar.

3 A sample of interaction-powered supernovae

A sample of type IIn SNe and type II SLSNe has been selected from the Bright Transient
Survey of the Zwicky Transient Facility [9, 10]. The forced-photometry light curves for the
ZTF red (ZTF-r) and green (ZTF-g) filters have been corrected for Galactic extinction and
interpolated using Gaussian process regression. The sum of the interpolated light curves is
taken as a pseudo-bolometric light curve, representing a lower limit on the optical emission
of the source (see Fig. 2, right). We select events with robust spectroscopic classification,
for which the time evolution has been well-observed in both bands, allowing for a reliable
estimation of the rise and peak times of the supernova. The final selection includes 74 sources
detected up to May 31, 2021 (end of the IceCube 2020-21 data season). The fluence at Earth
for each source in the sample is calculated from the time-integrated pseudo-bolometric light
curve and reported as a function of the source redshift and declination in Fig. 3.
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Figure 2. Left: sketch of the shock propagation in the circumstellar medium (CSM) for an interaction-
powered supernova from Ref. [8]. Right: example of pseudo-bolometric light curve (bottom, see 3)
obtained by the sum of interpolated ZTF-g (top) and ZTF-r (middle) band lightcurves of a type IIn
CCSN observed by the Zwicky Transient Facility.

Figure 3. Pseudo-bolometric fluence as a function of redshift (left) and declination (right) for the
selected sample of interaction-powered supernovae.

4 Neutrino stacking analysis and preliminary results

The analysis method for the search of astrophysical neutrinos is an unbinned stacking imple-
mented in flarestack [12]. The likelihood function is defined on the neutrino sample:

L(ns, γ) =
∏
i=0


ns
N

M∑
j=0

w jS j(θi, γ) +
(
1 − ns

N

)
B(θi)

 (1)

where θi are the properties of the i-th neutrino (out of N), ns is the total number of signal
events from the source catalogue, w j is the weight for source j (out of M), S and B are the
signal and background probability density functions, γ is the spectral index of the signal flux.
The likelihoodL is maximised to find the best-fit values of ns and γ. A test statistic is defined
by the likelihood ratio of the signal plus background to the background-only hypotheses. The
significance estimation is based on the test statistic distribution calculated from a large num-
ber of background neutrino samples, obtained by shuffling neutrino data in time and assigning
random values of right ascension. Assuming a neutrino emission proportional to the optical
luminosity, given that the two have a common powering mechanism, the sources are weighted

3

EPJ Web of Conferences 280, 05005 (2023)	 https://doi.org/10.1051/epjconf/202328005005
RICAP-22



according to their pseudo-bolometric fluence (see Sec. 3). A preliminary estimate of the sen-
sitivity and discovery potential has been performed and is shown in Fig. 4. The corresponding
neutrino energy fluxes are 4.5 · 10−9 and 1.5 · 10−8 GeV−1 cm−2 s−1. Improvements to the
analysis are possible by restricting the catalogue to the Northern hemisphere (where IceCube
has the best sensitivity) and by implementing a model-driven weighting of the sources based
on a development of the approach described in Ref. [8].

IceCube
work in progress

IceCube
work in progress

Figure 4. Sensitivity (flux at which 90% of the time the experiment yields a result above the background
median; left) and discovery potential (flux at which 50% of the time the experiment yields a result above
a 5σ significance; right) for the stacking analysis estimated by evaluating the test statistic distribution
for different intensity of injected signal flux.
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