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1. Introduction

IceCube is a cubic-kilometer astroparticle detector at the geographic South Pole. Over 5000
digital optical modules (DOMs) are deployed on 86 strings in glacial ice at depths ranging from
1450 m to 2450 m [1]. It detects particles from astrophysical sources, and tries to understand the
dynamics of the sources through their cosmic ambassadors, allowing analysis in the areas of cosmic
rays, neutrino physics, and other research areas. The in-ice IceCube (IC) array is accompanied by
the surface component, called IceTop (IT) [2]. In addition to this IceCube also has a DeepCore (DC)
array with DOM density roughly five times higher than that of the standard IC array, located around
the center of the IC array at depths below 2100 m [3]. This makes it a unique three-dimensional
multimessenger detector. IT is predominantly used as an extensive air-shower (EAS) detector, in
addition to serving as a veto for neutrino detection. In an integrated approach, IT (primarily detects
the electromagnetic component + GeV muons) and IC+DC (primarily detects TeV muons) can be
used to reconstruct the direction, energy, and mass of penetrating particles of the incident cosmic
ray (CR). An illustration of an example air shower incident on IT with also a footprint in IC is
shown in Figure 1.

IceCube has already demonstrated the ability to improve our understanding of the energy
and mass spectrum in the transition region from galactic to extragalactic cosmic rays [4]. This
work extends ongoing analyses [5, 6], where the cleaned signal footprint is used. This has been
possible because of ongoing advancements in the field of deep-learning. For the estimation of
primary mass a graph neural network (GNN) based approach has been used. The Monte-Carlo
(MC) simulations used for the analysis and training were generated using the CORSIKA air-shower
generator [7]. The datasets for each primary type (p, He, O and Fe) were simulated in the energy
range 5.0 ≤ log10(E/GeV) ≤ 8.0, using FLUKA [8] as the low-energy hadronic interaction model
and SIBYLL 2.1 [9] as the high-energy interaction model. For this investigation, we only consider
coincident IT+IC events utilizing quality cuts [4] that guarantee coincidence, with successful
direction reconstruction and shower-core containment within the IT array. This work will also
introduce two new composition-sensitive parameters.

2. New Composition-Sensitive Parameters

IceCube has performed multiple analyses, where several shower-features using simulations
were probed [5, 6] and validated on real data [4]. log10(S125/VEM), where 𝑆125 is the signal
expectation at a perpendicular distance of 125 m from the shower axis at IT, was found to be a
good energy-proxy [10]. The signal is in units of Vertical Equivalent Muon (VEM), which is the
signal that would be deposited by a single muon vertically traveling through an entire IT tank. The
charge deposits at IT are also used to reconstruct directional information like zenith and azimuth
[4]. For mass-discrimination we had developed multiple useful parameters [4–6, 11, 12]. Among
those, the ones used in this study are a) log10(dE/dX1500 m) = fit-value of IC energy-loss profile at
a slant-depth of 1500 m (details in [4]) b) total stochastic energy = total IC energy of high-energy
local-stochastic deposits in an event (details in [5]). These parameters primarily probe energy-
deposits by TeV muons in the detector. In the following we discuss ongoing efforts to develop
newer composition sensitive parameters.
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Figure 1: An illustration of an example EAS incident on IceTop. The dark-blue(/colored) circles represent
the station(/DOM) hits after spatio-temporal cleaning around the reconstructed shower-axis. Only the hits
are interpreted as nodes of a graph and the graph-connections are based on a predefined/adaptive algorithm.

2.1 Impact-Weighted Average Charge (IAC)

The information about the lateral-spread of in-ice muons was ignored in the previous studies.
However, from our understanding of air-shower physics, at the same primary-energy Fe-induced
air-showers are expected to have wider muon bundles than those initiated by p. This is anticipated
because of aggregated behaviour of two observations from air-shower physics, namely at same
energy: a) Fe initiated showers interact earlier in the atmosphere than p. b) Fe initiated showers
have larger muon-multiplicity with lower average muon energy. For Fe showers, these phenomena
allow for lower energy-muons with larger transversal momenta to be situated further away from the
shower axis.

To test the hypothesis for IceCube, the IC spatio-temporal cleaned signal-footprint was divided
along the slant-length into 5 percentile-bins (based on the number of DOM hits). The bins were
divided based on percentiles (rather than depth) to ensure that we compare showers in the same
zenith-bin (of the same energy and primary type) at approximately the same stage of shower
development (independent of the point of first-interaction). This also prevents sparsity (and hence
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Figure 2: Composition sensitivity for new IceCube & IceTop variables (using SIBYLL 2.1 [9] and weighted
to the H4a all-particle spectrum [13]): Left: Impact-Weighted Charge (last percentile bin), Right: Ratio
Parameter; as a function of shower size, 𝑆125, for proton and iron primaries.

over-reliance on few DOMs) for the following parameter calculation. In each percentile bin the
Impact-Weighted Average Charge (IAC) is calculated, and represented as:

𝐼 𝐴𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝐵𝑖𝑛 =

∑
𝑖 𝐶𝑖𝑟𝑖∑
𝑖 𝑟𝑖

(1)

where the summation runs over all the spatio-temporal cleaned hit-DOMs in a given percentile
bin and 𝐶𝑖 represents the charge at DOM 𝑖 located at a perpendicular distance 𝑟𝑖 (impact) from the
reconstructed shower-axis. It was found that the last percentile bin shows the maximal composition
sensitivity. The results for p-Fe separation, for the last percentile bin, is shown in Figure 2 (left). As
can be seen, the parameter shows a promising discrimination power for CR composition analysis.
Further studies to improve the discrimination power of the parameter are ongoing. A future analysis
can also check the feasibility of using the parameter for non-coincident showers.

This study also explored the usage of Charge-Weighted Average Impact (CAI) as a mass
discriminator. It also showed mass discrimination, though much lower than IAC. Hence, the plots
are not shown here. For the GNN analysis (section 3), both IAC and CAI in all percentile bins were
used.

2.2 Ratio Parameter

KASCADE-Grande was an air shower experiment located at the Karlsruhe Institute of Technol-
ogy (average atmospheric depth 1022 g/cm2) and has demonstrated that the ratio of muon-number
to total charged-particle number is a good composition-sensitive parameter [14, 15]. IceCube
lacks the capability of directly counting the particle-number for different shower-components. In
order to test the feasibility of particle-type ratios for mass-discrimination at IceCube, reconstructed
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proxy-parameters were used to approximate the muon-number (using log10(dE/dX1500 m)) and
total charged-particle number (using log10(S125) ). The preliminary results from such a test are
shown in Figure 2 (right). As can be seen from the figure, the parameter shows good discrimination
power for CR composition analysis. This simple test also shows the potential benefits of obtaining
particle-number estimates for composition analysis. Improvement in the mentioned parameter for
IceCube and similar tests for IceCube-Gen2 are ongoing.

3. Cosmic-Ray Composition : Using Graph Neural Networks

The IceCube Collaboration plans to enhance the present detector to the next-generation instru-
ment called IceCube-Gen2 [16]. The detector will enhance our understanding of the multimessenger
universe by combining observations from multiple cosmic messengers. In addition to this, the en-
hancements will also extend the energy-sensitivity range and sky coverage of current measurements.
The science objectives will be met by incorporating four new components: an in-ice optical array,
a low-energy core, a surface air shower array [17], and an extended radio detector array. The en-
hancements will also shift the detector geometry to a more irregular one. The viability of utilizing
GNNs for making composition analysis flexible to such detector upgrades has been demonstrated
in prior studies [5, 6, 18]. This work extends that by aggregating older and newer composition-
sensitive parameters, along with other relevant shower parameters. In addition to that, there have
been technical changes in the GNN architecture, in comparison to [5]. The full network is trained
as a regression-model with the logarithmic mass of CR primary i.e. ln(A) as the expected output.

3.1 Network Architecture

Input Graph

Physics Features

Point-Pair
Conv.

Point 
Transformer

Dynamic-
Edge Conv.

Global Pool (Add & Mean)

Point 
Transformer

Dynamic-
Edge Conv.

Global Pool (Add & Mean) Global Pool (Add & Mean)Feature Homophily

MLP Mass Prediction : ln(A)

Legends Information

Normal Data/Information Flow

Global Feature-Information Aggregation

Apply Leaky ReLU, Dropout, Graph Norm in order

Apply Leaky ReLU, Dropout, Concat (with same arrow type), Graph Norm in order

Concat feature-embeddings at each node Concat global-embeddings with Physics Features

A multi-layer fully connected network Target Variable

Figure 3: Current GNN based architecture used for CR analysis at IceCube Observatory.

The current detector can easily be mapped to an orthogonal geometry, which was the reason for
an extensive use of convolutional neural network (CNN) based approaches at IceCube. However,
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CNN for IceCube currently has a few minor problems like sparsity of DOM-hits (e.g. Figure 1)
and treating DC [19–21] and IT [22] separately. These problems will be exaggerated even more
as we move to IceCube-Gen2. GNNs are used in order to develop a method which allays these
problems and is flexible to detector upgrades. We overcome the sparsity problem by mapping
only the active stations/DOMs as nodes of a graph. The problem of combining IT, IC and DC
is automatically solved by using GNNs, since they allow us to learn on irregular point clouds of
variable size. Mapping IT as a graph and using it together with IC+DC is also a major addition
in contrast to the previous study [5]. Additionally, the physics features included are a) log10(𝑆125)
b) log10(𝑑𝐸/𝑑𝑋1500𝑚) c) total stochastic energy d) IAC and CAI (all percentile bins) e) Ratio
Parameter f ) track length (In-Ice) g) reconstructed Zenith and Azimuth .

To map the detector (IT+IC+DC) as a graph, the active stations/DOMs (hits remaining after
signal cleaning) are mapped as nodes of the graph. Each node of the graph has associated attributes,
which capture the spatial coordinates, the charge and timing information of the measured waveform
for the hit DOMs. Defining node-neighbourhood i.e. edge-information at each node in the input-
graph is another component essential for learning on graphs. Multiple methods were tested to
define a neighbourhood. For the input-graph, weighted k-NN with inductive-bias has proven to
be the best option. In our context: a) k-NN means connect each node to its k Nearest-Neighbors
(in coordinate space) b) weighted k-NN means weight the k-NN connections between two nodes by
spatial separation between them. c) inductive-bias means the node connections indirectly capture
the information of graph (or event) size and the primary-type (by scaling Ratio Parameter described
in subsection 2.2 - SRP). In summary, each node of an input-graph (or event) with N nodes has k
neighbours, where:

𝑘 = 1 +
⌈

𝑁

1 + 𝐴 · 𝑒𝑥𝑝 [𝑆𝑅𝑃 · (𝐵 − 𝐵 · 𝑆𝑅𝑃 · 𝑁)]

⌉
(2)

where A and B are two positive-valued hyperparameters of the network. The detailed reasons
and tests for choosing the form of Equation 2 will be published in a future publication.

The steps described earlier give us an input graph (labelled as Input Graph in Figure 3), which
can then be used as an input for the GNN architecture. Feature homophily gives a measure of
how similar individual node-features of the connected-nodes are to each other [23]. The rest of the
architecture is motivated from developments in powerful CNN architectures detailed in [24, 25],
and are adapted for the use case of graphs. The convolution-types are based on studies with point
clouds [26–28]. The physics features are concatenated at the global pooling layer. This is finally
fed into a multi-layer perceptron (MLP) with ln(A) as the target output.

3.2 Primary Type Discrimination using GNNs

For a good mass discrimination, it is required that in all the energy bins the network-predictions
for any two elements are maximally separated from each other. As can be seen from Figure 4, the
GNN based method shows good mass resolution and preciseness in prediction over almost all the
energy bins (true MC energy shown here). p-Fe separation shows improvement with increase in
energy. The overlap-area between normalized p-Fe KDEs (Figure 4) is a around 27% for 6.4 ≤
log10(E/GeV) < 6.6 and improves to around 15% in the last-bin. For intermediate primaries there
is still scope for improvement.
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Figure 4: Kernel density estimate (KDE) [Bottom] of mass prediction by GNN in true MC energy bins and
Horizontal dashed-dot lines represent True Primary Mass [ln(A)]. Top plot shows bias in predictions.

4. Conclusion and Outlook

We presented a graph neural network based approach for estimating the mass of primary
cosmic rays in the energy range 5.0 ≤ log10(E/GeV) ≤ 8.0. The new results are promising and
allow to report individual spectra for elemental groups in the future. There are also ongoing efforts
to increase the discrimination-power of the newer composition sensitive parameters. Since graphs
can be used for irregular-shaped data this study can in the future also be adapted for the planned
multi-component irregular-shaped IceCube-Gen2 and the related surface-enhacement [17].
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